CONTENTS

	Page
Contents	viii
List of figures	xi
List of tables	xiii
Chapter	
1. Introduction	
1.1 General introduction	1
1.2 Objectives	3
Chapter	
2. Literature review	
2.1 Botanical aspect of R. nasutus	4
2.2 Ecology and propagation of R. nasutus	4
2.3 Distribution of rhinacanthins in R. nasutus and effect of harvest period	5
2.4 Ethnomedical uses of <i>R. nasutus</i>	6
2.5 Chemical constituents of <i>R. nasutus</i>	6
2.6 Biological activity of R. nasutus and rhinacanthins	20
2.7 Toxicity test of R. nasutus	26
2.8 Formulation of <i>R. nasutus</i> cream	26
2.9 Dermatophytes	27
2.10 Dermatophyte infection	28
Chapter	
3. Materials and methods	
3.1 Materials	
3.1.1 Plant material	29
3.1.2 Chemicals and reagents	
3.1.2.1 For quantitative determination of rhinacanthins in the extract	29
3.1.2.2 For extraction method and pre-purification method	29
3.1.2.3 For antifungal activity assay	30
	viii

CONTENTS (continued)

		Page
	3.1.2.4 For establishment of the standard specification of extract	30
	3.1.3 Instrumentation	31
3.	2 Methods	
	3.2.1 Quantitative analysis of rhinacanthins in <i>R. nasutus</i> leaf extracts	
	3.2.1.1 Preparation of standard solutions	31
	3.2.1.2 Sample preparation	32
	3.2.1.3 HPLC conditions	32
	3.2.1.4 Method validation	32
	3.2.2 Preparation of rhinacanthin high-yielding R. nasutus leaf extract	
	3.2.2.1 Extraction	34
	3.2.2.2 Fractionation	34
	3.2.3 Evaluation of antifungal activity against dermatophytes	
	3.2.3.1 Preparation of sample	34
	3.2.3.2 Preparation of test dermatophytes	35
	3.2.3.3 Determination of minimum inhibition concentration	35
	3.2.4 Determination of the moisture content	35
	3.2.5 Ash content	36
	3.2.5.1 Determination of the total ash content	36
	3.2.5.2 Determination of the acid insoluble ash content	36
	3.2.6 Determination of the microbial contamination	
	3.2.6.1 Sample preparation	37
	3.2.6.2 Determination of aerobic bacteria contamination	37
	3.2.6.3 Determination of Escherichia coli contamination	37
	3.2.6.4 Determination of fungi contamination	38
	3.2.7 Determination of solubility	38
	3.2.8 Partition coefficient	
	3.2.8.1 Pre-saturation of the solvents	39
	3.2.8.2 Test substance	40

CONTENTS (continued)

	Page
3.2.9 Stability test	
3.2.9.1 Effect of photo on stability of the extract	41
3.2.9.2 Effect of temperature on stability of the extract	41
3.2.9.3 Effect of accelerated conditions for stability of the extract	41
3.2.9.4 Effect of pH on stability of the extract	42
3.2.10 Statistic	42
Chapter	
4. Results and Discussion	
4.1 Quantitative determination of rhinacanthins in R. nasutus leaf extract	43
4.2 Preparation of rhinacanthin high-yielding R. nasutus leaf extract	49
4.3 Antifungal activity of the rhinacanthin high-yielding R. nasutus leaf extract	51
4.4 Solubility of the rhinacanthin high-yielding R. nasutus leaf extract	52
4.5 Determination of moisture content	53
4.6 Determination of ash content	54
4.6.1 Total ash content	54
4.6.2 Acid insoluble ash content	55
4.7 Determination of the microbial contamination	56
4.8 Partition coefficient	57
4.9 Stability test	
4.9.1 Effect of photo on the stability of the extract	58
4.9.2 Effect of temperature on the stability of the extract	61
4.9.3 Effect of accelerated condition on the stability of the extract	63
4.9.4 Effect of pH on the stability of the extract	65
Chapter	
5. Conclusion	70
Bibliography	72
Vitae	78

LIST OF FIGURES

Figu	ıre	Page
2.1	Rhinacanthus nasutus (Linn.) Kurz	5
2.2	Structure of rhinacanthins	10
2.3	Structure of lignans	14
2.4	Structure of rhinacanthone	14
2.5	Structure of other substances in R. nasutus	15
4.1	HPLC-chromatograms of (A) the authentic rhinacanthin-C, -D, and -N	
	and (B) R. nasutus leaf extract	44
4.2	Calibration curve of rhinacanthin-C	45
4.3	Calibration curve of rhinacanthin-D	46
4.4	Calibration curve of rhinacanthin-N	46
4.5	UV-absorption spectra of the peak that corresponded to rhinacanthin-D	48
4.6	UV-absorption spectra of the peak that corresponded to rhinacanthin-C	48
4.7	UV-absorption spectra of the peak that corresponded to rhinacanthin-N	49
4.8	Rhinacanthin high-yielding R. nasutus leaf extract	51
4.9	Total rhinacanthin content of the rhinacanthin high-yielding R. nasutus	
	leaf extract stored under light and protected from light conditions	59
4.10	HPLC-chromatogram of the rhinacanthin high-yielding R. nasutus leaf extract	
	at the initial time (A) and after exposed to light for 16 weeks (B)	60
4.11	Total rhinacanthin content of the rhinacanthin high-yielding R. nasutus	
	leaf extract stored under 4 °C and 30 °C	62
4.12	Total rhinacanthin content of the rhinacanthin high-yielding R. nasutus	
	leaf extract stored under normal and accelerated conditions	64
4.13	The physical appearance of rhinacanthin high-yielding R. nasutus leaf extract in	
	the solution of MeOH : $\rm H_2O$ (1 : 1) with phosphate buffer pH 5.5, 7, 8, and no buffer	66
4.14	HPLC-chromatograms of the rhinacanthin high-yielding R. nasutus extract	
	(A) and its solutions at pH 5.5 (B), 7.0 (C) and 8.0 (D) after 16 weeks	67

LIST OF FIGURES (continued)

Figure	Page
4.15 Total rhinacanthin content of rhinacanthin high-yielding extract in the	
solution of MeOH: H ₂ O (1:1) with phosphate buffer pH 5.5, 7, and 8	69

LIST OF TABLES

Tabl	le	Page
2.1	Chemical constituents of Rhinacanthus nasutus	7
2.2	Antifungal activity of naphthoquinones isolated from the leaves of R. nasutus	21
2.3	Cytotoxic activity of naphthoquinones and flavonoid isolated from the roots of	
	R. nasutus	23
2.4	Cytotoxic activity of rhinacanthin-M, -N, and -Q	23
2.5	In vitro antiproliferative activities of the R. nasutus extract and rhinacanthin-C	
	in tested cell lines	24
4.1	Rhinacanthins content of in R. nasutus leaf extract	44
4.2	Linear ranges and correlation coefficients of calibration curves	45
4.3	Repeatability, reproducibility and recoveries of rhinacanthin-C, -D, -N	
	from R. nasutus leaves	47
4.4	Total rhinacanthin content in the ethyl acetate and rhinacanthin high-yielding	
	extracts of R. nasutus leaves	50
4.5	Extraction yield and total rhinacanthin content of rhinacanthin high-yielding	
	R. nasutus leaf extract	50
4.6	Antifungal activities of rhinacanthins, EtOAC extract and HRn extract	
	against M. gypseum, T. mentagrophytes, and T. rubrum	52
4.7	Solubility of the rhinacanthin high-yielding R. nasutus leaf extract	53
4.8	The moisture content of rhinacanthin high-yielding R. nasutus leaf extract	54
4.9	The total ash content of rhinacanthin high-yielding R. nasutus leaf extract	55
4.10	The acid insoluble ash content of rhinacanthin high-yielding <i>R. nasutus</i> leaf extract	55
4.11	Determination of microbial contamination in the rhinacanthin high-yielding	
	R. nasutus leaf extract	56
4.12	The partition coefficient's logarithm (Log K) of the rhinacanthin high-yielding	
	R. nasutus leaf extract	57

LIST OF TABLES (continued)

Tab	le	Page
4.13	Rhinacanthins content of the rhinacanthin high-yielding R. nasutus leaf extract	
	stored under light and protected from light conditions	59
4.14	Rhinacanthins content of the rhinacanthin high-yielding R. nasutus leaf extract	
	stored under 4 °C and 30 °C	61
4.15	Rhinacanthin content of the rhinacanthin high-yielding R. nasutus leaf extract	
	stored under normal and accelerated conditions	64
4.16	Rhinacanthin-D content of the rhinacanthin high-yielding R. nasutus leaf extract	
	in the solution at pH 5.5, 7.0, and 8.0	68
4.17	Rhinacanthin-C content of the rhinacanthin high-yielding R. nasutus leaf extract	
	in the solution at pH 5.5, 7.0, and 8.0	68
4.18	Rhinacanthin-N content of the rhinacanthin high-yielding R. nasutus leaf extract	
	in the solution at pH 5.5, 7.0, and 8.0	69