ภาคผนวก ข อาหารเลี้ยงเชื้อ

THIOBACILLUS MEDIUM (T)

KNO,	2.0	g
NH ₄ Cl	1.0	g
KH_2PO_4	2.0	g
NaHCO ₃	2.0	g
MgSO ₄ .7H ₂ O	8.0	g
$Na_2S_2O_3.5H_2O$	5.0	g
Trace elements	1.0	ml
Distilled water to	1000	ml

Trace element solution:

Na ₂ -EDTA		50.0	g
ZnSO ₄ .7H ₂ O		2.2	g
CaCl ₂ .2H ₂ O	•	7.34	g
MnCl ₂ .4H ₂ O		2.5	g
FeSO ₄ .7H ₂ O		5.0	g
(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O		0.5	g
CuSO ₄ .5H ₂ O		0.2	g
NaOH		11.0	Q

Distilled water 1000.00 ml Adjust pH to 6.0 with KOH.

For storage, adjust pH to pH 4

For use the pH readjust to 6

ที่มา:http//www.dsmz.de/dsmzhome.htm

THIOBACILLUS THIOPARUS MEDIUM (TT MEDIUM)

$(NH_4)_2SO_4$	0.10	g
K ₂ HPO ₄	4.00	g
KH_2PO_4	4.00	g
MgSO ₄ .7H ₂ O	0.10	g
CaCl ₂	0.10	g
FeCl ₃ .6H ₂ O	0.02	g
MnSO ₄ .H ₂ O	0.02	g
$Na_2S_2O_3.5H_2O$	10.00	g
Distilled water	1000.0	ml
pH	6.6	

Reference: http://www.dsmz.de/dsmzhome.htm

THIOBACILLUS DENITRIFICANS MEDIUM

Solution A:		
KH ₂ PO ₄	2.0	g
KNO ₃	2.0	g
NH ₄ Cl	1.0	g
MgSO ₄ .7H ₂ O	0.8	g
Trace element solution (see medium T)	2.0	ml
Distilled water	940	ml
Adjust pH to 7.0 with NaOH		
Solution B:		
Na ₂ S ₂ O ₃ .5H ₂ O	5.0	g
Distilled water 40.0	40.0	ml
Solution C:		
NaHCO ₃	1.0	g
Distilled water	20.0	ml
Solution D:		
FeSO ₄ .7H ₂ O	2.0	g
H ₂ SO ₄ (0.1N)	1.0	ml

Solutions A, B and D are separately sterilized by autoclaving at 121°C for 15 min. Solution C is sterilized by filtration or by autoclaving in a tightly closed vessel under an atmosphere of CO2. After sterilization combine the four solutions and distribute as required under nitrogen atmosphere. For solid medium added 15 g agar to solution A.

Medium A (Thiobacillus sp. IW)

K₂HPO₄	2	g
KH_2PO_4	2	g
NH ₄ Cl	0.4	g
MgCl ₂ .6H ₂ O	0.2	g
FeSO ₄ .7H ₂ O	0.01	g
Na ₂ S ₂ O ₃ .5H ₂ O	8	g
Yeast extract	2	g
Distilled water	1000	ml
pH	7	

Reference: Park et al. 2002. Hydrogen sulfide removal utilizing immobilized *Thiobacillus* sp. IW with Ca-alginate bead. Biochemical Engineering J. 11, 167-173.

Medium B (A modification of thiosulfate medium ATCC290)

Na ₂ HPO ₄	2.27	g
KH_2PO_4	1.8	g
MgCl ₂ .7H ₂ O	0.1	g
$(NH_4)_2SO_4$	1.98	g
MnCl ₂ .H ₂ O	0.023	g
CaCl ₂	0.03	g
FeCl ₃ .6H ₂ O	0.003	g
Na ₂ CO ₃	1	g
Na ₂ S ₂ O ₃ .5H ₂ O	15.69	g
Distilled water	1000	ml
pH	7	

Reference: Oyarzun, P. et al. 2003. Biofiltration of high concentration of hydrogen sulfide using *Thiobacillus thioparus*. Process Biochemistry. 39, 165-170.

อาหารสูตร C (T. novellas)

K ₂ HPO ₄	4.0	g
KH ₂ PO ₄	4.0	g
MgSO ₄	0.8	g
Na ₂ EDTA	0.5	g
ZnSO ₄	0.22	g
CaCl ₂	0.05	g
MnCl ₂	0.01	g
FeSO ₄	0.001	g
$(NH_4)_6Mo_7O_{24}$	0.01	g
CuSO ₄	0.01	g
Na ₂ S ₂ O ₃ .5H ₂ O	10	g
Yeast extract	0.02	g
Distilled water	1000	ml
pH	7	

Reference: Cha et al. 1999. Removal of organosulphur odour compounds by *Thiobacillus novelus* SRM, sulphur-oxidizing microorganisms. Process Biochemistry. 34, 659-665.

สูตรอาหารสำหรับแยกเชื้อ purple nonsulfur photosynthetic bacteria

C-5	medium
(T-7	meaiiim

peptone	0.5 g
Yeast extract	0.5 g
L-glutamic acid	0.4 g
DL-malic acid	0.35 g
KH ₂ PO ₄	0.012 g
K ₂ HPO ₄	0.018 g
Distilled water	1000 ml
pH	7

ปรับ pH ใช้ NaOH 5 N ก่อนนึ่งฆ่าเชื้อ ถ้าเป็นอาหารแข็งใช้วุ้น 1.5% บรรจุในหลอดทดลอง ปริมาณหลอดละ 5 ml นำไปนึ่งฆ่าเชื้อด้วยหม้อนึ่งความดันใอ 15 ปอนค์ต่อตารางนิ้ว อุณหภูมิ 121 องศาเซลเซียส เป็นเวลา 15 นาที

Medium for denitrification process

Nitrate broth

Beef extract 3.0 g

Peptone 5.0 g

Potassium nitrate 1.0 g

Distilled water 1000 ml

ละลายส่วนผสมทั้งหมคลงในน้ำโคยใช้ความร้อนช่วยบรรจุหลอคทคสอบซึ่งมี Durham tube นำไป นึ่งฆ่าเชื้อด้วยหม้อนึ่งความคันไอ 15 ปอนค์ต่อตารางนิ้ว อุณหภูมิ 121 องศาเซลเซียส เป็นเวลา 15 นาที

Protein hydrolysis

Casein medium

Tryptone 5.0 g

Yeast extract 2.5 g

Glucose 1.0 g

Agar 15.0 g

Skim milk 20 ml

Distilled water 980 ml

ใช่ Skim milk ก่อนผสมลงในขวด นำไปนึ่งฆ่าเชื้อด้วยหม้อนึ่งความคันไอ 15 ปอนด์ต่อตารางนิ้ว อุณหภูมิ 121 องศาเซลเซียส เป็นเวลา 10 นาที แล้วทำให้เย็นทันที

การนำเสนอผลงาน

ส่วนหนึ่งของงานวิจัยนี้ได้นำเสนอแบบโปสเตอร์ในการประชุมสัมมนา

The 4th JSPS-NRCT Joint Seminar on Development of Thermotolerant Resources and Their Applications

7-10 November 2004. Kyushu University, Fukuoka, Japan

Organized by Yamaguchi University and Kasetsart University

Supported by Japan Society for the Promotion of Science (JSPS) and National Research Council of Thailand (NRCT)

Screening of *Thiobacillus* sp. for their Ability to Remove Sulfide from Rubber Wastewaters

<u>Duangporn Kantachote¹</u>, Wilawan Charernjiratrakul¹, Napavarn Noparatnaraporn² and Kohei Oda³

¹Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand

In order to remove sulfide in rubber wastewaters, a total of 147 isolates of *Thiobacillus* sp. were isolated from various sources. This included 69 mesophiles (30°C) and 78 thermophile (50°C). Only 8 of the mesophilic isolates and 14 of the thermophiles grew well in sterile untreated rubber wastewater in both a sulfate reducing reactor (SRR) and an up-flow anaerobic sludge blanket (UASB). These were selected for further study. However, only the thermophilic species showed promise for the removal of sulfide. *Thiobacillus* sp. TT502 gave the best sulfide reduction in the SRR (initial concentrations of 118mg/L total sulfide, 93mg/L dissolved sulfide and 2.01mg/L unionized hydrogen sulfide: UHS) removing 81% of the total sulfide, 84% of dissolved sulfide and 72% of UHS. In the UASB, the isolate TT5036 removed 68% of total sulfide, 75% of dissolved sulfide and 89% of UHS starting with concentrations of 88mg/L total sulfide, 80mg/L dissolved sulfide and 1.49mg/L UHS. Interestingly, most of the selected isolates had proteolytic activity that was higher with gelatin than with casein.

Figure Proteolytic activity of the selected isolates of Thiobacillus sp.

²Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok

³Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Kyoto, Japan