Contents

	Page
Abstract (Thai)	(3)
Abstract (English)	(4)
Acknowledgments	(5)
Contents	(6)
List of Figures	(7)
List of Tables	(13)
Chapter 1 Introduction	1
1.1 Seismic refraction method	1
1.2 Artificial neural networks	6
1.3 Literature Review	14
1.4 Objective	16
1.5 Scope of research	16
Chapter 2 Methodology	18
2.1 Materials	18
2.2 Equipment	19
2.3 Network design for two-layer structure with horizontal	19
interface	
2.4 Network design for two-layer structure with dipping interface	22
2.5 Network design for two-layer structure with irregular	30
interface	
Chapter 3 Results and Discussion	35
3.1 Network for two-layered dipping interface structure	35
3.2 The results of network for two-layer dipping interface	40
structure	
3.3 Network for two-layer irregular interface structure	56
Chapter 4 Conclusions	74
Bibliography	77
Appendix A Testing results of horizontal interface	79
Appendix B Testing results of dipping interface	87
Vitae	131

List of Figures

Figure	Page
Chapter 1	
1.1 Raypath and traveltime curve	3
.2 Raypath diagram and travel time curves of two dipping layers	
for a forward (S_1) and reversed shotpoint (S_2) .	
1.3 Schematic Drawing of Biological Neurons	7
1.4 Single-Input Neuron	7
1.5 Linear Transfer Function	8
1.6 Hyperbolic Tangent Sigmoid Transfer Function	9
1.7 Multiple-Input Neuron	10
1.8 Layer of S Neurons	11
1.9 Three-Layer Network	12
1.10 Three different types of interested structures	17
Chapter 2	
2.1 Two horizontal lavered model	20

2.1 Two horizontal layered model	20
2.2 Non-separated networks for horizontal interface	21
2.3 Travel time curve and Dipping interface structure model	24
2.4 t _{minus} -t _{plus} inputs and travel time inputs	24
2.5 Non-separated networks of t _{minus} -t _{plus} inputs	25
2.6 Non-separated networks of travel time inputs	26
2.7 Depth networks of t _{minus} -t _{plus} inputs	27
2.8 Depth networks of travel time inputs	28
2.9 Velocity networks of t _{minus} -t _{plus} inputs	30
2.10 Velocity networks of travel time inputs	30
2.11 Irregular Interface depth network	32
2.12 Irregular Interface velocity network	33

Figure	Page
Chapter 3	
3.1 Training time, MSE of training data, and MSE of testing data	36
of two-layer architecture network trained by non-normalization data	
3.2 Training time, MSE of training data, and MSE of testing data	36
of two-layer architecture network trained by normalization data	
3.3 Training time, MSE of training data, and MSE of testing data	37
of three-layer architecture network trained by non-normalization data	
3.4 Training time, MSE of training data, and MSE of testing data	37
of three-layer architecture network trained by normalization data	
3.5 Mean and standard deviation of error for each dipping angle of	41
t _{minus} -t _{plus} inputs	
3.6 Mean and standard deviation of error for each dipping angle	44
of travel time inputs	
3.7 Mean and standard deviation of the trained depth network	48
predicting error for each dipping angle of t _{minus} -t _{plus} inputs	
3.8 Mean and standard deviation of the trained depth network	50
predicting error for each dipping angle of travel time inputs	
3.9 Error distributions for all predicted depths of training data sets	56
3.10 Predicted depth of an average 2-m interface depth testing data set	59
3.11 Predicted depth of an average 6-m interface depth testing data set	61
3.12 Predicted depth of an average 10-m interface depth testing data set	63
3.13 Error distributions for all predicted depths of testing data sets	65
3.14 Error distributions for predicted depths of intermediate and	66
deep interface testing data sets	
3.15 Predicted V_1 of training and testing data sets	69
by each velocity network	
3.16 Predicted V_2 of training and testing data sets	70
by each velocity network	
3.17 Predicted V_1 and V_2 of testing data sets by each velocity network	72

Figure	Page
Appendix A	
A1 Predicted h1 by two-layer architecture network trained	79
by non-normalization data	
A2 Predicted V ₁ by two-layer architecture network trained	80
by non-normalization data	
A3 Predicted V ₂ by two-layer architecture network trained	80
by non-normalization data	
A4 Predicted h ₁ by three-layer architecture network trained	81
by non-normalization data	
A5 Predicted V_1 by three-layer architecture network trained	82
by non-normalization data	
A6 Predicted V ₂ by three-layer architecture network trained	82
by non-normalization data	
A7 Predicted h1 by two-layer architecture network trained	83
by normalization data	
A8 Predicted V ₁ by two-layer architecture network trained	84
by normalization data	
A9 Predicted V ₂ by two-layer architecture network trained	84
by normalization data	
A10 Predicted h1 by three-layer architecture network trained	85
by normalization data	
A11 Predicted V_1 by three-layer architecture network trained	86
by normalization data	
A12 Predicted V ₂ by three-layer architecture network trained	86
by normalization data	

Figure	Page
Appendix B	
B1 Predicted depth of 2.5 degree of dipping angle for t_{minus} - t_{plus} inputs	87
B2 Predicted depth of 8.5 degree of dipping angle for t_{minus} - t_{plus} inputs	88
B3 Predicted depth of 14.5 degree of dipping angle for t_{minus} - t_{plus} inputs	89
B4 Predicted V_1 of Testing data 1 normalized by testing data sets	90
for t _{minus} -t _{plus} velocity networks	
B5 Predicted V_2 of Testing data 1 normalized by testing data sets	91
for t _{minus} -t _{plus} velocity networks	
B6 Predicted V_1 of Testing data 1 normalized by training data sets	92
for t _{minus} -t _{plus} velocity networks	
B7 Predicted V_2 of Testing data 1 normalized by training data sets	93
for t _{minus} -t _{plus} velocity networks	
B8 Predicted V_1 of Testing data 2 normalized by testing data sets	94
for t _{minus} -t _{plus} velocity networks	
B9 Predicted V_2 of Testing data 2 normalized by testing data sets	95
for t _{minus} -t _{plus} velocity networks	
B10 Predicted V_1 of Testing data 2 normalized by training data sets	96
for t _{minus} -t _{plus} velocity networks	
B11 Predicted V_2 of Testing data 2 normalized by training data sets	97
for t _{minus} -t _{plus} velocity networks	
B12 Predicted depth of 2.5 degree of dipping angle for travel time inputs	98
B13 Predicted depth of 8.5 degree of dipping angle for travel time inputs	99
B14 Predicted depth of 14.5 degree of dipping angle for travel time inputs	100
B15 Predicted V_1 of Testing data 1 normalized by testing data sets	101
for travel time velocity networks	
B16 Predicted V_2 of Testing data 1 normalized by testing data sets	102
for travel time velocity networks	
B17 Predicted V_1 of Testing data 1 normalized by training data sets	103
for travel time velocity networks	

Figure	Page
B18 Predicted V ₂ of Testing data 1 normalized by training data sets	104
for travel time velocity networks	
B19 Predicted V_1 of Testing data 2 normalized by testing data sets	105
for travel time velocity networks	
B20 Predicted V_2 of Testing data 2 normalized by testing data sets	106
for travel time velocity networks	
B21 Predicted V_1 of Testing data 2 normalized by training data sets	107
for travel time velocity networks	
B22 Predicted V_2 of Testing data 2 normalized by training data sets	108
for travel time velocity networks	
B23 Predicted depth of 2.5 degree of dipping angle	109
of trained depth networks for t _{minus} -t _{plus} inputs	
B24 Predicted depth of 8.5 degree of dipping angle	110
of trained depth networks for t _{minus} -t _{plus} inputs	
B25 Predicted depth of 14.5 degree of dipping angle	111
of trained depth networks for t_{minus} - t_{plus} inputs	
B26 Predicted depth of 2.5 degree of dipping angle	112
of trained depth networks for travel time inputs	
B27 Predicted depth of 8.5 degree of dipping angle	113
of trained depth networks for travel time inputs	
B28 Predicted depth of 14.5 degree of dipping angle	114
of trained depth networks for travel time inputs	
B29 Predicted V_1 of Testing data 1 normalized by testing data sets	115
for t _{minus} -t _{plus} velocity networks	
B30 Predicted V_2 of Testing data 1 normalized by testing data sets	116
for t _{minus} -t _{plus} velocity networks	
B31 Predicted V1 of Testing data 1 normalized by training data sets	117
for t _{minus} -t _{plus} velocity networks	

Figure	Page
B32 Predicted V_2 of Testing data 1 normalized by training data sets	118
for t _{minus} -t _{plus} velocity networks	
B33 Predicted V_1 of Testing data 2 normalized by testing data sets	119
for t _{minus} -t _{plus} velocity networks	
B34 Predicted V_2 of Testing data 2 normalized by testing data sets	120
for t _{minus} -t _{plus} velocity networks	
B35 Predicted V_1 of Testing data 2 normalized by training data sets	121
for t _{minus} -t _{plus} velocity networks	
B36 Predicted V_2 of Testing data 2 normalized by training data sets	122
for t _{minus} -t _{plus} velocity networks	
B37 Predicted V_1 of Testing data 1 normalized by testing data sets	123
for travel time velocity networks	
B38 Predicted V_2 of Testing data 1 normalized by testing data sets	124
for travel time velocity networks	
B39 Predicted V_1 of Testing data 1 normalized by training data sets	125
for travel time velocity networks	
B40 Predicted V_2 of Testing data 1 normalized by training data sets	126
for travel time velocity networks	
B41 Predicted V_1 of Testing data 2 normalized by testing data sets	127
for travel time velocity networks	
B42 Predicted V_2 of Testing data 2 normalized by testing data sets	128
for travel time velocity networks	
B43 Predicted V_1 of Testing data 2 normalized by training data sets	129
for travel time velocity networks	
B44 Predicted V_2 of Testing data 2 normalized by training data sets	130
for travel time velocity networks	

List of Tables

Table	Page
Chapter 2	
2.1 The model details of synthesizing training data	19
Chapter 3	
3.1 Mean error and standard deviation of error of estimated	38
ground parameters	
3.2 Mean error and standard deviation of error of estimated	40
depth with non-separated networks of t_{minus} - t_{plus} inputs	
3.3 Mean error and standard deviation of error of estimated	42
velocities of Testing data 1 with non-separated networks	
of t _{minus} -t _{plus} inputs	
3.4 Mean error and standard deviation of error of estimated	43
velocities of Testing data 2 with non-separated networks	
of t _{minus} -t _{plus} inputs	
3.5 Mean error and standard deviation of error of estimated	44
depth with non-separated networks of travel time inputs	
3.6 Mean error and standard deviation of error of estimated	46
velocities of Testing data 1 with non-separated networks	
of travel time inputs	
3.7 Mean error and standard deviation of error of estimated	46
velocities of Testing data 2 with non-separated networks	
of travel time inputs	
3.8 Mean error and standard deviation of error of estimated	48
depth with depth networks of t _{minus} -t _{plus} inputs	
3.9 Mean error and standard deviation of error of estimated	49
depth with depth networks of travel time inputs	
3.10 Mean error and standard deviation of error of estimated	51
velocities of Testing data 1 with non-separated networks	
of t _{minus} -t _{plus} inputs	

List of Tables (Continued)

Table	Page
3.11 Mean error and standard deviation of error of estimated	52
velocities of Testing data 2 with non-separated networks	
of t _{minus} -t _{plus} inputs	
3.12 Mean error and standard deviation of error of estimated	53
velocities of Testing data 1 with non-separated networks	
of travel time inputs	
3.13 Mean error and standard deviation of error of estimated	54
velocities of Testing data 2 with non-separated networks	
of travel time inputs	
3.14 The overall mean error without data set of average 2 m	73
interface depth	