Contents

	Page
Contents	(10)
List of Tables	(13)
List of Figures	(16)
Chapter	
1. Introduction	1
Literature Review	3
1. Sarcoplasmic protein	4
2. Stroma protein	4
3. Myofibrillar protein	4
4. Surimi and surimi production	8
5. Gelation of muscle proteins	11
6. Role of endogenous transglutaminase in setting and	16
protein cross-linking	
7. Improvement of gel quality of surimi	19
8. Phosphate compounds	25
Objectives	32
2. Materials and methods	33
1. Materials	33
2. Instruments	34
3. Study on the effect of phosphate compounds on setting and	35
gel forming ability of surimi	

Contents (Continued)

	Page
4. Study on the effect of phosphate compounds and calcium chloride or	37
microbial transglutaminase on setting and gel forming ability of surim	i
5. Study on the effect of phosphate on transglutaminase activity from	38
fish muscle	
6. Study on the effect of phosphate on fish muscle protein and gel	40
forming ability of surimi	
7. Statistical analysis	42
3. Results and Discussion	43
1. Effect of phosphate compounds on setting and gel forming ability	43
of surimi	
2. Effect of sodium pyrophosphate in combination with calcium	59
chloride on surimi gel properties	
3. Effect of setting time on gel forming ability of surimi gel added	66
with sodium pyrophosphate in combination with calcium chloride	
4. Effect of sodium pyrophosphate in combination with microbial	72
transglutaminase on surimi gel properties	
5. Effect of setting time on gel forming ability of surimi gel added with	78
sodium pyrophosphate in combination with MTGase	
6. Effect of sodium pyrophosphate and/or calcium chloride and/or	83
microbial transglutaminase on microstructure of surimi gel	
7. Effect of phosphate compounds on gel forming ability of surimi	86
8. Effect of phosphate compounds on fish muscle protein	94

Contents (Continued)

	Page
4. Conclusion	101
Suggestion	102
References	103
Appendix	123
Vitae	131

List of Tables

Table	Page
1. Conformational changes which may occur during the thermal denaturation	12
of natural actomyosin	
2. Classes, formulas, pH, solubility, and functions of several phosphates	26
3. Expressible moisture content of surimi gels from bigeye snapper added with	50
various phosphate compounds at different concentrations and heated under	
various conditions	
4. Expressible moisture content of surimi gels from threadfin bream added with	51
various phosphate compounds at different concentrations and heated under	
various conditions	
5. Whiteness of surimi gels from bigeye snapper added with various phosphate	52
compounds at different concentrations and heated under various conditions	
6. Whiteness of surimi gels from threadfin bream added with various phosphate	52
compounds at different concentrations and heated under various conditions	
7. Solubility of bigeye snapper surimi gels added with various phosphate	54
compounds at different concentrations and heated under various conditions	
8. Solubility of threadfin bream surimi gels added with various phosphate	55
compounds at different concentrations and heated under various conditions	
9. Whiteness of kamaboko gels from bigeye snapper and threadfin bream surimi	62
added with sodium pyrophosphate and calcium chloride at various	
concentrations	

(13)

List of Tables (Continued)

Table	Page
10. Solubility of kamaboko gels from bigeye snapper and threadfin bream	63
surimi added with sodium pyrophosphate and calcium chloride at	
different concentrations	
11. Expressible moisture content of bigeye snapper and threadfin bream	68
kamaboko gel added with 0.025% PP and 50 mmol $CaCl_2/kg$ and set for	
various times at 40°C	
12. Whiteness of kamaboko gels from bigeye snapper and threadfin bream	69
surimi added with 0.025% PP and 50 mmole $CaCl_2/kg$ and set at 40°C for	
different times	
13. Solubility of kamaboko gels from bigeye snapper and threadfin bream	70
surimi added with 0.025%PP and 50 mmole/kg CaCl ₂ and set at 40°C for	
different times	
14. Expressible moisture content of kamaboko gels from bigeye snapper and	74
threadfin bream surimi added with PP and MTGase at various levels	
15. Whiteness of kamaboko gel from bigeye snapper and threadfin bream	75
surimi added with PP and MTGase at various levels	
16. Solubility of kamaboko gel from bigeye snapper and threadfin bream surimi	76
added with PP and MTGase at various levels	
17. Expressible moisture content of kamaboko gels from bigeye snapper	80
surimi (added with 0.025% PP and 0.05% MTGase) and from threadfin	
bream surimi (added with 0.05% PP and 0.05% MTGase) and set	
at 40°C for different times	

(14)

List of Tables (Continued)

Table	Page
18. Whiteness of kamaboko gels from bigeye snapper (added with 0.025% PP	80
and 0.05% MTGase) and for threadfin bream surimi (added with 0.05% PP	
and 0.05% MTGase) and set at 40°C for different times	
19. Solubility of kamaboko gels from bigeye snapper surimi (added with	81
0.025%PP and 0.05% MTGase) and from threadfin bream surimi (added	
with 0.05% PP and 0.05% MTGase) and set at 40°C for different times	
20. Whiteness of kamaboko gels from bigeye snapper and threadfin bream	89
surimi added with PP or TPP at various levels in the presence of	
20 mmole EGTA/kg	
21. Whiteness of directly heated gels from bigeye snapper and threadfin bream	89
surimi added with PP or TPP at various levels in the presence of 20 mmole	
EGTA/kg	
22. Solubility of kamaboko gels from bigeye snapper and threadfin bream	90
surimi added with PP or TPP at various levels in the presence of	
20 mmole EGTA/kg	
23. Solubility of directly heated gels from bigeye snapper and threadfin bream	91
surimi added with PP or TPP at various levels in the presence of 20 mmole	
EGTA/kg	
24. Inactivation rate constant of natural actomyosin Ca ²⁺ -ATPase of bigeye	97
snapper and threadfin bream at various temperatures	
25. Inactivation rate constant of natural actomyosin Mg ²⁺ -ATPase of bigeye	97
snapper and threadfin bream at various temperatures	

(15)

List of Figures

Figure	Page
1. Structure of myosin	6
2. a) Proteins of the thin filament	7
b) Arrangement of actin, troponin and tropomyosin	
3. Formation of a gel network structure	13
4. A Schematic representation of the thermal aggregation of fish myosin	16
5. Reaction catalyzed by TGase	17
6. Scheme for surimi preparation	34
7. Scheme for surimi gel preparation	35
8. Breaking force and deformation of kamaboko, directly heated and suwari	47
gels from bigeye snapper surimi added with phosphate compounds at	
different levels	
9. Breaking force and deformation of kamaboko, directly heated and suwari gels	s 48
from threadfin bream surimi added with phosphate compounds at different le	vels
10. SDS-PAGE patterns of protein in kamaboko, directly heated and suwari	57
gels from bigeye snapper surimi added with various phosphate compounds	
at different levels (%)	
11. SDS-PAGE patterns of protein in kamaboko, directly heated and suwari	58
gels from threadfin bream surimi added with various phosphate compounds	
at different levels (%).	
12. Breaking force and deformation of kamaboko gels from bigeye snapper	60
and threadfin bream surimi added with sodium pyrophosphate and calcium	
chloride at different levels	

(16)

List of Figures (Continued)

Figure	Page
13. Expressible of kamaboko gel from bigeye snapper and threadfin bream	61
surimi added with sodium pyrophosphate and calcium chloride at	
different levels	
14. SDS-PAGE pattern of protein in kamaboko gel from bigeye snapper and	65
threadfin bream surimi added with sodium pyrophosphate (PP) and calcium	
chloride at different levels	
15. Breaking force and deformation of gels from bigeye snapper and threadfin	67
bream surimi added with 0.025% PP and 50 mmole $CaCl_2/kg$ and set at	
40°C for different times, followed by heating at 90°C 20 min	
16. SDS-PAGE pattern of protein in kamaboko gels from bigeye snapper and	71
threadfin bream surimi added with 0.025% sodium pyrophosphate and	
50 mmole/kg calcium chloride and set at 40°C for different times	
17. Breaking force and deformation of kamaboko gels from bigeye snapper	73
and threadfin bream (B) surimi added with sodium pyrophosphate and	
microbial transglutaminase at different level	
18. SDS-PAGE patterns of protein in kamaboko gels from bigeye snapper and	77
threadfin bream surimi added with sodium pyrophosphate (PP) and	
microbial transglutaminase at different levels	
19. Breaking force and deformation of kamaboko gels from bigeye snapper	79
surimi added with 0.025% sodium pyrophosphate and 0.05% microbial	
transglutaminase and set at 40°C for different times	

(17)

List of Figures (Continued)

Figure	Page
20. Breaking force and deformation of kamaboko gels from threadfin bream	79
surimi added with 0.05% PP and 0.05% MTGase and set at 40°C for	
different times	
21. SDS-PAGE patterns of proteins in kamaboko gel from bigeye snapper	82
surimi (added with 0.025% PP and 0.05% MTGase) and from threadfin	
bream surimi (added with 0.025% PP and 0.05% MTGase) and set at	
40°C for different times	
22. Microstructure of kamaboko gels from bigeye snapper surimi without	84
additive, with 0.025% PP, with 0.025% PP and 50 mmole $CaCl_2/kg$, and	
with 0.025% PP and 0.05% MTGase	
23. Microstructure of kamaboko gels from threadfin bream surimi without	85
additive, with 0.025%PP, with 0.025%PP and 50 mmole $CaCl_2/kg$, and	
with 0.05% PP and 0.05% MTGase	
24. Breaking force and deformation of kamaboko gels and directly heated gel	87
from bigeye snapper surimi added with PP or TPP at different levels in	
the presence of 20 mmole EGTA/kg	
25. Breaking force and deformation of kamaboko gels and directly heated gel	88
from threadfin bream surimi added with PP or TPP at different levels in the	
presence of 20 mmole EGTA/kg	
26. SDS-PAGE patterns of proteins in kamaboko gels from bigeye snapper	92
and threadfin bream surimi added with PP or TPP at different level in the	
presence of 20 mmole EGTA/kg	

(18)

List of Figures (Continued)

Figure	Page
27. SDS-PAGE patterns of proteins in directly heated gels from bigeye snapper	
and threadfin bream surimi added with PP or TPP at different level in the	
presence of 20 mmole EGTA/kg	
28. ATPase activity of NAM from bigeye snapper and threadfin bream	95
treated with various phosphates at different concentrations. Activities	
were determined after dialysis of treated NAM against 0.6 M KCl	
29. TGase activity of fish muscle from bigeye snapper and threadfin bream	99
in the presence of salt or salt in combination with phosphates at	
different levels	
30. TGase activity of fish muscle from bigeye snapper and threadfin bream	100
in the presence of salt or salt in combination with $CaCl_2$ or PP at	
different levels	