ภาคผนวก ก การสกัดแอกโตไมโอซิน (Benjakul et al., 1997)

สารเคมี

1. สารละลายโปแตสเซียมคลอไรด์ ความเข้มข้น 0.6โมลาร์ ความเป็นกรดด่าง 7.0

- 2. สารละลายโปแตสเซียมคลอไรค์ ความเข้มข้น 1.2โมลาร์ ความเป็นกรคค่าง 7.0
- 3. น้ำกลั่น

ີວສີກາร

น้ำเนื้อกุ้งกุลาดำที่ผ่านการหั่นเป็นชิ้นเล็กๆ 4 กรับมาเติมสารละลายโปแตสเซียมคลอไรด์
 0.6 โมลาร์ ที่ผ่านการแช่เย็น อุณหภูมิ 4 องศาเซลเซียส

2. โฮโมจิในส์เนื้อกุ้งที่อยู่ในสารละลายโปแตสเซียมคลอไรค์นาน 4 นาที โดยโฮโมจิในส์
 20 วินาที หยุดพัก 20 วินาที จนครบเวลาที่กำหนด และต้องกวบคุมอุณหภูมิระหว่างการโฮโมจิในส์
 ใม่เกิน 4 องศาเซลเซียส

3. นำตัวอย่างไปหมุนเหวี่ยง ด้วยเครื่องหมุนเหวี่ยงที่ความเร็วรอบ 5000x g นาน
 30 นาที และควบคุมอุณหภูมิระหว่างหมุนเหวี่ยงไม่เกิน 4 องศาเซลเซียส

4. นำส่วนใสที่ได้จากการหมุนเหวี่ยง มาเติมน้ำกลั่นที่อุณหภูมิ 4 องศาเซลเซียส ในปริมาตร 3 เท่าของส่วนใส

> 5. นำตัวอย่างไปหมุนเหวี่ยงที่ความเร็วรอบ 5000xg นาน 20 นาที อุณหภูมิ 4 องศาเซลเซียส 6. นำส่วนตะกอนที่ได้จากการหมุนเหวี่ยง มาเดิมสารละลายโปแตสเซียมคลอไรด์

1.2 โมลาร์ ในปริมาตร 1 เท่าของตะกอนที่ได้ แล้วนำไปกวนนาน 30 นาที ที่อุณหภูมิ 4 องศาเซลเซียส
 7. ตัวอย่างมาหมุนเหวี่ยงที่ความเร็วรอบ 5000xg นาน 20 นาที อุณหภูมิ 4 องศาเซลเซียส
 8. สารละลายแอกโตไมโอซินที่ได้ หรือ ส่วนใสที่ได้จากการหมุนเหวี่ยง มาเก็บที่

อุณหภูมิ 4 องศาเซลเซียส

ภาคผนวก ข การวิเคราะห์ค่าทางกายภาพ

ข1. การวัดค่าสีโดยใช้เครื่องวัดค่าสี

อุปกรณ์

1. เครื่องวัดค่าสี ยี่ห้อ Hunter lab รุ่น Color Flex

ີວີສີ່ຄາຮ

1. วางตัวอย่างลงบน Port ซึ่งมีขนาด 1 นิ้ว

2. ใช้ฝาครอบปิดตัวอย่าง เพื่อมิให้แสงรบกวนจากภายนอก

3. เริ่มวัคค่าสี โคยใช้ระบบสีของ CIE Color System ค่าที่วัคได้จะเป็นค่า L* a* และ b*

ข2. การวัดค่าเนื้อสัมผัส Texture Profile Analysis (TPA) (Bourne, 1978) อุปกรณ์

1. เครื่องวัดเนื้อสัมผัส ยี่ห้อ Texture Analyzer รุ่น TA-XT2i

2. หัววัด cylinder ขนาดเส้นผ่านศูนย์กลาง 5 มิลลิเมตร

ີວີ້ສີ່ຄາຮ

 นำตัวอย่างเจลเนื้อกุ้งกุลาดำบดมาวัดค่าเนื้อสัมผัส Texture Profile Analysis โดย ใช้หัว cylindrical ความเร็ว 5 มิลลิเมตรต่อวินาที และกคลงตามความสูงของชิ้นตัวอย่างร้อยละ 50 ตามโปรแกรมการวัดค่า Texture Profile Analysis ที่ต้องกดตัวอย่าง 2 ครั้ง และรายงานผลเป็นค่า ความแข็ง (hardness) ค่าการยึดเกาะ (adhesiveness) ค่าการยึดติด (cohesiveness) และค่าความยืดหยุ่น (springiness)

ข3. การวัดค่าแรงเจาะทะลุและระยะทางก่อนเจาะทะลุ (ดัดแปลงจาก Lanier, 1992) อุปกรณ์

1. เครื่องวัดค่าเนื้อสัมผัส ยี่ห้อ Texture Analyzer รุ่น TA- XT2i
 2. หัววัด spherical ขนาดเส้นผ่านศูนย์กลาง 5 มิลลิเมตร

ີວສີຄາຮ

 1.นำตัวอย่างเจลเนื้อกุ้งกุลาดำบดมาวัดค่าแรงเจาะทะลุ และระยะทางก่อนเจาะทะลุ โดยใช้หัว spherical ความเร็ว 1.1 มิลลิเมตรต่อวินาที กดตัวอย่างลงไป จนกระทั่งเจาะทะลุเจลเนื้อ กุ้งกุลาดำบด วัดค่าแรงสูงสุดที่ใช้เป็นแรงก่อนเจาะทะลุ รายงานผลเป็นหน่วยกรัม (g) และระยะทาง ก่อนเจาะทะลุ รายงานผลเป็นหน่วยมิลลิเมตร (mm)

ง4. การตรวจสอบค่าการสูญเสียน้ำหนัก

อุปกรณ์

1. เครื่องชั่งไฟฟ้า ทศนิยม 4 ตำแหน่ง

ີວສີຄາร

1. ชั่งน้ำหนักตัวอย่างก่อนและหลังการแปรรูป (ให้ความคันหรือความร้อน)

การคำนวณ

การสูญเสียน้ำหนัก (ร้อยละ) = <u>ผลต่างของน้ำหนักก่อนและหลังการแปรรูป</u> x 100 น้ำหนักตัวอย่างก่อนการแปรรูป

ข5. การตรวจสอบความสามารถในการอุ้มน้ำ (Jatuphong *et al.*, 2000) อุปกรณ์

1. กระคาษกรอง Whatman เบอร์ 50 ขนาคเส้นผ่านศูนย์กลาง 11 เซนติเมตร

2. กระดาษกรอง Whatman เบอร์ 1 ขนาดเส้นผ่านศูนย์กลาง 11 เซนติเมตร

3. เครื่องชั่งไฟฟ้า ทศนิยม 4 ตำแหน่ง

 4. อุปกรณ์สำหรับหาปริมาณความชื้น ได้แก่ ตู้อบไฟฟ้า ภาชนะหาความชื้น (จาน อลูมิเนียมพร้อมฝา) และ โถดูดความชื้น

ີວສີຄາร

1. นำตัวอย่างมาตัดเป็นชิ้นบางๆ

2. ชั่งตัวอย่าง 2 กรัม นำมาวางบนกระดาษกรอง Whatman เบอร์ 50 จำนวน 1 แผ่น
 3. ปิดทับด้วยกระดาษกรอง Whatman เบอร์ 1 จำนวน 2 แผ่น พับกระดาษกรอง แล้วนำมาหมุนเหวี่ยงที่ความเร็ว 3,600 x g นาน 15 นาที

4. นำชิ้นตัวอย่างออกจากกระคาษกรอง แล้วนำกระคาษกรองมาชั่งน้ำหนัก หาปริมาณความชื้นของตัวอย่าง (A.O.A.C., 1999)

การคำนวณ

ความสามารถในการอุ้มน้ำ (ร้อยละ) =
$$\frac{IWC-WL}{IWC} \ge 100$$

โดยที่

IWC = ปริมาณความชื้นที่มีในตัวอย่าง (AOAC,1999) x น้ำหนักตัวอย่าง WL = น้ำหนักของน้ำที่ออกมาจากตัวอย่างภายหลังการหมุนเหวี่ยง

ข6. การวิเคราะห์ปริมาณความชื้น (A.O.A.C., 1999) อุปกรณ์

ถู้อบไฟฟ้าอุณหภูมิและภาชนะหาความชื้น
 โถดูดความชื้นและเครื่องชั่งไฟฟ้าอย่างละเอียด

ີ ວ**ີ**ສີ່ຄາຮ

1. อบภาชนะสำหรับหาความชื้นในตู้อบไฟฟ้าที่อุณหภูมิ 105±2 องศาเซลเซียส
 เป็นเวลา 3 ชั่วโมงนำออกจากตู้อบใส่ไว้ในโถดูดความชื้น ปล่อยทิ้งไว้ให้เย็นแล้วชั่งน้ำหนัก
 2. ทำซ้ำเช่นข้อที่ 1 จนได้ผลต่างของน้ำหนักที่ชั่งทั้งสองครั้งติดต่อกันไม่เกิน 1-3

มิลลิกรัม

 ชั่งตัวอย่างอาหารที่ต้องการหาความชื้นให้ได้น้ำหนักที่แน่นอน ประมาณ 1-2 กรัม ใส่ลงในภาชนะหาความชื้นซึ่งทราบน้ำหนักแล้ว

 4. นำไปอบในดู้ไฟฟ้าที่อุณหภูมิ 105+2 องศาเซลเซียส นาน 5-6 ชั่วโมง นำออก จากดู้อบใส่ไว้ในโถดูดความชื้น ปล่อยทิ้งไว้ให้เย็นแล้วชั่งน้ำหนักภาชนะพร้อมตัวอย่างนั้น จากนั้น นำกลับไปเข้าดู้อบอีก

ทำซ้ำเช่นข้อที่ 4 จนได้ผลต่างของน้ำหนักที่ชั่งทั้งสองครั้งติดต่อกันไม่เกิน 1-3

มิลลิกรัม

การคำนวณ

```
ปริมาณความชี้น (ร้อยละ โดยน้ำหนัก) = (\underline{W_1}-\underline{W_2}) \ge 100
W_1
```

โดยให้

W₁ คือ น้ำหนักตัวอย่างก่อนอบ (กรัม)
 W₂ คือ น้ำหนักตัวอย่างหลังอบ (กรัม)

ภาคผนวก ค การวิเคราะห์ค่าทางเคมี

ค1 การวิเคราะห์ค่าความขุ่น (Benjakul *et al.*, 2001) สารเคมี

1. สารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 50 มิลลิโมลาร์ ที่มีโปแตสเซียมคลอไรด์
 0.6 โมลาร์ ความเป็นกรดด่าง 7.0

ີ ວ**ີ**ສີຄາຮ

 นำตัวอย่างสารละลายแอกโตไมโอซินธรรมชาติที่ละลายอยู่ในสารละลาย ฟอสเฟตบัฟเฟอร์ความเข้มข้น 50 มิลลิโมลาร์ ที่มีโปแตสเซียมคลอไรค์ 0.6 โมลาร์ ที่ผ่านการแปร รูปที่สภาวะต่างๆ มาวัคก่าการดูดกลืนแสงที่ความยาวคลื่น 660 นาโนเมตร

ค2. การวิเคราะห์ปริมาณไฮโดรโฟบิกบนพื้นผิว (Benjakul *et al.*, 1997) สารเคมี

สารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 10 มิลลิโมลาร์ ที่มีโซเคียมคลอไรด์
 0.6 โมลาร์ ความเป็นกรดค่าง 6.0

2. สารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 0.1 โมลาร์ ที่มีกรดแอนิลิโนแนฟธา-ลีนซัลฟอนิก (ANS) 8 มิลลิโมลาร์ ความเป็นกรดด่าง 7.0

ີວສີຄາຈ

 นำสารละลายแอกโต ไมโอซินธรรมชาติที่ผ่านสภาวะการแปรรูปมาผสม กับสารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 10 มิลลิโมลาร์ ที่มีโซเดียมคลอไรด์ 0.6 โมลาร์ โดย ละลายให้มีความเข้มข้นของสารละลายแอกโตไมโอซิน0.125,0.25,1 มิลลิกรัมต่อมิลลิลิตร ปริมาตร 4 มิลลิลิตร

2. บ่มที่อุณหภูมิ 20องศาเซลเซียส นาน 10นาที

3. เติมสารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 0.1 โมลาร์ ที่มีกรคแอนิลิ-โนแนฟธาลีนซัลฟอนิก 8 มิลลิโมลาร์ ปริมาตร 20ไมโครลิตร

2. วัดความเข้มของฟลูออเรสเซนต์ โดยวัดที่ความยาวคลื่นเริ่มต้น (Excitation) ที่
 374 นาโนเมตร และวัดที่ความยาวคลื่นสุดท้าย (Emission) ที่ 485 นาโนเมตร โดยมีสารละลาย
 เมธานอลที่มีสารละลายกรดแอนิลิโนแนฟธาลีน-ซัลฟอนิก (ANS) 8 มิลลิโมลาร์ เป็น blank

5. นำค่าที่ได้มาเขียนกราฟระหว่างความเข้มข้นกับความเข้มที่วัดได้ แล้วหาค่าความ ชันของเส้นกราฟ (So) ได้เป็นค่าปริมาณไฮโครโฟบิกบนพื้นผิว ค3. การวิเคราะห์ปริมาณหมู่ซัลฟ์ไฮดริลทั้งหมด (Benjakul *et al.*, 2001) สารเคมี

1. สารละลายบัฟเฟอร์ทริสไฮโครคลอริกความเข้มข้น 0.2 โมลาร์ที่มียูเรีย 8 โมลาร์ เอธิลไคเมธิลเตตราอะซิติกแอซิค (EDTA) 10 มิลลิโมลาร์ และโซเดียมโคเคซิลซัลเฟต (SDS) ร้อย ละ 2 ความเป็นกรคค่าง 6.8

2. สารละลายบัฟเฟอร์ทริสไฮโครคลอริกที่มีใคไทโอบิสไนโทรเบนโซอิกแอซิค (DTNB) 10 มิลลิโมลาร์ (น้ำหนักต่อปริมาตร) ความเป็นกรดค่าง 6.8

3. สารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 50 มิลลิโมลาร์ ที่มีโปแตสเซียม-คลอไรค์ 0.6 โมลาร์ ความเป็นกรคค่าง 7.0

ີວີ້ສີ່ຄາຮ

 นำสารละลายแอกโตไมโอซินธรรมชาติที่มีความเข้มข้น 4 มิลลิกรัมต่อมิลลิลิตร ที่ผ่านสภาวะการแปรรูปปริมาตร 0.25 มิลลิลิตร มาผสมกับสารละลายบัฟเฟอร์ทริสไฮโครคลอริกที่มี ยูเรีย เอธิลไคเมธิลเตตราอะซิติกแอซิคและโซเดียมโคเคซิลซัลเฟตปริมาตร 3 มิลลิลิตร

 2. นำสารละลายผสมมาเติมสารละลายบัฟเฟอร์ทริสไฮโครคลอริกที่มีใคไทโอบิส-ในโทรเบนโซอิกแอซิค ปริมาตร 0.25 มิลลิลิตร

3. บ่มที่อุณหภูมิ 40 องศาเซลเซียส เป็นเวลา 40 นาที

4. วัดค่าดูดกลืนแสงที่ความยาวคลื่น 412 นาโนเมตร โดยมีสารละลายฟอสเฟตบัฟเฟอร์ ที่มีโปแตสเซียมคลอไรด์ เป็น reagent blank และสารละลายตัวอย่างผสมที่ไม่เติมสารละลาย บัฟเฟอร์ทริสไฮโดรคลอริกที่มีไดไทโอบิสไนโทรเบนโซอิกแอซิด เป็น sample blank คำนวณ

C = A/(Eb) โมล/10⁵ กรัมโปรตีน

โดยที่

A = ค่าการคูดกลื่นแสงของตัวอย่าง

 $\mathbf{\mathcal{E}} =$ ค่าคงที่ที่มีค่าเท่ากับ 13600 M⁻¹. CM⁻¹

b = เส้นผ่านศูนย์กลางของคิวเวท

ค4. การวิเคราะห์ปริมาณพันธะไดซัลไฟด์ (Benjakul *et al.*, 2001) สารเคมี

 สารถะลาย NTSB ซึ่งเตรียมจากสารละลายไคไทโอบิสไนโทรเบนโซอิกแอซิค (DTNB) 1 กรัม (0.253 มิลลิโมล) ละลายในสารละลายไคโซเดียมซัลเฟตที่มีความเข้มข้น 1 โมลาร์ ปริมาตร 10 มิลลิลิตร ความเป็นกรคค่าง 7.5 ผสมกับสารละลายที่มีกัวนิดีนไทโอไซยาเนท (quanidine thiocyanate) 2 โมลาร์ ไกลซีน 50 มิลลิโมลาร์ โซเดียมซัลไฟค์ 100 มิลลิโมลาร์ และ เอธิลไคเมธิลเตตราอะซิติกแอซิค (EDTA) 3 มิลลิโมลาร์ ความเป็นกรคค่าง 9.5 ในอัตราส่วน 1:100

2. สารละลายฟอสเฟตบัฟเฟอร์ความเข้มข้น 50 มิลลิโมลาร์ ที่มีโปแตสเซียมคลอไรค์
 0.6 โมลาร์ ความเป็นกรุดค่าง 7.0

ີວສີຄາຮ

 นำสารละลายแอกโตไมโอซินธรรมชาติที่มีความเข้มข้น 4 มิลลิกรัมต่อมิลลิลิตร ที่ละลายอยู่ในสารละลายฟอสเฟตบัฟเฟอร์ที่มีโปแตสเซียมคลอไรค์ที่ผ่านสภาวะการแปรรูป ปริมาตร 0.5 มิลลิลิตร มาเติมสารละลาย NTSB 3 มิลลิลิตร

2. บ่มในที่มืดและอุณหภูมิห้อง นาน 25 นาที

3. วัดค่าดูดกลืนแสงที่กวามยาวกลื่น 412 นาโนเมตร โดยมีสารละลาย NTSB ที่ ผสมน้ำกลั่น เป็น blank

คำนวณ

C = A/(Eb) โมล/10⁵ กรัมโปรตีน

โดยที่

A = ค่าการดูดกลืนแสงของตัวอย่าง E = ค่าคงที่ที่มีค่าเท่ากับ 13900 M⁻¹. CM⁻¹ b = เส้นผ่านศูนย์กลางของคิวเวท

ค5. การวิเคราะห์ปริมาณเปปไทด์ที่ละลายได้ในสารละลายไตรคลอโรอะซิติก (Morrissey *et al.*, (1993

สารเคมี

1. สารละลายกรดไตรกลอโรอะซิติกเข้มข้น ร้อยละ 5 (น้ำหนักต่อน้ำหนัก)

ີ ວ**ີ**ชีการ

1. นำตัวอย่างเจลกุ้งกุลาคำบคมา 3 กรัม

2. เติมสารละลายกรคไตรคลอโรอะซิติก ปริมาตร 27 มิลลิลิตร

 3. โฮโมจีในส์ตัวอย่างเป็นเวลา 3-1นาที)จนเป็นเนื้อเดียวกัน (ตั้งทิ้งไว้ในน้ำแข็ง 4 องศาเซลเซียส เป็นเวลา 2ชั่วโมง

4. เหวี่ยงแยกด้วยเครื่องหมุนเหวี่ยงที่ความเร็วรอบ 7500xg นาน 1 5นาที

5. นำส่วนใสที่ได้มาวิเคราะห์ปริมาณโปรตีน โดยวิธี Lowry method

ค6. การวิเคราะห์ปริมาณโปรตีนโดยวิธี Lowry method (Lowry *et al.*, 1951) สารเคมี

1. สารละลาย A: โซเคียมคาร์บอเนต (Na₂CO₃) ร้อยละ 2 ในสารละลายโซเคียมไฮครอกไซค์ เข้มข้น 0.1 นอร์มอล

2. สารละลาย B: คอปเปอร์ซัลเฟตร้อยละ 0.5 ในสารละลายโซเดียมซิเตรทเข้มข้นร้อยละ 1

3. สารละลาย C: สารละลายโฟลินฟีนอล (Folin-Ciocalteu's phenol reagent) เข้มข้น 1 นอร์มอล

4. สารละลาย D: นำสารละลาย B จำนวน 1 มิลลิลิตร ผสมกับสารละลาย A จำนวน 50 มิลลิลิตร

5. สารละลายโปรตีนมาตรฐานไทโรซีน (Tyrosine) เข้มข้น 1 มิลลิโมลาร์

ີວສີຄາຮ

1. นำสารละลายโปรตีนตัวอย่าง 200 ไมโครลิตร ใส่ในหลอดทดลอง เติมสารละลาย
 D จำนวน 2 มิลลิลิตร ผสมให้เข้ากัน ตั้งทิ้งไว้ที่อุณหภูมิห้อง นาน 10 นาที

2. เติมสารละลาย C 200 ไมโครลิตร ลงไปในสารละลายผสมข้อ 1 ผสมให้เข้ากัน ตั้งทิ้งไว้ที่อุณหภูมิห้องนาน 30 นาที

3. นำสารละลายไปวัดค่าการดูดกลืนแสงที่ 750 นาโนเมตร นำค่าการดูดกลืนแสงที่ ได้ไปเปรียบเทียบกับกราฟมาตรฐานไทโรซีน

การเตรียมกราฟมาตรฐาน

1. ดูคสารละลายไทโรซีนเข้มข้น 1 มิลลิโมลาร์ จำนวน 0 20 40 60 100 140 และ
 200 ไมโครลิตร ปรับปริมาตรด้วยน้ำกลั่นให้ได้ 200 ไมโครลิตร

2. นำสารละลายไทโรซีนจากข้อ 1 ที่ความเข้มข้นต่างๆ มาหาปริมาณโปรตีน เช่นเดียวกับตัวอย่าง

 เขียนกราฟ และหาสมการแสดงความสัมพันธ์ระหว่างความเข้มข้นของ สารละลายไทโรซีนกับค่าการดูดกลืนแสงที่ 750 นาโนเมตร แสดงดังภาพภาคผนวกที่ 1 ปริมาณ โปรตีนคำนวณโดยนำค่าการดูดกลืนแสงที่ความยาวคลื่น 750 นาโนเมตร แทนค่าในสมการของ กราฟมาตรฐานไทโรซีน

ความเข้มข้นของไทโรซีน (กรัมต่อมิลลิลิตร)

ภาพภาคผนวกที่ 1 กราฟมาตรฐานไทโรซีน

Tyrosine standard graph

ค7. การวิเคราะห์ปริมาณโปรตีนโดยใบยูเรท (Copeland, 1994) สารเคมี

1. สารละลายโปรตีนมาตรฐาน Bovine Serum Albumin (BSA) เข้มข้น 10 มิลลิกรัมต่อมิลลิลิตร

 2. สารละลายใบยูเรท : ชั่งคอปเปอร์ซัลเฟต (CuSO₄.5H₂O) 1.5 กรัม โซเคียม-โปแตสเซียมทาเรต 6.0 กรัม เติมน้ำกลั่นจนมีปริมาตร 500 มิลลิลิตร กวนจนเป็นเนื้อเคียวกัน แล้ว เติมสารละลายโซเคียมไฮครอกไซค์เข้มข้นร้อยละ 10 จำนวน 300 มิลลิลิตรในขณะกวน ปรับ ปริมาตรด้วยน้ำกลั่นให้ได้ 1000 มิลลิลิตร

ີວສີຄາຈ

1. ดูคสารละลายโปรตีน 500 ใมโครลิตร ใส่ในหลอดทคลอง

2. เติมสารละลายใบยูเรท 2 มิลลิลิตร ผสมให้เข้ากันด้วย Vortex mixer วางทิ้งไว้ ที่อุณหภูมิห้องเป็นเวลานาน 30 นาที

3. นำสารละลายไปวัดค่าการดูดกลืนแสงที่ 540 นาโนเมตร นำค่าการดูดกลืนแสงที่ ได้ไปเปรียบเทียบกับกราฟมาตรฐาน BSA

การเตรียมกราฟมาตรฐาน

1. ดูคสารถะถาย BSA เข้มข้น 10 มิถถิกรัมต่อมิถถิถิตร จำนวน 100 200 300 400 และ 500 ไมโครถิตร ปรับปริมาตรค้วยน้ำกลั่นให้ได้ 500 ไมโครถิตร

2. เติมสารละลายใบยูเรท จำนวน 2 มิลลิลิตร ผสมให้เข้ากันด้วย Vortex mixer วาง ทิ้งไว้ที่อุณหภูมิห้อง นาน 30 นาที

3. วัดค่าการดูดกลืนแสงที่ความยาวคลื่น 540 นาโนเมตร

4. เขียนกราฟมาตรฐาน และหาสมการแสดงความสัมพันธ์ระหว่างความเข้มข้นของ สารละลาย BSA กับค่าการดูดกลืนแสงที่ 540 นาโนเมตร แสดงดังภาพถาคผนวกที่ 2 ปริมาณ โปรตีนคำนวณได้โดยนำค่าการดูดกลืนแสงที่ความยาวคลื่น 540 นาโนเมตร แทนค่าในสมการของ กราฟมาตรฐาน BSA

ความเข้มข้นของ BSA (กรัมต่อมิลลิลิตร)

ภาพภาคผนวกที่ 2 กราฟมาตรฐาน BSA BSA standard graph ภาคผนวก ง การตรวจสอบรูปแบบโปรตีนไมโอไฟบริลโดยใช้วิธี Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (ดัดแปลงจาก Laemmli,

1970)

อุปกรณ์

1. ชุดอิเล็กโตรโฟรีซีสแบบมินิเจล

สารเคมื

Acrylamide/bis-acrylamide: ละลายAcrylamide 29.2 กรัม และ bis-acrylamide
 0.8 กรัม ในน้ำกลั่น ปรับปริมาตรให้ได้ 100 มิลลิลิตร เก็บในขวดสีชาที่อุณหภูมิ 4 องศาเซลเซียส
 ใช้ได้ประมาณ 1 เดือน หลังเตรียม

2. สารละลายบัฟเฟอร์ทริสไฮโครคลอไรค์เข้มข้น 0.5 โมลาร์ ความเป็นกรคค่าง 8.8

- 3. สารละลายบัฟเฟอร์ทริสไฮโครคลอไรค์เข้มข้น 1.5 โมลาร์ ความเป็นกรคค่าง 6.8
- 4. สารละลายโซเคียมโคเคซิลซัลเฟตเข้มข้นร้อยละ 10 (เก็บที่อุณหภูมิห้อง)

5. สารละลายโซเคียมโคเคซิลซัลเฟตเข้มข้นร้อยละ 5 (เก็บที่อุณหภูมิห้อง)

6. Sample buffer (non reducing buffer):

ทริสไฮโครคลอไรค์	0.1514	กรัม
กลีเซอรอล	2.5	มิลลิลิตร
โซเคียม โคเคซิลซัลเฟต	0.25	กรัม
EDTA	0.0186	กรัม
โบร โมฟีนอลบลู	0.25	กรัม
91 -		

้นำมาละลายในน้ำกลั่น ปรับความเป็นกรุดด่างให้ได้ 6.8 แล้วปรับปริมาตรเป็น 25

มิลลิลิตร

7. Sample buffer (reducing buffer):	
ทริสไฮโครคลอไรด์	0.1514	กรัม
กลีเซอรอล	2.5	มิลลิลิตร
โซเคียม โคเคซิลซัลเฟต	0.25	กรัม
EDTA	0.0186	กรัม
เบต้ำ-เมอแคปโตเอธานอล	0.25	มิลลิลิตร
โบร โมฟีนอลบลู	0.25	กรัม
นำมาละลายในน้ำกลั่น ปรับความ	เป็นกรด	ค่างให้ได้ 6.8 แล้วปรับปริมาตรเป็น 25

มิถถิถิตร

8. Electrod buffer:

ทริสไฮโครคถอไรด์	3.0	กรัม			
กลีเซอรอล	14.4	มิลลิลิตร			
โซเคียม โคเคซิลซัลเฟต	1.0	กรัม			
นำมาละลายในน้ำกลั่น แล้วปรับปริมาตรเป็น 1 ลิตร					
9. Catalyst ประกอบด้วย					
สารละลายแอม โมเนียมเปอร์ซัลเฟตเข้มข้นร้อยละ 10 (เตรียมก่อนใช้)					
TEMED (N.N.N.Ntetramet	ny ethyler	nediamine)			

10.โปรตีนมาตรฐานที่ทราบน้ำหนักโมเลกุล High Molecular Weight (Sigma) ประกอบด้วย myosin, β-galactosidase, phosphorylas b, fructose-6-phosphate kinase, albumin, glutamic dehydrogenase, ovalbumin, glyceraldehydes-3-phosphate dehydeogenase มีน้ำหนัก โมเลกุล 205,000 116,000 97,000 84,000 66,000 55,000 45,000 และ 36,000 คาลตัน ตามลำดับ

11. สีย้อมโปรตีน Coomassie Billiant Blue R-250

12. Staining solution: ละลาย Comassie Billiant Blue R-250 0.04 กรัม ใน เมธานอล 100 มิลลิลิตร คนจนละลายหมด แล้วเติม Glacial acetic acid 15 มิลิลิตร และน้ำกลั่น 85 มิลลิลิตร

13. Destaining solution 1: ผสมเมธานอล 50 มิลลิลิตร กรดอะซีติก 75 มิลลิลิตร และน้ำกลั่น 875 มิลลิลิตร

ີວີ້ສີ່ຄາຮ

1. การเตรียมตัวอย่าง

นำตัวอย่าง 3 กรัม ผสมกับ สารละลายโซเดียมโดเดซิลซัลเฟตเข้มข้นร้อยละ 5 ปริมาตร 27 มิลลิลิตร โฮโมจีในส์ 1 นาที บ่มที่อุณหภูมิ 85 องศาเซลเซียส นาน 1 ชั่วโมง นำ สารละลายมาเหวี่ยงแยกที่ความเร็ว 5,500xg นาน15 นาที นำสวนใสที่ได้มาผสมกับ Sample buffer (อัตราส่วน 1:1) ให้มีความเข้มข้นโปรตีนเท่ากับ 4 ไมโครกรัมต่อไมโครลิตร ต้มสารผสมในน้ำ เดือด นาน 3 นาที ทำให้เย็นเก็บไว้ที่อุณหภูมิ -20 องศาเซลเซียส

2. การเตรียม running gel (10%gel) (สำหรับเจล 2 แผ่น)

30% Aceylamide/0.8% bis-acrylamide
 0.665 มิลลิลิตร
 สารละลายบัฟเฟอร์ทริสไฮโครคลอไรค์เข้มข้น 0.5 โมลาร์ ความเป็นกรคค่าง 8.8
 1.250 มิลลิลิตร

น้ำกลั่น	3.000	มิถถิถิตร
สารละลายโซเคียมโคเคซิลซัลเฟตเข้มข้นร้อยละ 10	100	ไมโครถิตร
สารละลายแอม โมเนียมเปอร์ซัลเฟตเข้มข้นร้อยละ 10	50	ใมโคร ลิตร
เขย่าให้เข้ากัน		
TEMED	5	ไมโครลิตร
เขย่าให้เข้ากัน แล้วคูดใส่ในแผ่นเจล แผ่นละ 3.5 มิลลิลิต	ົງ	
3. การเตรียม stacking gel (สำหรับเจล 2 แผ่น)		
30% Aceylamide/0.8% bis-acrylamide	0.665	มิถถิถิตร
สารละลายบัฟเฟอร์ทริสไฮโครคลอไรค์เข้มข้น 1.5 โมล	าร์ ความเป็	นกรคค่าง 6.8
	1.250	มิลลิลิตร
น้ำกลั่น	3.000	มิลลิลิตร
สารละลายโซเคียมโคเคซิลซัลเฟตเข้มข้นร้อยละ 10	50	ไมโครลิตร
สารละลายแอมโมเนียมเปอร์ซัลเฟตเข้มข้นร้อยละ 10	25	ใมโคร ลิตร
เขย่าให้เข้ากัน		
TEMED	3	ไมโครลิตร
เขย่าให้เข้ากันแล้วเทใส่แผ่นเจล		

4. การแยกโปรตีนโดยเจลอิเลคโตรโฟรีซีส

ประกอบชุดเจลอิเลคโตรโฟรีซีส จากนั้นเติม electrode buffer ให้เต็ม chamber ด้านใน จากนั้นเติมตัวอย่างที่เตรียมจากข้อ 1 จำนวน 5 ไมโครลิตร จะได้ความเข้มข้นของโปรตีน 20 ไมโครกรัมต่อไมโครลิตร แล้วเติม electrode buffer ใน chamber ด้านนอก ต่อชุดอิเล็กโตรโฟรีซิส เข้ากับตัวให้กระแสไฟฟ้า เปิดกระแสไฟฟ้า 30mA (สำหรับเจล 2 แผ่น) รอจนสีของโบรโมฟีนอลบลู เคลื่อนที่จนเกือบสุดปลายกระจก จึงหยุดการให้กระแสไฟฟ้า

5. การย้อมสีโปรตีนในเจล

นำเจลมาย้อมสี โดยแช่ใน Staining solution นาน 3 ชั่วโมง จากนั้นนำมาแช่ใน Destaining solution 1 นาน 15 นาที แล้วนำมาแช่ทิ้งไว้ข้ามคืนใน Destaining solution 2

ภาคผนวก จ วิธีการเตรียมตัวอย่างเพื่อการตรวจสอบโครงสร้างทางจุลภาคด้วยกล้อง จุลทรรศน์แบบส่องกราด (ดัดแปลงจาก Nip and Moy, 1988) สารเคมี

1. สารละลายกลูทาราลดีไฮด์ (glutaraldehyde) ในน้ำกลั่น ความเข้มข้นร้อยละ 2.5 ปริมาตรโดยปริมาตร

2. สารละลายเอธานอล ความเข้มข้นร้อยละ 10 30 50 70 90 และ 100 ปริมาตรโดย ปริมาตร

ີວສີຄາຮ

 1. ตัดตัวอย่าง ขนาด กว้าง x ยาว x หนา เท่ากับ 0.4 x 0.4 x 0.4 เซนติเมตร ใส่ใน สารละลายกลูทาราลดีไฮด์ในน้ำกลั่นที่มีความเข้มข้นร้อยละ 2.5 ปริมาณ 1 มิลลิลิตร นาน 3 ชั่วโมง ล้างตัวอย่างด้วยน้ำกลั่น 3 ครั้ง ครั้งละ 10 นาที

2. คึงน้ำออก (dehydration) จากตัวอย่างโดยแช่ในสารละลายเอธานอล จากความ เข้มข้นต่ำไปยังความเข้มข้นสูงคังนี้

> ความเข้มข้นร้อยละ 10 ล้าง 2 ครั้ง ครั้งละ 10 นาที ความเข้มข้นร้อยละ 30 ล้าง 2 ครั้ง ครั้งละ 10 นาที ความเข้มข้นร้อยละ 50 ล้าง 2 ครั้ง ครั้งละ 10 นาที ความเข้มข้นร้อยละ 70 ล้าง 2 ครั้ง ครั้งละ 10 นาที ความเข้มข้นร้อยละ 90 ล้าง 2 ครั้ง ครั้งละ 10 นาที ความเข้มข้นร้อยละ 100 ล้าง 2 ครั้ง ครั้งละ 10 นาที

 ส่งตัวอย่างที่แช่ในสารละลายเอธานอล ความเข้มข้นร้อยละ 100 เพื่อวิเคราะห์ โครงสร้างทางจุลภาคด้วยกล้องจุลทรรศน์แบบส่องกราดต่อไป ภาคผนวก ฉ วิธีการเตรียมตัวอย่างเพื่อการตรวจสอบโครงสร้างทางจุลภาคด้วยกล้อง จุลทรรศน์แบบส่องผ่าน (ดัดแปลงจาก Ngapo *et al.*, 1996) สารเคมี

 1. สารละลายฟอสเฟตบัพเฟอร์ที่มีความเข้มข้น 0.1 โมลาร์ ที่มีกลูทาราลดีไฮด์ (glutaraldehyde) ความเข้มข้น 30 กรัมต่อกิโลกรัม และฟอร์มาลดีไฮด์ (formaldehyde) ความเข้มข้น
 20 กรัมต่อกิโลกรัม ความเป็นกรดด่าง 7.2

2. สารละลายฟอสเฟตบัพเฟอร์ที่มีความเข้มข้น 0.1 โมลาร์ ความเป็นกรดค่าง 7.2

ີວສີຄາຈ

 1. ตัดตัวอย่างให้มีความหนาเท่ากับ 0.1 เซนติเมตร ใส่ในสารละลายฟอสเฟต บัพเฟอร์ที่มีกลูทาราลดีไฮด์ (glutaraldehyde) และฟอร์มาลดีไฮด์ นาน 2 ชั่วโมง ที่อุณหภูมิห้อง
 2. ล้างตัวอย่างด้วยสารละลายฟอสเฟตบัพเฟอร์ 3 ครั้ง
 3. ส่งตัวอย่างที่แช่ในสารละลายฟอสเฟตบัพเฟอร์เพื่อวิเคราะห์โครงสร้างทางจุลภาค

ด้วยกล้องจุลทรรศน์แบบส่องผ่านต่อไป