CONTENTS

		Page
บข	าคัดย่อ	(iii)
AE	BSTRACT	(v)
AC	CKNOWLEDGEMENT	(vii)
СС	ONTENTS	(viii)
LIS	ST OF TABLES	(xi)
LIS	ST OF ILLUSTRATIONS	(xii)
AE	BREVIATION AND SYMBOLS	(xv)
Cŀ	IAPTER	
1.	INTRODUCTION	1
	1.1 General Introduction	1
	1.2 Objectives of the Thesis	3
	1.3 Structure of the Thesis	3
2.	REVIEW OF LITERATURE	4
	2.1 The pulmonary system	4
	2.2 Inhalation therapy	6
	2.3 Dry powder inhaler technology	7
	2.4 Factors affecting DPI performance	8
	2.4.1 Formulation factors	8
	2.4.2 Device factors	10
	2.5 Commercial DPI device design at present	13
	2.6 Drug deposition evaluation	17

CONTENTS (Continued)

			Page
	2.6.1	The in vivo assessment technique	17
	2.6.2	The in vitro assessment technique	18
	2.7 Balan	ce of device resistances and degree of turbulence	21
3.	MATERI	ALS AND METHODS	23
	3.1 Mater	ials	23
	3.2 Equip	ments	23
	3.3 Valida	ation of spectrofluorometry method	24
	3.3.1	Spectrofluorometry conditions	25
	3.3.2	Calibration curve for standard salbutamol sulfate	25
	3.3.3	Method validation of salbutamol sulfate	26
	3.4 Formu	ulation design and devices evaluation	26
	3.4.1	Preparation of the micronized lactose carrier	27
	3.4.2	Particle size distribution measurement	27
	3.4.3	Characterization of particle morphology	28
	3.4.4	Preparation of formulations	28
	3.4.5	Content uniformity of the formulation	29
	3.4.6	Dimension of devices	29
	3.4.7	Device resistance measurement	30
	3.5 Devic	es performance evaluation	33
	3.5.1	Drug deposition studies	33
	3.5.2	Computer modeling of air-flow through pipes device	35

CONTENTS (Continued)

4.	. RESULTS AND DISCUSSION			
	4.1 Valida	38		
	4.1.1	38		
	4.1.2	38		
	4.2 Formulation design and devices evaluation			
	4.2.1 Particle size distribution of DPI formulations			
	4.2.2 Particle morphology of drug and carriers			
	4.2.3	Content uniformity of dry powder formulations	43	
	4.2.4 Dimensions of devices			
	4.2.5 Device resistance of dry powder inhaler devices			
4.3 Devices performances			48	
	4.3.1 Drug emission		48	
	4.3.2	Fine particle fraction	48	
	4.3.3	Mass median aerodynamic diameter	52	
	4.3.4	Modeling of air-flow through pipes device	54	
5.	CONCLU	JSIONS	57	
BI	BIBLIOGRAPHY 59			
AF	APPENDIX 65			
Vľ	VITAE 77			

Page

LIST OF TABLES

Table		Page
Table 2.1	Characteristics required from an ideal dry powder inhaler	13
Table 2.2	Breath-driven dry powder inhalers that are currently marketed	14
Table 2.3	The jet dimensions for each stage and ACI (Mark II) paramete	rs
	operating at 28.3 L min ⁻¹	20
Table 4.1	Intra-day and inter-day accuracy of salbutamol sulfate	40
Table 4.2	Mode, Median and Span of lactose particle size distributions	40
Table 4.3	Content uniformity of the salbutamol sulfate DPI formulations	44
Table 4.4	Cross section and device dimension data	45
Table 4.5	Device resistance of DPI device used in this study	47
Table 4.6	Drug loss via inertial impaction	52
Table B.1	Stage D_{50} values (µm) for the various configurations of the	
	Andersen 8 stage cascade impactor at different flow rates	74
Table B.2	Component units of ACI	75

LIST OF ILLUSTRATIONS

Figure		Page
Figure 2.1	Respiratory and the Alveolar system	5
Figure 2.2	Physiology of the airways	6
Figure 2.3	Relationship between the %FPF and the carrier median	
	diameter	9
Figure 2.4	Interaction between particles	9
Figure 2.5	Methodology in reducing cohesive force and forming a weak	
	adhesive force	10
Figure 2.6	Mechanism of drug release from dry powder inhaler	11
Figure 2.7	Mechanisms for dispersion of powder as aerosol inside	
	an inhaler	12
Figure 2.8	Relationship between device resistance, breathing force and	
	device	12
Figure 2.9	Rotahaler	15
Figure 2.10	Inhalator Ingelheim	15
Figure 2.11	Spinhaler	15
Figure 2.12	Turbuhaler	16
Figure 2.13	Directhaler	16
Figure 2.14	Andersen Cascade Impactor and Twin Stage Impinger	18
Figure 2.15	General principle of inertial sampling through a jet onto a	
	collection plate	19

LIST OF ILLUSTRATIONS (Continued)

Figure		Page		
Figure 2.16 Oral cavity deposition for a 5 μm diameter aerosol at				
	32 L min ⁻¹ entering through various diameter straight			
	tube inlets	22		
Figure 3.1	Dry powder inhaler devices used in this study	30		
Figure 3.2	Pressure drop determining apparatus	32		
Figure 3.3	Relationships between pressure drop and flow-rate	32		
Figure 3.4	Calculating of %FPF at flow rate 30, 60 and 90 L min ⁻¹	34		
Figure 3.5	Determination of MMAD	35		
Figure 3.6	Calculated meshing pipes volume from Gambit 2.2.3	37		
Figure 4.1	Standard curve of salbutamol sulfate	38		
Figure 4.2	Intra-day precision of salbutamol sulfate	39		
Figure 4.3	Inter-day precision of salbutamol sulfate	39		
Figure 4.4	Particle size distribution of carrier collected from sieve			
	30-71 μm	41		
Figure 4.5 Electron micrograph of Micronized salbutamol sulfate and				
	collected lactose	43		
Figure 4.6	Dimensions of tobacco pipes	46		
Figure 4.7	Relationships between square root pressure drop and			
	flow-rate of DPI devices used in this study	47		
Figure 4.8	%Emissions from DPI devices with 3 formulations operating			
	at 30, 60 and 90 L min ⁻¹	48		

LIST OF ILLUSTRATIONS (Continued)

Figure	P	age
Figure 4.9	Calculated %FPF from DPI devices operated at 30, 60 and	
	90 L min ⁻¹	50
Figure 4.10	Calculated MMAD from DPI devices operated at 30, 60 and	
	90 L min ⁻¹	53
Figure 4.11	Calculated dynamic pressure of curved pipe and straight pipe	55
Figure 4.12	Calculated cell Reynolds number and velocity vectors of	
	curved pipe and straight pipe	56
Figure B.1	Schematic of a multi-stage impactor, showing the separation	
	of progressively finer particles as the aerosol passes through	
	successive stages to the after filter	73
Figure B.2	Relationship between Andersen 8-stage cascade impactor	
	cut sizes at 28.3 L min ⁻¹ and likely particle deposition in the	
	respiratory tract	73
Figure B.3	The preseparator of ACI	76

ABBREVIATIONS AND SYMBOLS

ACI	=	Andersen cascade impactor
BP	=	British Pharmacopoeia
°C	=	degree Celsius
CFC	=	chlorofluorocarbon
cm	=	centimeter
cm/s	=	centimeter per second
COPD	=	chronic obstructive pulmonary disease
D	=	characteristic distance or pipe diameter
DPI	=	dry powder inhaler
eg.	=	exempli gratia
FPF	=	fine particle fraction
g	=	gram
h.	=	hour
HPLC	=	high performance liquid chromatography
L	=	liter
L min ⁻¹	=	liter per minute
m	=	meter
mA	=	milliAmpere

ABBREVIATIONS AND SYMBOLS (Continued)

mbar	=	millibar
mg	=	milligram
min	=	minute
ml	=	milliliter
mm	=	millimeter
MMAD	=	mass median aerodynamic diameter
hð	=	microgram
μm	=	micrometer
n	=	number of sample
nm	=	nanometer
Ра	=	Pascal
P _D	=	the pressure drop across the device
pMDI	=	pressurized metered dose inhalers
Q	=	flow-rate
R^2	=	correlation coefficient
R_{D}	=	specific resistance of the device
Re	=	Reynolds number
rpm	=	round per minute

ABBREVIATIONS AND SYMBOLS (Continued)

RSD	=	relative standard deviation
SD	=	standard deviation
SEM	=	scanning electron microscopy
Тд	=	glass temperature
TSI	=	twin stage impinger
UK	=	United Kingdom
USP	=	The United States Pharmacopoeia
UV	=	ultraviolet
V	=	free-stream fluid velocity
w/v	=	weight by volume
x	=	mean
η	=	gas viscosity
ρ	=	gas density