CONTENTS

	Page
CONTENTS	vii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER	
1. INTRODUCTION	
1.1 General introduction	1
1.2 Physiological functions	4
1.2.1 To hole the cell in aerobic environment	4
1.2.2 To colonize on food and substrate	4
1.2.3 Prevent potential competitor	4
1.2.4 Protect from ultraviolet radiation (UV)	5
1.2.5 Help retain moisture	5
1.3 Properties of bacterial cellulose	5
1.4 Structure of bacterial cellulose	6
1.5 Biochemistry of bacterial cellulose synthesis	9
1.5.1 Carbon metabolism in Acetobacter xylinum	9
1.5.2 Cellulose synthesis in Acetobacter xylinum	9
1.5.3 Cellulose synthase (CS)	11
1.5.4 Mechanism of bacterial cellulose biosynthesis	11

Page

1.5.4.1 Mechanism of B-1,4-glucan polymerization	12
1.5.4.2 Assembly and crystallization of cellulose chains	12
1.6 Bacterial cellulose productions	18
1.6.1 Stationary culture conditions	18
1.6.2 Agitated culture conditions	19
1.6.3 Horizontal fermentors	20
1.7 Factor effecting growth and cellulose production	21
1.7.1 Isolation from natural sources and improvement	21
of bacterial cellulose producing strains	
1.7.2 Carbon and nitrogen sources	22
1.7.3 Effect of pH and temperature	24
1.7.3 Fermentor types	24
1.8 Bacterial cellulose purifications	24
1.9 Applications of bacterial cellulose	26
1.9.1 Filter membranes	26
1.9.2 Paper industries	27
1.9.3 Food industries	28
1.9.4 Miscellaneous uses	28

	Page
1.9.5 Medical applications	29
1.9.5.1 Bacterial cellulose as a potential scaffold	29
for tissue engineering of cartilage	
1.9.5.2 Bacterial cellulose as a potential wound	30
dressing	
1.10 Topical antimicrobial agents used in burn wounds	32
1.11 Chlorhexidine	34
1.11.1 Chlorhexidine gluconate	35
1.11.2 Chlorhexidine acetate	35
1.11.3 Chlorhexidine hydrochloride	35
1.11.4 Chlorhexidine digluconate	36
1.12 Aims and scope of this thesis	37
2. MATERIALS AND METHODS	
2.1 Preparation of Acetobacter xylinum TISTR 975 preculture	38
and bacterial cellulose (BC) production	
2.1.1 Growing A. xylinum TISTR 975 from	38
lyophilized stock	
2.1.2 Preparation of preculture of A. xylinum	38
TISTR 975 for bacterial cellulose production	

	Page
2.1.3 Bacterial cellulose production from different	39
carbon sources	
2.2 Evaluation of bacterial cellulose properties	40
2.2.1 Weight of bacterial cellulose dry film	40
2.2.2 Thickness of bacterial cellulose dry film	40
2.2.3 Percent yield of bacterial cellulose dry film	40
2.2.4 Observation of bacterial cellulose fiber under	40
scanning electron microscope (SEM)	
2.2.5 Observation of crystallinity of bacterial cellulose	41
dry film by X-ray diffractometer (XRD)	
2.2.6 Evaluation of Tensile strength of bacterial cellulose films	41
2.2.7 Nitrogen adsorption isotherm and pore size	42
distributions of bacterial cellulose films	
2.2.8 Water loss and water readsorption ability of bacterial	42
cellulose wet films	
2.2.9 Moisture adsorption isotherm of bacterial cellulose	43
at various relative humidity (RH)	
2.3 Preparation and evaluation of bacterial cellulose film containing	44
chlorhexidine digluconate	
2.3.1 Antimicrobial activity of chlorhexidine digluconate	44

Х

	Page
2.3.1.1 Tested of antimicrobial activity of chlorhexidine	45
digluconate by agar diffusion method	
2.3.1.1.1 Chlorhexidine digluconate disk	45
preparation	
2.3.1.1.2 Preparation of inoculum	45
2.3.1.1.3 Streaking tested microorganisms	45
on the plate	
2.3.1.1.4 Agar diffusion test	46
2.3.1.2 Minimal inhibitory concentration (MIC) and	47
minimal bactericidal concentration (MBC) of	
chlorhexidine digluconate to reference strains	
2.3.1.2.1 Preparation of inoculum	47
2.3.1.2.2 MIC test of chlorhexidine digluconate	47
to reference strains	
2.3.1.2.3 MBC test of chlorhexidine digluconate	47
to reference strains	
2.3.1.3 Tested of antimicrobial activity of bacterial	47
cellulose disk containing chlorhexidine digluconate	
2.3.2 Preparation of bacterial cellulose films containing	48
chlorhexidine digluconate	

	Page
2.3.2.1 In vitro chlorhexidine digluconate release	48
using Franz diffusion cell	
2.3.2.2 Determination of chlorhexidine digluconate	49
content in the bacterial cellulose film	
2.3.2.3 Observation of bacterial cellulose film containing	g 49
chlorhexidine digluconate under SEM	
3. RESULTS	
3.1 Evaluation of bacterial cellulose properties	50
3.1.1 Dry-weight, thickness and percent yield of bacterial	50
cellulose dry films	
3.1.2 Observation of bacterial cellulose dry films under	53
scanning electron microscope (SEM)	
3.1.3 Crystallinity of bacterial cellulose dry films by	56
X-ray diffractometer (XRD)	
3.1.4 Tensile strength of bacterial cellulose films	59
3.1.5 Nitrogen adsorption isotherm and pore size	60
distributions of bacterial cellulose films	
3.1.6 Percent of water loss and percent water	65
readsorption of bacterial cellulose wet film	

	Page
3.1.7 Moisture adsorption isotherm of bacterial	
cellulose at various relative humidities (RH)	
3.2 Antimicrobial activity of chlorhexidine digluconate	69
3.3 Chlorhexidine digluconate content and percent accumulative	72
of chlorhexidine digluconate released from bacterial cellulose film	
3.4 Scanning electron microscope of bacterial cellulose	75
film containing chlorhexidine digluconate	
4. DISCUSSIONS	
4.1 Production and evaluation of bacterial cellulose film	77
4.2 Observation of bacterial cellulose fiber under	78
scanning electron microscope (SEM)	
4.3 Crystallinity of bacterial cellulose by X-ray diffractometer (XRD)	80
4.4 Tensile strength of bacterial cellulose production	81
produced from different carbon sources	
4.5 The nitrogen adsorption isotherm and pore size	82
distribution of bacterial cellulose films	
4.6 Percent of water loss and percent water readsorption	83
of bacterial cellulose wet film	
4.7 The moisture adsorption isotherm of bacterial cellulose	84

	Page
4.8 Antimicrobial activity of chlorhexidine digluconate	86
4.9 Chlorhexidine digluconate content in the film and	87
chlorhexidine digluconate releasing study	
5. CONCLUSIONS	89
6. BIBLIOGRAPHY	91
APPENDIX	105
VITAE	112

LIST OF TABLES

Т	Fable		Page
	1.	Dry-weight, thickness and percent yield of bacterial	52
		cellulose dry films from different carbon sources	
		$(area 63.58 \text{ cm}^2) (mean \pm \text{SD}, n = 6)$	
	2.	Percent crystallinity of bacterial cellulose dry films	58
		from different carbon sources	
	3.	Maximum Load, Extension at Break and Tensile	
		59	
		strength of bacterial cellulose films from different	
		carbon sources (mean \pm SD, n = 5)	
	4.	Percent of water loss and percent of water readsorption	66
		of bacterial cellulose wet films after drying at 50°C	
		for 2, 4, 6, 8, 10, 12, 14, 16, 20 and 24 h, respectively	
		$(\text{mean} \pm \text{SD}, n = 6)$	
	5.	Antimicrobial activity of chlorhexidine digluconate	70
		$(\text{mean} \pm \text{SD}, n = 3)$	
	6.	Antimicrobial activity of bacterial cellulose disk	71
		containing chlorhexidine digluconate (mean \pm SD, n = 3)	

LIST OF FIGURES

Figure		Page
1.	Bacterial cellulose dry films from different carbon sources:	51
	(A) glycerine; (B) mannitol; (C) sucrose; (D) glucose	
	and (E) fructose	
2.	Scanning electron micrograph of bacterial cellulose dry films	54
	from different carbon sources: (A) glycerine; (B) mannitol;	
	(C) sucrose; (D) glucose and (E) fructose	
3.	X-ray diffraction patterns of bacterial cellulose dry films	57
	from different carbon sources: () glycerine; () mannitol;	
	() fructose; () glucose and () sucrose	
4.	Nitrogen adsorption isotherms of bacterial cellulose	61
	films from different carbon sources: (■) glycerine;	
	(■) mannitol; (■) sucrose; (■) glucose and (■) fructose	
5.	Pore size distributions of bacterial cellulose films from	62
	different carbon sources: (A) glycerine; (B) mannitol;	
	(C) sucrose; (D) glucose and (E) fructose	
6.	Percent moisture adsorption of bacterial cellulose films from	68
	different carbon sources: () glycerine; () mannitol;	
	(—) sucrose; (—) glucose and (—) fructose at various	
	relative humidities.	

LIST OF FIGURES

Figure		Page
7.	The inhibition zone of chlorhexidine digluconate to	70
	Pseudomonas aeruginosa ATCC 27853	
8.	The inhibition zone of bacterial cellulose disk	71
	containing chlorhexidine digluconate to	
	Pseudomonas aeruginosa ATCC 27853	
9.	The content of chlorhexidine digluconate on bacterial	73
	cellulose films from different carbon sources	
	(surface area 1 cm ²) (mean \pm SD, n = 3)	
10.	Percent accumulative of chlorhexidine digluconate released	74
	from bacterial cellulose films from different carbon sources:	
	() glycerine; () mannitol; () sucrose; () glucose and	
	(\blacksquare) fructose (mean ± SD, n = 6)	
11.	The scanning electron micrograph of (A) BC film from	74
	glycerine; (B) BC films from glycerine containing	
	chlorhexidine digluconate	

LIST OF ABBREVIATIONS AND SYMBOLS

°C	degree Celcius
CFU	colony forming unit
cm	centimeter
g	gram
h	hour
1	liter
Ν	newton
mg	milligram
ml	milliliter
mm	millimeter
min	minute
nm	nanometer
rpm	round per minute
w/v	weigh by volume
w/w	weight by weight
μg	microgram
μl	microliter
μm	micrometer
%	percent