CONTENTS

	Page
Contents	
List of Tables	
List of Figures	
Chapter	
1 Introduction	1
1.1 Review of Literatures	1
1.2 Objective	24
2 Research Methodology	25
2.1 Material	25
2.2 Equipment	26
2.3 Method	29
3 Results	51
3.1 Elevation determined by altimeter	51
3.2 Density of rock samples	51
3.3 Bouguer anomaly map of study area	55
3.4 Subsurface geological structures	59
4 Conclusions and Discussion	82
Bibliography	84
Appendix	91
A Observed gravity data in the study area	92
B Density of rock sample	102
C The parameters for gravity models	104
D Observed resistivity data	123
E Chemical analyses of water from thermal springs in Surat Thani Province	124
F Publication	125
Vitae	139

LIST OF TABLE

Table		Page
1.1	Lithostratigraphic classifications of rocks in the Surat Thani.	8
2.1	Sample of recording data for terrain corrections in B to E zone, ALT.,	33
	DIF., and COR. denoted the altitude, altitude difference, and	
	correction respectively	
2.2	Details of zone B, C, D, and E of Hammer chart for terrain correction	33
2.3	A sample of gravity and elevation data recorded in the field	34
2.4	An example of Resistivity sounding data sheet	37
2.5	An example of temperature and drift correction for altimeter data	41
2.6	Conversion factors of LaCoste-Romberg gravimeter model G-565	42
2.7	An example of drift correction and absolute gravity calculation within	44
	a loop of gravity measurement	
2.8	Terrain correction	47
2.9	Sample of recording table for terrain correction in F to J zone	48
2.10	Sample of Bouguer anomaly calculation	50
3.1	Average density of rocks in the study area	53
3.2	The present and previous study of density on rocks in southern	54
	Thailand	
3.3	The interpreted resistivity model of sounding points of different	74
	groups	
A.1	Observed gravity data and correction in study area	92
B. 1	Density of rock sample in the study area	102
D.1	Observed resistivity data, around the SR7 and SR8 hot springs, AB/2	123
	and MN/2 in m, resistivity in ohm-m.	
E. 1	Chemical analyses of water from thermal springs in Surat Thani	124
	Province, constituents in mg/l, TDS = Total dissolved solid, $T^{\circ}C$	
	geothermometer refer to the equation from Fournier (1981)	
	(Chaturongkawanich, 2001). *Taken from Department of Health, 1998	

LIST OF FIGURE

Figu	re	Page
1.1	Location of the study area. Available from: <http: th="" www.nectec.or.th<=""><th>4</th></http:>	4
	/users/htk/graphic/1998.html>atlas571.jpg, [Accessed 6 July 2007].	
1.2	Location of the study area - regional overview. Available from:	5
	<http: south="" thai-tour="" www.thai-tour.com=""></http:> Suratthani/data/map.htm,	
	[Accessed 9 July 2007].	
1.3	Location and topographical features of study area in Surat Thani	6
	Province. Available from: <http: eng="" project-ht<="" td="" tgp="" www.dmr.go.th=""><td></td></http:>	
	MLs> /SRT-maps/Maps%20-%20Surat%20Thani%20-%20 City.htm,	
	[Accessed 9 July 2007].	
1.4	The geological map of the study area in Surat Thani Province	7
	(Department of Mineral Resources, 2004)	
1.5	The Indochina (I) and Shan Thai (ST) terrains including fold belts and	8
	major fault zones (Mantajit, 1997)	
1.6	Distribution patterns of granites in Thailand (Putthapiban, 2002). The	12
	dash line denoted the fault zones.	
1.7	Mineral resources map of Surat Thani Province. Available from:	13
	<a>http://www.dmr.go.th> [Accessed 5 September 2007].	
1.8	Plate tectonic history of Thailand, consisting of Shan-Thai (west) and	15
	Indochina (east) also with their associated mineral (Bunopas, 1981)	
1.9	Tectonic map of S.E Asia and South Chaina showing main fault	16
	patterns and relative movement of crustal blocks in response to the	
	collision of India with Asia. SFS (Sumatran Fault System); MFZ	
	(Mergui Fault Zone); SFZ (Sagaing Fault Zone); RKFZ (Ranong and	
	Klong Marui Fault Zone); TPFZ (Tree Pagodas Fault Zone); MPFZ	
	(Mae Ping Fault Zone); UFZ (Uttaradit Fault Zone); NTFZ (Northern	
	Thailand Fault Zone) and RRFZ (Red River Fault Zone). (Polachan	
	and Sattayarak, 1989)	

Figure		Page
1.10	Structural map of Gulf of Thailand, showing relationship between	17
	conjugate strike-slip faults and the development of N-S trending pull	
	apart basins. 1. Sakhon; 2. Paknam; 3. Hua Hin; 4. N.Western;	
	5. Prachuap; 6. Western; 7. Kra; 8. Pattani; 9.Chumpon; 10. Nakhon;	
	11 Songkla and 12. Malay. (Polachan and Sattayarak, 1989)	
1.11	Schematic geological cross section though the southern part of the	18
	study area (taken from Talong, et al., 2001).	
1.12	Temperatures in the Earth. Available from: <http: td="" www.ist.cmu.ac.th<=""><td>19</td></http:>	19
	/riseat/teenet/sci/documents.php> [Accessed 12 July 2007]	
1.13	World pattern of plates, oceanic ridges, oceanic trenches, subduction	20
	zones, and geothermal fields that currently generate electricity.	
	Arrows show the direction of movement of the plates towards the	
	subduction zones. 1) Geothermal fields under exploitation; 2) Fields	
	not yet exploited; 3) Mid-oceanic ridges crossed by transform faults	
	(long transversal fractures); 4) Subduction zones, where the	
	subducting plate bends downwards and melts in the asthenosphere	
	(Barbier, 2002)	
1.14	The basic concept of plate tectonics. Plates of rigid lithosphere (which	20
	include the oceanic or the continental crust, and the uppermost	
	mantle), 70-125 km thick, overlie a layer of relatively low strength	
	called asthenosphere. Mantle material rises between diverging plate	
	boundaries (oceanic ridges), and plate material descends into the	

2002).

1.15 A geothermal steam field with its elements: recharge area, 21 impermeable cover, reservoir, and heat source (Barbier, 2002).

mantle at converging plate boundaries (oceanic trenches) (Barbier,

1.16 Hot springs in Thailand. Available from: http://www.dmr.go.th23/HOTSPRING>/LOCATION, [Accessed 11 October 2005]

ix

Figu	re	Page
2.1	LaCoste-Romberg gravity meter model G-565	26
2.2	Trimble Basic Pathfinder GPS	27
2.3	American Paulin System altimeter model MDM-5	27
2.4	ABEM TERRAMETER SAS 1000	28
2.5	Location of gravity and elevation measuring stations	31
2.6	Locations of rock sample (solid rhombus)	32
2.7	Leap-frog Loops, * is Base station.	32
2.8	Schlumberger electrode configuration array	35
2.9	Locations of electrical resistivity soundings (solid triangle)	36
2.10	(a) The free-air correction for an observation at a height h above	45
	datum. (b) The Bouguer correction. The shaded region corresponds to	
	a slab of rock of thickness h extending to infinity in both horizontal	
	directions. (c) The terrain correction. Kearey, et al., 2002)	
2.11	A typical graticule used in the calculation of terrain corrections. A	47
	series of such graticules with zones varying in radius from 2 m to 21.9	
	km is used with topographic maps of varying scale. (Kearey, et al.,	
	2002)	
3.1	The elevation contour maps, (a) data from barometric altimeter	52
	measurement, (b) data from topographical map, (a) terrain map of	
	Surat Thani Province of which topography is less than 200 meter	
	above mean sea level.	
3.2	(a) Geological map of study area, (b) Locations of each type of rock	53
	samples	
3.3	Density distributions of rock samples	54
3.4	Bouguer anomaly superimposed on the geological map of the study	56
	area with a contour interval of 50 g.u.	
3.5	(a) Bouguer anomaly map of the study area with a contour interval of	57
	50 g.u. (b) Geological map of the study area	

Figu	re	Page
3.6	Bouguer anomalies superimposed on the elevation map of the study	59
	area with a contour interval of 50 g.u.	
3.7	The forming of rranitic plume when Shan-Thai terrance collided with	60
	Indochina terrance (taken from Moores and Fairbridge, 1997)	
3.8	Locations of gravity profiles, vertical resistivity sounding points	61
	(triangle), and available groundwater wells (circle) on geological map	
	of the study area.	
3.9	(a) Observed and calculated Bouguer anomalies, (b) geological model	62
	obtained from gravity interpretation on profile AA'	
3.10	(a) Observed and calculated Bouguer anomalies, (b) geological model	63
	obtained from gravity interpretation on profile BB'	
3.11	(a) Observed and calculated Bouguer anomalies, (b) geological model	64
	obtained from gravity interpretation on profile CC'	
3.12	(a) Observed and calculated Bouguer anomalies, (b) geological model	65
	obtained from gravity interpretation on profile DD'	
3.13	(a) Observed and calculated Bouguer anomalies, (b) geological model	66
	obtained from gravity interpretation on profile EE'	
3.14	(a) Observed and calculated Bouguer anomalies, (b) geological model	67
	obtained from gravity interpretation on profile FF'	
3.15	(a) Observed and calculated Bouguer anomalies, (b) geological model	68
	obtained from gravity interpretation on profile GG'	
3.16	(a) Bouguer anomaly superimposed on geological map, (b) Locations	70
	of sounding points, groundwater wells, geoelectric profiles, and	
	groups of sounding points (I, II, and III represent the west group, the	
	central group, and the east group respectively)	
3.17	The sounding curves of the west group; (a) S01, (b) S02, (c) S06, (d)	71
	S07, (e) S08, (f) S11, (g) S13, (h) S14, (i) S19, and (j) S20.	

Figu	Figure	
3.18	The sounding curves of the central group; (a) S03, (b) S04, (c) S12,	72
	(d) S15, (e) S16, (f) S21, and (g) S22.	
3.19	The sounding curves of the east group; (a) S05, (b) S10, (c) S17, and	73
	(d) S 18.	
3.20	A comparison between resistivity model of sounding point S10 and	75
	geological log of groundwater well no. 6753 in the study area.	
3.21	Contour maps of resistivity modeled at difference penetration depths	77
	around SR7 and SR8 hot-spring (a.1) 1.5 m., (a.2) 50 m., (a.3) 100 m.,	
	(a.4) 150 m., (a.5) 200 m., (a.6) 250 m. (b.1) Depth of Permian rock	
	map with a contour interval of 150 m. (b.2) Bouguer anomaly map	
	with a contour interval of 50 g.u γ denoted the hot-springs.	
3.22	Bouguer anomaly and river courses superimposed on contour maps of	78
	modeled resistivity at difference penetration depths around SR7 and	
	SR8 hot-spring. (a) 1.5 m., (b) 50 m., (c) 100 m., (d) 150 m., (e) 200	
	m., and (f) 250 m. γ denoted the hot-springs. The solid lines in black	
	color and dash lines in red color are river and faults respectively.	
3.23	Resistivity and gravity models along the profiles; (a) JJ', (b) KK', (c)	80
	LL', and (d) MM'. Values in ohm-m. γ denoted the hot springs.	
3.24	The schematic cross-section of the study area along east-west profile.	81