REFERENCES


and functional properties of oxidized turkey white muscle myofibrillar proteins. J. Agric.
Food Chem. 41: 186189.
applications J. Food Sci. 67: 2798-2806.
Dingle, J.R. and Hines, J.A. 1975. Protein instability in minced flesh from fillets and frames of
several commercial Atlantic fishes during storage at -5 °C. J. Fish. Res.bd. Can. 32: 775-
783.
183.
salmon (Salmo salar, L.) and subsequent changes in solubility during storage on ice. Food
Finch, C.A. 1983. Chemical modification and some cross-linking reactions of water soluble
polymers. In Chemistry and technology of water-soluble polymers (Finch, C.A.,
New York.
Chem. 66: 375-400.


Saeed, S., Fawthrop, S. A. and Howell, N. K. 1999. Electron spin resonance (ESR) study on free-
from chum salmon in the presence of protease inhibitors. J. Food Sci. 60: 917-928.
microbial transglutaminase as related to reaction conditions. J. Food Sci. 59: 866-871.
enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J.
Food Sci. 60: 300-304.
Samejima, K., Ishioroshi, M. and Yasui, T. 1981. Relative roles of the head and tail portions of
Sano, T., Noguchi, S.F., Matsumoto, J.J. and Tsuchiya, T. 1990. Thermal gelation characteristics of
between the number of trimethylamine oxide reducing psychrotrophic bacteria and their
(Salmo gairdneri) muscle and its solubility change during chilled storage of
transglutaminase E-(γ-glutamyl)lysine crosslink effects on elastics properties of
kamaboko gels. J. Food Sci. 60: 305-311.
Seguro, K., Nio, N. and Motoki, M. 1996. Some characteristics of a Microbial protein Cross-
linking Enzyme: Transglutaminase in Macromolecular. Interactions in Food Technology
Seki, N., Ikeda, M. and Narita, N. 1979. Changes in ATPase activities of carp myofibril during ice-


