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Chapter 1 
 

INTRODUCTION 
 

The seismic refraction is a technique employed in determining a geological 

structure under the earth surface. Shallow refraction survey could be applied for civil 

engineering problems whose interested depth less than 100 m. The seismic velocity, 

which was determined from the seismic refraction measurement, will be used for 

detailed predicted of rock quality. For example, the interest is focused on seismic 

sections where lower velocities indicate inferior quality of rock. The lower velocities 

appear as the weathered and fractured or softer rock (Sjögren, 1984). In the present 

time, the interpretation techniques such as wave front reconstruction methods, 

intercept time method, and reciprocal method, are focused on the inversion of scalar 

travel time data. The accuracy of each technique is depended on the skill and 

experience of interpreter (Palmer, 2001). 

Artificial neural networks can be viewed as computational systems that have 

been applied in a wide variety of fields to solve problems such as classification, 

parameter estimation, parameter prediction, pattern recognition, completion, 

association, filtering and optimization (Brown and Poulton, 1996). This method has 

been applied to solve many geophysical prospecting problems, such as interpreting of 

resistivity data (El-Qady and Ushijima, 2001), processing of EM sounding data 

(Poulton, Sternberg and Glass, 1992; Winkler, 1994), ground-penetration radar 

(Poulton and El-Fouly, 1991), and recognizing seismic waveforms (Röth and 

Tarantola, 1994; Dai and Mucbeth, 1995; Ashida, 1996), which has shown a wide 

potential for solving complex relationship problems that normally needed a skillful 

and experienced interpreter. The application of neural network in seismic refraction 

interpretation is an alternative method, which needed to be studied thoughtful.  

 

1.1 Seismic refraction method 
 Seismic energy was generated at ground surface. The energy penetrates deep 

into the ground and reaches interface between grounds of different acoustic 

impedance. Parts of seismic energy travels in top layer ground to receivers directly, 
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called direct wave. Parts of seismic energy travel deep down to interfaces between 

grounds of different acoustic impedance. There some parts of energy reflected back to 

overlying layers while others refracted into underlying layers. There some part of 

energy refracted and traveled back to ground surface. This coming back energy will be 

monitored and recorded. Actually traveling time of seismic energy from source 

location to receiver position will be measured. The subsurface information, such as 

thickness of each ground layer and velocity of seismic wave in each layer can then be 

derived from the seismic refraction travel time. 

 

1.1.1 Geometry of refraction profiles 

 The seismic field work is generally carried out with the impact points and 

detectors placed in a straight line, called in-line profiling system. Offset distance 

between source and receivers will be designed according to depth of investigation and 

estimated impedance contrast between ground layers. For measurements on land, a 

detector, called geophones or seismometers, are sensitive to ground vibrations, while 

those used under water, called hydrophones, are sensitive to variations in water 

pressure. The spread length of a seismic refraction survey line is dependent on number 

of receiver channel in a seismic recording system. In planning a survey this minimum 

line length is conveniently taken to be about 10 times the estimated depth to the 

horizon of interest. The impact of the ground motion (or pressure variations) on the 

detectors is transformed into an electric and transmitted by seismic cables to 

amplifying unit and a recorder of seismograph. The signals are recorded either on 

photographic film or on magnetic tape. The instant of an explosion or an impact of a 

mechanical energy source is conveyed by a cable or via radio signal to the recording 

equipment. In shallow refraction surveys, the depth of interest seldom exceeds 100 m. 

 

1.1.2 Time-distance graph 

 The travel time of the wave is plotted with respect to the offset distance of the 

geophone from the source point, the t-x graphs of two-layer and three-layer horizontal 

ground are shown in Fig.1.1 a) and 1.1 b). 
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Figure 1.1 Raypath and travel time curve (a) two parallel plane layers, (b) three 

parallel layers (Wattanasen, 2001). 

 

At the distance Xc (Fig. 1.1a) and Xc12 (Fig. 1.1b) on t-x graph, direct wave and the 

refracted wave arrive exactly at the same time. This distance is called the cross-over 

distance. The arrival time of direct wave could be determined from the offset distance 

traveling and velocity of seismic wave in the top layer ground, as following; 
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At a distance farther from the crossover distance, the refracted wave will arrive earlier 

than the direct wave. The arrival time of refraction energy at any offset distance is 

 
1

1

2
2

cos2
V

h
V
Xt cθ+=        (2) 

The crossover distance can be calculated by equation (1) and (2) at cXX = . The 

crossover distance is related to thickness of the top layer ground and velocity of 

seismic energy above and below an interface as following. 
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The thickness of the first layer will be useful for determining the offset distance of 

seismic survey line. Normally a length of a survey line will be at least three times the 
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crossover distance show linear correlation between travel time, t, and offset distance, 

x. 

 The equation (1) and (2) on t-x graph, V1 and V2 could be determined from 

slopes of straight lines representative direct wave and refracted wave sections. The 

travel time at zero offset distance, called intercept times, is  

 2 21 1
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where it  is called the intercept time. 

 The slopes of graph and intercept time, determined from the t-x graph 

(Fig.1.1a), could be used to determine the thickness of top layer and seismic velocities 

of each ground layer. 

 In case of multi-parallel layers, the travel time of refracted wave from each nth-

layer can be written as 

 n
n i

n
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where n
it is an intercept time of nth layer ground on a t-x graph. 

The thickness of each layer can be determined from the corresponding intercept time 

and knowledge of seismic velocities of ground. 

 

1 221

1

2 1
n

n n
i k

kn k

Vt h
V V

−

=

  
 = −    

∑       (6) 

where n  is the number of layers. 

 If interface place between subsurface layers are dipping, additional shot point 

at another of spread end of geophone (Fig.1.2) is needed for determining the dip of the 

layers. 

 Considering the shot point S1 at one end of the spread, called forward shot 

point, S1ABS2, down dip traveling path from S1 to S2, is exactly equal to S2BAS1, up-

dip for the shot point S2 (reverse shot point). The arrival time of refracted wave, td, 

from S1 to any offset distance X is given by 
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where α  is the dip angle of the interface plane between the top and second layer, the 

second term of equation (7) is the intercept time of the refracted wave on t-x graph at 

shot S1 location. When the shot point is at S2, the “head wave” arrival time of 

refracted wave at any distance X is 

 
Figure 1.2 Raypath diagram and travel time curves of two-layer earth with dipping 

interface for a forward shot point (S1) and reversed shot point (S2) (Wattanasen, 

2001). 
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where uh1  is the thickness of the first layer at S2 direct perpendicular to the dipping 

interface and the second term in equation (8) is the intercept time of the returned 

refracted wave at shot point location S2 on t-x graph. 

 The down dip velocity, dV , and up dip velocity, uV , can be determined from 

slope of the t-x graph, where as the critical angle, cθ  and dipping angle could be 

determined from the following equations; 
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The velocity of the second layer, V2, could then be determined from the knowledge of 

the critical angle, cθ  as following; 
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If the dipping angle,α , is very small, the velocity 2V could be determined from the 

following equation; 
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Then thickness of the top ground layer below shot points, dh1  and uh1  could be 

determined from the corresponding intercept time from one shot point to another. 

 The total travel time, tT , time from one shot point to another shot point should 

be equal. This time is also called reciprocal time and has been used in many 

interpretation methods, for example the plus-minus method, the delay-time method 

and the general reciprocal method. 

 

1.2 Artificial neural networks 
 Artificial neural network is an invented algorithm that simulates the process of 

human brain. This algorithm can solve several type of problem that is difficult to find 

correlation between the input and output is not previously known. The mathematical 

model of a neuron will be introduced and how these artificial neurons will be 

explained interconnected to form a variety of network architectures. 

 

1.2.1 Neuron Model 

 A basic biological neuron has three principal components: dendrites, cell body 

and axon (Fig.1.3). The dendrites are tree-like receptive networks of nerve fibers that 

transmit electrical signals into the cell body. These incoming signals are summed and 

analyzed by the cell body and then transmitted by the axon, a long signal fiber to other 

neurons. The contacted point between an axon of one cell and a dendrite of another 
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cell is called a synapse. At the synapse the signal can be transmitted to the other 

neurons by a complex chemical process.  

 
Figure 1.3 Schematic Drawing of Biological Neurons (Hagen et al., 1996) 

 

Single-Input Neuron 

 A single-input neuron model is shown in Fig. 1.4. The input p is multiplied by 

the scalar weight w and sent to the summer. Another input (1) is multiplied by a bias b 

and then passed to the summer. The summer output often referred to as the net input, 

n, is fed into a transfer function f, which produces a scalar neuron output a.  

 
Figure 1.4 Single-Input Neuron (Hagen et al., 1996) 

 

 Relating to a biological neuron discussed above, the weight w corresponds to 

the strength of a synapse. The neuron output is calculated by  

( )a f wp b= +      (13) 
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The actual output depends on a transfer function chosen. The bias is much like a 

weight of a constant input of 1. The w and b are adjustable scalar parameters of a 

neuron. These parameters will be adjusted by some learning rules, until the neuron 

output meets the specific goal. 

 Transfer Functions 

 A particular transfer function is chosen to meet some specification of the 

problem that the neuron designed network is attempting to solve. Two important 

functions used in this study are the linear transfer function and the hyperbolic tangent 

sigmoid transfer function. 

 1) The linear transfer function (Fig.1.5), the output, a, of the neuron is set 

equal to the value of the net input, n. 

    ( )
a n
a purelin n
=
=

      (14) 

The output (a) and input (p) characteristic of a single-input linear neuron with a bias is 

shown on the right of Fig.1.5 

 
Figure 1.5 Linear Transfer Function  

 

 2) The hyperbolic tangent sigmoid transfer function (Fig.1.6) 
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Figure 1.6 Hyperbolic Tangent Sigmoid Transfer Function  

 

The input of this transfer function may have any value between plus and minus 

infinity and the output will be squashed into the range from -1 to +1, according to the 

expression: 
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The hyperbolic tangent sigmoid transfer function is a differentiable function. It is 

commonly used in multilayer networks that are trained using the back-propagation 

algorithm. 

 

 Multiple-Input Neuron 

 Typically, a neuron can have more than one input. Fig.1.7 shows a neuron with 

R inputs. The inputs 1 2, , , Rp p p…  are each weighted by corresponding elements 

1,1 1,2 1,, , , Rw w w…  of the weight matrix W. 
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Figure 1.7 Multiple-Input Neuron (Hagen et al., 1996) 

 

The neuron has a bias b, which is summed with the weighted inputs to form the net 

input n:  

1,1 1 1,2 2 1,R Rn w p w p w p b= + + + +… .   (16) 

This expression can be written in a matrix form: 

n = Wp + b,     (17) 

The matrix W for a single neuron has only one row. 

The neuron output can be written as  

a = f(Wp + b).     (18) 

 

 A particular convention in assigning the indices of the elements of the weight 

matrix has been adopted. The first index indicates the particular neuron destination for 

that weight. The second index indicates which signal source is fed to the neuron. 

Thus, the indices in 1,2w  says that this weight represents the connection of the first 

neuron with the second source. 

 

1.2.2 Network Architectures 

 One input neuron may commonly not be sufficient. Five or ten may be needed 

to operate in parallel, which is called a layer of neurons. 

 A Layer of Neurons 

 A single-layer network of S neurons is shown in Fig.1.8. Note that each of the 

R inputs is connected to each of the neurons and the weight matrix now has S rows. 
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Figure 1.8 Layer of S Neurons (Hagen et al., 1996) 

 

Each layer has the weight matrix, the summers, the bias vector b, the transfer function 

boxes and the output vector a. Each element of input vector p is connected to each 

neuron through the weight matrix W. Each neuron has a bias bi, a summer, a transfer 

function f and an output ai. The outputs of each neuron in the layer form an output 

vector a, i.e. 

( )a f wp b= +  

 The weight matrix, W, of a layer of S neurons for an input vector of R 

elements is a matrix of S rows and R columns as shown below 

W

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

R
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S S S R

w w w
w w w

w w w

 
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…
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# # #
…

.    (19) 

As noted previously, the row index of an element of matrix W indicates the 

destination neuron associated with that weight, while the column index indicates the 

input source for that weight. 
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 Multiple Layers of Neurons 

 Now consider a network with several layers. Each layer has its own weight 

matrix W, bias vector b, net input vector n and output vector a. The superscripts on 

them indicate layers. This notation is used in the three-layer network as shown in 

Fig.1.9. 

 
Figure 1.9 Three-Layer Network (Hagen et al., 1996) 

 

A layer of a network output is called an output layer, the third layer in Fig.1.9. The 

other two layers of neurons are called hidden layers, the first and second layer in 

Fig.1.9. 

 

1.2.3 Back-Propagation Artificial Neural Network (BP-ANN) 

 The Artificial Neural Network (ANN) functions as a non-linear dynamic 

system that learns to recognize patterns, or to approximate a value, through training. 

The network (Fig. 1.9) has two major components: neurons and connections, which 

are weighted links between the neurons. Upon exposure to training examples, the 

neurons in an ANN compute the activation values and transmit these values to each 

other in a manner that depends on the learning algorithm being used. 

 In BP-ANN learning process, the difference between the network output and 

the corresponding target of a training data set will be calculated. This difference 

information will be used to adjust weight and bias of the network. This new output of 
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network of the same input data set will be calculated the difference of output and 

target will be fed back to adjust weight and bias again until network output approach 

the target values. 

 

1.2.4 Training Algorithm 

 The training process of basic back-propagation may take days of weeks of 

computers time. This has encouraged considerable research on methods to accelerate 

the convergence of the algorithm. The research on faster algorithms falls roughly into 

two categories, which are the development of heuristic techniques and the 

development of standard numerical optimization techniques. The Levenberg-

Marquardt algorithm is one of the most successful numerical optimization techniques, 

which is a variation of Newton’s method. The Newton’s method was designed for 

minimizing functions, which are sums of square of other nonlinear functions. This is 

very well suited to neural network training where the performance index is the mean 

square error. 

 Newton’s method is based on the second-order Taylor series: 

 1
1( ) ( ) ( )
2

T T
k k k k k k k k kF F F g A+ = + ≅ + +x x ∆x x ∆x ∆x ∆x   (20) 

 The principle behind Newton’s method is to locate the stationary point of this 

quadratic approximation to F(x). The derivative of this quadratic function with respect 

to k∆x was taken and set it equal to zero. 
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 Newton’s method is then defined: 
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 where kA  is the Hessian matrices, which is the matrices of second derivative 

of ( )F x  and kg  is the gradient ( ) |
kk F =≡ ∇ x xg x or first order derivative of ( )F x . 

 If ( )F x  was assumed to be a sum of squares function: 
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The gradient can therefore be written in matrix form: 

  )()(2)( xvxJx TF =∇ ,      (24) 

where 
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The Hessian matrix can then be expressed in matrix from; 

  2 ( ) 2 ( ) ( )TF∇ ≅x J x J x ,     (26) 

The Levenberg-Marquardt algorithm is 

  1
1 [ ( ) ( ) ] ( ) ( )T T

k k k k k k kµ −
+ = − +x x J x J x I J x v x ,  (27) 

where kµ  is the constant. 

 

1.3 Literature Review 
 The seismic refraction method has been used for many years to map rock 

layers of interest in problems associated with petroleum exploration (Palmer, 2001), 

mining, civil engineering and deep crustal studies (Scott, 1973). It can be used in 

determining depths and types of layered earth. Shallow refraction survey is frequently 

employed in civil engineering problem (Sjögren, 1984). 

 The propagation speed of seismic waves through the earth depends on the 

elastic properties and density of the material. Concept of refraction method begins by 

generating elastic wave in to the ground. The wave propagates through the ground and 

arrival time at each geophone is recorded. The travel time of the wave is plotted with 

respect to the distance of the geophone from the source point. This t-x graph is used 

for determining number of ground layers and approximating velocity and thickness of 

each ground layer (Parasnis, 1997). 

 There are many interpretation methods for analyzing velocity and thickness of 

ground layer from refraction data. The wavefront reconstruction method retrace the 

emerging forward and reverse wavefronts down into the subsurface. The refractor 
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interface is located at the positions where the sum of the forward and reverse 

wavefronts is equal to the reciprocal time. Another long-standing technique is the 

intercept time method. This method is essentially a ray-tracing approach applied to a 

subsurface model consisting of homogeneous layers with uniform wave speeds 

separated by plane dipping interfaces. The angle of emergence of each ray is readily 

determined from the simple application of Snell’s law. The intercept time method is 

included within group of techniques known as the reciprocal method. These methods 

are also known as the ABC method in the Americans and plus-minus method in 

Europe (Bleistein H. and Gray S.H., 2001). The reciprocal methods can be used to 

compute depths below each detector position while the ITM can be used to compute 

only depth and wave speed in ground below at the shot point. 

 Artificial Neural Network (ANN) is a computational algorithm which emulates 

the process of neural system in the human brain. The applications of neural network 

are expanding because its works well in solving problems, such as breast cancer cell 

analysis, credit application evaluators, flight path simulations and automobile 

automatic guidance systems (Hagan et al., 1996). Neural networks have been applied 

to solve geophysical problems, for example, interpretation of logging, processing of 

EM sounding data, ground penetration radar, recognizing seismic waveforms, and 

interpreting resistivity data. 

 Normally, artificial neural networks consist of one input layer, at least one 

hidden layer and one output layer. ANNs can be interconnected in many different 

ways leading to a variety of architectures, learning rules and abilities (El-Qady and 

Ushijima, 2001). Back-propagation (BP) is one of the most common neural network 

algorithms. In the training process of BPNNs, the error at the outputs of the networks 

is back-propagated from the output layer to the hidden layer and input layer. These 

errors are used for updating weights and bias of network in such a way that the total 

error is reduced. This process is repeated as required until the global minimum is 

reached. 

 There are many applications of neural network to solve geophysical problem. 

Dai and MacBeth (1997) develop back-propagation neural network (BPNN) to 

identify P- and S- arrivals from recordings of local earthquake data. The BPNN is 

trained by selecting trace segments of P- and S-waves and noise bursts. After training, 
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the network can automatically identify the type of arrival on earthquake recordings. 

Compared with manual analysis, a BPNN trained with nine group of data can 

correctly identify 82.3 % of the P-arrivals and 62.6 % of the S-arrivals from one 

seismic station, and when trained with five data groups of another seismic station, it 

can correctly identity 76.6 % of the P-arrivals and 60.5 % of S-arrivals. 

 The application of neural network in DC resistivity inversion is developed by 

El-Qady and Ushijima (2001). In their work, the neural network approach was 

successfully employed to solve both 1D and 2D resistivity inverse problem.  

Moreover, Helle et al. (2001) applied ANN in estimating porosity and 

permeability form well logs data. Two separate BP-ANNs were used to model 

porosity and permeability. The porosity network was a simple three-layer network 

using sonic, density and resistivity logs as inputs. The permeability network was a 

complex network with four inputs of density, gamma ray, neuron porosity and sonic 

logs with more neurons in the hidden layer. The mean difference between the 

predicted porosity and helium porosity from core plugs is less than 0.01 fractional 

units. For the permeability network a mean difference is approximately 400 mD. 

 

1.4 Objective 
 The objective of this research works is to find out a possibility of using neural 

network in interpreting shallow seismic refraction data of shallow subsurface 

geological structure. 

 

1.5 Scope of research  
 The research is aim at application of neural network in shallow seismic 

refraction interpretation. The Back-Propagation neural networks (BP-ANNs) are 

employed in the study. The study will address three different types of geological 

structures (Fig.1.10), namely; two-horizontal layers structure, two layers dipping 

interface structure, and two layers irregular interface structure, which all of the 

structures have horizontal surface. 
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Figure 1.10 Three different types of interested structures 
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