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ABSTRACT

Negative binomial (NB) models are commonly used in modeling
count data with overdispersion. The model can be formed by assuming that the
counts come from a Poisson distribution with varying means. Taking the Poisson
mean as gamma distributed random variable leads to various mean-variance related
NB models. However, the most commonly used models are the linear mean-variance
NB (NB1) and the quadratic mean-variance NB (NB2).

This thesis presents a procedure of obtaining an approximated
deviance residual of the NB1 model used in the research paper of Jansakul and
Hinde in 2004 [13]. The investigation is started by showing that the NB1 model is
not a member of generalized linear models (glms), conducting some simulation study
to consider an appropriate adjusted value for the mode of the NBI1 log-likelihood
and applying the value to form the NB1 deviance residual. Our study shows that the

approximated NB1 deviance residual behaves as well as the glm deviance residual.
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We developed an approximated hat value (or leverage) of the NB1
model and used that to form an estimated NB1 standardized deviance residual. In
order to confirm that our proposed hat value and standardized deviance residual are
appropriate, we again conducted some simulation study to investigate the properties
of both quantities. Our studies show that our approximated hat value and the NB1
standardized deviance residual with a small value of overdispersion parameter follow
the general theoretical properties. In the case of the NB1 model with a large value
of the overdispersion, a further study is required.

For illustration, we applied our proposed quantities to check the
adequacy of the final NB1 model for the mean numbers of embryos of orange
variety Valencia tissue culture as presented in Jansakul and Hinde (2004) [13]. It
shows that our the NB1 standardized deviance residual can be used to check the

constant variance and normality assumption of NB1 model in a population of study.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Negative binomial (NB) models are commonly used in modeling
count data with overdispersion. The overdispersion is explained by the count
variance exceeding the mean and a standard Poisson model is not appropriate.
The NB model can be formed by assuming that the counts come from a Poisson
distribution with varying means. Taking the Poisson mean as a gamma distributed
random variable, it leads to various mean-variance related NB models; see Hinde
and Demetrio (1998) [11] and Hilbe (2007) [10] for detail. However, the most
commonly used models are the linear mean-variance NB model, denoted by NB1
model and the quadratic mean-variance NB model, represented by NB2 model.
The NB2 model is a generalized linear model (glm) when the shape parameter is
known; hence the methods of model fitting and model checking are widely available
in associated literatures.

Model checking including checking systematic departure, outliers
and influential values, is an important part of fitting a model. Quantity mostly
used in the model diagnostics is residuals and the associated procedure is known as
residual analysis. There are three basic types of residuals in statistical modeling;

the Pearson, Anscombe and deviance residuals (McCullagh and Nelder, 1989



[16], Cameron and Trivedi, 1998 [6]). This thesis will mainly concentrate on
the deviance residual because the context of statistical modeling with known
probability mass (density) functions, the linear predictor coefficients are mainly
estimated by using the maximum likelihood method and the model selection
along with model checking are performed by using the deviance residuals. For
distributions that are member of generalized linear models, an individual deviance
residual equals zero when the response and its mean are identical.

The NB1 model is not a member of glms resulting its deviance
residual cannot be obtained as simply as a glm, since the individual components
of deviance function can be negative (Jansakul and Hinde, 2004 [13]). Jansakul and
Hinde (2004) [13] proposed an approximated NB1 deviance residual and used that
in checking the adequacy of the final NB1 fitted model for the mean numbers of
embryos the orange variety Valencia used in a tissue-culture experiment. However,
they did not report their exploration.

This thesis will focus on exploring the background of obtaining the
approximated NB1 deviance residual given in Jansakul and Hinde (2004) [13],
developing an approximated standardized NB1 deviance residual together with its

associated exploration.

1.2 Objectives

1. To study a general form of NB1 models and its properties;

2. To explore the properties of NB1 deviance residuals;



To develop an approximated standardized deviance residual of the NB1

model.

Scope and Methodology

. Study characteristics, theories and properties of generalize linear models and

their residuals;

. Study a general form and properties of NB1 models;

Explore how to obtain the approximated NB1 deviance residual presented

in Jansakul and Hinde (2004) [13];

. Develop an approximated NB1 standardized deviance residual.

Advantages

. Full fill the knowledge of NB1 models and theirs properties;

Understand and be able to fit a NB1 model, investigate the background
of obtaining an approximated NB1 deviance residual used in an associated

literature;

Understand and be able to develop an approximated standardized deviance

residual of the NB1 model.



1.5 Thesis Overview

We have described the motivation, objectives and scopes of our
study. We now summarized where in this thesis the exploration and investigation
are performed.

In Chapter 2, we explore the basic concepts of statistical errors and
residuals of linear regression and generalized linear models, followed by three basic
types of residuals: Pearson, Anscombe and deviance residuals, used in statistical
modeling. This thesis will mainly concentrate on the deviance residual, where
we firstly explore the association of the deviance residuals and the log-likelihood
function of the four well known glms; normal, binomial, Poisson and gamma
distribution.

Chapter 3 firstly presents a general form of the negative binomial
model and separates that to two well known forms: the linear mean-variance
negative binomial model and the quadratic mean-variance negative binomial model.
The NB2 model is a glm when the shape parameter is known, then the model
fitting and deviance residual are easily obtained. Secondly, we show that the NB1
model is not a member of glms and go to explore the background of obtaining
an approximated NB1 deviance residual used in Jansakul and Hinde (2004) [13].
The investigation is started by considering an appropriate adjusted value for the
mode of the NB1 log-likelihood and applying the value to form the NB1 deviance
residual. The exploration is form using a simulation study.

In Chapter 4, we develop an approximated hat value of the NB1

model and conducted a simulation study in order to investigate the general properties



of the hat values and apply the value to form an approximated NB1 standardized
deviance residual using the NB1 deviance residual in Chapter 3 as a base line.
Again a simulation study is conducted to investigate its ideal (standard normal)
distribution. The approximated standardized NB1 deviance residual is used to
check the adequacy of the final NB1 model for the numbers of embryos of orange
variety Valencia tissue culture data as an illustration.

This thesis ends with a summary of the main conclusion a long with

a suggestion for a further study.



CHAPTER 2

Reviews of Literature

2.1 Basic concepts of statistical errors and residuals

In the context of statistical analysis, in particular, statistical modeling,
statistical errors and residuals are very closely related and easily confused. Some
think that they are identical. They are actually not the same, though they are
related.

For a series of observations y;, i = 1,2, ..., N of a univariate distributed

2 the statistical errors and

random variable, Y with mean p and variance o
residuals are defined as follows:

2.1.1 Statistical errors are the difference of observed values and the population

mean, i.e. for the i*" statistical errors, denoted by ¢; is then

& =Yi— H (2.1)

The term ¢; is a random variable having similar distribution of ¥ with mean 0
and variance o2. Since u is unobservable, hence error ; can’t be observed.
2.1.2 Residuals are the difference of sample observed values and the sample

mean, 7. For a sample of size n, the i*" residual, denoted by e; is defined by

which is the " observable estimates of ¢;. e; is a random variable with mean



2

of zero (0) and the mean square residual; ] Zei, respectively. Based on a
/,’L p—

i=1
statistical theory, the mean square residual is an :mbiased estimator of o2.

In the context of statistical modeling including linear regression
analysis and generalized linear models, the expression of residual is not as simply
as shown in (2.2), where the description of those is given here.

2.1.3 Statistical errors and residuals in linear regression analysis

In the case of linear regression analysis, when observed values y; of a
response variable Y;, ¢ = 1,2, ..., N is a linear function of p explanatory variables;
T1i, T2, ..., Tp; and the constant term, the relationship between y; and x; can be

defined as

Yi = Po + Brx1i + Paoi + -+ + Bppi + & (2.3)

Here, ¢; is a statistical error which is assumed to be independent and identically
distributed. Under the stronger assumption, ¢; is independent and identically
normally distributed, denoted by e; ~ N(0,0%). This gives Y; are normally
distributed with mean p; = By + Biz1; + Baxe + -+ + Bpxy, and variance o2,
denoted by Y; ~ N(yu;,0?). Again the error term &; = y; — u; and is unobservable.

For a random sample of observations, i, ¥, ..., y,, the parameter
estimates, Bo,Bl,BQ, ...,Bp, for the regression coefficients By, 1, B2, ..., B, can be

obtained using the method of least square or maximum likelihood. The well known

R N ~\T
expression for 3 = (60, B, Ba, -, 5p> in a matrix form is
B=(XTX)" XTy, (2.4)

where X is an n X (p + 1) design matrix with the elements of the first column



are 1 for the constant term and y is the vector of responses. The vector of fitted

values, ¢ of y is then
PN —1
p=9=X(X"X) X'y=Hy, (2.5)

where H = X (XTX)_1 X7 is known as the hat or hessian matrix with the
rank of p + 1. The main diagonal element, denoted by h;, i« = 1,2,...,n, where
0 < hy; < 1is call hat values or leverages. Hoaglin (1992) [12] presents a simple

form of the hat values for the simple linear regression as

> (ax—7)

The hat values plays important role in the statistical modeling: checking outliers
and influential values.
In the linear regression modeling, the i*" observed residual, e;, observable

estimates of the ¢; is defined by

e = Yi — i, (2.7)

which is normally distributed with mean 0 and variance 6%(1 — h;;), where

1
52

= Z e2. The residuals play important role in model assumption
n—p—1 !

i=1
checking: constant variance and normality in regression analysis.

2.1.4 Statistical errors and residuals in generalized linear models
In the case of generalized linear models, where the distribution of
the response variable Y; is in an exponential family distribution, defined (ignored 7)

as
y6 — b(0)

f(y;0,0) =exp { )

ey, ¢>} , (2.8)



with specific functions a(-), b(:) and ¢(+). 6 and a(¢) are the natural or canonical
parameter and scale or dispersion parameter, respectively. The mean of Y;
(1t is obtained through a linear predictor defined by n = By + Bi121 + Saza+- - -+ Bpxp

which is linked by a link function g(u) written as

g(p) =n = Po+ Prxy + Powa + - - - + Byt (2.9)

The estimates Bo,Bl,Bg, ...,Bp for Bo, 51, B2, ..., Bp can be obtained by using the
method of maximum likelihood via an iteratively reweighted least square algorithm,
(McCullagh and Nelder, 1989 [16] and Aitkin et al., 1990 [2]).

Given a vector of n observations y = (y1,¥s, ..., yn)" of Y from the

exponential family distribution, the likelihood function L = L(8, ¢; y) is

L(0,¢;y) = H f(yi; 05, 9) = exp [Z {yﬁ%qg(@) + c(vi, 925)}] (2.10)

and the corresponding log-likelihood function ¢ = £(0, ¢; y) = In L(0, ¢; y) is

(=00, 0y) =Y {—yﬁgiaz (;;(9")

=1

el | (2.11)
Some elementary properties of linear exponential families follow the familiar identities
ol 0% ol
Simple calculation shows that the mean and variance of Y; are
EY;) =b(:) =  and  Var(Yi) = a(¢)b"(0;) = a(¢)V (). (2:13)

Here b/(0;) and b"(6;) denote the first and second derivatives of b(6;) with respect
to 6;, respectively. The function b”(6;) can be defined as V' (p;), because it depends

on y; through ¥'(6;), and is called the variance function of the model.
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In general, the log-likelihood function (2.11) is expressed as a function of the
mean-value parameter, E(Y) = u. That is £ = {(u; y) = £(0, ¢; y).

Since the maximum likelihood estimate B = <Bg, Bl, Bg, o Bp>T for
B = (Bo, b1, Ba, ...,Bp)T cannot be obtained directly from the normal equation

ol

(=—=0,7=0,1,2,....,p). It needs an iterative scheme, such as the iteratively

9B,
reweighted least square (IRLS) algorithm, which is defined by

R L (XT W(r)X>_1 s (B“’) . (2.14)

N 1 ~
That is the new estimate ﬁ(r+ ) of B is obtained from the previous estimate, B(r)

W is a diagonal weight matrix with elements w;; defined by

1
 Var(Y;) [of (m))?

o\~ i— vy 0g(p)

and s(8) = — = =t Y g () = =
D= a5~ L) T o

Aitkin et al. (1990) [2] for details. A general form of the hat matrix for the glms

are evaluated at B(r), see

is defined by

H=W:X (X"WX) X "W3, (2.16)

where W is a diagonal matrix with the elements w;; evaluated at p; = fi;. In this
case, the hat values, h; are the main diagonal elements of H. However, the h;,

in particular, for glms, can be easily obtained using any statistical package.
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2.2 Types of Residuals

There are three basic types of residuals in statistical modeling including
the Pearson, Anscombe and deviance residuals (McCullagh and Nelder, 1989
[16], Cameron and Trivedi, 1998 [6]). However, ones that are commonly used,
in particular, for generalized linear models, where the distribution of response
variable Y is in an exponential family, are Pearson residuals and deviance residuals.
2.2.1 Pearson residuals

Following McCullagh and Nelder (1989) [16], the Pearson residual
is defined by the raw residual divided by the estimated standard deviation of the

variance function. Then the i** Pearson residual is then

ry = S ML (2.17)
V(i)

and the i*" standardized Pearson residual, denoted by 7, is

: (2.18)

where h;; is the i'" main diagonal elements of the hat matrix.
Following we present the i*" Pearson residual along with its corresponding

standardized Pearson residual for four well known glm responses:

(1) Normal responses: Let Y7,Ys, ..., Y, be a random sample from a normal
distribution with mean g; and variance o2, represented by Y; ~ N(u;, 02),

where its probability density function (p.d.f) is

1 1
oy 2 — _ )2 — .
fyis sy 0°) = 27TUzexp{ 52 (yi — i) } : 00 < y; <00, a>0.
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This can be written in the exponential family distributional form as

1

Ny
Yi i 2}% _y_g

1
f(yi; i, 0°) = exp — Q0 + — ~In(270?)

2.19
507 " 3 : (2.19)
with E(Y;) = p; and Var(Y;) = o2 Then the i® Pearson residual, ry; and

standardized Pearson residual, 7y; are

'Ni

TNi = Yi — [l and TNi =~
Ni = Yi — [ N 20— hy)

where s? is the mean square residual (MSE), an unbiased estimator of o2.

Binomial responses: Let Y7, Y5, ..., Y, be a random sample from a binomial
distribution with probability of success p; and number of trial m;, denoted

by Y; ~ Bin(m;, p;). Its probability mass function (p.m.f) is defined by

This can be written in the exponential family distributional form as

1— i m;

with E(Y;) = u; = myp; and Var(Y;) = m;p;(1 — p;). Since p; = &, then
mA

(2

(2.20) can be written in the form of y; as

yiln( Hi ) +m;In <—mi_'ui)
My — i m; m;
—I—ln( )

I (yis mi, i) = exp 1 ”

(2.21)

,ui(mi - Mi)
my;

, then the i Pearson residual,

Since a (qAS) = 1 and Var(Y;) =
rBin; and standardized Pearson residual, rg;,; are

Vi(ys — fis)

. . T"Bini
I'Bini = — /——m7——m— and T'Bini =

fli(m; — fi;) (1= ha)
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(3) Poisson responses: Let Y7,Y5, ..., Y, be a random sample from a Poisson

distribution with mean p;, denoted by Y; ~ Pois(y;). Its p.m.f is defined by

e My

This can be written in the exponential family distributional form as

Fam) =oxp { BRI g (2.22)

with E(Y;) = p; and Var(Y;) ;. Since a (&) = 1, then the variance

function, V' (i;) = 4, so the ith Pearson residual, rpyy and standardized

Pearson residual, rpg;; are

Yi — fli d . o T"Poisi
T'Poisi — = an T'Poisi — .
Hi (1 - hii)

(4) Gamma responses: Let Y7,Y5, ..., Y, be a random sample from a gamma

distribution with shape parameter o and scale parameter (3;, denoted by

Y; ~ Gamma(c, 5;). The p.d.f is defined by

[yis Bina) =

*1e*yi/5i7

& ; >0 and «, 5; > 0.
s’ !

o0
/ ettt dt.
0

This can be written in the exponential family distributional form as

—%—alnﬁi
FlwiBue) = exp § 4 (@ Dy —T(@) p, (229

Here I'(«) is the gamma function defined by I'(«)

with E(Y;) =

7

wi = af; and Var(Y;) = aB?. Since [3;

&, then (2.23) can
a
be written in the form of yu; as

—yip; b —In g +1
f(yz-;,ui,a):exp{ Yith aiu i n&+(a—1)1nyi—lnf(a)}.

(2.24)
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Then the i** Pearson residual, 7Gamma; and standardized Pearson residual,

TGammai aI'€

Y d . o rGammai\/a A
'Gammai = ~ an I'Gammai — —  7————, a > 0.

5 (1 —hy)

2.2.2 Anscombe residuals

As mentioned in McCullagh and Nelder (1989) [16], a disadvantage
of the Pearson residual is the distribution of the residual for non-Normal distributions
is often skewed, and so it may fail to have properties similar to those of a Normal-
theory residual. An alternative that can be used for the non-Normal distributed
response is the Anscombe residual (Anscombe, 1953 [3]). The Anscombe residual
is defined by using a function A(y) in place of y. The function A(-) is chosen
to make the distribution of A(Y) as normal as possible. For the likelihood

functions forming in glms, the function A(-) is given by

(2.25)

1
40 = [ i

A general form of the Anscombe residual is then

A, = —2 ' (2.26)

where A’(f1;) is the first derivative of A(u;) evaluated at fi;.

The i*® standardized Anscombe residual 74, is

ra;

Fa, = . (2.27)
\/a (QB) (1 — has) 227

The Anscombe residual and its standardized form for the commonly used response

distributions in the statistical modeling presented in Gill (2000) [9] are as follows.
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Let A i, TA Bini» TA_Poisi @1d T'A_Gammai denote the i Anscombe residual

of the normal, binomial, Poisson and gamma distribution, respectively.

(1) Normal responses:

T'A_N;

TAN = Yi — [ and TANi = —F———.
S2<1 — hu)

(2) Binomial responses:

2 2 2 2
T'A Bini = V/ ml[/:l‘l(l - ﬂi)]_l/G B Yi, 5,5 | — B ﬂi? 57 o and
33 33
T'A_Bins
(1 —hy)
where B (z,a,b) = / t N1 — )t at.

0

'f,A,Bini -

(3) Poisson responses:

T'A_Poisi =

DN W

(yf/fﬂﬂl—l/ﬁ . ﬂj/?) and FA poisi = T'A_Poisi .
(1— hy)

(4) Gamma responses with u; = af;:

N\ /3 ' _
T'A_Gammai = 3 (%) —1 and 7;A,Gammai = TAfGammaz<\/a) .

2.2.3 Deviance residuals
Using the definition of scale deviance, D*(u; y) given in Macullagh

and Nelder (1989) [16], where

D*(p;y) = 2x{lly;y)—Uu;y)} (2.28)

= 2x Z{f(yi;yi) — 05 y:) }

= 2X id}‘,
1=1
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gives the deviance function

D(p;y) = a(¢) x D*(; ).

A general form of the i*® deviance residual, rp, is defined by

o, = sign@i—myzxa(g%) [Cysw) — W)} (2:29)
= sign(y; — ) V/d:,

where sign(y; — f1;) is a function that makes rp, positive when y; > [; and
negative when y; < fi; (Collett, 1991 [7]). The i*" standardized deviance residual,

represented by 7p., is

P, = £D: . (2.30)

\/a (¢> (1 = hs)

Following we present the i*® deviance residual along with its corresponding

standardized deviance residual for some well known glms:

(1) Normal responses:

From (2.19), we have the likelihood function defined by

L,
| Yikki — Sl 2 1
2, _ 2 Y; 2
Lx(p,0%5y) = exp z; — <—202 ~ 5 In(27o )> (2.31)
and the log-likelihood function is
L
oYk — Sy 2 1
_ 2, _ 2 Y; 2
In = Un(p,0%y) =Y — (—20_2 — 5 In(2m0 )) . (2.32)

=1

Considering the individual log-likelihood, #x; (14, 0%; y;);

1 2
Yilti — Sy 2 1
Yi
Oni( iy 0 4i) = 72 “ 352 3 In(270?), (2.33)
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then the i*" deviance residual, rp n; and its standardized deviance residual,

T D_N; are

TD_Ni

82(1 — h“) .

TDNi = Yi — fbi and TD.Ni =

Binomial responses:

From (2.21), we have the likelihood function defined by

e T R GO R )
i=1 i i i i

(2.34)

and the log-likelihood function is

_ =S i o (M i
Ugin = lpin(p, M3 y) = Z |:yi1n (ml —/M) —|—mzln( s ) +In (ylﬂ :

- (2.35)

The individual log-likelihood; lgin; (s, ™43 yi), 1S

Cring (pi, Mi; ¥i) = yi In ( e ) +m;In <w> +1In (mi), (2.36)

mi — Wi Yi

then the i*" deviance residual, p pin; and its standardized deviance residual,

T'D_Bini are
1/2
D Bini = Sign(y; — fi;) {Qyi In (%) +2(m; —y;) In (mi — Z{Z)} and
Fi my — [
D _Bini = DBt
(1= hii)

Poisson responses:

From (2.22), we have the likelihood function defined by

Lpois(k; y) = exp {Z [yi In p1; — pi — In (yi!)]} (2.37)

i=1
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and the log-likelihood function is

n

Crois = Lrois(ps ) = D lyiIn gt — pt; — In ()] (2.38)

i=1
Considering the term of individual log-likelihood, pyis; (14:; ¥i);

Cpoisi (15 i) = yi In p; — pi — In (y!) (2.39)

then the i*® deviance residual, p peis; and its standardized deviance residual,

TD_Poisi aI€

1/2
7 ~ . D _Poisi
D _poisi = sign(y; — f1;) {2?/1' In (3{_) —2(y; — Nz)] and  p_pois; = —mmt

Gamma responses:

From (2.24), we have the likelihood function defined by

[ =yt — I +1
LGamma(u,&;y):exp{Z[ Yill; nf na—l—(a—l)lnyi—lnf(a)}

; a1
=1

(2.40)

and the log-likelihood function is

{—ymi‘l —Iny +Ina
—1

‘eGamma = éGamma(N; a; y) = Z + (Oé — 1) In Yi — In F(Oz)] .

i=1 @
(2.41)
Considering the term of individual log-likelihood, ¢Gammai (t4i, @ ¥i);
—yip; " —Inp; +Ina
Cammai (Hi, @ Yi) = - +(a—1)Iny; —InT'(a), (2.42)

a1
then the " deviance residual, 7p Gamma: and its standardized deviance residual,

TD_Gammai are

0 N\ 71/2
Hi Hi

T'D_Gammai \/5
(1—hi)

TD_Gammai =



19

Since in the context of statistical modeling with known probability
mass (density) functions, the linear predictor coefficients are mainly estimated by
using the maximum likelihood method and the model selection along with model
checking are performed by using the deviance residuals, therefore this thesis will
mainly explore the association of the deviance residuals and the log-likelihood

function in both theoretical derivation and empirical studies.

2.3 Glm log- likelihood functions and their corresponding

deviance residuals

The expressions of the glm log-likelihood function presented in (2.11)
and the deviance residual (2.29) show that the mode of the log-likelihood function
occurs at u; = y; or the deviance residual equals zero. This is clear from taking
g—gz = 0, which gives y; = ¥/(0;) = p; and then the maximum likelihood estimate
of u; is fi; = y;. This derivation is true for all distribution mentioned above.

Following we explore the mode of the four distributional log-likelihood
functions described in Section 2.2 by plotting calculated individual values of log-

likelihood at given various values of u via R (R Core Team, 2014 [18]). For the

associated theoretical investigation, see Appendix A.



20

(1) Normal responses:

We explore the properties by calculating individual values of log-
likelihood (2.33), here denoted by, fx, = {x;, for given values of y = 1, 10,40 and
three different values of 02 = 0.5, 2.0, 5.5 over a grid of u = 0.10,0.11,0.12, ...,y and
p=0.10,0.11,0.12, ..., 2y. We then plot {x,,, against ;1 for each o? and superimposed
by the straight line with coordinates: p = (0.1,y) and /x, = (éNyw:O,l,éNyw:y).
The corresponding displayed in Figures 2.1, 2.2 and 2.3 show that the mode of
Iy is found at fi = y implying that the deviance residual, rp n;, at the mode is

Zero.
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(2) Binomial responses:

We explore the properties of the binomial log-likelihood by calculating
individual values of log-likelihood (2.36), denoted by ¢giny = fgini, for three sets
of y={1,3,5} for number of trial, m = 10; y = {3,5,10} for m = 20 and
y = {10, 15,20} for m = 40 over a grid of values p = 0.10,0.11,0.12, ...,y and
i =10.10,0.11,0.12, ..., 2y — 1 (subtracted by 1 to avoid a missing value). We plot
(Biny|, against p for each m, superimposed by the straight line with coordinates:
p=(0.1,y) and lgin, = (éBinym:O.la €Biny|uzy). The corresponding plots presented
in Figures 2.4 to 2.6 show that the mode of /iy, is found at fi = y implying that

the binomial deviance residual, rp i, at the mode is zero.
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(3) Poisson responses:

We explore the properties of the Poisson log-likelihood by calculating
individual values of log-likelihood (2.39), denoted by £pyisy = lpoisi for y = 1,5, 10,
20, 40, 60 over a grid of values p = 0.10,0.11,0.12, ...,y and p = 0.10,0.11,0.12, ..., 2y,
then plotting £pgisy|, against i, superimposed by the straight lines with coordinates:
p=(0.1,y) and lpuisy = (fpojsymzo.l, Kpoisymzy). The corresponding plots presented
in Figure 2.7-2.8 show that the mode of fpgy|, is found at g = y implying that

the Poisson deviance residual, rp peis;, at the mode is zero.
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(4) Gamma responses:

The properties of the gamma log-likelihood are explored by calculating
individual values of log-likelihood (2.42), denoted by Gammay = ¢Gamma:i for y =1,
10,40 and three different values of a = 0.5,1.5,4.5 over a grid of values yu = af
(Where B =0.10,0.11,0.12, ..., % and 8 = 0.10,0.11,0.12, ..., %) Then we plot
the calculated fgammay|u against p for each «, superimposed the straight line with
two coordinates: p = (min(p),y) and LGammay =(Gammay|p=min(y)> {Gammay|u=y)-
The corresponding plots displayed in Figures 2.9 to 2.11 show that the mode of

{Gammay|p 1S found at i = y implying that the deviance residual, rp_gammai, at the

mode is zero.
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CHAPTER 3

Deviance Residuals of Linear Mean-Variance Negative

Binomial Models

So far we have explored the relationship of the deviance residuals and
the log-likelihood of the well known glm responses. In this chapter, we will focus
on exploring the background of the deviance residual of a linear mean-variance

negative binomial model used in Jansakul and Hinde (2004) [13].

3.1 Negative binomial models

Even though the log linear or Poisson regression provides a standard
model for count data, the assumption that the mean and variance are identical,
does not hold in all situations. In practice, the phenomenon of the more variation;
variance exceeding the mean, commonly occurs and then regression modeling ideas
need to be extended to overdispersed count modeling. Various models have been
proposed to tackle this situation, the negative binomial (NB) family, in particular,
linear and quadratic mean-variance negative binomial models are more commonly
used as all important statistical inferences can be carried out more easily and
conveniently than the other types (Lawless, 1987 [15] and Jansakul and Hinde,
2004 [13]). Details of the model estimation (both methodologies and applications

using SAS statistical software) are given in Hilbe (2007) [10]. Applying these two
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NB models to practical data can be found in for example, Byers et al. (2003) [5],
Jansakul and Hinde (2004) [13] and Elhi et al. (2007) [8].

Here we will firstly describe a general form of NB probability mass
function and separate that to the two well known distributions followed by their
diagnostic quantities used in model checking.

IfY;, i = 1,2,...,n are negative binomial distributed counts with
mean p; and dispersion parameter «, denoted by Y; ~ NB(u;, @), a general form

of the p.m.f can be defined by

D+ a ™) av
(e 7) (14 apymte ™

1 =0,1,...; a>0
fyis i, @) =
0 , otherwise

(3.1)
with E(Y;) = p; and Var(Y;) = p;(1 + aul), where a is assumed to be a constant.
The index 7 identifies various forms of the NB model, but two well-known models
are the linear mean-variance NB model given by taking 7 = 0 and the more
usual quadratic mean-variance NB model given by taking 7 = 1. The former
model is commonly denoted by NB1 model, where the latter is represented by
NB2 model. As a — 0, the NB model reduces to the Poisson model. In the
context of modeling for the mean, the log link is assumed, i.e. In(y;) = =23,
where ] = (1,21, 242, ..., ;)T is a vector of n x (p+1) explanatory variables and
B = (8o, b1, B2, -, Bp)T is a p+ 1 vector of unknown parameters. The parameter

estimates for both NB1 and NB2 models can be easily obtained using a full

Newton-Raphson method, as in Jansakul and Hinde (2004) [13] for the NB1 model
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and in Lawless (1987) [15] for the NB2 model. Based on the p.m.f of the NB model

(3.1), a Newton-Raphson for 3 and é& at the (m + 1)™ iteration is; for example,

(m+1) (m) )
B B 1
- n [IW} s, (3.2)

a(m+1) a(m)
Here I'™ is a (p+ 1) x (p + 1) observed information matrix, which is defined by

Iss(B,) Ip.(B, )

I™ =I1(8,a) = :
Iaﬂ(ﬂ7a> Iaa(ﬁaa)
2 82
where Igg = _W is the p X p symmetric matrix, I,, = el is a scalar and
2
Is=1I5,= " 9B isa1x (p+1) matrix. 8™ is the score vector defined by
ol
s5(f, ) Y
s = 5(4.0) = = |9
sa(B, ) ot
Oa

s™ and I™ are evaluated at 3 = B and a = a(™. The iteration (3.2) must
be carried out until convergence, which can be assessed using a stopping rule such

as

o) a(m)} <e or ‘E(mﬂ) - E(m)‘ <e.

However, codes or functions for fitting the NB2 regression model are available in
most statistical software; R, SPLUS, STATA, SAS, etc., since it is a generalized
linear model, when the shape or dispersion parameter is known (Hinde and Demetrio,

1998 [11]).
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Checking if the NB2 model is a glm, we let Y; ~ NB2(u;, ), where

the p.m.f is specified by

Dlyi+ta) ot
pIFa ) 1+ agrte

Y, =0,1,...; a>0
I (i piy ) =
0 , otherwise.

(3.3)

Checking whether (3.3) is a glm, we rewrite the p.m.f in an exponential form:

f(yi; i, ) = exp {yZ In (1 i/Zu) — a7t In(1 + au,;) + dlg(y;, a_l) —In (yl')} ,

(3.4)
where dlg(y;, a™!) is represents the difference of two log gamma functions for any

a defined as

yi—1

Zln(a—irt) Ly >0
t=0

dlg(y;,a) =InT'(y; +a) —InT'(a) = (3.5)

0 7y’L:O

)

. S —
Taking 0; = In Ot , then u; = o exp (6:) and the distribution of Y; can
1+ 1 —exp (0;)

be written in the canonical form:

fyi; 0;, ) = exp {ylﬂi —alln ( ) + dlg(ys, ') —In (yi!)}, (3.6)

1 —exp (6;)

which is in the linear exponential family with the canonical parameter, 6; = In (1 i'ui ) ,
QfL

1
a(¢) =1, c(y;, @) = dlg(y;, ') —In (y;!) and b(6;) = ' In (m) That
is NB2 distribution is a glm having E(Y;) = b'(6;) = p; and Var(Y;) = a(¢)b"(60;) =
i (1 + ap;), where the variance function is V'(u;) = p;(1 + ap;) and the canonical

QUL
L+ oy

link function is g(u;) = ln( ) However, in practice the link function
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commonly used is g(p;) = In(p;). This follows the basic Poisson regression model.

The likelihood function for giving a vector of n observations y = (i, Yo, ..., yn) " is

Lwa(, ;) =exp{i [yiln( e )—al In(1 + ap;) + dlg(y;, a7") —1n<yi!>]}

i=1 1+ ap
(3.7)

and the log-likelihood function is

ENBQ = ENBQ(/,L, Q; y) = ZZI [yz In <1 il:z'ul) — Oé_l ln(l + Oé,U/Z) + dlg(yl, Oé_1> —1In (yz'):| .
(3.8)
Checking whether the NB1 model is a glm, let ¥; ~ NB1(y;, a),

where its p.m.f is specified by

D(yi +a 'y a¥i
ﬁf(oﬂf)) 1+ ayitam YT 0,1,...; >0
Ty iy o) = i i (3.9)

0 , otherwise.

Again, we rewrite the p.m.f in an exponential form:

J(yi; pi, ) = exp {yz In (%) — o ' In(1 4 a) + dlg(yi, a ') — In (yi!)}.

(3.10)

Since 8; = In (1 @

n ) is not a function of y; and c(y;, o) = dlg(y;, ;) — In (y;!)
o

includes ;, then NB1 distribution is not a glm. The likelihood function; Lxg (e, o; y)

and the log-likelihood function; ¢xg1(p, ov; y) for NB1 are respectively defined by

Car) — - - —1 -1
Lygi(p, o y) = exp {Z [f‘/z In (H——a) — oy In(l+ o) + dig(y;, o™ ) — In (Z/z')} }

i=1

(3.11)

and

. a
Inp1 = Ui (p, 05 y) = Z |:yi In (1 n a) —a i In(1 + a) + dlg(y;, o) —In (yi!):| :
i=1

(3.12)
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Based on the maximum likelihood estimation, we have E(Y;) = p; and Var(Y;) = u;(1 + ).

3.2 Deviance Residuals of NB2 and NB1 Models

This section we present the NB1 and NB2 deviance residuals and
report the exploration for the mode of their log-likelihoods. We firstly focus on
the NB2 log-likelihood since the NB2 model is a glm and the expression of its
observed and standardized deviance residuals are already presented in associated
literatures.

3.2.1 NB2 Deviance Residuals

Following the definition of deviance residuals given in Subsection
2.2.3 and using the log-likelihood function in (3.8), the individual observed and
standardized deviance residual of NB2 model, denoted by rp np2; and 7p ng2i,

respectively, are

i 1 1 i
rp.NB2i = sign(y; — ,ui)\/2 {yi In (%) — (yZ + a) In (1 iji)} (3.13)

and

'D_NB2;

> 3.14
L (3.14)

'D.NB2: =

where h;; is the " diagonal element of the hat matrix, H = W:X (XT WX) - XTws

i
L+ apy;

and W is an n x n diagonal matrix with the i*" diagonal element w;; =
The equality of u; and y; gives rp ng2; = 0 and hence 7p xg2; = 0.
3.2.2 The Mode of the NB2 Log-likelihood

To investigate whether the mode of (3.8) occurs at ji; = y;, we

consider the individual log-likelihood component denoted by fxp2y, = np2i, take
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the first derivative of fxpg, With respect to p and equate that to 0 as follows:

9% —1 —1
INBay = y1 —a'In(1 dl —In (31! , 3.15
oy =i (2 ) a1+ ap) 4 dlgla) “ ) (319
Olxpy _ y(I+op) [(A+op)a—ap(a)] 1/[ « _ 0
op g (1+ap)? a \1+au
Y 1 _ 9
p(l+ap)  (1+ap)
ymm
(1 + op)
o=y

Hence the mode of the log-likelihood function is it = y and not a function of «.
This implies that the NB2 deviance residual, rp xp2; in (3.13), is zero at i =y or
the mode of {xpay.

We explore the mode of {xpg, by calculating ¢xpa, excluding In (y!)
for y = 1,10, 40 and three different values of o = 0.5,1.5,4.5 over a grid of values
u = 0.10,0.11,0.12,...,y and p = 0.10,0.11,0.12, ..., 2y. We plot the calculated
{xB2y|, against p for each o, superimposed by the straight line with coordinates:
p=(0.1,y) and Ixpoy, = (gNBQy‘u:()_h QNBgym:y). These plots displayed in Figures
3.1 - 3.3 show that the mode of /xpay|, at the various values of « is found at f1 = y

as we had in the above proof.
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3.2.3 An NB1 Deviance Residual

Although the NB1 regression model is not a member of glms, its
complete p.m.f and hence the log-likelihood function can be defined, see equation
(3.12). Based on the usual deviance residuals expression, we have the deviance

function:

D(p,y) = 2{lxpi(y,y) — Inpi(p, 05 9)}

_ N, _Y ) o 4ol — ~1,.
= 22{yﬂn<1+a) ayiln(l4+ o)+ Inl(y; + o y;) — InT(« yz)}

+2Z{—ln yz)—yzln< j )—i—a "in(1 + a) — lnl“(yi—i-ozl,ui)}

+QZ {InT(a ') +1In (y!)}

i=1

= —22 {a (i — i) In(1+a) —InT(y; + o 'y;) + InD(a y) }

—ZZ {1n D(y; + ') — lnF(a_l,ui)}

i=1

n(l+a« _ _

This shows that a simple form of NB1 deviance residual cannot be obtained.
Nelder (1991) [17], cited in Jansakul and Hinde (2004) [13], pointed out that the
individual log-likelihood of (3.12) does not have the property that its mode occurs

at u; = y; if y; # 0. He suggested that the mode of /yg1; can be approximately
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1
evaluated at y; + 3 and the i approximated deviance component for y;:

2p; In(1 + @)
«

7y2:0

In(1+ «)

— dlg(yi, o 'y;) + dlg(vi, alui)} Y >0
(3.16)

2 { -

can be replaced by

2p; In(1 + )
a

1 In(1 1
—2 X {(y + - - m) hita) dlg (y a! (y + —)) + dlg(yuozlm)} Ly > 0.
\ 2 o 2
(3.17)

Jansakul and Hinde (2004) [13] claimed that their exploration (not reported) found
1

that y; + 5 is not the appropriate approximated mode of /xg1;. They suggested

values, such as y; + k, where “Ll <k< % are likely to be close to giving the

Yi

mode and for large y;, k ~ % works well.

3.2.4 The Mode of the NB1 Log-likelihood
Permitted by Jansakul and Hinde (2004) [13], we develop the
exploration for the approximated mode of /xgi;. We started by considering the

first derivative of the individual log-likelihood component ¢xgy; with respect to u;,
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a and equating that to 0. From the equation (3.12), we use the full definition of

yi—1

Zln(a+t) 7yi>0
dlg(yi,a) =InT(y; +a) —InT'(a) = =0

0 >y7,:()

we have

yi—1
«
g i = 7,1 E— —a ! 21 1 1 -1 i —1 z' 1
- “(1+a) (L )+ 3o (o ) ) (319

yi—1

OlNB1i ln(l -+ 04) 1% 1 1
e L 407 =0
o —+ a; (o ps + 1)
i yi—1 ]
ot [~ +a)+ Y (a+t) | =0
i t=0 |
[ yi—1 T
~ln(l+a)+ > (am+t) | =0 (3.19)
L t=0 i
and
ag y m yi—1
NB1i i — Wi 2 2 . -1
o it
yi—h «—

_9 i Mg 1 —1 .
a1+1+mln(1+a)—m;(a [ +t) =0
yi —H “—

i M -1 -1
a_1+1+ui1n(1+oz)—ui; (' +t) | =0.

(3.20)

Considering fxp1; in (3.18) and the proof; (3.19) - (3.20), we have fi; = y;, if
y; = 0. However for y; > 0, the maximum likelihood estimates of y;, i.e. the mode
of ¢xg1; is a function of both y; and a. We explore this property by calculating
InB1y = {np1i excluding In(y!) at y = 1,3,5,10, 20,40 and three different values

of @ = 0.5,1.5,4.5 over a grid of values p = 0.10,0.11,0.12, ..., 2y. Then plot
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{xB1y against p for each «, superimposed by two straight lines: the first line is
drawn at p = (0.1,y) and {nxp1y, = (fNB1y|M:0.1,€NB1y\u:y) and the other is drawn
at p = (O.l,y + %) and Inp1y = <£N31y|u=0.1’gNBlyW:y—&—%)' The corresponding
plots shown in Figures 3.4 to 3.6 indicate that the mode of ¢xg1, does not occur
at either y =y or p=vy+ % for all studied values of y or a.

In order to search an appropriate value of £ (in a function of «)
mentioned in Section 3.2.3, we calculate g1y = g1y (Y +k, o, y) excluding In(y!)
at y = 1, 3,5,10, 20,40 and three different values of o = 0.5,1.5,4.5 over a grid of
values k = 0.05,0.06, ..., 5 and plot ¢yxp1, against k for each a. The corresponding
plots are shown in Figures 3.7 to 3.9. The plots indicate that the approximation
y—{—1 suggested by Nelder (1991) [17] is not adequate for all values of y. To

2

investigate this further, we search for k, such that y+k& can be used to approximate

agNBly
o
y = 1,3,5,10, 20,40 over a grid of values for k = a{0.1,0.2,0.3, ..., 10} as shown in

for

the maximum likelihood estimate of p, by calculating ¢xgi, and

the contour plots in Figures 3.10 and 3.11, respectively. Superimposed on these
plots are three straight lines of the linear relationships between k and «, for fixed

values of y. The plots show that there is no simple form for k, but values such

«

that 5 <k< % are likely to be close to giving the mode of {xg1, and for large

1

y, k=~ % works well as mentioned in Jansakul and Hinde (2004) [13]. Hence their

approximated individual NB1 deviance residual is rp ng1; = sign(y; — f1;)v/DnB1i



where

DxBii =

\
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Q

A . A
2% {<yz-+o‘—m> ml+4) 4, <yi,d—1 <y+“>)}
2 Q 2

—2 X dlg(yz, @_lﬂi) sy > 0.
(3.21)
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CHAPTER 4

An Approximated NB1 Standardized Deviance Residual

Based on the standardized deviance residuals of NB2 models shown
in expression (3.14), we here form a hat matrix; H = W:X (XT WX) “txT W%7
for fitted NB1 models. The key idea is finding the main diagonal elements, w;;, of

the weight matrix W.

4.1 An Approximated Hat Value of NB1 Models

To obtain an individual hat value of the NB1 model, we use the
definition of w;; in equation (2.15) to approximate ones for the NB1 model with
mean j;, overdispersion « and approximated link function, g(u;) = In(y;). That

is

Hence, the approximated hat matrix for a fitted NB1 model is

H=W:X (X"WX) ' XTW?, where W is an n x n diagonal matrix with

_Hi

, evaluated at pu; = ji; and @« = & and X is
14+«

the i*" diagonal element w;; =

an n X (p+ 1) design matrix.
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If the hat matrix, its approximated hat value (h;;) chooses is

+1
n

correct, the hat value will have the property that 0 < h; <1 with mean L
and z": hi; = p+ 1, where z”: h;; is the trace or rank of H for all models with
a conl;clant or intercept (Atlzi:r:son, 1985 [4]). In order to investigate that the hat
value, we conducted a simulation study by using R (R Core Team, 2014 [18]) and
following the description in Jansakul and Hinde (2009) [14]. In the experiment, we
simulated 1000 sets of NB1 responses based on some simple models with covariates
consisting of a two level factor and a continuous variate, for a sample of size

n = 20,50,100 and o = 1.5,4.5. The various models studied are shown in Table

4.1.

Table 4.1:
Working models for investigating the properties of the hat values of the NB1

regression and their statistics given by the experiments.

Statistics of h;; from the experiment

Working models (average values)
n In(p) a Min Max Mean  Rank
20 1.75 4+ 1.05z, 1.5 0.083 0.125 0.100 2
4.5 0.083 0.125 0.100 2
—0.45 + 0.75x, 1.5 0.052 0.223 0.100 2

4.5 0.053 0.232 0.100 2
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Statistics of h;; from the experiment

Working models (average values)
n In(p) a Min Max Mean  Rank
20 1.25 — 245z, 4 0.85x, 1.5 0.064 0.297 0.150 3
4.5 0.065 0.344 0.150 3
50 1.75 4+ 1.05z, 1.5 0.033 0.050 0.040 2
4.5 0.033 0.050 0.040 2
—0.45 + 0.75x, 1.5 0.021 0.078 0.040 2
4.5 0.021 0.107 0.040 2
1.25 — 245z, 4 0.85x, 1.5 0.027 0.106 0.060 3
4.5 0.027 0.108 0.060 3
100 1.75 4+ 1.05z, 1.5 0.017 0.025 0.020 2
4.5 0.017 0.025 0.020 2
—0.45 + 0.75x, 1.5 0.010 0.062 0.020 2
4.5 0.010 0.075 0.020 2
1.25 — 2.45x; + 0.85x, 1.5 0.013 0.095 0.030 3
4.5 0.013 0.100 0.030 3

The explanatory variables are x;, a two level factor with two-fifths of the
observations in the first group; o, a variable with values uniformly distributed on

(1,3) rounded to two decimals. With these values p varies from 0.70 — 44.70.



61

For each set of simulated NB1 responses, we fitted the NB1 models
using the same explanatory variables as ones in the working models and then
calculated w;; followed by h;; and the rank of the associated H. In order to check
the properties, we then calculated the average of their minimum, maximum, mean
and rank values. Such statistics are presented in Table 4.1. We also draw an index
plot of those values (except the rank) for n = 20,50,100 to see the variation.
These plots are shown in Figures 4.1 to 4.3, respectively.

From Table 4.1 and the plots; Figures 4.1 to 4.3, we can see that the
properties of our approximated hat values follow the general theoretical properties
as mentioned above. Hence they can be used to develop an expression of the NB1

standardized deviance residuals.

4.2 An Approximated Standardized Deviance Residual of

NB1 Models

Using the definition of standardized deviance residuals, see equation
(2.30) and the approximated NB1 deviance residuals (3.21), an approximated

individual NB1 standardized deviance residual, denoted by 7p ng1; is then

TD_NB1:

- ;= ——. 4.2
I'D_NB1 m ( )

In order to check whether p xg1 is normally distributed with mean
0 and variance 1 (p_ng1 ~ N(0, 1)) which corresponds to testing
Hy : 7p_nB1 has standard normal distribution

against H; : 7p nB1 has other distribution,
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we again calculated 1000 sets (for n =20, 50 and 100) of #p_np1 by using the
working NB1 models in Table 4.1. We then check the agreement with the assumed
distribution of 7p ng1; by using the Kolmogorov-Smirnov test statistics and the
Shapiro-Wilk test statistic. From 1000 test statistics, we calculated the percentages
of times of rejecting Hy at the nominal significance level of 0.05. The corresponding

values including some descriptive statistics of 7p ng1 are presented in Table 4.2.
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Table 4.2:
Working models for investigating the distribution of the approximated NB1

standardized deviance residual and their statistics given by the experiments.

Statistics of 7p nyg1 from the Percentages™*
experiment (average values)
Working models Kolmogorov— Shapiro—
n ln(u) a Min Max Mean Variance | Smirnov test Wilk test
20 1.75 4+ 1.05z, 1.5 -2.153 2.067 -0.018 1.240 0.8 6.6
4.5 -2.162 2.161 -0.009 1.340 1.7 9.0
—0.45 4+ 0.75x, 1.5 -2.149 2.084 -0.095 1.368 2.0 4.6
45 -1.929 2166 —0.152 1.450 17.9 27.8
1.25 —2.452; +0.85z2 1.5 -2.108 2.150 -0.063 1.391 1.9 54
45 -1.987 2199 -0.080 1.361 4.1 14.5
50 1.75 4+ 1.05z, 1.5 -2451 2348 -0.009 1.112 0.6 9.2
4.5 -2.271 2416 -0.003 1.204 4.2 26.0
—0.45 4+ 0.75x, 1.5 -2334 2387 -0.081 1.248 4.1 8.8
45 -2.0561 2432 -0.159 1.321 71.6 69.9
1.25 — 2.452; +0.85z, 1.5 -2.261 2.405 -0.061 1.188 1.6 8.6
4.5 -2.202 2490 -0.072 1.223 16.3 34.2
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Statistics of 7p nB1 from the Percentages™
experiment (average values)
Working models Kolmogorov— Shapiro—
n In(p) o Min Max Mean Variance | Smirnov test Wilk test
100 1.75 4+ 1.05z, 1.5 -2.647 2581  -0.007 1.080 5.6 17.6
4.5 -2.348 2595  0.000 1.144 23.9 72.8
—0.45 + 0.75x2 1.5 -2.481 2.600 -0.080 1.208 23.0 21.4
45 -2.136 2.637 —0.148 1.279 98.8 96.4
1.25 — 24521 +0.85zy 1.5 -2.452 2.642 -0.064 1.141 8.2 20.1
4.5 -2.505 2.698 -0.075 1.214 53.3 61.5

Percentages * : Percentages of rejecting Hy at the significance level of 0.05.

Our study shows following results :

1. The mean and variance of simulated p ng1 is approximately 0 and 1, respectively.

However, there are some that deviate from the nominal values larger than

0.1. These are found for the working models with o = 4.5 (see the highlight

values) as expected.

2. The percentages of rejecting Hy at the significance level of 0.05 for the

Kolmogorov-Smirnov test and the Shapiro-Wilk test statistic are satisfactory

for the working models with o« = 1.5. Based on the advantages of the test;

the former test is suitable for a large sample where the other is good for a

small sample (Ahad et al., 2011 [1]). Again, see the highlight values shown

at the last two columns of Table 4.2.
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3. In the case of a large overdispersion parameter, here for example, the working
models with o« = 4.5, the distributional approximation of 7p yp1 is rather

unsatisfactory. This may be caused by unadjusted hy;.

4.3 Example

We here illustrate the use of the approximated NB1 standardized
deviance residual with the set of orange variety Valencia tissue culture data
(Tomaz et al.,2001 [19] and Jansakul and Hinde, 2004 [13]). In this example, the
authors showed that a standard Poisson model is not adequate caused by varying
mean and went on to consider various models including NB1 type. We now use
this data set to refit the Poisson, NB1 and NB2 model and do model checking for

the final NB1 model using our proposed standardized deviance residual.

An orange variety Valencia tissue culture data

The set of orange variety Valencia tissue culture data (Tomaz et
al., 2001 [19] and Jansakul and Hinde, 2004 [13]) shown in Table 4.3 presents
the mean and variance of the number of embryos from a Valencia orange tissue
culture experiment using 3 carbohydrate sources or sugars: maltose, lactose and
galactose at dose levels of 18, 37, 75, 110 and 150 uM (3 replicates of each
treatment) after experiment approximately four weeks. Most of sample shows
overdispersion (variance exceeds the mean). Jansakul and Hinde (2004) [13] used

the NB1 and NB2 models to fit this data set and concluded that the NB1 model is
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preferable. Here we refitted their suggested final NB1 model and used our proposed

standardized deviance residual for model checking.

Table 4.3:
Orange variety Valencia tissue culture data: Mean and variance of the number of

embryos classified by sugars and dose levels.

Dose levels (uM)

Sugar 18 37 75 110 150

Maltose Mean 233.000 245.333 369.667 407.000 424.333

Variance  2368.000  654.333  9952.333  2356.000  506.333

Lactose Mean 47.333 219.333 239.333 174.333 260.500

Variance 224.333  1310.333  5854.333  1234.333  2964.500

Galactose Mean 21.667 14.000 18.333 4.000 75.667

Variance 185.333 76.000 408.333 13.000 208.333

Denoting p for the vector of the mean numbers of embryos and writing DOSE and
sugar (5) as factors, we firstly fitted the full interaction Poisson regression model
In(p) = S*DOSE . The model gives the residual deviance of 298.04 on 29 degrees
of freedom (df), showing strong evidence of overdispersion (the residual deviance
is much greater than its df). In order to search for an appropriate dose level for
the number of the embryos, we wrote D for a vector of the carbohydrate dose
levels and fitted the NB1 and NB2 model with the interaction between sugar and

a series of order polynomial over dose levels, where the most complicated model is
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In(f1) = S*(D+ D*+ D? + D*). The corresponding essential statistics for studied

fitted models including the mean and variance of 7 are presented in Table 4.4.

Table 4.4:
Orange variety Valencia tissue culture data: Statistics for Poisson,

NB1 and NB2 models.

S is a three-level factor for sugar

D is a variate for the dose level: 18, 37, 75, 110 and 150 uM

D

Models In(p) «a —2¢ df AIC BIC Mean Variance

Poisson S*(D+ D*+ D*+ DY)t 0 573.143 29  603.143  629.906 -0.016  9.250

NBl  S*(D+D*+D*+ D% 6331 406.552 28 438.552  467.099  0.040 1.642

S$*(D+ D?*+ D) 7.772 413.000 31 439.000 462.194 0.042  1.396
S*(D+ D?) 15.360 438.385 34 458.385  476.227  0.059 1.275
S$*D 23.850 457.234 37 471.234  483.724  0.068 1.229

NB2  S*(D+ D>+ D*+ D%  0.060 434293 28 466.293  494.840  -0.027 1.549

S$*(D+ D? + D) 0114 451576 31 477.576  500.771 -0.096  1.488
S*(D + D?) 0.244  473.058 34 493.058 510.900 -0.134  1.261
S*D 0.373  487.576 37 501.576  514.066 -0.144  1.055

S*(D + D? + D? + D" is equivalent to S*DOSE.

The results in Table 4.4 show that the appropriate model (with
smallest value of AIC and BIC of 439.00 and 462.194, respectively) which is

consistent with the data is the NB1 model with the cubic function over the dose
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levels: In(f1) = S*(D + D* 4 D?) as presented in Jansakul and Hinde (2004) [13].
Then the fitted model for an orange variety Valencia tissue culture data can be

defined by

(@) = 5.864—0.3035; — 3.8345, + 0.314D — 0.075D" — 0.031D" — 0.920(S, D)
(0.072) (0.112)  (0.394)  (0.129)  (0.076)  (0.082) (0.235)
“1.127(S5D) — 0.563(81D°) + 0.763(SD°) + 0.708(5, D) + 0.560(S>D")

(0.604) (0.130) (0.319) (0.151) (0.357)

(4.3)

with & = 7.772.

D;,—D

Here D is a vector of the standardized dose levels, where lN)z =
Var(D)

44

i=1,2,...,4and D =n""! Z D;. We transformed D to avoid convergence problems
i=1

in the maximum likelihood estimation procedure and S denote a three-level factor

(maltose, lactose and galactose) for sugars with

1 ;if Sy is lactose, 1 ;if Syis galactose,
and Sy =

S

0 ;otherwise 0 ;otherwise.

Checking the adequacy of the selected model (4.3) including constant
variance and normality assumption of the (standardized) deviance residuals; we
used both graphical analysis and test statistics. For the constant variance, the

plot of rp ng1 and 7p N1 against the fitted values have no pattern, see Figure 4.4



72

(a) and (b). Moreover, the Bartlett test statistic of homogeneity of variances of

the two quantities on sugars is not significance, see the left column of Table 4.5.
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Figure 4.4: Model checking for orange variety Valencia tissue culture data.
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Table 4.5:

Orange variety Valencia tissue culture data: Statistics for checking model (4.3).

Test constant variance Test normal distribution
(Bartlett test) (Shapiro-Wilk test)
D NBI Bartlett’s K-squared = 0.7555, W = 0.994 and
df = 2 and p-value = 0.6854 p-value = 0.9981
7D NBI1 Bartlett’s K-squared = 0.7343, W = 0.9945 and
df = 2 and p-value = 0.6927 p-value = 0.9989

For the normality assumption, the normal g-q plot of rp xg1 and 7p g1 displayed
in Figure 4.4 (c) and (d) show a straight line and the Shapiro-Wilk test of normality
for both residuals is not significance, see the right column of Table 4.5. Therefore,
we can conclude that the two essential assumptions are met. For p yp1, the mean
and variance presented in the last two columns of Table 4.4 are respectively around

0 and 1, we then can conclude that #p g1 ~ N(0, 1).
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CHAPTER 5

Conclusion and Discussion

The main aspects throughout this thesis have been the discussion of
studying the behavior of the deviance residual; an important quantity used in
statistical model checking. For well known generalize linear models: normal,
binomial, Poisson and gamma model, the deviance residual followed by the
standardized form has been proposed. This thesis focused on the deviance residual
of a linear mean-variance negative binomial model. The NB1 model is a model
for overdispersed counts and not a glm. In investigating, we first explored the
relationship of the deviance residuals and log-likelihood of the mentioned glms
in both theoretical and empirical aspects and found that the mode of glm log-
likelihood occurs at the equality of the observed value and its mean, implying that
the deviance residual is zero. We then used this idea to form an approximated
NBI1 deviance residual and its standardized version.

In Chapter 3, we first presented a general form of the negative
binomial model and showed that the quadratic mean-variance negative binomial
model is a glm when the shape parameter is known, where the association of the
deviance residuals and log-likelihood follows the glms’ agreement. Even though
the NB1 model is not a member of glms, a deviance function can be defined. The
function is rather complicated and indicates that the mode of the log-likelihood can

be found when the mean is a function of both the observed value and overdispersion
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parameter, unless the observed value is zero (Jansakul and Hinde, 2004 [13]).
Our investigation under their permission presented the procedure of obtaining
their proposed approximated NB1 deviance residual and also found that their
approximated deviance residual behaves as well as the glm deviance residual.
Chapter 4 firstly proposed an approximated leverage or hat value
(h;i) of the NB1 model. Our conducted simulation studies revealed that the values
follow essential theoretical properties. That is 0 < h;; < 1, the mean equals
the ratio of the number of model parameters and the sample size and Zn: h; or
the rank of the hat matrix equals the number of model parameters. 1;;lllowing
the methodology of obtaining a standardized deviance residual for glms with
unit variance function, we developed an approximated NB1 standardized using
the deviance in Chapter 3 and our proposed hat value. Our investigation using
some simulation study showed that the percentages of rejecting null hypothesis
(the NB1 standardized deviance residual has standard normal distribution) at the
significance level of 0.05 for the Kolmogorov-Smirnov test and the Shapiro-Wilk
test statistic are satisfactory for the working models with a small overdispersion
parameter. However, in the case of a large overdispersion parameter, the
distributional approximation of the NB1 standardized deviance residual is rather
unsatisfactory. Moreover, we illustrate the use of the approximated NB1 standardized
deviance residual with the set of orange variety Valencia tissue culture data. Our
study shows that the appropriate model which is consistent with the data is the

NBI1 log cubic model. From checking the adequacy of the selected model by using

the approximated NB1 standardized deviance residuals we found that the plot of
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the approximated NB1 standardized deviance residuals against the fitted values
has no pattern and the Bartlett test statistic of the NB1 standardized deviance
residuals on sugars has p-value greater than 0.05, therefore the approximated
NBI1 standardized deviance residuals have constant variance. Then, by considering
the normal g-q plot of the NB1 standardized deviance residuals it appears to be
distributed around the normal quantile-quantile line. Moreover, the Shapiro - Wilk
test of normality has p-value much larger than 0.05, and the results from Table
4.4 showed that the mean is 0 and variance is 1, indicating that the approximated
NBI1 standardized deviance residuals has standard normal distribution.

Finally the approximated NB1 standardized deviance residual
developed in this thesis might need some adjustment, in particular, in the case of
an NB1 model with a large overdispersion. A suggestion raised here is that the
hat values should be adjusted with a half an overdispersion as it was found in

obtaining the NB1 deviance residual.
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APPENDIX A

The mode of log-likelihood function

Following we present the mode of four distributional log-likelihood
functions described in Section 2.2 by theoretical investigation, that is find the

maximum likelihood estimator for u, denoted by f.

(1) Normal responses :

Let {ny, = {n;, then the individual log-likelihood function (2.33) is

Take the first derivative of ¢y, with respect to i and equate that to 0 ;

aZNy _ y—p
o o?

Hence the mode of the log-likelihood function is i = y.
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(2) Binomial responses :

Let {Biny = Cpini, then the individual log-likelihood function (2.36) is

EBiny:yln( a >—|—m1n (u) +In <m>’
m— m Y

where p = mp.

Take the first derivative of {gi,, with respect to p and equate that to 0 ;

Olpiny _ y(m — p) [(m—u)(l)—u(—l)} = m’ {m(—l)—o] _ 0

o I (m — p)? m— ) m?
ym -m B
wm—p) -
m g_ _
<m—u>[u =

Hence the mode of the log-likelihood function is i = y.

(3) Poisson responses :

Let lpoisy = Cpoisi, then the individual log-likelihood function (2.39) is

lpoisy = yInp— p—Inyl.

Take the first derivative of {pys, With respect to o and equate that to 0 ;

%:y_lzo
o Jz
¥y _
7
L=y

Hence the mode of the log-likelihood function is ji = y.
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(4) Gamma responses :
Let £Gammay = {Gammai, then the individual log-likelihood function (2.42) is

—yp P —Inp+Ina
a1

+(a—1)Iny — InT(«),

éGammay =

with = af.

Take the first derivative of £Gammay With respect to pu and equate that to O ;

aEGammay |:0 - <_y) 1:|
= « - — = 0
op p? It
(y — 1)
{ (2 =0
y—p = 0
po=y

Hence the mode of the log-likelihood function is i = y.
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APPENDIX B

R functions

1. A function for calculating and drawing the graph of individual log-likelihood

for normal model.

normal.loglink <- function(y,mu,var) {
# mu=mean and var=variance
llnorm <~ ((y*mu)-((mu"2)/2))/ (var)
ll.norm <- ll.norm-(y"2/(2*var))-((log(2*pi*var))*(1/2))

ll.norm <- ll.norm

# Create a matrix of mean and individual values of normal log-likelihood.
norm.mat <- cbind(mu,ll.norm)
colnames(norm.mat) <- c¢(“mean”, log-likelihood”)
cat (“\1")
cat(“Individual values of the normal log-likelihood function.”,"\n")
cat (“\n1")
print(norm.mat)

cat(“\r)
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# Find the maximum likelihood estimator for mean.
x <- which.max(norm.mat] ,2|) #rank of maximum likelihood
max.ll <- norm.mat|[x, ]
cat("The mode of the normal log-likelihood function”,™\n")
cat(\n")
print(max.11)

cat("\r)

# Scatter plot of mean and normal log-likelihood function.
plot(mu,ll.norm,type="n",xlab=expression(mu),ylab=expression(1[Ny]))
lines(mu,ll.norm)

lines(c(0.1,y),c(min(ll.norm),max(ll.norm)),lty="dotted”)

result <- list(y=y,varince=var)

result
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2. A function for calculating and drawing the graph of individual log-likelihood

for binomial model.

binom.loglink <- function(y,mu,m) {
# p=probability of success, m=number of trial and mu=mean=m*p
IL.binom <- y*log(mu/(m-mu))+m*log((m-mu)/m)+log(choose(m,y))

1I.binom <- ll.binom

# Create a matrix of mean and individual values of binomial log-likelihood.
binom.mat <- cbind(mu,ll.binom)
colnames(binom.mat) <- (“mean”, log-likelihood”)
cat(“\n")
cat(“Individual values of the binomial log-likelihood function.”,"\n")
cat (“\1r")
print(binom.mat)

cat("\")

# Find the maximum likelihood estimator for mean.
x <- which.max(binom.mat[ ,2]) # rank of maximum likelihood
max.ll <- binom.mat|[x, |
cat("The mode of the binomial log-likelihood function”,™\n")

cat("\r)
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print(max.11)

cat("\r)

# Scatter plot of mean and binomial log-likelihood function.
plot(mu,ll.binom,type="n" xlab=expression(mu),ylab=expression
(I[Biny])
lines(mu,ll.binom)

lines(c(0.1,y),c(min(1l.binom),max(1l.binom)),lty="dotted”)

result <- list(y=y,m=m)

result

3. A function for calculating and drawing the graph of individual log-likelihood

for Poisson model.

pois.loglink <- function(y,mu) {

1l.pois <- y*log(mu)-mu-log(gamma(y+1)) # mu=mean

# Create a matrix of mean and individual values of Poisson log-likelihood.
pois.mat <- cbind(mu,ll.pois)

colnames(pois.mat) <- (“mean”, log-likelihood”)
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cat(“\1")
cat(“Individual values of the Poisson log-likelihood function.”,"\n")
cat(“\n")

print (pois.mat)

cat("\")

# Find the maximum likelihood estimator for mean.
x<-which.max(pois.mat[ ,2]) # rank of maximum likelihood
max.ll<-pois.mat|[x, ]
cat("The mode of the Poisson log-likelihood function”,™\n”)
cat("\n")
print(max.11)

cat("\r)

# Scatter plot of mean and Poisson log-likelihood function.
plot(mu,ll.pois, type="n" xlab=expression(mu),ylab=expression
(I[Poisy]))
lines(mu,ll.pois)

lines(c(0.1,y),c(min(1l.pois),max(ll.pois) ) lty="dotted”)

result <- list(y=y)

result
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4. A function for calculating and drawing the graph of individual log-likelihood

for gamma model.

gamma.loglink <- function(y,beta,al) {
# al=shap parameter, beta=scal parameter and mu=mean=al*beta
mu <- al*beta
ll.gamma <- (-y*(1/mu))-log(mu)+log(al)
ll.gamma <- al*ll.gamma+((al-1)*log(y))-log(gammaf(al))

ll.gamma <- ll.gamma

# Create a matrix of mean and individual values of gamma log-likelihood.
gamma.mat <- cbind(mu,ll.gamma)
colnames(gamma.mat) <- ¢(“mean”, log-likelihood”)
cat (“\1r")
cat(“Individual values of the gamma log-likelihood function.”,™\n")
cat(“\n")
print(gamma.mat)

cat("\r)

# Find the maximum likelihood estimator for mean.
x <- which.max(gamma.mat] ,2]) # rank of maximum likelihood

max.ll <- gamma.mat|x, |
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cat("The mode of the gamma log-likelihood function”,™\n")
Cat (\\\n//)
print(max.11)

cat(“\n")

# Scatter plot of mean and gamma log-likelihood function.
plot(mu,ll.gamma,type="n",xlab=expression(mu),ylab=expression
(llgammay]))
lines(mu,ll.gamma)

lines(c(min(mu),y),c(min(ll.gamma),max(ll.gamma)),lty="dotted”)

result<-list(y=y,al=al,beta=beta)

result

5. A function for calculating and drawing the graph of individual log-likelihood

for NB2 model.

nb2.loglink <- function(y,mu,al) {
# al=dispersion parameter and mu=mean

IL.nb2 <- y*log(al*mu/(14al*mu))-(log(1+al*mu))/al




l.nb2 <- ll.nb2+Igamma(y+1/al)-lgamma(1/al)

1l.nb2 <- ll.nb2 # this excludes y! term

# Create a matrix of mean and individual values of NB2 log-likelihood.
nb2.mat <- cbind(mu,ll.nb2)
colnames(nb2.mat) <- ¢(“mean”, log-likelihood”)
cat(“\n")
cat(“Individual values of the NB2 log-likelihood function.”;"\n")
cat (“\nr")
print(nb2.mat)

cat(“\ir)

# Find the maximum likelihood estimator for mean.
x <- which.max(nb2.mat[ ,2]) #rank of maximum likelihood
max.ll <- nb2.mat|x, |
cat("The mode of the NB2 log-likelihood function”,™\n")
cat(\n")
print (max.11)

cat("\")

# Scatter plot of mean and NB2 log-likelihood function.
plot(mu,ll.nb2,type="n",xlab=expression(mu),ylab=expression

(1NB2y)))

lines(mu,ll.nb2)
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lines(c(0.1,y),c(min(ll.nb2),max(ll.nb2)),lty="dotted”)
result <- list(y=y,al=al)

result

6. A function for calculating and drawing the graph of individual log-likelihood
for NB1 model.
6.1 A function for calculating and drawing the graph of individual

log-likelihood for NB1 model where y = 1.

nbl.loglink <- function(al) {
# al=dispersion parameter and mu=mean
y<-1
mu <- seq(0.1,2%y,0.01)
IL.nbl <- y*log(al/(1+4al))-mu*log(1+al)/al
lL.nbl <- ll.nbl+lgamma(y+mu/al)-lgamma(mu/al)

ll.nb1 <- ll.nbl # this excludes y! term

# Create a matrix of mean and individual values of NB1 log-likelihood.
nbl.mat <- cbind(mu,ll.nbl)

colnames(nbl.mat) <- ¢(“mean”, log-likelihood”)
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cat(“\n")

cat(“Individual values of the NB1 log-likelihood function.”,™\n")
cat(“\n")

print(nbl.mat)

cat("\")

# Find the maximum likelihood estimator for mean.
x <- which.max(nbl.mat[ ,2]) #rank of maximum likelihood
max.ll <- nbl.mat|x, |
cat("The mode of the NB1 log-likelihood function”,™\n”)
cat(\n")
print(max.11)

cat("\")

# Scatter plot of mean and NBI1 log-likelihood function.

plot(mu,ll.nb1,type="n"xlab=expression(mu),ylab=expression(1[NBly]),

main="y = 17)
lines(mu,ll.nb1)
lines(c(0.1,y),c(1ll.nb1[1],1l.nb1[91]))

lines(c(0.1,y+(1/2)),c(ll.nb1[1],1l.nb1[141]),lty="dotted")

result <- list(y=y,al=al)

result




6.2 A function for calculating and drawing the graph of individual

log-likelihood for NB1 model where y = 3.
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nbl.loglink <- function(al) {

# al=dispersion parameter and mu=mean

y <-3

mu <- seq(0.1,2%y,0.01)

ILnbl <- y*log(al/(14al))-mu*log(1+al)/al

ll.nbl <- ll.nbl+lgamma(y+mu/al)-lgamma(mu/al)

ll.nbl <- ll.nbl # this excludes y! term

# Create a matrix of mean and individual values of NB1 log-likelihood.

nbl.mat <- cbind(mu,ll.nbl)

colnames(nbl.mat) <- ¢(“mean”, log-likelihood”)

cat (“\1r")

cat(“Individual values of the NB1 log-likelihood function.”;"\n")
cat("\n")

print(nbl.mat)

cat(“\ir)

# Find the maximum likelihood estimator for mean.

x <- which.max(nbl.mat[ ,2]) #rank of maximum likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of mean and NBI1 log-likelihood function.
plot(mu,ll.nb1, type="n",xlab=expression(mu),ylab=expression(l[NBly]),
main="y = 3")
lines(mu,ll.nb1)
lines(c(0.1,y),c(ll.nb1[1],11.nb1[291}))

lines(c(0.1,y+(1/2)),c(ll.nb1[1],1l.nb1[341]),lty="dotted”)

result <- list(y=y,al=al)

result




6.3 A function for calculating and drawing the graph of individual

log-likelihood for NB1 model where y = 5.
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nbl.loglink <- function(al) {

# al=dispersion parameter and mu=mean

y <-9

mu <- seq(0.1,2%y,0.01)

ILnbl <- y*log(al/(14al))-mu*log(1+al)/al

ll.nbl <- ll.nbl+lgamma(y+mu/al)-lgamma(mu/al)

ll.nbl <- ll.nbl # this excludes y! term

# Create a matrix of mean and individual values of NB1 log-likelihood.

nbl.mat <- cbind(mu,ll.nbl)

colnames(nbl.mat) <- ¢(“mean”, log-likelihood”)

cat (“\1r")

cat(“Individual values of the NB1 log-likelihood function.”;"\n")
cat("\n")

print(nbl.mat)

cat(“\ir)

# Find the maximum likelihood estimator for mean.

x <- which.max(nbl.mat[ ,2]) #rank of maximum likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of mean and NBI1 log-likelihood function.
plot(mu,ll.nb1, type="n",xlab=expression(mu),ylab=expression(l[NBly]),
main="y = 5")
lines(mu,ll.nb1)
lines(c(0.1,y),c(ll.nb1[1],11.nb1[491}))

lines(c(0.1,y+(1/2)),c(ll.nb1[1],ll.nb1[541]),lty="dotted”)

result <- list(y=y,al=al)

result




6.4 A function for calculating and drawing the graph of individual

log-likelihood for NB1 model where y = 10.
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nbl.loglink <- function(al) {

# al=dispersion parameter and mu=mean

y <- 10

mu <- seq(0.1,2%y,0.01)

ILnbl <- y*log(al/(14al))-mu*log(1+al)/al

ll.nbl <- ll.nbl+lgamma(y+mu/al)-lgamma(mu/al)

ll.nbl <- ll.nbl # this excludes y! term

# Create a matrix of mean and individual values of NB1 log-likelihood.

nbl.mat <- cbind(mu,ll.nbl)

colnames(nbl.mat) <- ¢(“mean”, log-likelihood”)

cat (“\1r")

cat(“Individual values of the NB1 log-likelihood function.”;"\n")
cat("\n")

print(nbl.mat)

cat(“\ir)

# Find the maximum likelihood estimator for mean.

x <- which.max(nbl.mat[ ,2]) #rank of maximum likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of mean and NBI1 log-likelihood function.
plot(mu,ll.nb1, type="n",xlab=expression(mu),ylab=expression(l[NBly]),
main="y = 10")
lines(mu,ll.nb1)
lines(c(0.1,y),c(ll.nb1[1],11.nb1[991}))

lines(c(0.1,y+(1/2)),c(ll.nb1[1],ll.nb1[1041]),lty="dotted")

result <- list(y=y,al=al)

result




6.5 A function for calculating and drawing the graph of individual

log-likelihood for NB1 model where y = 20.
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nbl.loglink <- function(al) {

# al=dispersion parameter and mu=mean

y <- 20

mu <- seq(0.1,2%y,0.01)

ILnbl <- y*log(al/(14al))-mu*log(1+al)/al

ll.nbl <- ll.nbl+lgamma(y+mu/al)-lgamma(mu/al)

ll.nbl <- ll.nbl # this excludes y! term

# Create a matrix of mean and individual values of NB1 log-likelihood.

nbl.mat <- cbind(mu,ll.nbl)

colnames(nbl.mat) <- ¢(“mean”, log-likelihood”)

cat (“\1r")

cat(“Individual values of the NB1 log-likelihood function.”;"\n")
cat("\n")

print(nbl.mat)

cat(“\ir)

# Find the maximum likelihood estimator for mean.

x <- which.max(nbl.mat[ ,2]) #rank of maximum likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of mean and NBI1 log-likelihood function.
plot(mu,ll.nb1, type="n",xlab=expression(mu),ylab=expression(l[NBly]),
main="y = 20")
lines(mu,ll.nb1)
lines(c(0.1,y),c(ll.nb1[1],11.nb1[1991]))

lines(c(0.1,y+(1/2)),c(ll.nb1[1],ll.nb1[2041]),lty="dotted”)

result <- list(y=y,al=al)

result




6.6 A function for calculating and drawing the graph of individual

log-likelihood for NB1 model where y = 40.
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nbl.loglink <- function(al) {

# al=dispersion parameter and mu=mean

y <-40

mu <- seq(0.1,2%y,0.01)

ILnbl <- y*log(al/(14al))-mu*log(1+al)/al

ll.nbl <- ll.nbl+lgamma(y+mu/al)-lgamma(mu/al)

ll.nbl <- ll.nbl # this excludes y! term

# Create a matrix of mean and individual values of NB1 log-likelihood.

nbl.mat <- cbind(mu,ll.nbl)

colnames(nbl.mat) <- ¢(“mean”, log-likelihood”)

cat (“\1r")

cat(“Individual values of the NB1 log-likelihood function.”;"\n")
cat("\n")

print(nbl.mat)

cat(“\ir)

# Find the maximum likelihood estimator for mean.

x <- which.max(nbl.mat[ ,2]) #rank of maximum likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of mean and NBI1 log-likelihood function.
plot(mu,ll.nb1, type="n",xlab=expression(mu),ylab=expression(l[NBly]),
main="y = 40")
lines(mu,ll.nb1)
lines(c(0.1,y),c(ll.nb1[1],11.nb1[3991]))

lines(c(0.1,y+(1/2)),c(ll.nb1[1],ll.nb1[4041]),lty="dotted”)

result <- list(y=y,al=al)

result
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7. A function for calculating and drawing the graph for search an appropriate

value of k.

7.1 A function for for search an appropriate value of & where y = 1,3,5

and 10.

nbl.llink <- function(y,al) {
# al=dispersion parameter
k <- seq(0.05,5,0.01)
lIk.nbl <- lgamma(y+(y+k)/al)-lgamma((y-+k)/al)
llk.nbl <- y*log(al/(1+al))-(y+k)*log(1+al)/al

llk.nb1 <- llk.nb1 # this excludes y! term

# Create a matrix of k and individual values of NB1 log-likelihood.
nbl.mat <- cbind(k,llk.nb1)
colnames(nbl.mat) <- ¢(*k”,log-likelihood”)
cat(\n")
cat(“Individual values of the NB1 log-likelihood function for each k.”,
cat(“\n")
print(nbl.mat)
cat("\n")
# Search for k to giving the mode of NB1 log-likelihood.

x <- which.max(nbl.mat[ ,2]) # rank of maximum log-likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of k and the NB1 log-likelihood function.
plot(k,llk.nb1,type="n",xlab="k" ylab=expression(1[NB1ly]),axes=F)
mi.y <- min(as.integer(llk.nb1))-2
ma.y <- max(as.integer(llk.nb1))+2
mi.x <- min(as.integer(k))-1
ma.x <- max(as.integer(k))+1
axis(1,at=seq(mi.x,ma.x,by=1))
axis(2,at=seq(mi.y,ma.y,by=0.2))

lines(k,llk.nb1,lty=1)

result <- list(y=y,al=al)

result
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7.2 A function for for search an appropriate value of k where y = 20

and 40.

nbl.llink <- function(y,al) {
# al=dispersion parameter
k <- seq(0.05,5,0.01)
llk.nbl <- lgamma(y+(y+k)/al)-lgamma((y+k)/al)
llk.nbl <- y*log(al/(1+al))-(y+k)*log(1+al)/al

llk.nb1l <- llk.nbl # this excludes y! term

# Create a matrix of k and individual values of NB1 log-likelihood.
nbl.mat <- cbind(k,llk.nb1)
colnames(nbl.mat) <- ¢(*k”,log-likelihood”)
cat("\n")
cat(“Individual values of the NB1 log-likelihood function for each k.”,
cat("\1")
print(nbl.mat)

cat("\r)

# Search for k to giving the mode of NB1 log-likelihood.

x <- which.max(nbl.mat[ ,2]) # rank of maximum log-likelihood
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max.ll <- nbl.mat[x, ]

cat("The mode of the NB1 log-likelihood function”,™\n")
cat("\nf)

print(max.1l)

cat("\r)

# Scatter plot of k and the NB1 log-likelihood function.
plot(k,llk.nb1,type="n",xlab="k" ylab=expression(1[NB1ly]),axes=F)
mi.y <- min(as.integer(llk.nb1))-2
ma.y <- max(as.integer(llk.nb1))+2
mi.x <- min(as.integer(k))-1
ma.x <- max(as.integer(k))+1
axis(1,at=seq(mi.x,ma.x,by=1))
axis(2,at=seq(mi.y,ma.y,by=0.05))

lines(k,llk.nb1,lty=1)

result <- list(y=y,al=al)

result
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8. A function for drawing the graph contour plot of —NBly

8£NB1y

8.1 A function for drawing the graph contour plot of 3
1

where y = 1.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for {(y + k, a; y)
If <- outer(k,al,function(k,al)
-log(1+al)+(digamma(y+(y+k)/al)-digamma((y+k)/al)))

If <- abs(1If)

# Contour plot.
contour(k,al,If zlim=c(6,4,2,1,0.5,0.1,01,0),main="y = 17,
ylab=expression(alpha),xlab="k")
lines(al/(2*(141/y)),al.lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,lf=If)

result
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8.2 A function for drawing the graph contour plot of 3
1

where y = 3.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for {(y + k, a;y)
If <- outer(k,al,function(k,al)
-log(1+al)+(digamma(y+(y+k)/al)-digamma((y+k)/al)))

If <- abs(lf)

# Contour plot.
contour(k,al,If zlim=c(2,1,0.5,0.1,0.05,0),main="y = 3",
ylab=expression(alpha), xlab="k")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,lf=If)

result
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8.3 A function for drawing the graph contour plot of 3
1

where y = 5.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for {(y + k, a;y)
If <- outer(k,al,function(k,al)
-log(1+al)+(digamma(y+(y+k)/al)-digamma((y+k)/al)))

If <- abs(lf)

# Contour plot.
contour(k,al,If zZlim=c(2,1,0.5,0.1,0.05,0),main="y = 5",
ylab=expression(alpha), xlab="k")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,lf=If)

result
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8.4 A function for drawing the graph contour plot of 3
1

where y = 10.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for {(y + k, a;y)
If <- outer(k,al,function(k,al)
-log(1+al)+(digamma(y+(y+k)/al)-digamma((y+k)/al)))

If <- abs(lf)

# Contour plot.
contour (k,al,lf zZlim=c(0.5,0.4,0.3,0.2,0.1,0.05,0.03,0.01,0),
main="y = 10",ylab=expression(alpha),xlab="K")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,lf=If)

result
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8.5 A function for drawing the graph contour plot of 3
1

where y = 20.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for {(y + k, a;y)
If <- outer(k,al,function(k,al)
-log(1+al)+(digamma(y+(y+k)/al)-digamma((y+k)/al)))

If <- abs(lf)

# Contour plot.
contour (k,al,lf zZlim=c(0.5,0.4,0.3,0.2,0.1,0.05,0.03,0.01,0),
main="y = 20",ylab=expression(alpha),xlab="K")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,lf=If)

result
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8.6 A function for drawing the graph contour plot of 3
1

where y = 40.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for {(y + k, a;y)
If <- outer(k,al,function(k,al)
-log(1+al)+(digamma(y+(y+k)/al)-digamma((y+k)/al)))

If <- abs(lf)

# Contour plot.
contour (k,al,If,zlim=c(0.5,0.4,0.3,0.2,0.1,0.09,0.08,0.07,0.06,0.05,0.03,
0.01,0.009,0.008,0.007,0.0060,0.004,0),main="y = 40,
ylab=expression(alpha),xlab="k")
lines(al/(2*(141/y)),al,lty="dotted”)
lines(al/(2+1/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,lf=If)

result
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9. A function for drawing the graph contour plot of individual log-likelihood

for NB1 model.

9.1 A function for drawing the graph contour plot of individual

log-likelihood for NB1 model where y = 1.

nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <-al # a constant for {(y + k, a;y)
llk.nbl <- outer(k,al,function(k,al)
(1gamma(y-+(y-+K) /al)-lgamma (y--K) /al)-(y-+K) ¥log(1--al) /al))

# this excludes y! term

# Contour plot.
contour(k,alllk.nb1,zlim=c(2,1,0.9,0.8,0.7,0.5,0.4,0.3,0.1,0,-1,-2,-3 -4,
-6,-6.05,-6.02-8,-9), main="y = 1”,ylab=expression(alpha),xlab="K")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(2+1/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,llk.nbl1=llk.nb1)

result




9.2 A function for drawing the graph contour plot of individual

log-likelihood for NB1 model where y = 3.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for £(y + k, a; y)
llk.nbl <- outer(k,al,function(k,al)
(Igamma(y+(y-+k)/al)-lgamma((y+k)/al)-(y+k)*log(1+al)/al))

# this excludes y! term

# Contour plot.
contour(k,al,llk.nb1,zlim=c(7,5,4,3,0.5,0.1,0,-1,-2),main="y = 3",
ylab=expression(alpha),xlab="k")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,llk.nbl1=llk.nb1)

result




9.3 A function for drawing the graph contour plot of individual

log-likelihood for NB1 model where y = 5.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for £(y + k, a; y)
llk.nbl <- outer(k,al,function(k,al)
(Igamma(y+(y-+k)/al)-lgamma((y+k)/al)-(y+k)*log(1+al)/al))

# this excludes y! term

# Contour plot.
contour(k,al,llk.nb1,zlim=c(10,5,4,3,2,1),main="y = 5",
ylab=expression(alpha),xlab="k")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,llk.nbl1=llk.nb1)

result




9.4 A function for drawing the graph contour plot of individual

log-likelihood for NB1 model where y = 10.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for £(y + k, a; y)
llk.nbl <- outer(k,al,function(k,al)
(Igamma(y+(y-+k)/al)-lgamma((y+k)/al)-(y+k)*log(1+al)/al))

# this excludes y! term

# Contour plot.
contour(k,al,llk.nb1,zlim=c(10,5,4,3,2,1),main="y = 107,
ylab=expression(alpha),xlab="k")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,llk.nbl1=llk.nb1)

result




9.5 A function for drawing the graph contour plot of individual

log-likelihood for NB1 model where y = 20.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for £(y + k, a; y)
llk.nbl <- outer(k,al,function(k,al)
(Igamma(y+(y-+k)/al)-lgamma((y+k)/al)-(y+k)*log(1+al)/al))

# this excludes y! term

# Contour plot.
contour(k,al,llk.nb1,zlim=c(10,5,4,3,2,1),main="y = 20",
ylab=expression(alpha),xlab="k")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,llk.nbl1=llk.nb1)

result




9.6 A function for drawing the graph contour plot of individual

log-likelihood for NB1 model where y = 40.
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nbl.llink <- function(y) {
# al=dispersion parameter
al <- seq(0.1,10,length=100)
k <- al # a constant for £(y + k, a; y)
llk.nb1<- outer(k,al,function(k,al)
(Igamma(y+(y-+k)/al)-lgamma((y+k)/al)-(y+k)*log(1+al)/al))

# this excludes y! term

# Contour plot.
contour(k,al,llk.nbl,main="y = 40", ylab=expression(alpha),
lab="K")
lines(al/(2*(141/y)),al,lty="dotted")
lines(al/(241/y),al,lty="dotdash”)

lines(al/2,al)

result <- list(y=y,llk.nbl1=llk.nb1)

result




10. A function for fitting the NB1 regression.

119

nbl.fit <- function(formula,X.mat) {
# The method of Newton-Raphson.
S.E <- 0; y <- NULL
y.pois <- glm(formula,family=poisson)
lamb <- y.pois$fitted.values
y <- y.pois$y;  beta <- coefficients(y.pois)  # Initial value for beta
al <- (sum((y-lamb)"2/lamb)/y.pois$df.residual)-1 ~ # Initial value
for alpha
# Based on the mean deviance.
al.old <- al; al.new <- 0
al.diff <- al.old; i<-0

beta.al <- c(beta,al)

# Calculate -2 x loglL for a Poisson model.

plikf <- -2*sum(y*log(lamb)-lamb-lgamma(y-+1))

while(al.diff > 0.0001) {
# Calculate digamma and trigamma function.

trigam <- -(trigamma(y+lamb/al)-trigamma(lamb/al))
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digam <- digamma(y+lamb/al)-digamma(lamb/al)

# Gradient vectios.
sl <- (al)"(-1)*(digam - log(1+al))*lamb
S1 <- t(X.mat)%*%s1 # for beta
s2 <- -(al)"(-2)*((lamb-y)/(141/(al))-lamb*log(1+al)+lamb*digam )

S2 <- sum(s2) # for alpha

# Create minus the 2nd derivative and information matrices.

cl <--((s1)-(al)"(-2)*lamb*trigam*lamb)

I1 <- (t(X.mat)%*%diag(c1[1:length(c1)]))%*%X.mat  # for beta

i21 <- -(2*(al)"(-3)*((lamb-y)/(1+1/(al))-lamb*log(1+al)
+lamb*digam))

122 <- -(al)"(-4)*((y-lamb)/((14+1/(al))"2)+al*lamb/(1+1/(al))
-lamb " 2*trigam)

12 <-121+i22; 12 <- sum(I2) # for alpha

112 <- -((al)"(-3)*lamb*trigam -(al)"(-2)*digam-+(al) " (-2)*log(1+al)
-1/((al)*(1+al)))*lamb

112 <- t(X.mat)%*%il2 # for beta, alpha

# Creat a score vector and partitioned information matrix.
S <- ¢(S1,52)
PI1 <- ¢(112,12)

PI2 <- rbind(I1,t(I12))
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PI <- cbind(PI2,PI1) # completed infomation matrix
PLinv <- solve(PI); S.E <- sqrt(PLinv)

beta.al <- beta.al4+S%*%PLinv # The N-R Method
beta <- beta.al[l:length(beta.al)-1]

lamb <- exp(X.mat%*%beta) # Fitted vales

al <- beta.al[length(beta.al)]

# Calculate -2 x log-likelihood for a NB1.
llik <- -2*sum(lgamma(y+1/(al)*lamb)-lgamma(1/(al)*lamb)
+y*log(al)-(y+lamb/(al))*log(1+al))
llikf <- llik4+2*sum(lgamma(y+1)) # this includes y! term

AIC <- llikf4-2*length(beta.al)

# updated al
al.new <- al
al.diff <- abs((al.old - al.new)) # Stopping rule

al.old <- al.new; 1<-i+1

}
se <- NULL
for(i in Immrow(S.E)) {
ii <- S.E[i,i];  se <- c(se,ii)
}

se.beta <- round(se[l:length(beta)],7)

len <- length(se.beta)+1
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se.al <- sellen];  len <- len+1

zval.beta <- round(beta/se.beta,7)

pval.beta <- 2*pnorm(abs(zval.beta),lower.tail=F)

y.sum <- chind(beta,se.beta,zval.beta,pval.beta)

colnames(y.sum) <- c(“Estimate”,"Std. Error”;"z value”,"Pr(> |z|)")
name <- dimnames(X.mat)[[2]]; ~ name <- name[2:length(name)]
rownames(y.sum) <- ¢(“Intercept “,;name)

cat("\n","==== NB1 model ====""\n")

print(y.sum)

cat("\)

nblik <- round(1likf,7)

df <- round(length(y)-length(se),0)

aic <- round(nblik+2*(length(se)),7)

Alpha <- rbind(alse.al);  colnames(Alpha) <- ¢(™”)
rownames(Alpha) <- ¢(Talpha ”;"S.E (alpha)”)
cat(“\n","==== Overdispersion ====""\n")

print(Alpha)

cat("\r)

LL <- rbind(plikf, nblik, df, aic)

rownames(LL) <- ¢(™2 x Pois log-likelihood :“,*-2 x NB1 log-likelihood :

“df.residuals ”,"AIC )

colnames(LL) <- ¢(™”)

a
I




123

cat(“\n","==== Log-likelihood ====""\n")
print(LL)

cat(“\ir)

result <- list(beta.nbl=beta,al.nbl=al.fitted.values=lamb)

result

11. A function for calculating and drawing the graph of the hat values
for the NB1 regression.
11.1 A function for calculating and drawing the graph of the hat values,

under working model: In(p) = 1.75 + 1.05z;.

hii.nbl <- function(al,beta,X.mat) {
ys <- 0; A <- NULL
mu <- exp(X.mat%*%beta);  n <- length(mu)
x1 <- X.mat[,2]

source( nb1fitl.txt”,echo=TRUE)

# Simulated envelop.
for(i in 1:1000) {
e0l <- rgamma(n,mu/al,1)

eij <- e01*(al/mu)
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ys <- rpois(n,mu*eij)

nbl.el <- nbl.fit(ys~x1,X.mat)
lamb <- nbl.el$fitted.values

al.sim <- nbl.el1$al.nbl

# Calculated the hat values.

wil.sim <- lamb/(1+al.sim)
wil.sim <- c(wii.sim)
W.sim <- diag(wii.sim)

H.sim <- solve(t(X.mat)%*%W.sim%*%X.mat)

H.sim <- sqrt(W.sim)%*%X.mat%*%H.sim%*%t(X.mat)

%*%sqrt(W.sim)

hii.sim <- diag(H.sim) # hat values (h;;)

rank <- sum(hii.sim) # rank values of hy;

min.hii <- min(hii.sim) # minimum values of h;;
mean.hii <- mean(hii.sim)  # mean values of h;
max.hii <- max(hii.sim) # maximum values of h;;
h <- ¢(min.hii,max.hii,mean.hii,rank)

A <-c¢(A)h)

hii.mat <- matrix(A,ncol=4,byrow=TRUE)

colnames(hii.mat) <- ¢("min”," max”, " mean”, rank”)
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# Calculated the average of minimum, maximum, mean and rank values.

av.min <- mean(hii.mat[,1])

av.max <- mean(hii.mat[,2])

av.mean <- mean(hii.mat[,3])

av.rank <- mean(hii.mat[,4))

av.hii <- ¢(av.min,av.max,av.mean,av.rank)
av.hii <- matrix(av.hii,ncol=4,byrow=TRUE)
colnames(av.hii) <- ¢("min”,"max”,"mean”, rank”)

av.hil <- round(av.hii,3)

4 Plot of hy;.
hii.matl <- round(hii.matl,1:3],3)
number <- seq(1,3000,by=1)
plot(number,hii.mat1,type="n" xlab="simulated sample numbers”,
ylab=expression(h[ii]),xlim=c(0,1000))
num <- seq(1,1000,by=1)
lines(num,hii.mat[,1],lty="dotted")
lines(num, hii.mat[,2],lty="dashed”)

lines(num,hii.mat[,3])

result <- list(av.hii=av.hii,n=n)

result
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11.2 A function for calculating and drawing the graph of the hat values,

under working model: In(p) = —0.45 + 0.75x5.

hii.nbl <- function(al,beta,X.mat) {
ys <- 0; A <- NULL
mu <- exp(X.mat%*%beta);  n <- length(mu)
x2 <- X.mat[,2]

source(“nbl1fitl.txt”,echo=TRUE)

# Simulated envelop.
for(i in 1:1000) {
e0l <- rgamma(n,mu/al,1)
eij <- e01*(al/mu)
ys <- rpois(n,mu*eij)
nbl.e2 <- nbl.fit(ys~x2,X.mat)
lamb <- nbl.e2$fitted.values

al.sim <- nbl.e2$al.nbl

# Calculated the hat values.
wil.sim <- lamb/(1+al.sim)
wil.sim <- c¢(wii.sim)

W.sim<- diag(wii.sim)
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H.sim<- solve(t(X.mat)%*%W.sim%*%X.mat)
H.sim<- sqrt(W.sim)%*%X.mat%*%H.sim%*%t(X.mat)
%*%sqrt (W .sim )

hii.sim <- diag(H.sim) # hat values (h;;)

rank <- sum(hii.sim) # rank values of hy;

min.hii <- min(hii.sim) # minimum values of h;
mean.hii <- mean(hii.sim) # mean values of h;
max.hii <- max(hii.sim) # maximum values of h;
h <- ¢(min.hii,max.hii,mean.hii,rank)

A <-c¢(Ah)

hii.mat <- matrix(A ncol=4,byrow=TRUE)

colnames(hii.mat) <- ¢("min”,"max”, " mean”, rank”)

# Calculated the average of minimum, maximum, mean and rank values.
av.min <- mean(hii.mat[,1])
av.max <- mean(hii.mat[,2])
av.mean <- mean(hii.mat[,3])
av.rank <- mean(hii.mat[,4])
av.hii <- c(av.min,av.max,av.mean,av.rank)
av.hii <- matrix(av.hii,ncol=4,byrow=TRUE)

colnames(av.hii) <- ¢("min”,"max”, " mean”, rank”)
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av.hil <- round(av.hii,3)

4 Plot, of hy;.
hii.mat1l <- round(hii.mat[,1:3],3)
number <- seq(1,3000,by=1)
plot(number,hii.mat1,type="n" xlab="simulated sample numbers”,
ylab=expression (h/[ii]),xlim=c(0,1000))
num <- seq(1,1000,by=1)
lines(num,hii.mat[,1],lty="dotted")
lines(num, hii.mat[,2],lty="dashed”)

lines(num,hii.mat[,3])

result <- list(av.hii=av.hii,n=n)

result
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11.3 A function for calculating and drawing the graph of the hat values,

under working model: In(p) = 1.25 — 2.45x1 + 0.85x5.

hii.nbl <- function(al,beta,X.mat) {
ys <- 0; A <- NULL
mu <- exp(X.mat%*%beta);  n <- length(mu)
xl <- Xomat[,2];  x2 <- X.mat[,3]

source(“nbl1fitl.txt”,echo=TRUE)

# Simulated envelop.
for(i in 1:1000) {
e0l <- rgamma(n,mu/al,1); eij <- e01*(al/mu)
ys <- rpois(n,mu*eij)
nbl.e3 <- nbl.fit(ys~x1+x2,X.mat)
lamb <- nbl.e3$fitted.values

al.sim <- nbl.e3%al.nbl

# Calculated the hat values.
wil.sim <- lamb/(14al.sim)
wil.sim <- ¢(wii.sim)
W.sim<- diag(wii.sim)

H.sim<- solve(t(X.mat)%*%W.sim%*%X.mat)
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H.sim<- sqrt(W.sim)%*%X.mat%*%H.sim%*%t(X.mat)
%*%sqrt(W.sim)

hii.sim <- diag(H.sim) # hat values (h;;)

rank <- sum(hii.sim) # rank values of hy;

min.hii <- min(hii.sim) # minimum values of h;;
mean.hii <- mean(hii.sim) # mean values of hy;
max.hii <- max(hii.sim) # maximum values of h;;
h <- ¢(min.hii,max.hii,mean.hii,rank)

A <-c¢(Ah)

hii.mat <- matrix(A,ncol=4,byrow=TRUE)

colnames(hii.mat) <- ¢("min”, " max”, " mean”, rank”)

# Calculated the average of minimum, maximum, mean and rank values.
av.min <- mean(hii.mat[,1])
av.max <- mean(hii.mat[,2])
av.mean <- mean(hii.mat[,3])
av.rank <- mean(hii.mat[,4])
av.hii <- c¢(av.min,av.max,av.mean,av.rank)
av.hil <- matrix(av.hii,ncol=4,byrow=TRUE)
colnames(av.hii) <- ¢("min”,"max”, " mean”, rank”)

av.hil <- round(av.hii,3)
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4 Plot of hy;.
hii.mat1l <- round(hii.mat[,1:3],3)
number <- seq(1,3000,by=1)
plot(number,hii.mat1,type="n" xlab="simulated sample numbers”,
ylab=expression (hl[ii]),xlim=c(0,1000))
num <- seq(1,1000,by=1)
lines(num, hii.mat[,1],lty="dotted")
lines(num,hii.mat|,2],lty="dashed”)

lines(num,hii.mat[,3])

result <- list(av.hii=av.hii,n=n)

result

12. A function for calculating the NB1 standardized deviance residual.
12.1 A function for calculating the NB1 standardized deviance residual,

under working model: In(p) = 1.75 + 1.05z;.

sd.nbl <- function(al,beta,X.mat) {
ys <- 0; B <- NULL

KS <- NULL; S <- NULL
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mu <- exp(X.mat%*%beta);  n <- length(mu)
x1 <- X.mat[,2]

source( nb1fitl.txt”,echo=TRUE)

# Simulated envelop.
for(i in 1:1000) {
e0l <- rgamma(n,mu/al,1)
eij <- e01*(al/mu)
ys <- rpois(n,mu*eij)
nbl.el <- nbl.fit(ys~x1,X.mat)
lamb <- nbl.el$fitted.values

al.sim <- nbl.el$al.nbl

# Calculated the hat values.
wii.sim <- lamb/(1+4al.sim)
wil.sim <- ¢(wii.sim)
W.sim<- diag(wii.sim)
H.sim<- solve(t(X.mat)%*%W.sim%*%X.mat)
H.sim<- sqrt(W.sim)%*%X.mat%*%H.sim%* %t (X.mat)
%*%sqrt (W .sim)

hii.sim <- diag(H.sim)

# Calculated standardized deviance residual.
dlg_y <- lgamma(ys+((ys+(al.sim/2))/al.sim))

-lgamma((ys+(al.sim/2))/al.sim)
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dlg_lamb <- Igamma(ys+(lamb/al.sim))-lgamma(lamb/al.sim)

dev <- (ys+(al.sim/2)-lamb)*log(1+al.sim)/al.sim

dev <-dev.nbl-dlg_y+dlg_lamb

dev <- dev.nb1*(-2)  # for y >0

dev.y0 <- 2*lamb*log(1+al.sim)/al.sim  # for y =0

dev.nbl <- ifelse(ys == 0,dev.y0,dev)

dres.nbl <- sqrt(dev.nbl)

dres.nbl <- ifelse(is.na(dres.nb1),0,dres.nbl)

dres.nbl <- ifelse(ys<lamb,-dres.nbl,dres.nbl)

sd.nbl <- dres.nbl/sqrt(1-hii.sim) # NBI1 standardized deviance
residuals

min.sd <- min(sd.nbl)

max.sd <- max(sd.nbl)

mean.sd <- mean(sd.nbl)

var.sd <- var(sd.nbl)

sd <- ¢(min.sd,max.sd,mean.sd,var.sd)

B <- ¢(B,sd)
# Test N(0,1).

p.ks <- ks.test(sd.nb1, pnorm”,0,1) # Kolmogorov-Smirnov

KS <- ¢(KS,p.ks$p.value)

p.sha <- shapiro.test(sd.nbl) # Shapiro-Wilk

S <- ¢(S,p.sha$p.value)
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sd.mat <- matrix(B,ncol=4,byrow=TRUE)

colnames(sd.mat) <- ¢("min”, " max”, mean”, variance”)
# Calculated the average of minimum, maximum, mean and
variance values.

av.min <- mean(sd.mat[,1])

av.max <- mean(sd.mat[,2])

av.mean <- mean(sd.mat|,3])

av.var <- mean(sd.mat[,4])

av.sd <- ¢(av.min,av.max,av.mean,av.var)

av.sd <- matrix(av.sd,ncol=4,byrow=TRUE)

colnames(av.sd) <- ¢("min”,"max”," mean”, variance”)

av.sd <- round(av.sd,3)

# Calculated the proportion of times the p-value is less than or equal
the nominal significance size of 0.05.

KS1 <- KS<=0.05

S1 <- 5<=0.05

k <- sum(KS1)/1000

m <- sum(S1)/1000

result <- list(av.sd=av.sd,n=n,m=m,k=k)

result
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12.2 A function for calculating the NB1 standardized deviance residual,

under working model: In(p) = —0.45 + 0.75x5.

sd.nbl <- function(al,beta,X.mat) {

ys <- 0; B <- NULL

KS <- NULL; S <- NULL

mu <- exp(X.mat%*%beta);  n <- length(mu)
x2 <- X.mat[,2]

source( nb1fitl.txt”,echo=TRUE)

# Simulated envelop.

for(i in 1:1000)  {

e0l <- rgamma(n,mu/al,1)

eij <- e01*(al/mu)

ys <- rpois(n,mu*eij)

nbl.e2 <- nbl.fit(ys~x2,X.mat)
lamb <- nbl.e2$fitted.values

al.sim <- nbl.e2$al.nbl

# Calculated the hat values.

wil.sim <- lamb/(1+al.sim)

wil.sim <- ¢(wii.sim)
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W.sim<- diag(wii.sim)

H.sim<- solve(t(X.mat)%*%W.sim%*%X.mat)

H.sim<- sqrt(W.sim)%*%X.mat%*%H.sim%*%t(X.mat)
%*%osqrt (W .sim )

hii.sim <- diag(H.sim)

# Calculated standardized deviance residual.
dlg_y <- lgamma(ys+((ys+(al.sim/2))/al.sim))
-lgamma((ys+(al.sim/2))/al.sim)
dlg_lamb <- lgamma(ys+(lamb/al.sim))-lgamma(lamb/al.sim)
dev <- (ys+(al.sim/2)-lamb)*log(1+al.sim)/al.sim
dev <-dev.nbl-dlg_y-+dlg_lamb
dev <- dev.nb1*(-2)  # for y >0
dev.y0 <- 2*lamb*log(1+al.sim)/al.sim  # for y =0
dev.nbl <- ifelse(ys == 0,dev.y0,dev)
dres.nbl <- sqrt(dev.nbl)
dres.nbl <- ifelse(is.na(dres.nb1),0,dres.nbl)
dres.nbl <- ifelse(ys<lamb,-dres.nbl,dres.nbl)
sd.nbl <- dres.nbl/sqrt(1-hii.sim) # NB1 standardized deviance
residuals
min.sd <- min(sd.nbl)
max.sd <- max(sd.nbl)
mean.sd <- mean(sd.nbl)

var.sd <- var(sd.nbl)
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sd <- ¢(min.sd,max.sd,mean.sd,var.sd)

B <- ¢(B,sd)

# Test N(0,1).
p.ks <- ks.test(sd.nbl, pnorm”,0,1) # Kolmogorov-Smirnov

KS <- ¢(KS,p.ks$p.value)

p.sha <- shapiro.test(sd.nbl) # Shapiro-Wilk

S <- ¢(S,p.sha$p.value)

sd.mat <- matrix(B,ncol=4byrow=TRUE)

colnames(sd.mat) <- ¢("min”,"max”, mean”, variance”)

# Calculated the average of minimum, maximum, mean and variance values.
av.min <- mean(sd.mat[,1])
av.max <- mean(sd.mat[,2])
av.mean <- mean(sd.mat|,3])
av.var <- mean(sd.mat[,4])
av.sd <- c(av.min,av.max,av.mean,av.var)
av.sd <- matrix(av.sd,ncol=4,byrow=TRUE)
colnames(av.sd) <- ¢("min”,"max”, " mean”, variance”)

av.sd <- round(av.sd,3)

# Calculated the proportion of times the p-value is less than or equal
the nominal significance size of 0.05.

KS1 <- KS<=0.05
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S1 <- S<=0.05
k <- sum(KS1)/1000

m <- sum(S1)/1000

result <- list(av.sd=av.sd,n=n,m=m k=k)

result

12.3 A function for calculating the NB1 standardized deviance residual,

under working model: In(p) = 1.25 — 2.45z; + 0.85x5.

sd.nbl <- function(al,beta,X.mat) {
ys <- 0; B <- NULL
KS <- NULL; S <- NULL
mu <- exp(X.mat%*%beta);  n <- length(mu)
x1 <- Xomat[,2];  x2 <- X.mat[,3]

source( nbl1fitl.txt”,echo=TRUE)

# Simulated envelop.
for(i in 1:1000)  {

e0l <- rgamma(n,mu/al,1)
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eij <- e01*(al/mu)

ys <- rpois(n,mu*eij)

nbl.e3 <- nbl.fit(ys~x1+x2,X.mat)
lamb <- nbl.e3%fitted.values

al.sim <- nbl.e3%al.nbl

# Calculated the hat values.
wil.sim <- lamb/(1+al.sim)
wil.sim <- c¢(wii.sim)
W.sim<- diag(wii.sim)
H.sim<- solve(t(X.mat)%*%W.sim%*%X.mat)
H.sim<- sqrt(W.sim)%*%X. mat%*%H.sim%*%t(X.mat)
%*%sqrt(W.sim)

hii.sim <- diag(H.sim)

# Calculated standardized deviance residual.
dlg-y <- lgamma(ys+((ys+(al.sim/2))/al.sim))
-lgamma((ys+(al.sim/2))/al.sim)
dev <- (ys+(al.sim/2)-lamb)*log(1+al.sim)/al.sim
dev <-dev.nbl-dlg_y+dlg_lamb
dev <- dev.nb1*(-2)  # for y >0
dev.y0 <- 2*lamb*log(1+al.sim)/al.sim  # for y =0
dev.nbl <- ifelse(ys == 0,dev.y0,dev)

dres.nbl <- sqrt(dev.nbl)
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dres.nbl <- ifelse(is.na(dres.nbl),0,dres.nbl)

dres.nbl <- ifelse(ys<lamb,-dres.nbl,dres.nbl)

sd.nbl <- dres.nbl/sqrt(1-hii.sim) # NB1 standardized deviance
residuals

min.sd <- min(sd.nbl)

max.sd <- max(sd.nbl)

mean.sd <- mean(sd.nbl)

var.sd <- var(sd.nbl)

sd <- ¢(min.sd,max.sd,mean.sd,var.sd)

B <- ¢(B,sd)

# Test N(0,1).

p.ks <- ks.test(sd.nbl, pnorm”,0,1) # Kolmogorov-Smirnov

KS <- ¢(KS,p.ks$p.value)

p.sha <- shapiro.test(sd.nbl) # Shapiro-Wilk

S <- ¢(S,p.sha$p.value)

sd.mat <- matrix(B,ncol=4,byrow=TRUE)

colnames(sd.mat) <- ¢("min”,"max”, mean”, variance”)

# Calculated the average of minimum, maximum, mean and variance values.

av.min <- mean(sd.mat[,1])
av.max <- mean(sd.mat[,2])

av.mean <- mean(sd.mat|,3])
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av.var <- mean(sd.mat[,4])

av.sd <- ¢(av.min,av.max,av.mean,av.var)

av.sd <- matrix(av.sd,ncol=4,byrow=TRUE)
colnames(av.sd) <- ¢("min”," max”," mean”, variance”)

av.sd <- round(av.sd,3)

# Calculated the proportion of times the p-value is less than or equal
the nominal significance size of 0.05.

KS1 <- KS<=0.05

S1 <- S<=0.05

k <- sum(KS1)/1000

m <- sum(S1)/1000

result <- list(av.sd=av.sd,n=n,m=m,k=k)

result
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