Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>บทคัดย่อ</td>
<td>(3)</td>
</tr>
<tr>
<td>Abstract</td>
<td>(5)</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>(8)</td>
</tr>
<tr>
<td>Contents</td>
<td>(9)</td>
</tr>
<tr>
<td>List of Tables</td>
<td>(14)</td>
</tr>
<tr>
<td>List of Figures</td>
<td>(16)</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Literature Review</td>
<td>3</td>
</tr>
<tr>
<td>Collagen</td>
<td>3</td>
</tr>
<tr>
<td>Collagen in marine animals</td>
<td>9</td>
</tr>
<tr>
<td>Collagen in Invertebrates</td>
<td>12</td>
</tr>
<tr>
<td>Collagen in fish</td>
<td>14</td>
</tr>
</tbody>
</table>
The factors affecting collagen properties

Gelatin

Conversion of collagen to gelatin

Production of gelatin

Composition of gelatin

Gelatin structure

Isoelectric point of gelatin

The Mechanism of gelation

Factors affecting the properties of gelatin gels

Production and characterization of fish gelatins

Use of collagen and gelatin

Objectives

2. Material and methods

1. Chemical reagents

2. Fish skin and bone preparation
3. Instruments

4. Preparation and characterization of acid soluble collagens of collagen from skin and bone

4.1 Extraction of collagen

4.2 Characterization of collagen

5. Extraction and characterization of gelatin from skin and bone of bigeye snapper

5.1 Deproteinization process for gelatin extraction from skin and bone

5.2 Demineralization process for gelatin extraction from bone

5.3 Swelling process for gelatin extraction from skin and bone

5.4 Extraction of gelatin from pretreated skin and bone

6. Characterization and functional properties of gelatin of skin from bigeye snapper
Contents (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Determination of chemical compositions</td>
<td>53</td>
</tr>
<tr>
<td>6.2 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)</td>
<td>53</td>
</tr>
<tr>
<td>6.3 Gelation</td>
<td>53</td>
</tr>
<tr>
<td>6.4 Solubility</td>
<td>54</td>
</tr>
<tr>
<td>6.5 Emulsifying Properties</td>
<td>55</td>
</tr>
<tr>
<td>6.6 Foaming Properties</td>
<td>56</td>
</tr>
<tr>
<td>7. Improvement of gel properties of gelatin from the skin of bigeye snapper</td>
<td>56</td>
</tr>
<tr>
<td>7.1 Use of MgSO₄</td>
<td>56</td>
</tr>
<tr>
<td>7.2 Use of microbial transglutaminase (MTGase)</td>
<td>56</td>
</tr>
<tr>
<td>8. Statistical analysis</td>
<td>57</td>
</tr>
<tr>
<td>3. Results and Discussion</td>
<td>59</td>
</tr>
<tr>
<td>1. Characterization of acid soluble collagen from skin and bone from bigeye</td>
<td>59</td>
</tr>
</tbody>
</table>
1.1 Compositions of skin, bone and their collagens

1.2 Amino acid composition of skin and bone collagens

1.3 SDS-polyacrylamide gel electrophoresis patterns of skin and bone collagens

1.4 Peptide mapping of skin and bone collagens

1.5 Thermal stability of skin and bone collagens

1.6 Viscosity of skin and bone collagen solutions

1.7 Solubility of skin and bone collagens

2. Extraction of gelatin from skin and bone from bigeye snapper

2.1 Deproteinization for gelatin extraction

2.2 Demineralization for gelatin extraction from bone

2.3 Swelling for gelatin extraction from skin and bone

3. Characterization and functionality of gelatin from skin of bigeye snapper

3.1 Proximate compositions of bigeye snapper skin and its gelatin
3.2 SDS-polyacrylamide gel electrophoretic (SDS-PAGE) patterns of skin gelatin

3.3 Gelation of gelatin from bigeye snapper skin

3.4 Solubility of gelatin

3.5 Emulsifying properties

3.6 Foaming properties

4. Improvement of gel properties of gelatin from skin of bigeye snapper

4.1 Turbidity of gelatin solution and color of gelatin gels

4.2 Bloom strength of skin gelatin gels

4.3 Color of gelatin gel
4.4 SDS-polyacrylamide gel electrophoretic (SDS-PAGE) patterns of gelatin gels 100

4.5 Scanning Electron Microscopy of Gelatin gels 102

4. Conclusion 110

Suggestion 111

References 112

Appendix 129

Vitae 142
List of Tables

Table Page
1. Collagen and their distribution 5
2. Amino acid composition of muscle collagens of marine fish and 11
 invertebrates
3. Main neutral sugars in collagens of marine fish and invertebrates 12
4. Collagen content in white muscle of fishes 15
5. Chemical compositions of skin, bone and their collagen from bigeye 60
 snapper
6. Amino acid composition of skin and bone collagens from bigeye snapper 62
 (residue/1,000 residues)
7. Ash content in residues of deproteinized bone from bigeye snapper after 79
 demineralization process under different conditions
8. Effect of swelling on the yield of gelatin from bigeye snapper skin and 80
 bone with different demineralization conditions
9. Proximate compositions of skin and skin gelatin from bigeye snapper

10. Color of gelatin gel from bigeye snapper skin at different pHs

11. Emulsifying properties of gelatin from bigeye snapper skin and egg white at different concentrations

12. Foaming properties of bigeye snapper skin gelatin and egg white at different concentrations

13. Color of gelatin gel from bigeye snapper skin with add with MgSO₄ or MTGase at different concentrations
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triple-helical structure of collagen</td>
<td>4</td>
</tr>
<tr>
<td>2. Illustration of the overlap structure of the collagen fiber responsible for the banding pattern of a negatively stained collagen fiber</td>
<td>6</td>
</tr>
<tr>
<td>3. Cross-link formation in collagen by side chain groups</td>
<td>8</td>
</tr>
<tr>
<td>4. Relationship between the total imino acid content (proline + hydroxyproline) and the molecular melting temperatures (T<sub>m</sub>) of various collagens from different species</td>
<td>19</td>
</tr>
<tr>
<td>5. Factors determining optimum gelatin extraction conditions</td>
<td>23</td>
</tr>
<tr>
<td>6. Molecular weight distribution showing the major structural components of gelatin</td>
<td>27</td>
</tr>
<tr>
<td>7. Scheme for the concentration and temperature-dependent pathways for helix formation in α chains derived from collagen</td>
<td>29</td>
</tr>
<tr>
<td>8. Gel strength of seven different commercial fish and pork gelatins as a</td>
<td>31</td>
</tr>
</tbody>
</table>
function of concentration

9. Effect of the solution pH on the bloom strength of gelatin Variation in bloom strength (at 6.67% (w/v) concentration) with temperature of maturation for 275-bloom (curve A) and 175-bloom (curve B) gelatins

10. Variation in bloom strength (at 6.67% (w/v) concentration) with temperature of maturation for 275-bloom (curve A) and 175-bloom (curve B) gelatins

11. Effect of pH on the thermal degradation of gelatin at 70 °C

12. Effect of pH on the degradation of gelatin

13. Protein patterns of the gelatin from sole, megrim, cod, hake, and squid

14. The α1/α2 ratio and relative amount of molecular weight components of gelatin from fish skins

15. Bigeye snapper, Priacanthus tayenus

16. Scheme for extraction of gelatin from skin and bone

17. SDS-PAGE patterns of collagen from bigeye snapper skin and bone
under reducing and non-reducing conditions

18. Peptide mapping of skin and bone collagens from bigeye snapper digested by V8 protease and lysyl endopeptidase

19. Thermograms of bigeye snapper skin and bone collagens rehydrated in 0.05 M acetic acid and deionized distilled water

20. Relative viscosity of bigeye snapper skin and bone collagens solution at different temperatures

21. Relative collagen solubility (%) of bigeye snapper skin and bone collagens at different pHs

22. Relative collagen solubility (%) in 0.5M acetic acid of bigeye snapper skin and bone collagens in presence of NaCl at different concentrations

23. Accumulative protein content and hydroxyproline content in deproteinizing solution of bigeye snapper skin

24. Accumulative protein content and hydroxyproline content in deproteinizing solution of bigeye snapper bone
25. Microstructure of skin, deproteinized skin and skin swollen with acetic acid and citric acid at different concentrations

26. Bloom strength of gelatin gel from skins swollen with acetic acid or citric acid at different concentrations

27. SDS-PAGE pattern of gelatin from bigeye snapper skin under reducing condition

28. Turbidity of gelatin solution from bigeye snapper skin at different pHs

29. Bloom strength of bigeye snapper skin gelatin at different pHs

30. Relative solubility of gelatin from bigeye snapper skin and egg white at different pHs

31. Turbidity of gelatin solution from bigeye snapper skin added with MgSO₄ or MTGase at different concentrations

32. Bloom strength of gelatin gel from bigeye snapper skin added with MgSO₄ and MTGase at different concentrations

33. SDS-PAGE pattern of gelatin gel from bigeye snapper skin added with
MgSO₄ at different concentrations

34. SDS-PAGE pattern of gelatin gel from bigeye snapper skin with MTGase at different concentrations

35. Microstructure of gelatin gel from bigeye snapper skin with and without addition of MgSO₄ at different concentrations

36. Microstructure of gelatin gel from bigeye snapper skin with and without addition of MTGase at different concentrations

37. Microstructure of gelatin gel from bigeye snapper skin with and without adding MTGase at the concentration of 0.01 % (w/v)

38. Bloom strength of gelatin gel from bigeye snapper skin containing 0.01 % (w/v) MTGase incubated for different times

39. SDS-PAGE pattern of gelatin gel from bigeye snapper skin containing 0.01 % (w/v) MTGase incubated for different times

40. SDS-PAGE pattern of gelatin gel from bigeye snapper skin added with 0.1 or 1.0 % (w/v) MTGase and incubated for different times