Rubber tree is an important economic crop in Thailand, generating revenues from production and export of natural rubber to the world market. Previous work in our laboratory had identified a 1.8 kb cDNA (hmgs1) encoding 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase) from Hevea brasiliensis involved in rubber biosynthesis pathway. It was suggested that more than one gene encoding HMG-CoA synthase in H. brasiliensis, may exist as is the case of other plants. The goal of this study was to investigate a new hmgs gene in H. brasiliensis. A new cDNA encoding HMG-CoA synthase was obtained by using the hmgs1 cDNA as a probe. The isolated full-length hmgs2 cDNA consisted of 1,916 bp which encoded a protein of 464 amino acids with a predicted molecular mass of 51.27 kDa and an isoelectric point of 6.02. HMG-CoA synthase 1 and 2 share 92% nucleotide and 94% amino acid sequences identity. Semiquantitative RT-PCR analysis indicated that hmgs2 mRNA was more highly expressed in laticifer and petiole than in leaf. Sequence alignment of HMG-CoA synthase and its relative condensing enzyme, ACP synthase III, obtained from searching for HMG-CoA synthase in GenBank database identified three completely conserved residues, Cys117, His247, and Asn326.

(3)
Site-directed mutagenesis was employed to construct *hmg*1 mutants, C117A, N326A, and C117/N326A. These mutant enzymes lacked activity indicating importance of C117 and N326 in the catalytic activity of HMG-CoA synthase. A phylogenetic tree constructed based on the proper multiple alignment, indicated that HMG-CoA synthase 1 and 2 result from recent gene duplication. This is also the case for HMG-CoA synthase and ACP synthase III, which arose from an ancient gene duplication event of an ancestral condensing enzyme in the past. Therefore, a possible secondary structure of HMG-CoA synthase could be predicted based on the X-ray crystallographic model of ACP synthase III. The predicted structure displays a five-layered core structure, α-β-α-β-α, where each α comprises two α-helices and each β is made of a five-strand, mixed β-sheet.
บางพสก์

บางพสก์เป็นพืชเศรษฐกิจที่สำคัญของประเทศไทย ซึ่งทำรายได้จากการผลิตและส่งออกยาง
ธรรมชาติสู่ตลาดโลก จึงน่าสนใจที่จะศึกษาด้วยวิชานวัตกรรมระหว่างที่ของเรา เอนไซม์
โดยตรงคือเควลักไทรอยโคเอ็นไซม์ CoA synthase (HMG-CoA synthase) เป็นเอนไซม์หนึ่งที่มีบทบาท
สำคัญในวิศวกรรมในการส่งเร่งของกระบวนการ ท่อนี้ได้มีการได้ยินนำไปสู่ HMG-CoA
synthase; hmgls1 จากบางพสก์พบว่าจะมีมากกว่า 1 ชื่อ เช่นเดียวกับพืชชนิดอื่น การศึกษา
ได้ทำการแยกและทดสอบ สำหรับ HMG-CoA synthase ใหม่, (hmgls2) โดยใช้ hmgls1 เป็นตัว
ตรวจจับพบว่า hmgls 2 มีจีนจำนวน 1,916 ผู้พบ ประกอบด้วยส่วนของนิวคลีโซไทด์ 1,392 ผู้พบที่แปล
รหัสเป็นกระยะในจำนวน 464 กระยะมีน้ำหนักในสัดส่วนประมาณ 51.27 กิโลdalton และมีค่า
pl เท่ากับ 6.02 เมื่อเรียบเทียบกับลำดับนิวคลีโซไทด์และกระยะมีของ HMG-CoA synthase 1 และ
2 มีความเหมือนกัน 92% และ 94% ตามลำดับ การศึกษาการแพร่กระจายของ hmgls2 mRNA โดยใช้
semi-quantitative RT-PCR ในเนื้อเยื่อดังกล่าวบางพสก์ที่แตกต่างที่สุดพบว่า มีการแพร่กระจาย
ของ hmgls2 มากที่สุดในบางพสก์ ทั้งในและใน ตามลำดับ เช่นเดียวกับ hmgls1 จาก การพันธุ์
เอนไซม์ HMG-CoA synthase ในต้นไม้ชิ้นอื่นๆ จากฐานข้อมูล GenBank พบเอนไซม์ แต่ติดโดย
เชิงชิ้น แต่ยังไม่ได้ใช้ในพืชบางพสก์ (β-ketosacyl acyl carrier protein synthase III, ACP Synthase III)
จึงนำมาเปรียบเทียบกระยะมีในระหว่างเอนไซม์ HMG-CoA synthase และ ACP Synthase III
พัฒนกระยะในต้นไม้ชิ้นอื่นๆ (conserved residues) ซึ่งมีบทบาทในการเปลี่ยนแปลงของเอนไซม์
ทั้งสอง 3 กระยะมีมี ได้แก่ Cys117, His247 และ Asn326

การทำ site-directed mutagenesis และศึกษาการแพร่กระจายของชิ้น hmgls1 ใน 2 ชันใน wild type
และ mutant พบว่า mutate HMG-CoA synthase ที่ตำแหน่ง Cys117 และ Asn326 ถูกเปลี่ยนไปเป็นAla
มีเท่าความวิสัยของเอนไซม์ตลอดแนวระหว่าง Cys117 และ Asn326 มีผลต่อคิงกรรมการเปลี่ยนแปลงของ
HMG-CoA synthase การสร้าง Phylogenetic tree จากการนำการเรียงลำดับของกระยะมีมาจัด
โดยใช้โปรแกรม multiple sequence alignment ของ HMG-CoA synthase และ ACP synthase III
แสดงว่า HMG-CoA synthase 1 และ 2 เกิดจาก gene duplication เช่นเดียวกับ HMG-CoA synthase
และ ACP synthase III ซึ่งเกิดขึ้นจาก gene duplication ของยีนสำหรับ condensing enzyme ในอดีต ดังนั้นเอนไซม์ทั้งสองชนิดมีความสัมพันธ์กัน จึงสามารถทำงานใคร่ส่งผลพฤกษียุคอื่นๆ เอนไซม์ HMG-CoA synthase โดยявлениеสัมพันธ์จากโครงสร้างสามมิติของเอนไซม์ ACP synthase III พบว่า โครงสร้างหลักของเอนไซม์ HMG-CoA synthase ประกอบด้วย 5 ส่วน คือ α-β-α-β-α, ตามลำดับ ซึ่งแต่ละ α ประกอบด้วย 2 หน่วยย่อยของ α-helices และแต่ละ β ประกอบด้วย 5 หน่วยย่อยของ β-sheet.