Chapter 3

Results and Discussion

The crude alkaloid of the roots of Tabernaemontana peduncularis Wall. was separated by chromatographic methods yielding seven compounds, R9TP 01, R9TP 03, R9TP 05, R9TP 08, R9TP 13, R9TP 17 and R9TP 20. One of them is a new compound (R9TP 08). Their structures were determined base on the spectroscopic data. The known compounds were also accomplished by comparison of their spectroscopic data, especially ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data with those reported in the literatures.

3.1 The structure elucidation of R9TP 08

R9TP 08 was obtained as amorphous form, $[\alpha]_{\mathrm{D}}-52.0^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right)$. The UV spectrum (Figure A.1) showed absorption maxima at 226, 254 and 286 nm ($\log \varepsilon 4.55,3.48$ and 3.81 respectively), typical of an indole chromophore. In addition, the IR spectrum (Figure A.2) showed bands due to OH and NH stretching ($3375 \mathrm{~cm}^{-1}$) and ester carbonyl $\left(1720 \mathrm{~cm}^{-1}\right)$ functions. The HRFABMS showed a $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 369.2168$ leading to the chemical formula as $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}$ (calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}, 369.2178$). Therefore, the chemical formula $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}$ was corresponding to the molecular formula $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$.

The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 3.1 and Figure A.4) showed 22 signals for 22 carbon atoms. Analysis by HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of R9TP 08 suggested the presence of two methyl carbon atoms ($\delta 52.67$ and 11.69), six methylene carbon atoms ($\delta 62.22,51.57,38.28,27.56,26.44$ and 21.76), nine methine carbon atoms ($8122.05,119.29,110.40,59.92,57.92,38.11$ and 30.75) and six signals for quaternary carbon atoms ($\delta 175.44,136.30,135.50,128.47$, 109.95 and 54.96).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 3.1 and Figure A.5) showed signals attributable to four isolated protons of an aromatic system ($\delta 7.47, \mathrm{br}$ dd, $J=8.0$, $1.2 \mathrm{~Hz} ; 7.26, \mathrm{br}$ dd, $J=8.1,1.1 \mathrm{~Hz} ; 7.16$, ddd, $J=8.0,7.1,1.1 \mathrm{~Hz} ; 7.10$, ddd, $J=$ 8.0, 7.1, 1.2 Hz) indicated the unsubstituted indole ring which supported by the UV spectrum. In addition, from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Figure A.6) and HMQC (Figure A.7) spectra those aromatic proton $(\delta 7.47, \delta 7.26, \delta 7.16$ and $\delta 7.10)$ were assigned to $\mathrm{H}-12, \mathrm{H}-9, \mathrm{H}-11$ and $\mathrm{H}-10$, respectively. Furthermore, aromatic methine carbons resonanced ($\delta 122.05,119.29,118.34$ and 110.40) were determined to C-11, C-10, C-12 and C-9, respectively. Nonetheless, the other carbons of indole nucleus carbon resonanced ($\delta 136.30,135.50,128.47$ and 109.95) were established by HMBC (Figure A.8) spectrum to C-2, C-13, C-8 and C-7, respectively.

indole nucleus

The observation of methyl protons signal ($\delta 0.92$, dd, $J=7.4,7.4 \mathrm{~Hz}$) which coupling with two metylene protons resonated at $\delta 1.59$ (ddq, $J=13.7,7.4,6.1 \mathrm{~Hz}$) and $\delta 1.44$ (ddq, $J=13.7,7.4,6.6 \mathrm{~Hz})$ together with two carbon atoms resonated at $\delta 11.69$ and 26.44 indicated the presence of ethyl side chain, $\mathrm{C}-18$ and $\mathrm{C}-19$. Moreover, the chemical shifts of $\mathrm{C}-18$ and $\mathrm{C}-19$ were characteristic to the iboga type indole alkaloids e.g. coronaridine C-19 ($\delta 27.0$), C-18 ($\delta 11.6$) (van Beek et al., 1982). Indeed, from ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectral data, methyl protons ($\delta 0.92$) and two metylene protons signals ($\delta 1.59$ and 1.44) was readily determined to $\mathrm{H}-18, \mathrm{H}-19$ a and $\mathrm{H}-19$ b, respectively, while two carbon atoms signals at $\delta 11.69$ and 26.44 were belonging to C-18 and C-19 respectively.

In the HMBC spectrum, the carbon resonance at $\delta 38.11$ showed the correlation with methyl protons (H-18) while the HMQC spectrum showed the correlation with a proton signal at $\delta 1.32$ (br dddd, $J=7.4,7.4,7.2,6.1 \mathrm{~Hz}$). Together with the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum showed the correlation with methylene proton of C-19. Consequently the ethyl side chain attached at the methine carbon resonated at $\delta 38.11$. With in the iboga type of indole alkaloids, the ethyl side chain attaches at C-20 (van Beek et al., 1984). Therefore, the carbon signal at $\delta 38.11$ was assigned to be C-20.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra showed two methylene protons which coupling within each others ($\delta 3.36$, ddd, $J=13.9,7.6,6.2 \mathrm{~Hz} ; 3.28$, ddd, $J=$ $13.9,10.0,6.0 \mathrm{~Hz} ; 3.15$, ddd, $J=15.9,10.0,6.2 \mathrm{~Hz}$ and 3.09 , ddd, $J=15.9,7.6,6.0$ $\mathrm{Hz})$. Thus, these were two couple germinal protons, $\delta 3.36 \& 3.28$ and δ $3.15 \& 3.09$. In the HMQC spectrum the carbon resonaces at $\delta 51.57$ showed the correlation with the proton signals at $\delta 3.36$ and 3.28 while the carbon resonaces at $\delta 21.76$ showed the correlation with the proton signals at $\delta 3.15$ and 3.09. In addition, the carbon resonated at $\delta 51.57$ was characteristic to a carbon atom which directly connect to an N atom.

Moreover, H-12 ($\delta 7.47$) and H-9 ($\delta 7.26$) showed the correlation with this carbon atom. Thus, this carbon was determined to C-5 which leading to establish a carbon signal at $\delta 21.76$ to be C-6. The ${ }^{13} \mathrm{C}$ NMR also showed others carbon resonance that could be assigned to directly connect with N atom, $\delta 59.92$ and 57.92. The methine carbon, $\delta 59.92$, showed the correlation with a proton $\delta 2.92$ (br dd, $J=7.0,2.6 \mathrm{~Hz}$) in the HMQC spectrum. Furthermore, in the HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra the proton signals $\delta 3.64(\mathrm{dd}, J=10.9,2.6 \mathrm{~Hz}$) and $3.54(\mathrm{dd}$, $J=10.9,7.0 \mathrm{~Hz})$ not only showed the correlation with the carbon value $\delta 62.22$ but also showed the correlation with proton $\delta 2.92$. Thus, the carbon resonance δ 62.22 was established to $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ group which directly connected with a carbon value $\delta 59.92$. The presence of OH group was confirmed by the IR spectrum at $3375 \mathrm{~cm}^{-1}$ (OH stretching). Nevertheless, the HMBC spectrum showed the
correlation between proton signal $\delta 2.92$ and C-5 (δ 51.57). Consequently, the methine carbon value $\delta 59.92$ was determined to C-3. The remained methine carbon resonance ($\delta 57.92$) which could be adjacent to N atom had the correlation with a broad singlet signal at $\delta 3.71$ in the HMQC spectrum. In addition this proton ($\delta 3.71$) also revealed the correlation with $\mathrm{H}-20$ ($\delta 1.32$), therefore the carbon resonanced $\delta 57.92$ was assigned to be C-21.

The stereochemistry of $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ group was investigated by NOE spectroscopy experiment (Figure A.9-A.11). The NOE spectrum exhibited the correlation of H-3 to H-5 Pro-S, H-3 to H-17 exo, H-3 to H-14 and (- $\mathrm{CH}_{2} \mathrm{OH}$) to $\mathrm{H}-19$. These indicated that $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ group and ethyl side chain was located at the same side of the molecule. The isolation of R9TP 08 represented the first instance of $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ group function at position $\mathrm{C}-3$ of the iboga skeleton.

Selected NOE correlation of R9TP 08

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra exhibited the correlation between five proton signals ($\delta 2.65$, dd, $J=13.5,1.8 \mathrm{~Hz} ; 2.00$, br ddd, $J=13.5,4.1,2.7 \mathrm{~Hz}$; $1.92, \mathrm{~m} ; 159, \mathrm{~m} ; 1.47$, $\mathrm{br} \mathrm{dd}, J=16.2,7.0,2.2,2.2 \mathrm{~Hz}$). Furthermore, the HMQC spectrum showed the correlation between the carbon value 38.28 and the proton signal at $\delta 2.65$ and 2.00 , while the carbon value $\delta 27.56$ had the correlation with the proton signal at $\delta 1.59$ and 1.47.

Nonetheless, all those four proton signals also had the correlation with a proton at $\delta 1.92$ which showed the correlation to C-3 ($\delta 59.92$) in the HMBC spectrum. Thus, the carbon resonanced at $\delta 30.75$ could be assigned to $\mathrm{C}-14$. The 14 position in the iboga skeleton was connected to $\mathrm{C}-15$ and $\mathrm{C}-17$, therefore the carbon resonanced at $\delta 27.56$ was deduced to C - 15 since all methylene proton signals ($\delta 1.59$ and 1.47) revealed the correlation with $\mathrm{H}-20(\delta 1.32)$ in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. On the other hand, the methylene protons ($\delta 2.05$ and 2.00) had the correlation with $\mathrm{H}-14$ and did not had the correlation with $\mathrm{H}-20$ were readily determined to $\mathrm{H}-17$.

The signal due to carbomethoxy function were characteristically observed in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra data. The ester carbonyl carbon was exhibited at $\delta 175.44$ and further proof of this was provided by the observed band at $1720 \mathrm{~cm}^{-1}$ in the IR spectrum. Addition, the singlet methyl protons at $\delta 3.72$ and the methoxy carbon resonanced at $\delta 52.67$ also supported the presence of this function. The carbomethoxy group was located at the quaternary carbon resonance at $\delta 54.96$ that had the correlation with $\mathrm{H}-21$ and $\mathrm{H}-17$ in the HMBC spectrum. Therefore the carbon value 54.96 was established as $\mathrm{C}-16$.

The above-mentioned data unambiguously confirmed the structure of R9TP 08 as (-)-3S-(hydroxymethyl)-coronaridine.

R9TP 08, (-)-3S-(hydroxymethyl)-coronaridine

Table $3.1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for R9TP 08 (500 and 125 MHz respectively in CDCl_{3})

Position	$\delta \mathrm{C}$	$\delta \mathrm{H}(J, \mathrm{~Hz})$	$\begin{gathered} \text { HMBC } \\ \left({ }^{13} \mathrm{C} \rightarrow{ }^{1} \mathrm{H}\right) \end{gathered}$
2	136.30		$6_{\text {Pro-R\&S }}$, $17_{\text {exodendo }}, 21$
3	59.92	2.92 br dd (7.0, 2.6)	$\begin{aligned} & 5_{\text {Pro-RRSS }}, 15_{\text {exokendo }}, 20, \\ & 21, \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$
5	51.57	pro-S 3.28 ddd (13.9, 10.0, 6.0) pro-R 3.36 ddd (13.9, 7.6, 6.2)	$6_{\text {Pro-R\&S }}$
6	21.76	pro-S 3.09 ddd $(15.9,7.6,6.0)$ pro-R 3.15 ddd (15.9, 10.0, 6.2)	$5_{\text {Pro-R\&S }}$
7	109.95		$5_{\text {Pro-R\&S }}, 6_{\text {Pro-ReS }}, \mathrm{NH}$
8	128.47		$9,10,12, \mathrm{NH}$

Table 3.1 (Continued)

Position	$\delta \mathrm{C}$	$\delta \mathrm{H}(\mathrm{J}, \mathrm{Hz})$	$\begin{gathered} \mathrm{HMBC} \\ \left({ }^{13} \mathrm{C} \rightarrow{ }^{1} \mathrm{H}\right) \end{gathered}$
9	110.40	$7.26 \mathrm{br} \mathrm{dd}(8.1,1.1)$	10
10	119.29	7.10 ddd (8.1, 7.1, 1.2)	9,12
11	122.05	7.16 ddd (8.0, 7.1, 1.1)	
12	118.34	$7.47 \mathrm{br} \mathrm{dd}(8.0,1.2)$	10,11
13	135.50		11, 12, NH
14	30.75	1.92 m	$\begin{aligned} & 3,15_{\text {exo, endo, }}, 17_{\text {exo, endo, }} \\ & \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$
15	27.56	exo 1.47 dddd (16.2, 7.4, 2.2, 1.5) endo 1.59 ddd (16.2, 7.4, 4.6)	$\begin{aligned} & 3,14,17_{\text {exo, endo }}, 19_{\mathrm{a}, \mathrm{~b}}, \\ & 20,21 \end{aligned}$
16	54.96		14, $17{ }_{\text {exo, endo }}, 21$
17	38.28	$\begin{aligned} & \text { exo } 2.00 \mathrm{ddd}(13.5,4.1,1.5) \\ & \text { endo } 2.65 \mathrm{dd}(13.5,1.8) \\ & \hline \end{aligned}$	14, $15_{\text {exo, endo }}, 21$
18	11.69	0.92 dd (7.4, 7.4)	$19_{\mathrm{a}, \mathrm{b}}, 20$
19	26.44	$\begin{aligned} & 1.44 \mathrm{ddq}(13.7,7.4,7.2) \\ & 1.59 \mathrm{ddq}(13.7,7.4,6.1) \\ & \hline \end{aligned}$	$15_{\text {exo, endo, }}, 18$
20	38.11	1.32 br dddd ($7.4,7.4,7.2,6.1$)	$\begin{aligned} & 3,15_{\text {exo, endo, }}, 18,19_{\mathrm{a}, \mathrm{~b}}, \\ & 21 \end{aligned}$
21	57.92	$3.71 \mathrm{br} s$	$5_{\text {Pro-ReS }}$, 15, 17, 19
$-\mathrm{CH}_{2} \mathrm{OH}$	62.22	pro-S 3.54 dd (10.9, 7.0) pro-R 3.64 dd (10.9, 2.6)	
$\mathrm{CO}_{2} \underline{\mathrm{Me}}$	52.67	3.72 s	
$\mathrm{C}=\mathrm{O}$	175.44		
NH		7.61 br s	

Selected HMBC correlation of R9TP 08

