CONTENTS

(8)
(11)
(12)
1
2
2
2
3
3
4
6
7
8
10
11
12
19
27
27
28
31
32
32
32
33
33

CONTENTS (Continued)

		Page
	3.2 Antioxidative activities of round scad protein hydrolysates as affected by	34
	proteinase types	
	3.3 Effect of defatting on antioxidative activities of round scad protein	35
	hydrolysates	
	3.4 Fractionation of antioxidative peptides from round scad protein	35
	hydrolysate	
	3.5 Compositions and some properties of round scad protein hydrolysate	37
	3.6 Study on the stability of round scad protein hydrolysate during storage	38
	4. Statistical analysis	38
3.	Results and Discussion	39
	1. Enzymatic hydrolysis and antioxidative activities of round scad protein	39
	hydrolysates prepared using Alcalase (HA) and Flavourzyme (HF)	
	1.1 Effect of heating time on DH of round scad protein hydrolysates	39
	1.2 Effect of enzyme concentration on DH of round scad protein hydrolysates	40
	1.3 Effect of DH on antioxidative activities of round scad protein hydrolysates	41
	2. Effect of defatting on enzymatic hydrolysis and antioxidative activities of round	45
	scad protein hydrolysates	
	2.1 Fat and moisture contents of round scad mince and defatted mince	45
	2.2 Enzymatic hydrolysis of round scad mince and defatted mince using	45
	Flavourzyme	
	2.3 Yield of round scad protein hydrolysates from mince and defatted mince	46
	using Flavourzyme	
	2.4 DPPH radical scavenging activity	47
	2.5 Reducing power	49
	2.6 Metal chelating activity	50

(9)

CONTENTS (Continued)

Page

3. Fractionation of antioxidative peptides from round scad protein hydrolysate	51
3.1 Fractionation of round scad protein hydrolysate by gel filtration	51
chromatography and solvent extraction	
3.2 DPPH radical scavenging activity	53
3.3 Reducing power	55
3.4 Metal chelating activity	55
3.5 Characterization of antioxidative peptide fraction	56
3.6 Antioxidative activity of HFIP 60 and peptide fractions in different	58
systems	
4. Compositions and some properties of round scad protein hydrolysate	63
4.1 Proximate analysis	63
4.2 Amino acid compositions	64
4.3 Mineral contents	66
4.4 Color	67
4.5 Functional properties	67
5. Study on the stability of round scad protein hydrolysate during storage	71
4.6 Antioxidative activities	71
4.7 Solubility	73
4.8 Color	73
4. Conclusion	75
References	
Appendix	93
Vitae	

LIST OF TABLES

Tal	Table	
1.	Type of enzymes and substrates used to prepare fish protein hydrolysates	15
2.	Proximate composition, nitrogen solubility index and yields of protein hydrolysates	20
	from raw herring, herring presscake and ethanol-extracted herring	
3.	Amino acid composition of capelin proteins and capelin protein hydrolysate	21
4.	The molecular weight of peptides with the antioxidative activity from fish protein	30
	hydrolysates	
5.	Yields of round scad protein hydrolysate derived from mince and defatted mince	47
	using Flavourzyme with different DHs	
6.	Yields of different fractions from round scad protein hydrolysate derived from	53
	isopropanol-defatted mince with 60% DH separated by Sephadex G-75 gel filtration	
	and solvent extraction	
7.	Chemical compositions of round scad protein hydrolysate	64
8.	Amino acid compositions of round scad protein hydrolysate	65
9.	Mineral contents of round scad protein hydrolysate	66
10.	Emulsifying properties of round scad protein hydrolysate at various concentrations	69
11.	Changes in L* (lightness), a* (redness/greenness) and b* (yellowness/blueness)-	74
	values of the solution prepared from round scad protein hydrolysate stored at $25^{\circ}C$	
	and 4°C for different times	

LIST OF FIGURES

Fig	Figure	
1.	Delocalization of the unpaired electron in the aromatic ring of phenoxy radicals	9
2.	Flowchart for the production of capelin protein hydrolysate	13
3.	Enzymatic hydrolysis of salmon muscle mince with different alkaline proteases (pH	17
	7.5, 40°C, 180 min and 7.5% substrate concentration)	
4.	Changes in DH of round scad protein hydrolysate prepared using Alcalase and	40
	Flavourzyme during hydrolysis with different times. The reaction was performed at	
	50°C, pH 8 for Alcalase and 50°C, pH 7 for Flavourzyme	
5.	The relationship between \log_{10} (enzyme concentration) and DH (%) in enzymatic	41
	hydrolysis of round scad by Alcalase and Flavourzyme. The reaction was performed	
	for 1 h at 50°C, pH 8 for Alcalase and 50°C, pH 7 for Flavourzyme	
6.	Antioxidative activities of round scad protein hydrolysates prepared using Alcalase	42
	(HA) and Flavourzyme (HF) with various DH. a: DPPH radical scavenging activity,	
	b: reducing power and c: Fe^{2+} chelating activity	
7.	The relationship between \log_{10} (enzyme concentration) and DH (%) in enzymatic	46
	hydrolysis of round scad mince and defatted mince using Flavourzyme. The reaction	
	was performed for 1 h at 50°C and pH 7	
8.	Antioxidative activities of HF prepared from round scad mince, ethanol-defatted	48
	mince and isopropanol-defatted mince with various DH. a: DPPH radical scavenging	
	activity, b: reducing power and c: Fe ²⁺ chelating activity	
9.	Separation of peptides from round scad protein hydrolysate derived from	52
	isopropanol-defatted mince with 60% DH by Sephadex G-75	
10.	Antioxidative activities of fractions from round scad protein hydrolysate separated by	54
	Sephadex G-75 gel filtration and solvent extraction. a: DPPH radical scavenging	
	activity, b: reducing power and c: Fe ²⁺ chelating activity	
11.	Thin layer chromatography of E2 (dichloromethane fraction) of round scad protein	57
	hydrolysate after separation; plates were sprayed with ninhydrin solution (a) and	
	DPPH solution (b)	

LIST OF FIGURES (Continued)

Figure

- 12. Changes in A₅₀₀ of linoleic acid system in the presence of HFIP 60, E2: 59 dichloromethane fraction and E3: ethyl acetate fraction at different levels in comparison with the control and the systems containing BHT at 25 ppm and 100 ppm
- 13. Changes in conjugated diene (A₂₃₄) of lecithin liposome system in the presence of 61 HFIP 60, E2: dichloromethane fraction and E3: ethyl acetate fraction at different levels in comparison with the control and the systems containing BHT at 25 ppm and 100 ppm
- 14. Changes in TBARS (mg MDA/ml liposome) of lecithin liposome system in the presence of HFIP 60, E2: dichloromethane fraction and E3: ethyl acetate fraction at different levels in comparison with the control and the systems containing BHT at 25 ppm and 100 ppm
- 15. Foaming properties of round scad protein hydrolysates at various concentrations 70
- 16. Changes in DPPH radical scavenging activity, reducing power and chelating activity
 72 of round scad protein hydrolysate during storage at 25°C and 4°C for 6 weeks
- 17. Changes in solubility (nitrogen solubility index: NSI) of round scad protein
 73 hydrolysate during storage at 25°C and 4°C for 6 weeks