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Chapter 2 
 

METHODOLOGY 
 

 The artificial neural network (ANN) was employed to determine shallow 

subsurface geological structure from shallow seismic refraction data. Neural network 

has an ability to solve mathematical problem without using the relation between input 

and output. It learns to solve problem from the training data sets, which comprises 

input and designed output or target. In the training process, the difference in outputs 

and targets is in term of mean square error (MSE), is propagated back to the network 

for adjusting network parameters such as weights and bias. This process is called 

back-propagation technique. The training process stops when MSE reach a setting 

goal an MSE value. 

 The 12 channels seismographs data were synthesized from two-layer earth 

model. For horizontal interface, there were 24 inputs of 12 offsets and 12 travel times 

and 3 targets of first layer velocity, second layer velocity, and first layer thickness. 

For dipping interface and irregular interface, the number of inputs and targets were 

changed because they had two shot points at both ends of the spread. The networks 

were separated into depth network of 12 depth targets and velocity network of 2 

velocities targets. 

 Neural network toolbox of Matlab® was employed in designing a network. 

The synthesized training and testing data sets for horizontal and dipping interface 

were calculated by making used of this Matlab® program. However, the data sets of 

irregular interface were obtained from a real field data. 

 
2.1 Materials 
 2.1.1 Software 

  1) Neural network toolbox of Matlab Program Version 6.5 

  2) Seismic Interpretation Program (SIP) 

  3) Lotus 123 
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 2.1.2 Computer Materials 

  1) Diskettes  

  2) CD 

  3) Hard disks 

 2.1.3 Field Materials 

  1) Recording Seismic Data Paper  

 

2.2 Equipment 
 1) PC Computer Pentium(R) 4 CPU 2.40 GHz, 256 MB RAM 

 2) Geometric SmartSeis S-42 

 3) Geophones 

 4) Seismic cable 

 5) Measuring tapes 0-50 m length 

 6) Hammer 

 

2.3 Network design for two-layer structure with horizontal interface 
 2.3.1 Preparation of training and testing data set for horizontal interface 

 1) The data sets for training and testing a designed network were calculated 

from 3780 combination of two-layer earth model (Fig.2.1) which had different 

velocity in each layer and different thickness of the first layer, as shown in Table 2.1. 

The first layer velocity (V1) varied between 350 to 1500 m/s by the step of 20 m/s and 

the second layer velocity (V2) varies between 400 to 4000 m/s by the step of 200 m/s. 

In each pair of layer velocities, V1, was less than V2. The thickness of first layer 

varied between 1 to 10 m with a step of 1 m.  

 

Table 2.1 The model details of synthesizing training data 

Layer Velocity (m/s) Thickness (m) 

First layer 350:20:1500 1-10 

Second layer 400:200:4000 - 
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 2) The data sets were synthesized for a spread of 12 geophones. The 24 inputs 

of a neural network comprised 12 geophone positions with respect to the first shot 

point (S1) and arriving times of seismic wave at 12 geophones. The arriving times 

were calculated from eq.(1) and eq.(2). The spacing between geophones was set to 

Xc/3.5, Xc/2.5, and Xc/1.5, Xc was cross-over distance defined by eq.(3). In order to be 

able to determine velocity of direct wave, there should be direct wave information on 

travel time graph. The targets of a network comprised V1, V2, and h1. 

 
Figure 2.1 Two horizontal layered model 

 

2.3.2 Design architecture network for horizontal interface 

 1) Two-layer and three-layer architecture neural networks were selected to 

handle non-separated network. The outputs of the network were V1, V2 and h1.  

In non-separated network, two-layer networks in a non-separated network had 

24 inputs and 3 outputs. The number of neurons in only one hidden layer was varied 

between 12 to 48 neurons with a step of 6 neurons. The network of 24 inputs, 12 

neurons in the hidden layer and 3 outputs can be represented by 24-12-3. The two-

layer architecture networks (Fig.2.1 a)) used in this non-separated network were the 

followings; 

  - 24-12-3 - 24-18-3 - 24-24-3  - 24-30-3    

- 24-36-3 - 24-42-3 - 24-48-3 

Three-layer architecture of non-separated networks had 24 inputs and 24 

neurons in the first hidden layer; where as the number of neurons in the second hidden 

layer was varied between 12 to 48 neurons at of 6 neurons. The three-layer 

h1 V1 

V2 

S1     G1   G2     G3    G4      G5     G6     G7     G8     G9     G10   G11  G12 
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architecture networks (Fig.2.1 b)) of the non-separated network were in the 

followings; 

   

  - 24-24-12-3 - 24-24-18-3 - 24-24-24-3  - 24-24-30-3    

- 24-24-36-3 - 24-24-42-3 - 24-24-48-3 

 
Figure 2.2 Non-separated networks for horizontal interface 

 

 2) The hyperbolic tangent sigmoid transfer function (tansig) was used as the 

transfer function of the only one hidden layer of the two-layer networks and of the 

first and second hidden layer of the three-layer architecture networks. The linear 

transfer function (purelin) was used as the transfer function of the output layer of both 

two-layer and three-layer architecture networks. 

3) The normalization and non-normalization training data sets were used in 

training all designed networks. The normalization training data were normalized by 

minimum-maximum method (Min-Max method). The normalization process would 

make the data varying between -1 and 1. 

 4) Each designed network was trained with the normalization and non-

normalization training data sets, which were selected from the synthesized 3780 

inputs-outputs pairs in the sequence of 1:11:3780. 

 5) The designed networks were trained by Levenberg-Marquardt (trainlm) 

training algorithm. All networks were set the goal (MSE for stopping the training 

process) and epoch (Maximum iteration for the training process) at 0.01 and 106 

respectively. For each architecture network, the training process was repeated 10 

times in order to check its stability, where the initial parameters such as weight and 
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bias were changed at the beginning of each time. The training time and the MSE of 

each case and each training process were recorded. 

 6) Each trained network was tested with testing data. The testing data sets 

were selected from the synthesized inputs-outputs pairs in the sequence of 3:111:3780. 

The MSE of each testing was recorded. 

 

2.4 Network design for two-layer structure with dipping interface 
 Non-separated network and separated network were designed for two-layer 

earth with dipping interface. Both networks had the same number of inputs but had 

difference number of outputs. The non-separated network had 14 outputs of V1, V2 

and 12 depths to interface below geophones. For separated network, there were depth 

network and velocity network. The depth network estimated depth at each geophone 

from the surface to the interface below, so there were 12 outputs in this network. The 

velocities of top and bottom layers were estimated with the velocity network. 

 

2.4.1 Non-separated network for dipping interface 

 2.4.1.1 Preparation of training and testing data sets for non-separated 

network 

 The data sets for training and testing networks were synthesized from two-

layer earth model with dipping interface (Fig.2.3), the model had different velocity for 

each layer, different depth to interface at shot point (hS1 or hS2), and different dipping 

angle of interface.  

1) The training data sets were synthesized from models whose first layer 

velocity varied from 350 m/s to 800 m/s and second layer velocity varied from 1000 

m/s and 4000 m/s with step of 50 and 150 m/s respectively. The depth to interface at 

shot points (hS1 or hS2) was equal to 10 m and the dipping angle of interface varied 

from 2 to 15 degree, as summarized below.  

(1) velocity of the top layer, V1, from 350 to 800 m/s at a step of 50 m/s 

(2) velocity of the bottom layer, V2, from 1000 to 4000 m/s at a step of 150 

m/s 

(3) vertical depth to interface at shallow shot point, hS1, at 10 m  

(4) dipping angles 2:15 degree 
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 The estimated depth and estimated velocities with each trained network were 

tested separately. For estimated depth test, each network was tested with data sets, 

which were synthesized from a model of constant layer velocities, 400 m/s and 1500 

m/s for the top and bottom layer respectively and constant hS1 at 10 m. The dipping 

angle of these testing data sets was 2.5, 8.5, and 14.5 degree. The testing data sets 

were normalized with normalization parameter of training data before applying them 

to the testing process.  

 For estimated velocities test, there were two testing data sets, whose layer 

parameters of the dipping interface model as shown below. 

 Testing data 1: 

(1) velocity of the top layer, V1, from 350 to 800 m/s at a step of 70 m/s 

(2) velocity of the bottom layer, V2, from 1000 to 4000 m/s at a step of 325 

m/s 

(3) vertical depth to interface at shallow shot point, hS1, at 10 m  

(4) dipping angles 10 degree 

 

 Testing data 2: 

(1) velocity of the top layer, V1, from 350 to 800 m/s at a step of 70 m/s 

(2) velocity of the bottom layer, V2, from 1000 to 4000 m/s at a step of 325 

m/s 

(3) vertical depth to interface at shallow shot point, hS1, at 15 m  

(4) dipping angles 10 degree 
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Figure 2.3 Travel time curve and Dipping interface structure model 

 

2) The travel time of seismic wave to each geophone was calculated from 

eq.(7) to eq.(11). In this dipping case, the travel time were calculated when the shot 

points were placed at both end of geophone spread. They were called traveling times 

in forward direction (tf1 and tf2) when source was placed at S1 and in backward 

direction (tb1 and tb2) when source was placed at S2. 

 
Figure 2.4 a) tminus-tplus inputs 

         b) Travel time inputs 
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 3) There are two types of inputs data sets (Fig.2.4). The first type has 24 

values which are 12 differences in time (tminus) and 12 summation of time (tplus) of the 

forward and backward time. The second input type was composed of the distances 

from S1 to each geophone and forward and backward travel time at each geophone. 

There were 14 outputs of V1, V2 and depths to interface at geophones. 

 

 2.4.1.2 Non-separated network design for dipping interface 

 1) Two-layer and three-layer architecture networks were designed for the non-

separated. There were six different architecture networks of both tminus-tplus input data 

and travel time input data, as shown below; 

Networks for tminus-tplus input data (Fig.2.5): 

 -24-10-5-14  -24-10-10-14  -24-5-10-14  

-24-2-14  -24-5-14  -24-10-14 

Networks for travel time input data (Fig.2.6)):  

 -36-10-5-14  -36-10-10-14  -36-5-10-14  

-36-2-14  -36-5-14  -36-10-14 

 

 
Figure 2.5 Non-separated networks with tminus-tplus input data 
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Figure 2.6  Non-separated networks with travel time input data 

 

 2) The transfer function of the hidden layer of the network was hyperbolic 

tangent sigmoid transfer function (tansig) and that of the output layer was linear 

transfer function (purelin). 

3) The normalization data sets were used to train all designed networks. The 

normalization training data were normalized by minimum-maximum method.  

 4) The trained networks were tested with corresponding testing data set and 

errors of predicted depth were recorded. 

 

2.4.2 Depth networks for dipping interface 

2.4.2.1 Preparation of training and testing data sets for depth network  

 The training and testing data sets were synthesized from dipping interface 

model.  

 1) The training data sets were calculated from a model of top and bottom 

velocities varied from 350 to 800 m/s at a step of 50 m/s and from 1000 to 4000 m/s 

at a step of 150 m/s respectively. The model of dipping interface structure was shown 

in Fig. 2.3. The depth below one of two shot point was fixed at 10 m and the dipping 

angle of the interface was varied from 2 to 15 degree. 

 2) The testing data sets were the same as the testing data of estimated depth 

test of non-separated networks. 

3) The traveling times in forward direction (tf1 and tf2) and in backward 

direction (tb1 and tb2) at each geophone of two layers dipping interface model were 

calculated from eq.(7) to eq.(11).  
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4) Two types of input data sets, tminus-tplus inputs and travel time input, were 

synthesized for the training and testing data sets. The outputs were the depth to 

interface beneath geophones. 

 

 2.4.2.2 Depth network design for dipping interface 

1) Two-layer and three-layer architecture networks were designed for tminus-

tplus and travel time input data. There are six different architecture networks for both 

tminus-tplus inputs and travel time inputs, which were similar to non-separated networks, 

as shown below. 

Networks for tminus-tplus input data (Fig.2.7): 

  -24-10-5-12  -24-10-10-12  -24-5-10-12  

-24-2-12  -24-5-12  -24-10-12 

Networks for travel time input data (Fig.2.8):  

 -36-10-5-12  -36-10-10-12  -36-5-10-12  

-36-2-12  -36-5-12  -36-10-12 

 

 
Figure 2.7 Depth networks of tminus-tplus inputs 
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Figure 2.8 Depth networks of travel time inputs 

 

 2) The transfer function in the hidden layers of the network was hyperbolic 

tangent sigmoid transfer function (tansig) and that is the output layer was linear 

transfer function (purelin). 

 3) The normalization and training data were applied to train all architecture 

networks. Each designed network was trained with Levenberg-Marquardt training 

algorithm (trainlm). The goal and epoch were set at 0.01 and 106 respectively. 

 4) The trained networks were tested with testing data set and errors of 

predicted depths were recorded. 

  

2.4.3 Velocity networks for dipping interface 

2.4.3.1 Preparation of training and testing data sets for velocity network  

 The training and testing data sets were calculated. The training and testing 

data sets varied dipping angle from 2 to 15 degree. The data sets were calculated at 

different velocities of top and bottom layers, by keeping depth to interface below S1 

fixed at 10 m. 

 1) For the training data sets, the velocity of the first layer, V1, and the velocity 

of second layer, V2, varied from 300 to 800 m/s at steps of 50 m/s and from 1000 to 

4000 m/s at the steps of 150 m/s respectively. Two different testing data sets as the 

part of velocity test of non-separated network were calculated from the model 

parameters, as shown below; 
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 Testing data 1: 

(1) velocity of the top layer, V1, from 350 to 800 m/s at a step of 70 m/s 

(2) velocity of the bottom layer, V2, from 1000 to 4000 m/s at a step of 325 

m/s 

(3) vertical depth to interface at shallow shot point, hS1, at 10 m  

(4) dipping angles 10 degree 

 

 Testing data 2: 

(1) velocity of the top layer, V1, from 350 to 800 m/s at a step of 70 m/s 

(2) velocity of the bottom layer, V2, from 1000 to 4000 m/s at a step of 325 

m/s 

(3) vertical depth to interface at shallow shot point, hS1, at 15 m  

(4) dipping angles 10 degree 

 

 2) The forward and backward travel time to each geophone was calculated 

from eq.(7) to eq.(11). 

 3) Two types of inputs data, plus-minus time and travel time, were prepared as 

input of the designed velocity network. The outputs of velocity network were V1 and 

V2. 

 

2.4.3.2 Velocity network design for dipping interface 

 1) The designed networks for tminus-tplus inputs and travel time inputs were 

shown below. 

Networks for tminus-tplus input data (Fig.2.9): 

  -24-10-5-2  -24-10-10-2  -24-5-10-2  

-24-2-2  -24-5-2  -24-10-2 

Networks for travel time input data (Fig.2.10): 

  -36-10-5-2  -36-10-10-2  -36-5-10-2  

-36-2-2  -36-5-2  -36-10-2 
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Figure 2.9 Velocity networks of tminus-tplus inputs 

 

 
Figure 2.10 Velocity networks of travel time inputs 

 

 2) For all networks, the transfer function of hidden layers was the hyperbolic 

tangent sigmoid function (tansig) and the transfer function of the output layer was the 

linear transfer function (purelin). 

 3) The normalization training data were applied to train all architecture 

networks. Each designed network was trained with Levenberg-Marquardt training 

algorithm (trainlm). The goal and epoch were set at 0.01 and 106 respectively. 

 4) The trained networks were tested with testing data and errors of each 

predicted depth were recorded and analyzed. 

 

2.5 Network design for two-layer structure with irregular interface 
 The networks for irregular interface two-layer earth model were separated into 

the depth network and velocity network, because depth and velocities had different 
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order of magnitude. The depth network was designed to determined depths to 

interface vertically below geophone positions, where as the velocity network was 

designed to determine velocities of the top and bottom layers of the two-layer earth. 

 

2.5.1 Depth network for irregular interface 

 2.5.1.1 Training and testing data sets 

 1) The training and testing data sets were real field data obtained from the 

shallow seismic refraction survey in Thung Pho-Thung Khamin Tin Mining area 

(Changlow, 2002). The survey layout was the followings; number of geophones was 

24, geophone spacings were 2, 4 and 5 meters, all geophones were placed on the flat 

terrain and the end-end shooting was employed in data acquisition. The true depths to 

interface below geophones were obtained from the interpretation of seismic data with 

interpretation software, namely: Seismic Interpretation Program or “SIP”.   These true 

depths, which were obtained from interpretation with SIP program, were used as for 

the targets of the training process. 

 2) There were altogether 24 training data sets whose depths to interface ranged 

from 1.8 to 10.0 m; 4 data sets for shallow interface, 1.8 to 2.5 m, 10 data sets for 

intermediate interface depth, 5.0 to 7.0 m, and 10 data sets for deep interface depth, 

9.0 to 10.0 m.   

3) There were 3 testing data sets, the first one for an average interface depth of 

2.0 m, the second one for an average interface depth of 6.0 m and the last one for an 

average interface depth of 10.0 m.  

   

2.5.1.2 Depth network architectures 

1) Two-layer and three-layer network architectures were chosen for this study. 

In all architecture, there are 72 input elements and 24 output elements. The 72 input 

elements comprise 24 elements of geophone positions with respect to a shot point (S1) 

and 48 elements of forward and backward travel times. There are 24 output elements 

of depths to interface at geophone locations. 
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Figure 2.11 Irregular Interface depth network 

 

2) In two-layer network, three architectures were employed in the study. They 

are 72-12-24, 72-24-24 and 72-36-24. The number of neurons in hidden layer was 

intentionally increased from 12 to 36 at a step of 12 to find out a correlation between 

accuracy of network output and the number of neurons in the hidden layer.  

3) In three-layer network, the other three architectures were employed in the 

study. They are 72-15-10-24, 72-10-10-24 and 72-10-15-24. Note that there are three 

sets of neurons in the hidden layers. In the first set, number of neurons of the 1st 

hidden layer is greater than that of the second hidden layer. In the second set, the 

number of neurons in both hidden layers was equal whereas in the third set, the 

number of neurons of the first hidden layer is less than that of the 2nd hidden layer. 

These were done in order to find out a correlation between accuracy of network 

output and a suitable number of neurons in both hidden layers. 

4) The hyperbolic tangent sigmoid function or “tansig” and the linear function 

or “purelin” were used as the transfer function of hidden layers and output layer 

respectively.  

5) All datasets were normalized by minimum-maximum normalization method 

before feeding to the designed networks. The Levenberg-Marquardt training 

algorithm or “trainlm” was used in training the networks by setting goal and epoch of 

training at 0.01 and 106 respectively. 

6) The trained networks were tested by the testing datasets. The mean and 

standard deviation of error obtained from each network will be compared and the 



 

 

33

network that has the least mean of error or the least standard deviation of error will be 

chosen as a good depth network. 

    

2.5.2 Velocity network for irregular interface 

 2.5.2.1 Training and testing datasets 

 The training and testing data sets for velocity networks were similar to those 

used in the depth networks, except that true velocities of the top and bottom layers 

were assigned as targets in training and testing data sets, instead of the depths 

vertically below geophones.  The true velocities of the top and bottom layers were 

also determined from the SIP program.  

 

2.5.2.2 Velocity network architectures 

 1) Two-layer and three-layer network architectures were selected in designing 

velocity network. All designed architectures have 72 input elements and 2 output 

elements.  The output elements are velocities of the top and bottom layers of two-

layer earth, whereas 72 input elements were composed of 24 geophone coordinates, 

24 forward arrival times and 24 backward arrival times, as shown in Fig.2.12. 

 

 
Figure 2.12 Irregular Interface velocity network 

 

 2) In two-layer network, three architectures were employed in the study. They 

are 72-12-2, 72-24-2 and 72-36-2. Note that the number of neurons in hidden layer 

was increased from 12 to 36 at a step of 12. In three-layer network, the other three 

architectures were employed in the study. They are 72-15-10-2, 72-10-10-2 and      
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72-10-15-2. Note that there are three sets of neurons in the hidden layers. In the first 

set, number of neurons of the first hidden layer is greater than that of the second 

hidden layer. They are equal in the second set and the number of neurons in the first 

hidden layer is less than that of the second hidden layer in the third set 

 3) The hyperbolic tangent sigmoid function or “tansig” and the linear function 

or “purelin” were used as the transfer function of hidden layers and output layer 

respectively.  

 4) All datasets were normalized by Min-Max normalization method before 

feeding to the designed networks. The Levenberg-Marquardt training algorithm or 

“trainlm” was used in training the networks by setting goal and epoch of training at 

0.01 and 106 respectively. 

 5) The trained networks were tested by the testing datasets. The mean and 

standard deviation of error obtained from each network will be compared and the 

network that has the least mean of error or the least standard deviation of error will be 

chosen as a good velocity network. 

 


