บทคัดย่อ

เปรียบเทียบระหว่างภาพพรมวาน (Priacanthus tayenus) ด้านการตกและคัดแยกในช่วงเวลา 0-20 ได้ผลผลิตร้อยละ 73.1 และมีความริเริ่มเพิ่มขึ้น 33.7 เท่า มีถั่วชาและถั่วเหนียวที่ความเหมาะสมต้องการอยู่ในขั้นต้นโดยไม่ไกลบินเท่ากับ 2.5 และ 45°ซี ตามลำดับ เปรียบเปรียบจากภาพพรมวานมีความคงตัวในช่วงพืช 1-6 เป็นระยะเวลานาน 30-60 นาที และมีความคงตัวในช่วงอายุไม่เกิน 40°ซี เป็นระยะเวลานาน 30-120 นาทีอย่างไรก็ตามพบว่ากิจกรรมตลอดอย่างเด็ดขาดที่อุณหภูมิสูงกว่า 50°ซี กิจกรรมการอยู่หลายประเด็นถูกอธิบายโดยมุ่งนักด้วยปริศนาใน โมเลกุลที่ EDTA สารดับยืดเยื้อมริบปริศนาจากตัวเหลือง (SBTI) และ E-64 มีผลดับยืดเยื้อมริบ

การดันเปรียบเทียบภาพพรมวานที่ระดับ 20 กิโลเคนต์กิริมที่มีผลเพิ่มปริมาณของสารที่สกัดได้จากสายพันธุ์ภาพพรมวาน ตลอดจนที่สกัดจากสายพันธุ์ภาพพรมวานโดยการใช้กรดหรือการใช้เปรียบเทียบภาพพรมวานเป็นเวลา 48 ชม. ให้ผลผลิตเท่ากับร้อยละ 5.31 และ 18.34 (น.ม.แห้ง) ตามลำดับ การใช้กรดเพื่อทำให้หนี้ของเป็นเวลา 24 ชม. ก่อนการสกัดของสารเหลืองโดยใช้เปรียบเทียบจากภาพพรมวานที่ระดับ 20 กิโลเคนต์กิริมที่มีเวลา 48 ชม. ให้ผลผลิตร้อยละ 19.79 ซึ่งสูงกว่าของสารที่สกัดโดยใช้เปรียบเทียบจากสายพันธุ์ที่ระดับเดียวกัน (ร้อยละ 13.03) ของสารเหลืองจากสายพันธุ์ภาพพรมวานเป็นชนิด I โดยไม่พบน้ำมันของสิ่งชีวิต จากการศึกษารูปแบบของโปรตีนด้วยเทคนิคอิเล็กโทรฟอร์ซีชันพบความแตกต่างของสารเหลืองในกลุ่มของสารเหลืองที่มีตระกูลและสกัดจากสายพันธุ์ภาพพรมวาน โดยน้ำมันไม่มีสิ่งชีวิตของสายพันธุ์ 1 และ 2 ในสายพันธุ์ที่มีสารตัวจุดมีค่าประมาณ 120 และ 112 ใกล้เคียง ตามลำดับ ซึ่งสารที่สายพันธุ์ 1 และ 2 ของสายพันธุ์ที่มีสารตัวจุดมีน้ำมันไม่มีสิ่งชีวิตกัน 118 และ 111 ใกล้เคียง ตามลำดับ ทั้งนี้อาจเกิดจากيميของสารที่มีสารตัวจุดมีน้ำมันไม่มีสิ่งชีวิตสูงกว่าที่ปรับแต่งไปเป็นตัวจุดโดยปริศนา ว่ามีถั่วน้ำมันซึ่งจะก่อให้เกิดการเปลี่ยนสภาพของโปรตีน (T max) ของสารเหลืองที่มีสารตัวจุดมีค่า 32.5°ซี ซึ่งสูงกว่าค่า T max ของสารเหลืองที่มีสารตัวจุดมีน้ำมันไม่มีสิ่งชีวิตสูงกว่าปริศนาประมาณ 1°ซี โดยเทียบไปถึงสารเหลืองที่มีสิ่งชีวิตได้คิดในช่วงพืช 2 ถึง 5 และมีการ
ละลายคลองอย่างมากที่พืชเป็นกลาง โดยไม่พบการเปลี่ยนแปลงการละลายในสาหรับที่มีเกลือสูง
ถึงร้อยละ 3 แต่การละลายคลองอย่างหนึ่งได้ขึ้นเป็นพื้นที่มีเกลือสูง

ประสิทธิภาพการสกัดเจลatinจากปลาท่าขุ่นเมื่อใช้กรดเพื่อทำให้
หนังของตัวในสาหรับที่มีปิจินจากปลาท่าขุ่นที่ระดับ 15 กิโลกรัมต่อกรัมหนัก ที่อุณหภูมิ 4 ⁰C
เป็นเวลา 48 ชม. ก่อนการสกัดที่อุณหภูมิ 45 ⁰C เป็นเวลา 12 ชม. โดยได้ผลผลิตร้อยละ 40.32 แต่
อย่างไรก็ตามเจลatinที่สกัดได้มีการย้อมสีละลายน้อยกว่าของสาหรับเจลatin แลกพ้า 1 และ แลกพ้า 2
โดยปิจินไม่มีส่วนเกี่ยวของต่อการย้อมสีดังกล่าว การย้อมสีขององค์ประกอบของเจลatin
สามารถป้องกันได้โดยการใช้ SBTI เข็มข้น 0.1 มิลิโกรม/r ข้อมร่วมระหว่างการสกัด

เจลatinที่สกัดจากหนังปลาท่าขุ่นในช่วงวิธีธรรมชาติ (GT) มีองค์ประกอบท้าไป
ใกล้เคียงกับเจลatinจากกระดูกขาว (GB) อย่างไรก็ตามเจลatinที่สกัดจากหนังปลาท่าขุ่นโดยใช้
ปิจินจากปลาท่าขุ่น (GA) และปิจินจากกระแทกหยก (GP) มีปริมาณโปรตีนต่ำกว่า
(ประมาณร้อยละ 43) และมีปริมาณน้ำสูงกว่า (ประมาณร้อยละ 47) เจลatinชนิดต่างๆมีความ
แตกต่างของรูปแบบโปรตีน เจลatinจากกระดูกขาวมีค่าความแข็งแรงเอล ค่า L* และค่าความชุ่ม ซึ่ง
กว่าเจลatinที่สกัดจากหนังปลาท่าขุ่น นอกจากนี้พื้นการย้อมสีของโมเลกุล เจลatinใน
GT ซึ่งสอดคล้องกับค่าความแข็งแรงเอลที่ต่ำสุด (56 กรัม) เจลatinทั้งหมดมีการละลายสูงในช่วงฟิ
เอล 1 ถึง 10 โดยทั่วไปสมบัติการเป็นอิมัลชั่นโฟเยอร์และสมบัติการเกิดโฟมของ GA และ GP มีค่า
ใกล้เคียงกัน แต่มีความแตกต่างจาก GT และ GB เมื่อศึกษาโครงสร้างทางสุลสุลตมเจรดจาก GB
มีลักษณะโครงสร้างที่จะเป็นผลของการเจรดและการจัดเรียงตัวที่หน้าเน้นกว่าเจลatinจากปลาท่าขุ่น (GT
GA และ GP) ซึ่งอาจเป็นผลจากความแตกต่างขององค์ประกอบและคุณลักษณะการเกิดเจรดระหว่าง
โมเลกุลเจลatinจากแหล่งที่แตกต่างกัน
ABSTRACT

Pepsin from bigeye snapper (*Priacanthus tayenus*) stomach was extracted and fractionated using ammonium sulfate precipitation (0-20% saturation). The fractionated bigeye snapper pepsin (BSP) had the purification fold of 33.7 with a yield of 73.1%. The optimal pH and temperature for hemoglobin hydrolysis were 2.5 and 45°C, respectively. BSP was stable in the pH range of 1-6 with the exposure time of 30-60 min. BSP was stable when incubated at temperature up to 40°C for 30-120 min. However, the sharp decrease in activity was noticeable at temperature above 50°C. The proteolytic activity was completely inhibited by pepstatin A, while ethylenediaminetetraacetic acid (EDTA), soybean trypsin inhibitor (SBTI) and 1-(L-trans-epoxysuccinyl-leucylamino)-4-guanidinobutane (E-64) showed the negligible inhibitory effect.

Addition of BSP at a level of 20 kUnits/g defatted skin resulted in the increased content of collagen extracted from bigeye snapper skin. The yields of collagen from bigeye snapper skin extracted for 48 h with acid and with BSP were 5.31 and 18.74% (dry basis), respectively. With pre-swelling in acid for 24 h, collagen extracted with BSP at a level of 20 kUnits/g skin for 48 h had the yield of 19.79%, which was greater than that of collagen extracted using porcine pepsin at the same level (13.03%). The skin collagen was characterized to be type I with no disulfide bond. The electrophoretic study revealed the slight differences in molecular weight between acid-solubilized collagen and all pepsin-solubilized collagens. The molecular weight of ρ1 and ρ2 chains in acid-solubilized collagen was estimated to be 120 and 112 kDa, respectively, whereas ρ1 and ρ2 chains of pepsin-solubilized collagens had the molecular weight of 118 and 111 kDa, respectively. The result suggested that these pepsin-solubilized collagens might undergo partial cleavage at telopeptide region by pepsin treatment. The maximum transition temperature (*T*\textsubscript{max}) of acid-solubilized collagen was observed at 32.5°C, which was
slightly higher than that of pepsin-solubilized collagens about \(1^\circ\)C. Generally, all collagens were highly solubilized in pH range of 2-5 and sharply decreased at the neutral pH. No changes in solubility were observed in the presence of NaCl up to 3\% (w/v) and the decrease was more pronounced with increasing NaCl concentration.

The extraction efficiency of gelatin from bigeye snapper was augmented with acid swelling process in the presence of BSP at a level of 15 kUnits/g alkaline-treated skin at \(4^\circ\)C for 48 h before subjection to extracting at \(45^\circ\)C for 12 h, showing the yield of 40.32\%. Nevertheless, the complete degradation of \(\beta\), \(\alpha1\) and \(\alpha2\)-chains was observed in the resulting gelatin. The result indicated that no pepsin involved in the degradation. The degradation of gelatin components was prevented when SBTI at a concentration of 0.1 \(\mu\)M was incorporated during gelatin extraction.

Gelatin extracted from bigeye snapper skin by typical process (GT) had the similar composition to gelatin from bovine bone (GB). However, gelatin extracted from bigeye snapper skin treated with BSP (GA) and with porcine pepsin (GP) contained the lower protein content (\(-43\%)\) with the higher ash content (\(-47\%)\). Some differences in protein patterns of different gelatins were observed. GB exhibited the greater bloom strength, \(L^*\)-value and turbidity than did bigeye snapper skin gelatins. The substantial degradation of gelatin molecule in GT was coincidental with the lowest bloom strength (56 g). All gelatins showed high solubility at pH range of 1-10. Generally, emulsifying properties and foaming properties of GA and GP were similar, but were different from those of GT and GB. The microstructure study revealed that GB gel had the finer and denser strands than gels of bigeye snapper skin gelatin (GT, GA and GP), possibly due to the different composition and gelling characteristics between gelatin molecules from different origins.