CONTENT

	Page
Contents	
(ix)	
List of Tables	
(xii)	
List of Figures	
(xiv)	
1. Introduction	1
Literature Review	3
1. Edible films and biodegradable films	3
2. Protein films	4
3. Protein film formation and properties	5
4. Effect of pH on the properties of protein-based film	9
5. Effect of plasticizers on the properties of protein-based film	12
6. Effect of lipids on the properties of protein-based film	15
7. Protein-based film from different sources	17
8. Improvement of protein films properties	21
9. Stability of protein-based films during storage	26
10.Applications of protein based-films	27
Objectives	30
2. Material and methods	31
1. Materials	31

2. Instruments	32
3. Chemical analyses of surimi	32
4. Preparation of surimi film	33

CONTENT (CONTINUED)

5. Determination of film properties	33
6. Effects of pH on the compositional changes of film-forming solution	36
7. Effect of lipids on the film properties	36
8. Effect of crosslinker on surimi film properties	37
9. Characterization of surimi film	38
10.Changes of films during storage	40
11.Uses of surimi film to extend the shelf-life of dried fish powder	40
12.Statistical analysis	41
3. Results and Discussion	42
1. Chemical composition of surimi from tropical fish	42
2. Effect of pH on the properties of film from surimi	44
3. Compositional changes of surimi film-forming solution as affected	55
by acidic and alkaline pHs	
4. Effect of lipid types and concentrations on the properties of bigeye	60
snapper surimi film	

Page

5. Effect of crosslinker on the properties of bigeye snapper surimi film	76
6. Characterization of bigeye snapper surimi film	93
7. Changes of films during storage	104

CONTENT (CONTINUED)

	Page
8. Uses of bigeye snapper surimi film to extend the shelf-life of dried	110
fish powder	
4. Conclusion	116
References	118
Appendix	138
Vitae	151

LIST OF TABLES

Т	Table	
1	Water vapor permeability of various protein films.	7
2	Tensile strength and elongation at break of various films.	8
3	Comparison of specific mechanical and barrier properties of plastic wrap and	18
	spray-dried (SD) and flash-dried (FD) wheat gluten films.	
4	Applications of protein based-films in foods.	28
5	Proximate compositions of surimi from different tropical fish.	43
6	Physical and mechanical properties of surimi film.	46
7	L*, a* and b*-values of surimi film.	50
8	Film solubility and protein solubility of surimi film.	54
9	Tensile strength (TS), elongation at break (EAB), water vapor permeability	63
	(WVP) and thickness of bigeye snapper surimi film as affected by types	
	and amounts of lipids.	
1(O Color parameters and transparency of bigeye snapper surimi film as affected	67
	by types and amounts of lipids.	
11	l Film solubility and protein solubility of bigeye snapper surimi film as affected	d 69
	by types and amounts of lipids.	
12	2 Tensile strength (TS), elongation at break (EAB), water vapor permeability	79

(xii)

(WVP) and thickness of bigeye snapper surimi film incorporated with palm oil as affected by types and amounts of aldehydes.

13 Color parameters and transparency of bigeye snapper surimi film incorporated81 with palm oil as affected by types and amounts of aldehydes.

LIST OF TABLES (CONTINUED)

Table	Page
14 Film solubility and protein solubility of bigeye snapper surimi film	83
incorporated with palm oil as affected by types and amounts of aldehydes.	
15 Tensile strength (TS), elongation at break (EAB), water vapor permeability	88
(WVP) and thickness of bigeye snapper surimi film incorporated with palm	
oil as affected by MTGase.	
16 Color parameters and transparency of bigeye snapper surimi film incorporated	l 89
with palm oil as affected by MTGase levels.	
17 Film solubility and protein solubility of bigeye snapper surimi film	90
incorporated with palm oil as affected by MTGase levels.	
18 Degree of hydrolysis (%) of bigeye snapper surimi films incorporated with oil	96
and/or formaldehyde.	
19 Protein solubility (%) of bigeye snapper surimi films in various solvents.	98
20 Glass transition temperature (T_g) of the control films, films incorporated	103
with palm oil at 75 % glycerol substitution, films incorporated with palm oil	
at 75 % glycerol and 5 mM formaldehyde.	
21 Degradation temperature (T_d) of the control films, films incorporated with	104
palm oil at 75 % glycerol substitution, films incorporated with palm oil	

(xiii)

at 75 % glycerol and 5 mM formaldehyde and surimi (unplasticized, without cryoprotactant).

LIST OF FIGURES

Figure		Page
1	Mechanism of film formation.	6
2	Mechanism of protein cross-linking by formaldehyde, glyoxal or	22
	glutaraldehyde.	
3	Transglutaminase-catalyzed cross-linking reaction in proteins.	25
4	Protein patterns of surimi from different tropical fish.	44
5	Protein patterns of surimi film from bigeye snapper, goat fish and	52
	threadfin bream.	
6	Reducing sugar content of acidic and alkaline film-forming solutions	56
	of surimi from different tropical fish with different exposure times.	
7	Protein patterns of acidic and alkaline film-forming solutions from	59
	bigeye snapper surimi, goat fish surimi and threadfin bream surimi	
	with different exposure times.	
8	Protein patterns of bigeye snapper surimi films incorporated with	70
	palm oil, butter and shortening.	
9	SEM micrographs of bigeye snapper surimi films incorporated	73
	without and with palm oils at different levels.	

10 SEM micrographs of bigeye snapper surimi films incorporated with 74 palm oil, butter and shortening at 75% glycerol substitution.

LIST OF FIGURES (CONTINUED)

Figure	Page
11 Moisture sorption isotherms of bigeye snapper surimi film added	76
with palm oil at 75% glycerol substitution at 4°C and room temperature.	
12 Protein patterns of bigeye snapper surimi films containing palm oil	85
and incorporated with formaldehyde, glutaraldehyde and glyoxal.	
13 Protein patterns of bigeye snapper surimi films containing palm oil	91
and added with MTGase at different levels.	
14 Moisture sorption isotherms of the film incorporated with palm oil and	92
added with 5 mM formaldehyde at 4°C and room temperature.	
15 SEM micrographs of bigeye snapper surimi films. Control film (without	94
lipid and formaldehyde), film incorporated with palm oil at 75% glycerol	
substitution and film incorporated with palm oil at 75% glycerol	
substitution and 5 mM formaldehyde.	
16 First scan of DSC thermogram of the control film, film incorporated	101

(xv)

with palm oil at 75 % glycerol substitution and film incorporated with palm oil at 75 % glycerol and 5 mM formaldehyde.

17 Second scan of DSC thermogram of the control film, film incorporated
101
with palm oil at 75 % glycerol substitution and film incorporated with palm
oil at 75 % glycerol and 5 mM formaldehyde.

LIST OF FIGURES (CONTINUED)

Figure	Page
18 TGA thermogram of the control film, film incorporated with palm oil	102
at 75 % glycerol substitution and film incorporated with palm oil at 75 $\%$	ó
glycerol and 5 mM formaldehyde.	
19 Changes in tensile strength and elongation at break of bigeye snapper sur	imi 106
films containing palm at 75% glycerol substitution and 5 mM formaldehy	<i>y</i> de
during storage at different temperatures and RHs.	
20 Changes in water vapor permeability of bigeye snapper surimi films	107
containing palm at 75% glycerol substitution and 5 mM formaldehyde	
during storage at different temperatures and RHs.	
21 Changes in film solubility of bigeye snapper surimi films containing	107
palm at 75% glycerol substitution and 5 mM formaldehyde during	
storage at different temperatures and RHs.	
22 Changes in color of bigeye snapper surimi films containing palm at 75%	109
glycerol substitution and 5 mM formaldehyde during storage at different	
temperatures and RHs.	
23 Changes in transparency of bigeye snapper surimi films containing palm	110

at 75% glycerol substitution and 5 mM formaldehyde during storage at different temperatures and RHs.

LIST OF FIGURES (CONTINUED)

Figure

Page

- 24 Changes in moisture content of dried fish powder packaged using bigeye 111
 snapper surimi films incorporated with palm oil at 75% glycerol substitution
 (SO), bigeye snapper surimi film incorporated with palm oil at 75% glycerol substitution and 5 mM formaldehyde (SOF) or polyethylene film (PE) during storage at 30-32°C.
- 25 Changes in color of dried fish powder packaged using bigeye snapper surimi 113 films incorporated with palm oil at 75% glycerol substitution (SO), bigeye snapper surimi film incorporated with palm oil at 75% glycerol substitution and 5 mM formaldehyde (SOF) or polyethylene film (PE) during storage at 30-32°C.
- 26 Changes in TBARS of dried fish powder packaged using bigeye snapper 115
 surimi films incorporated with palm oil at 75% glycerol substitution (SO),
 bigeye snapper surimi film incorporated with palm oil at 75% glycerol
 substitution and 5 mM formaldehyde (SOF) or polyethylene film (PE)
 during storage at 30-32°C.