CONTENTS

Coi	ntents		Page
Cor	ntents		(vi)
List	of Tab	bles	(viii)
List	of Fig	ures	(xi)
List	of Boy	xes	(xxviii)
List	of Abl	previations	(xxix)
Cha	pter		
1	Intro	duction	1
	1.1	Literature Review	2
	1.2	Objective	32
2	Rese	arch Methodology	33
	2.1	Equipment	33
	2.2	Site selection	36
	2.3	Seismic stations	37
	2.4	Measurements	45
	2.5	Data processing	46
	2.6	Earthquake analysis software	52
	2.7	Seismograms	55
	2.8	Phase identification and arrival time determination	59
	2.9	Identification and separation of seismic events	60
	2.10	Distance determination for local seismic events	62
	2.11	Location determination of local seismic events	67
	2.12	Determination of origin time	71
	2.13	Determination of local magnitude	73
	2.14	Summary and presentation of seismological parameters	77
3	Resu	lts	78
	3.1	Local earthquake events	78
	3.2	Number of earthquakes in relation to origin time	83

CONTENTS (CONTINUED)

Cor	ntents		Page
	3.3	Origin time of earthquakes in relation to their magnitudes	83
	3.4	Number of earthquakes in relation to local magnitude	84
	3.5	Earthquake events in relation to their locations	85
	3.6	Earthquake location in relation to their local magnitude	88
	3.7	Origin time in relation to earthquake location	91
	3.8	Man-made events	91
	3.9	Number of man-made events in relation to origin time	92
	3.10	Local magnitude of man-made events in relation to origin time	93
	3.11	Number of man-made events in relation to local magnitude	94
	3.12	The location of the man-made events	95
4	Disc	ussion and Conclusions	101
	4.1	Uncertainties in earthquake analysis	101
	4.2	Correlation of earthquake locations within faults	118
	4.3	The origin of earthquake in southern Thailand	
		after the 26 December 2004	123
	4.4	The origin of the man-made events	131
	4.5	Conclusions	133
5	Reco	ommendations	135
Bib	liograp	hy	137
App	oendix		144
	А	Playback program	145
	В	RDSEED program	147
	С	Traveltime table	149
	D	Mark product L4-3D seismometer	152
	Е	Raw data table	174
	F	Sinkholes	193
	G	Publications	194
Vita	ie		214 vii

LIST OF TABLES

Tab	le	Page
1.1.	Velocity and depth data for the 1-D Earth models IASP91 (Kennett	
	and Engdahl, 1991), AK135 (Kennett, 2005), and Jeffreys and	
	Bullen (Jeffrey and Bullen, 1967).	26
2.1	Names and locations of the 4 temporary seismic stations. The one in	
	Phuket already existed since May 2002. UTM in reference to WGS-	
	84.	36
2.2	Traveltime versus distances of different phases near earthquake after	
	Jeffreys and Bullen (1967, 1970, JB tables).	63
2.3	Compilation of all data of an earthquake event, here for a local	
	earthquake on 3 March 2005. T=time, t = delta time, Dist =	
	distance in km, E = east component, N = north component, A max =	
	maximal amplitude, A max (ave.) = average maximal amplitude, Ml	
	= local magnitude. Long = longitude, Lat = latitude.	77
2.4	Relevant seismological data for the same event shown in Table 2.3.	77
3.1	A total of 173 local earthquake events from 14 January to 30 June	
	2005 were recorded with largest magnitude (Ml) of 2.2 on 3 March	
	2005 (11:53:59.0 UTC time) and smallest magnitude (Ml) of -1.0 on	
	15 March 2005 (10:30:23.1 UTC time) and 24 May 2005	
	(11:09:13.2 UTC time). MI calculated after Hutton and Boore	
	(1987).	78
3.2	Origin time and local magnitude of all man-made events detected	
	from 14 January to 30 June, 2005 (origin time from Nilsuwan,	
	2006).	92
3.3	The average and standard deviation (STDEV) for delta times (Δt) of	
	the E-, N-, and vertical Z-component for all 37 man made events	
	recorded at Station 1 and Station 2 (after Nilsuwan, 2006).	95

LIST OF TABLES (CONTINUED)

Tab	le	Page
4.1	Comparison of the epicenter distance for different velocity models	
	for earthquakes at 0 km depth. The results for two delta times at 5 s	
	and 20 s are shown.	102
4.2	Linear relationships between delta time and distance for different	
	depths and phases based on the JB travel time-distance-depth data.	
	Examples at Δt =8.6 s with Pg and Sg phase, and at Δt =22 s with Pn	
	and Sn phase. D=distance in km.	105
4.3	Changes in epicenter distance in relation to the earthquake depth at	
	0 km, for different delta times and different phases, Pg, Sg as direct	
	waves, and Pn, Sn as refracted waves (Δt is delta time in seconds).	105
4.4	The average and standard deviation (STDEV) for delta times (Δt) of	
	the E-, N-, and vertical Z-component for all 37 man made events	
	recorded at Station 1 and Station 2 (after Nilsuwan, 2006).	111
C .1	Travel times tables, here for body wave phases. The distance is	
	expressed in degree, depth in km, the travel time in second (Jeffreys	
	and Bullen, 1967).	147

LIST OF TABLES (CONTINUED)

Table

Page

- E.1 Raw data table of 173 earthquake events employs the following acronyms: Event: order of earthquake events, Date represents the date/month/year of event., Stn.: Station name (pkt symbolizes Station 4), Station 3 in the first month with time shift and hence the origin time from this station is not applicable, P-arrival T. and S-arrival T.: P-wave and S-wave arrival time in hour:minute:second, Origin T. and Origin T. (average.): Origin time and average origin time in hour:minute:second. (Origin T (average.) refers to origin time from (Stn.1+Stn.2)/2 or (Stn. 2 + pkt)/2). Dist: Distance in km, long: Longitude, lat: Latitude, Amp. (E), Amp. (N) and Amp. (ave): Amplitude in east, north, and average in nanometer, respectively, Ml and Ml (highest): Local magnitude and the highest local magnitude from each station.
- E.2 <u>Earthquake</u> data from one station with 3 components: <u>Event</u>: Order of earthquake events, <u>Date</u> Date/month/year, <u>Time</u>: Origin time, <u>Stn</u>.: Station name, <u>Dist</u>: Distance in km, <u>Amp. in counts</u>: Amplitude in counts, <u>Azimuth (AZI)</u>: Azimuth angle, <u>Location</u>: Earthquake location.
- E.3 Man-made seismic events: Event: Order of man-made events, Day:
 Mo = Monday, Tue = Tuesday, Wed = Wednesday, Thur = Thursday, Fr = Friday, Sat = Saturday, Sun = Sunday, Date: date/month/year, <u>Time:</u> Origin time, <u>MI and MI (highest)</u>: Local magnitude and highest local magnitude from each station, MI calculation based on data from Station 2.
- F.1 Sinkholes that occurred in Southern Thailand from June 1995 to 22June 2005 (DMR, 2007).195

177

LIST OF FIGURES

Figu	ıre	Page
1.1	The Mw 9.3 Earthquake on 26 December 2004 at 00:58:53.4 (UTC	
	time) at 30 km depth occurred on the west coast of Northern	
	Sumatra Island, Indonesia (USGS, 2005).	2
1.2	Co-seismic displacements from GPS observations. Bold numbers	
	show displacement in mm: (a) overview of Southeast Asia, and (b) a	
	more detailed view of the Thai-Malaysian Peninsula (Vigny et al,	
	2005).	3
1.3	Time and location of sinkholes in the southern part of Thailand from	
	June 1995 to June 2005. Close triangle show the sinkholes that	
	occurred before the 26 December 2004 Earthquake, and the	
	sinkholes that occurred after the 26 December 2004 are shown in	
	star symbol (DMR, 2005).	5
1.4	Tectonic map of the Andaman Sea area. The Sunda Subduction	
	Zone is where the Indian-Australian Plate subducts under the	
	Eurasian Plate. The major faults align on North-South trench are	
	WAF, OWAF and EMF (the West Andaman Fault, Old West	
	Andaman Fault and Eastern Margin Fault). The fault align on	
	Northeast-Southwest trench are RF and KMF (Ranong Fault and	
	Khlong Marui Fault); from Curray (2005).	7
1.5	Faults in southern Thailand, with location and name (DMR, 1997b).	8
1.6	Ranong Fault Zone (a) and Khlong Marui Fault Zone (b) with	
	granitic rocks in Thai Peninsula (Garson et and Mitchell, 1970,	
	1975).	9
1.7	Relationship between ocean basin spreading coupled with the	
	descen of the lithosphere and the fault movements in Thai peninsula	
	in the late Mesozoic (Garson and Mitchell, 1975).	10

xi

Figu	re	Page
1.8	The San Andreas Fault in the Carrizo Plain of California, the linear	
	feature from upper left to lower right. A river is offset by this fault	
	(Stein and Wysession, 2003).	11
1.9	Record of earthquakes in Thailand: from 1983 to 2003 with	
	magnitude on Richter scale (a) magnitude 0 to 4 (b) magnitude 4 to	
	9 (DMR, 1999).	12
1.10	The seismic wave as ground displacement arrives at the velocity	
	sensor, which then transfers the sign al to a seismograph and stores	
	it into a data cartridge in form of a digital data file.	14
1.11	Seismic recording diagram in which the seismic analog signal is	
	converted to a seismic digital signal with timing by the time signal	
	receiver and power supply from battery or external power to run the	
	data measurement process. (Asch, 2002)	14
1.12	Response curves of a mechanical seismometer (spring pendulum,	
	left) and an electrodynamic seismometer (geophone, right) of	
	velocity input signal. The normalized frequency is the signal	
	frequency divided by the Eigenfrequency (corner frequency) of the	
	seismometer. The response curve has a second-order corner at the	
	normalized frequency 1 (Wielandt, 2002).	15
1.13	The Peterson noise curves and noise spectra level for the IRIS	
	station BOCO. Dash lines represent the high-noise and low-noise	
	model and the noise spectra appear in 3 components (Haskov and	
	Alguacil, 2004).	18
1.14	(a) Normal faults with larger stress in vertical component than	
	inhorizontal one, (b) the hanging wall moves downward while the	
	foot wall moves up (Drury, 1993; Bormann et al., 2002c).	20

Figu	re	Page
1.15	(a) Reverse faults with greater stress in horizontal component than	
	in vertical counterpart, (b) hanging wall moves up and/or the foot	
	wall moves down (Drury, 1993; Bormann et al., 2002c).	20
1.16	(a) Strike-slip faults with stress in horizontal component, (b) blocks	
	move in horizontal direction with strike slip motion (Drury, 1993;	
	Bormann et al., 2002c).	20
1.17	Locations and magnitudes of the Lander earthquake sequence with	
	M = 7.3 main shock and aftershock on fault zone. All earthquakes	
	are recorded from April to December, 1992. The dark lines	
	represent surface rupture due to the main shock (from Scholz,	
	2002).	22
1.18	Seismic waves propagate in a homogeneous medium with the	
	direction from left to right, (a) displacement from a harmonic P-	
	wave (top) and S-wave (bottom), (b) displacement from the	
	horizontal propagation of Love wave (top) and Rayleigh wave	
	(bottom) (Shearer, 1999).	23
1.19	A simplified model of the ray path in the main crustal that Pg, Sg	
	are the direct P wave and S wave. P* and S* are P wave and S wave	
	that are refracted at an intermediate discontinuity ($P^* = Pb$, $S^* =$	
	Sg). PmP, SmS are the P wave and S wave that are reflected at the	
	upper mantle (Moho). Pn and Sn are the P wave and S wave that are	
	refracted at upper mantle (Bormann et al., 2002a).	24
1.20	(a) P and S wave arrival time picking (P, S) in each seismogram	
	(S1, S2, S3) from each station and used for delta time calculation.	
	(b) Location of epicenter with epicenter distances d1, d2, d3 from	
	Station S1, S2, S3, respectively (Bormann Wylegalla, 2002a).	27

Figu	re	Page
1.21	P-wave first motion in 3-component record (left) and (back)	
	azimuth (AZI) to the epicenter (right), from Bormann Wylegalla,	
	2002b.	28
1.22	Earthquake epicenter determination with circle and chord method	
	(left), and an uncertainty of the earthquake location from P and S	
	wave picking (right).	29
1.23	The uncertainty of an earthquake location using data of recording	
	stations in close proximity (left). The crossed circles do not provide	
	a clear epicenter location, rather then an area (right).	29
1.24	Seismogram from a mining rock burst in Saarbrucken, Germany,	
	recorded at station WLF in Luxemburg (D=80 km, h=1 km,	
	Ml=3.7). On the E and vertical Z-components Rg waves with higher	
	amplitudes than the S waves can be seen (Bormann et al, 2002a).	32
2.1.	Exterior view of the Mark L-4-3D seismometer (left) and after	
	removing the cover the three measuring components in the	
	perpendicular arrangement are visible (right, from Sercel, 2002)	34
2.2	Schematic diagram of the data flow: The seismic waves travel	
	through the solid earth, with the movement recorded by the	
	seismometer. Then these analog data were transferred to the	
	seismograph via cable. Additionally time information came from a	
	GPS antenna connected with a cable to the seismograph. There all	
	data were digitized and stored on the data cartridge. The data were	
	regularly moved to a personal computer and additionally saved on	
	CD.	35
2.3	Schematic layout of Station 1. A concrete tube protected the	
	seismometer and the seismograph was located in a wooden cottage	

nearby.

37

xiv

Figure		Page
2.4	Left: Concrete tube on the left, with the seismometer inside. Inside a	
	small wooden cottage is the seismograph, shown in the center back.	
	To the right the backup power generator can be seen. Right: Inside	
	the wooden cottage is the Orion portable seismograph located.	38
2.5	Seismic noise of the vertical component from 3 March 2005. The	
	acceleration power is in db relative to 1 $(m/s^2)^2$ / Hz. The limit of	
	the Peterson noise model is indicated by NHNM and NLNM	
	(Peterson, 1993). The noise spectrum from Station 1_PSUHY has a	
	low noises level (-160 db at 1.0 Hz).	39
2.6	Schematic layout of Station 2, equipments is protected under a small	
	concrete cover.	40
2.7	Left: Station is located near the waterside. There is a small concrete	
	shelter containing a concrete tube and the Orion portable	
	seismograph and a GPS antenna in front. Right: Concrete shelter	
	where the Orion portable seismograph is protected in the concrete	
	tube.	40
2.8	Seismic noise of the vertical component from 3 March 2005. The	
	acceleration power is in db in relation to 1 $(m/s^2)^2$ / Hz. The limit of	
	the Peterson noise model is indicated by NHNM and NLNM	
	(Peterson, 1993). The noise spectrum from Station 2_PNG02 -160	
	db at 1.0 Hz.	41
2.9	Schematic layout of Station 3; the equipment was protected in a	
	small wooden cottage.	42

Figure	Page
2.10 Left: Small wooden cottage with a protective concrete tube and	
Orion portable seismograph inside and exterior GPS antenna. On	
both sides of the cottage are dormitories surrounded by hilly area.	
Right: Inside the wooden cottage, seismometer and Orion portable	
seismograph were mounted on concrete.	42
2.11 Seismic noise of the vertical component from 3 March 2005 .The	
noise power density spectrum is in db in relation to 1 $(m/s^2)^2$ / Hz.	
The limit of the Peterson noise model is indicated in NHNM and	
NLNM (Peterson, 1993). The noise spectrum from Station	
3_PNGNM was higher than other station (-150 db at 1.0 Hz.).	43
2.12 Schematic layout of the equipment at Station 4; equipment were	
sheltered inside a limestone cave.	44
2.13 Left: Limestone cave protected with wire meshes. Right:	
Seismometer and Orion portable seismograph were mounted in the	
cage.	44
2.14 Seismic noise of the vertical component from 4 January 2005. The	
noise power density spectrum is in db relative to $1 (m/s^2)^2$ / Hz. The	
limit of the Peterson noise model is indicated in NHNM and NLNM	
(Peterson, 1993). The noise spectrum from Station 4_TBK has -180	
db at 1.0 Hz.	45
2.15 Collapse of Station 3 in May 2006, due to strong winds.	46
2.16 Flowchart of the stepwise processing of the seismological data.	47
2.17 Parts of the response information in Z component from Station 2.	49
2.18 Window of the POL_ZERO program. Normalized response was	
0.707214 at 1 Hz frequency, calculated using data from Station 2	
(PNG02) in Z component. Here the original normalization factor	
AO 0f 1 was used.	50

xvi

Figure	Page
2.19 Window of POL_ZERO program with normalized response of 1 at 1	
Hz frequency, based on data from Station 2 (PNG02) in Z	
component. Here the normalization factor of 1.413999 was used.	51
2.20 Part of the window of the Seisan program showing the automatically	
correction of the normalization factor A0 from 1 to 1.413999 after	
an internal calculation and verification of the response file	
information.	51
2.21 Response curve from the Station 2, Z component, using the same	
response data, except a different normalization factor A0. Left:	
response curve with the original value of 1. Right: Response curve	
with a corrected value of 1.413999. Plots made with POL_ZERO	
program (Wielandt, 2001).	52
2.22 WinQuake window showing the seismogram of the Z-component of	
a local seismic event recorded at Station 2 (PNG02) on 3 March	
2005 (UTC time 11:53:59.0).	53
2.23. Seisan window showing the Z component of a seismic event	
recorded at Station 2 on 3 March 2005 (UTC time 11:53:59.0).	54
2.24 Seismic Station 1 (PNGHY); Seismograms of the N-, E, and Z-	
component of a seismic event recorded at Station 1 on 3 March	
2005 at 11:53:59.0 UTC time. The x-axis is the time (here in	
minutes), the y-axis is the amplitude (here in counts). The y-scale is	
different for each component, whereas the x-scale is the same.	55
2.25 Seismic Station 2 (PNG02); Seismograms of the N-, E, and Z-	
component of a seismic event recorded at Station 2 on 3 March	
2005 at 11:53:59.0 UTC time. The x-axis is the time (here in	
minutes), the y-axis is the amplitude (here in counts). The y-scale is	
different for each component, whereas the x-scale is the same.	56

Figure	
2.26 Seismic Station 3 (PSUNM); Seismograms of the N-, E, and Z-	
component of a seismic event recorded at Station 3 on 3 March	
2005 at 11:53:59.0 UTC time. The x-axis is the time (here in	
minutes), the y-axis is the amplitude (here in counts). The y-scale is	
different for each component, whereas the x-scale is the same.	57
2.27 Seismic Station 4 (TBK); Seismograms of the N-, E, and Z-	
component of a seismic event recorded at Station 4 on 17 January	
2005 at 11:59:00 UTC time. The x-axis is the time (here in	
minutes), the y-axis is the amplitude (here in counts). The y-scale is	
different for each component, whereas the x-scale is the same.	58
2.28 Seismograms of the Z component from PSUHY Station (Station 1),	
PNG02 Station (Station 2) and PSUNM Station (Station 3)	
respectively, for a seismic event on 3 March 2005 (UTC time	
11:53:59.0). The arrival of the P- and S-wave are shown and the	
delta time determined from the difference in arrival time.	59
2.29 Relationship between delta time (in seconds) and the distance (in	
km) for regional earthquakes at 35 km depth based on the traveltime	
tables of Kennett (2005). A distance of 500 km relates to 51.07	
seconds delta time, as the relationship is linear, with distance $(km) =$	
10.2 km/s * delta time (seconds) - 20.858 km.	61
2.30 Seismograms of a man-made event from 7 April 2005 at Station 2 in	
E, N and Z component (after Nilsuwan, 2006). Pg: direct P-phase,	
Sg: direct S-phase, Rg: Rayleigh (surface) wave.	62

Figure

2.31 Modes of wave propagation from the focus of earthquake (F) through a simplified one-layer crust model. Symbols O and M represent the earth's free surface and Moho discontinuity, respectively. Sk is the kth recording seismographic station, i is angle of incidence, ir is the angle of refraction, ic is critical angle, and V is velocity of propagation for P or S. From above, Vp1 = 5.56 km/s, Vs1 = 3.36 km/s, Vp2 = 7.79 km/s, Vs2 = 4.42 km/s. Rk are the points of redirection at the Moho discontinuity for wave that travels to the kth station (modified after Kulhánek, 2002).

- 2.32 Relationship between delta time and distance for local seismic events based on JB tables (Table 2.2). (a): The travel time (T) versus distance (d) for the different phases that the cross section of Pg and Pn phase is at 135 km, Sg and Sn is at 158 km. (b): The distance versus delta time that the slope changes are related to the different phases, they are at delta time 15.95 s (between Sg-Pg and Sg-Pn) and at 19.72 s (between Sg-Pn and Sn-Pn).
- 2.33 Earthquake on 3 March 2005 at 11:53:59.0 (UTC time): Location (epicenter) at longitude 9.547 degree north and latitude 98.555 degree east (local magnitude MI = 2.2, see Chapter 3.1).
- 2.34 Determination of first peak from the first wave (P wave) arrival in three components from PNG02 Station (Station 2) at 09:05:23.5 (UTC time) on 30 May 2005.
- 2.35 The location of the event on 30 May 2005 at 09:05:23.5 (UTC time) is in the South-East sector, based on data from PNG02 Station with three components.

Page

64

66

68

70

Figure Page 2.36 Event on 30 May 2005 at 09:05:23.5 UTC time: Location (rectangular symbol) at 8.368 degree north, 98.720 degree east (MI = -0.6), based on data from two stations (PSUHY and PNG02) Stations: triangles symbol) and back azimuth determination from 71 Station 2 (see Box 2, Figure 2.34, Figure 2.35). 2.37 Maximum amplitude (nm) in the east (E) and north (N) component for a seismic event on 3 March 2005 at 11:53:59.0 UTC time from PSUHY Station (Station 1), PNG02 Station (Station 2), and PSUNM Station (Station 3), respectively. The amplitudes in the Eand N-component are determined at the same time. The location of 75 this event is at 9.547 degree north, 98.555 degree east with ML 2.2. 3.1 Cumulative number of earthquakes versus origin time. The measurement period is from 14 January to 30 March 2005. The Mw=9.3 Earthquake on 26 December 2004 and the Mw=8.7 on 28 March 2005 are marked. 83 Local magnitudes in relation to the earthquake origin time can be 3.2 separated in three phases. Phase I from beginning of the measurements to the end of February, Phase II from the beginning of March to the end of April, and Phase III from the beginning of May until the end of June 2005. 84 3.3 Number of earthquakes in relation to their local magnitude, in classes of 0.5 magnitude values. Numbers on the histograms are the total number of earthquake events in each class. 85 3.4 Earthquake locations with their local magnitude (size of the circle) in Southern Thailand from 14 January to 30 June 2005. Base map with provincial boundaries. 86

XX

Fig	ure	Page
3.5	Earthquake locations with their local magnitude (size and color of	
	the circle) in Southern Thailand from 14 January to 30 June 2005.	
	Base map with topography, stream distribution and geological	
	structures, here faults (after DMR, 1997a).	87
3.6	Locations of local earthquake events in southern Thailand between	
	14 January and 30 June 2005. The dashed lines represent the	
	Ranong and Khlong Marui Fault Zone (Curray, 2002 and DMR,	
	2001), both with a northeast-southwest trend. The circles are the	
	locations of the earthquake events.	88
3.7	Earthquake locations (circles) in relation to their magnitude (in	
	classes of 0.5). The dashed lines represent the Ranong and Khlong	
	Marui Fault Zone (Curray, 2002 and DMR, 2001).	89
3.8	Earthquake locations for each month from January to June of 2005	
	(measurements started on 14 January and ended on 30 June 2005).	
	The dashed lines represent the Ranong and Khlong Marui Fault	
	Zones (Curray, 2002 and DMR, 2001).	90
3.9.	Cumulative number of man-made events in relation to their origin	
	time. They occurred usually once a day. The numbers are the days	
	in-between with no events. Beginning and end of a long break in	
	February is marked, as well as the Thai New Year Holiday.	93
3.10) Number of man-made events in relation to local magnitudes. The	
	events are distributed over three periods: Period I from 14 to 22	
	January 2005; Period II from 1 March to 25 April 2005, and Period	
	III from May to 11 June 2005. There were two periods with no	
	events, between 22 January and 1 March 2005, and between 25	
	April and 11 June 2005.	94

Figu	re	Page
3.11	Number of man-made events in relation to local magnitude. The	
	numbers on top of the histogram show the total number of man-	
	made events in each class.	95
3.12	The distances of man-made events from Station 1 and Station 2 for	
	the E-, N- and Z-component, respectively. The open circles indicate	
	the average location for each component and the lines indicate the	
	minimum distance between Station 1 and Station 2, which is 21.709	
	km (after Nilsuwan, 2006).	97
3.13	Distribution of the distances of man-made events from Station 1 and	
	Station 2 using data from all three components. The circle	
	represents the average distances of from all three components in a	
	1.5 km x 1.5 km area where most of the events plot. The line is	
	minimum distance between Station 1 and Station 2.	98
3.14	Topographic map of Thap Put District in Pang-Nga Province where	
	Station 1 and Station 2 were established. The averages locations of	
	man-made events are shown with the distances from Station 1 to	
	average event location of 11.190 km and 10.053 km from Station 2.	
	Grid length is of 1 km (RTS, 2000a, b).	99
4.1	Traveltime (T) versus distance (D) for the different phases Pg,	
	P*,Pn, Sg, S* and Sn, based on JB traveltime-distance data	
	(Chapter1.1.7).	103
4.2	The increase in delta time versus distance using all three phases of	
	the JB local earthquake travel time tables instead of only the Pg and	
	Sg, and Pn and Sn phases (without P* and S*). The maximum	
	increase is at 135 km distance and is related to the P phases.	104

Figu	ire	Page
4.3	Schematic cross section of epicenter distance change for different	
	hypocenter depths, for direct waves (Pg- and Sg-phases) using the	
	same delta time (8.6 s). Data based on JB traveltime-distance-depth	
	data (see Table 4.2).	105
4.4	Schematic cross section of epicenter distance change for different	
	hypocenter depths, for Pn- and Sn-phases and using the same delta	
	time (22 s). Data based on JB traveltime-distance-depth tables (see	
	also Table 4.2).	105
4.5	Earthquake locations in relation to the seismic network in southern	
	Thailand. Triangle symbols show the seismic stations with the	
	polygon as the boundary of the seismic network. The number 1, 2,	
	3, 4 are the Station 1, Station 2 Station 3 and Station 4 respectively.	108
4.6	Relationship between the delta-times (in seconds) from Station 1	
	and Station 2 for all 37 man made events for the E-, N-, Z-	
	component, and all three components together. The circles indicate	
	the average delta-time of the each component, respectively of all	
	components (after Nilsuwan, 2006).	110

Figure

Page

4.7 Schematic figure of the location determination of earthquakes and its uncertainty with three (left) and two (right) seismic stations. The distance determined from the delta time of each station has an uncertainty, which is indicated by the area between two parallel circles with a different radius from each station. For three stations all six circles will bound an area, which gives the location of the earthquake. The size of the area indicates the uncertainty of the location. With two seismic stations, two areas, each bounded by four circles, show the possible locations of the earthquake. Additional information is needed for the determination of the final location, like the back azimuth from one or two stations. 112 4.8 Several fault zones mapped at different scales and viewed 113 approximately normal to slip (from Scholz, 1990). 4.9 Schematic diagram of relationship between fault plane (B) and its surface expression (A), the hypocenter of an earthquake (C) and its epicenter (D). The epicenter is away from the surface expression of the fault. 114 4.10 Schematic layouts of the distance between epicenter and surface expression of a fault for different dip angles of the fault, 15 to 60 degrees. The hypocenter is always at 10 km. The distances between

the surface expression of the fault and the epicenter decreases with

increasing dip angle of the fault.

Figure

- 4.11 Schematic diagram of relationship between fault planes in a fault zone (B1 and B2) and their surface expression (A1 and A2), the hypocenters of the earthquakes (C1 and C2) and their epicenters (D). The epicenter C1 lies on the surface expression of the fault A2. The hidden fault (b) has no surface expression, so that the earthquakes epicenter d (hypocenter c) cannot be correlated to any fault.
- 4.12 The amplitude-distance correction of the original Richter formula (Richter, 1958) and the Hutton and Boore formula (Hutton and Boore, 1987). That the amplitude-distance correction factor for events with distances smaller than 10 km is nearly flat for the original Richter formula, but the slope of -log(A0) is -1.127 for the Hutton and Boore formula.
- 4.13 Map of Southern Thailand with the 173 earthquake locations determined in this study and the known locations of faults and faults zones (from Curray, 2002 and DMR, 2001) RFZ: Ranong Fault Zone, KMFZ: Khlong Marui Fault Zone, KLF: Khao Luang Fault, TSF: Thung Song Fault and HYF: Huai Yot Fault. The earthquake locations have different symbols in relation to their local magnitude, presented in classes of 0.5 values.

115

Page

117

Figure

- 4.14 Detailed view of the northwestern part of Figure 4.13. The earthquake locations have different symbols in relation to their local magnitude, presented in classes of 0.5 values (see Figure 4.13). F1 is the trend of earthquake location that align on SW-NE parallel to the Ranong Fault and F2 are the trend of earthquake location that align on NW-SE. RFZ and KMFZ is the Ranong Fault Zone and Khlong Marui Fault Zone respectively, (Fault zone are located from Curray, 2002 and DMR, 2001).
- 4.15 Map of Southern Thailand with the 173 earthquake locations determined in this study and the known locations of faults and faults zones (Curray, 2002 and DMR, 2001). The earthquake locations have different symbols in relation to their local magnitude, presented in classes of 0.5 values. RFZ, KMFZ, KLF, TSF and HYFis the Ranong Fault Zone, Khlong Marui Fault Zone, Khao Luang Fault, Thung Song Fault and Huai Yot Fault. F1, F2, F3, and F4 are trends of earthquake locations.
- 4.16 The model of the 26 December 2004 earthquake. That the small picture at the left are the cross section of the subduction zone (from Hyndeman and Wang, 1993) and picture at the right is the zooming of area. The reticules show the compress (stress) in that area and the arrows are the directions of plate moving. 'A' is the model of plates before the 26 December 2004 Earthquake, 'B' is the model of plates after the 26 December 2004 earthquake.

121

122

Figu	re	Page
4.17	The time series, in days after the 26 December 2004 Earthquake, of	
	coordinate changes, in mm at the Phuket (PHKT) and Sampari	
	(SAMP) GPS stations from 5 December 2004 to 31 December 2005.	
	Top: Eastward component and bottom Northward component (from	
	Hashimto et al., 2006b).	128
4.18	Cumulative displacement of the lithosphere during the 26 December	
	2004 Earthquake (S-A eq), before the 28 March 2005 Earthquake	
	(Bfr. Nias), during the 28 March 2005 Earthquake (Nias eq), and	
	after the 28 March 2005 Earthquake (Aft Nias) until 31 December	
	2005. Stars show the locations of the 26 December 2004 Earthquake	
	and the 28 March 2005 Earthquake. Arrows indicate the value and	
	direction of displacement (from Hashimoto et al., 2006b).	129
4.19	The relation of the displacement of Phuket GPS Station (see Figure	
	4.18, Hashimoto et al., 2006a), the cumulative number of local	
	earthquakes (this study) and sinkholes in southern Thailand (DMR,	
	2004) with time. The origin time of the 26 December 2004 and 28	
	March 2005 Earthquake are indicated, as well as important dates	
	(see text).	130
4.20	Geological map of Mueang District and Thap Put District, Phang	
	Nga Province where the seismic station set up. A, B, C and D are	
	limestone quarry locations. The average location of all man made	
	seismic events is also shown (Garson and Mitchell, 1975).	132
A.1	Step of Playback Program.	146
B .1	Step of RDSEED program.	147

LIST OF BOXES

Box		Page
1.	Example of distance calculations for a seismic event and data from	
	three seismic stations as part of the location determination (see	
	Figure 2.33).	67
2	Example of back azimuth determination for a seismic event with	
	data from one seismic station with three components (see Figure	
	2.34).	69
3	Example of origin time determination for a seismic event with data	
	from three seismic stations.	72
4	Example of local magnitude determination for a seismic event with	
	data from three seismic stations.	76

LIST OF ABBREVIATIONS

А	Amplitude (in nm, μ m, or mm)
AK135	AK135 Model (Kennett, 2005)
Amp. (ave)	Vector sum of the amplitudes of the N- and E-component
Amp. (E)	Amplitude in East component
Amp. (N)	Amplitude in North component
AZI	Azimuth angle
cm	Centimeter
D, Dist	Distance (usually in km)
E	East
Elev.	Elevation (m)
Fr	Friday
IASP91	IASP91 Model (Kennett and Engdahl, 1991)
JB	Jeffreys and Bullen Model (Jeffrey and Bullen, 1967)
km	Kilometer
lat	Latitude (in degree)
long	Longitude (in degree)
m	Meter
Ml	Local magnitude
mm	Millimeter
Мо	Monday
Mw	Moment magnitude
Ν	North
nm	Nanometer
Org. T.	Origin time
P*	P* Phase
Pg	Pg Phase
Pn	Pn Phase
P-wave	Primary wave or compressional wave

LIST OF ABBREVIATIONS (CONTINUED)

Rg	Rayleigh wave
S	South
S*	S* Phase
s, sec	Second
Sat	Saturday
Sg	Sg Phase
Sn	Sn Phase
STDEV	Standard deviation
Stn.	Station, seismic station, seismic recording station
Sun	Sunday
S-wave	Secondary wave or shear wave
S-wave T	Secondary wave or shear wave Time
Т	Time
T Thur	Time Thursday
T Thur Tue	Time Thursday Tuesday
T Thur Tue USGS	Time Thursday Tuesday United States Geological Survey
T Thur Tue USGS UTC	Time Thursday Tuesday United States Geological Survey Universal Time Coordinates (Thai Time = UTC + 7 hours)
T Thur Tue USGS UTC W	Time Thursday Tuesday United States Geological Survey Universal Time Coordinates (Thai Time = UTC + 7 hours) West