Contents

	Page
Contents	xi
List of Tables	xiii
List of Figures	xix
Chapter	
1 Introduction	1
1.1 Introduction	1
1.2 Background	3
1.2.1 Chemical identification	3
1.2.2 Physical and chemical properties	7
1.3 Toxicity	8
1.3.1 Di (2-ethylhexyl) phthalate (DEHP)	9
1.3.2 Di (2-ethylhexyl) adipate (DEHA)	12
1.4 Literature reviews	14
1.4.1 Occurrence in food	14
1.4.2 Occurrence in food packaging	16
1.4.3 Occurrence in childcare article and medical device	17
1.4.4 Occurrence in environment	18
1.4.5 Analysis method	19
1.4.6 Sample preparation	22
1.4.6.1 Liquid-liquid extraction (LLE)	22
1.4.6.2 Ultrasonic extraction	24
1.4.6.3 Solid Phase Extraction (SPE)	25
1.4.6.4 Solid phase microextraction (SPME)	27
1.4.6.5 Supercritical fluid extraction (SFE)	29
1.4.6.6 Microwave-assisted extraction (MAE)	30
1.5 Objectives	32
2 Experiment	33
2.1 Chemicals and materials	33

Contents (Continued)

		Page
	2.1.1 Standard chemicals	33
	2.1.2 General chemicals and solvents	33
	2.1.3 Samples	34
2.2	Instruments and apparatus	34
	2.2.1 Gas chromatography- Flame Ionization Detector	34
	2.2.2 Apparatus	35
2.3	Analysis system	36
2.4	Standard solution	37
	2.4.1 DEHP-DEHA standard stock solution	37
	2.4.2 DEHP-DEHA working standard solution	38
2.5	Optimization of GC-FID conditions	38
	2.5.1 Carrier gas (He) flow rate	39
	2.5.2 Column temperature programming	40
	2.5.3 Injector temperature	41
	2.5.4 Detector temperature	41
	2.5.5 Fuel (H ₂) flow rate	41
	2.5.6 Oxidant (air) flow rate	41
2.6	Limit of detection (LOD)	42
2.7	Linear dynamic range (Linearity)	42
2.8	Sample preparation	42
	2.8.1 Adsorbent conditioning	42
	2.8.2 Preparation of Florisil® cartridges	44
	2.8.3 Optimization of sample preparation procedure	44
	2.8.3.1 Extraction time	48
	2.8.3.2 Extraction solvent	48
	2.8.3.3 Volume of extraction solvent	49
	2.8.3.4 Sample flow rate	49
	2.8.3.5 Drying time	49

Contents (Continued)

	Page
2.8.3.6 Type of eluting solvent	49
2.8.3.7 Volume of eluting solvent	50
2.8.3.8 Flow rate of eluting solvent	50
2.9 Sampling	51
2.10 Matrix Interference	52
2.11 Method validation	53
2.11.1 Recovery	53
2.11.1 Method detection limit (MDL)	54
2.11.2 Limit of quantitation (LOQ)	54
2.11.3 Precision	55
2.12 Qualitative and quantitative analysis of phthalate and	
adipate esters in packaged food	56
2.12.1 Qualitative analysis	56
2.12.2 Quantitative Analysis	56
2.12.2.1 Matrix match calibration curve	56
2.12.2.2 Standard addition method	57
2.13 Quality assurance and quality control	58
3 Results and discussions	60
3.1 Optimization of GC-FID conditions for phthalate	
and adipate esters	60
3.1.1 Carrier gas flow rate	60
3.1.2 Column temperature programming	67
3.1.3 Injector temperature	75
3.1.4 Detector temperature	78
3.1.5 Fuel (H ₂) flow rate	82
3.1.6 Oxidant (air) flow rate	84
3.1.7 Summary of GC-FID conditions	85
3.2 Limit of detection (LOD)	87

Contents (Continued)

	Page
3.3 Linear dynamic range (Linearity)	88
3.4 Sample preparation	90
3.4.1 Optimization of ultrasonic extraction	91
3.4.1.1 Extraction time	91
3.4.1.2 Extraction solvent	93
3.4.1.3 Volume of extraction solvent	95
3.4.2 Optimization of solid phase extraction	96
3.4.2.1 Sample flow rate	97
3.4.2.2 Drying time	99
3.4.2.3 Type of eluting solvent	100
3.4.2.4 Volume of eluting solvent	103
3.4.2.5 Flow rate of eluting solvent	104
3.5 Matrix Interference	107
3.6 Comparison between the slope of standard and	
matrix match calibration curve	111
3.7 Method validation	113
3.7.1 Recovery	114
3.7.2 Method detection limit (MDL)	115
3.7.3 Limit of quantitation (LOQ)	116
3.7.4 Precision	117
3.8 Qualitative and quantitative analysis of phthalate	
and adipate esters in food	119
3.8.1 Qualitative analysis	119
3.8.2 Quantitative analysis	119
3.9 The regulations of phthalate and adipate esters in packaged food	136
4 Conclusion	142
References	148
Vitae	173

List of Tables

Table	Page
1 Chemical identifications of DEHP and DEHA	5
2 Physical and chemical properties of DEHP and DEHA	8
3 Application of GC to the determination of phthalates	
and adipate ester	21
4 GC-FID starting operating conditions	39
5 Physical properties of Florisil® 60-100 mesh	43
6 The starting operating conditions for the optimization	
of sample preparation	48
7 Optimization of sample preparation	51
8 Curry paste samples for phthalate and adipate esters	
determination	52
9 The Height Equivalent to a Theoretical Plate (HETP)	
of 10 μ g mL ⁻¹ , 1 μ L DEHP-DEHA standard solution at	
various carrier gas flow rates	66
10 Effect of initial temperature on the response and	
analysis time of 10 μg mL ⁻¹ 1 μL DEHP-DEHA	
standard solution	69
11 Effect of hold time at the initial temperature on the	
response and analysis time of 10 μg mL ⁻¹ , 1 μL	
DEHP-DEHA standard solution	70
12 Effect of ramp rate on the response and analysis time	
of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA standard solution	72
13 Effect of final temperature on the response and analysis	
time of 10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard solution	73
14 Effect of injector temperature on the response	
of 10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard solution	77
15 Effect of detector temperature on the response	
of 10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard solution	81
	xii

Table		Page
16	Effect of fuel gas flow rate on the responses of	
	10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard solution	83
17	Effect of oxidant gas (air) flow rate on the responses	
	of 10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard solution	84
18	Optimum conditions of GC-FID for phthalate	
	and adipate esters analysis	86
19	Limit of detection of DEHP and DEHA with S/N > 3	87
20	LOD reported for the determination of DEHP	88
21	Response of DEHA and DEHP at various concentrations	89
22	Effect of extraction time on the response of DEHA and	
	DEHP extraction	92
23	Effect of extraction solvent on the response of DEHA	
	and DEHP	94
24	Polarity index, dipole moment and dielectric constant	
	of solvents	95
25	Effect of extraction volume on the response of DEHA	
	and DEHP extraction	96
26	Effect of sample flow rate on the response of DEHA	
	and DEHP extraction	98
27	Effect of drying time on the response of DEHA and DEHP	99
28	Effect of eluting solvent on the response of DEHA and DEHP	102
29	Effect of volume of eluting solvent on the response	
	of DEHP and DEHA	103
30	Effect of flow rate of eluting solvent on the response	
	of DEHA and DEHP	105
31	Optimum conditions of sample preparation	106
32	Effect of matrix on the responses of DEHA in curry	
	paste samples	109

xiv

Table		Page
33	Effect of matrix on the responses of DEHA in curry	
	paste samples	110
34	Statistic values for the comparision between the slope	
	for DEHP standard curve and matrix match calibration	
	curve of various curry paste samples using ANOVA by R software	112
35	Statistic values for the comparision between the slope	
	for DEHA standard curve and matrix match calibration	
	curve of various curry paste samples using ANOVA by R software	113
36	Level of significance (P value) from ANOVA for the comparison	
	between the slope for standard curve and matrix match calibration	
	curve of various curry paste samples	113
37	Percentage recovery of DEHP and DEHA of various	
	curry paste samples at spiked concentration of 0.5 μg mL ⁻¹	115
38	Percentage recovery of DEHP and DEHA of various	
	curry paste samples at spiked concentration of 5.0 µg mL ⁻¹	115
39	The method detection limit of DEHA and DEHP	
	analysis using ultrasonic extraction follow by SPE sample	
	preparation methods for various curry paste samples	116
40	Limit of quantitation (LOQ) of DEHA and DEHP at	
	various curry paste samples with $S/N \ge 10$	117
41	Precision of curry paste samples analysis	
	for DEHP at spiked concentration of 0.5 and 5.0 $\mu g \ mL^{-1}$	118
42	Precision of curry paste samples analysis for DEHA	
	at spiked concentration of 0.5 and 5.0 µg mL ⁻¹	119
43	The DEHP concentrations of each curry paste sample	
	determined by matrix match calibration curves	123

Table		Page
44	The results of standard addition calibration curves of	
	DEHA in Sour yellow curry paste sample (sample No. 1)	
	at various spiked concentration levels	124
45	The results of standard addition calibration curves of	
	DEHA in Sour yellow curry paste sample (sample No. 2)	
	at various spiked concentration levels	125
46	The results of standard addition calibration curves of DEHA	
	in Red curry paste sample (sample No. 1) at various spiked	
	concentration levels	126
47	The results of standard addition calibration curves of DEHA	
	in Red curry paste sample (sample No. 2) at various spiked	
	concentration levels	127
48	The results of standard addition calibration curves of DEHA	
	in Green curry paste sample (sample No. 1) at various spiked	
	concentration levels	128
49	The results of standard addition calibration curves	
	of DEHA in Green curry paste sample (sample No. 2)	
	at various spiked concentration level	129
50	The results of standard addition calibration curves	
	of DEHA in Masman curry paste sample (sample No. 1)	
	at various spiked concentration levels	130
51	The results of standard addition calibration curves	
	of DEHA in Masman curry paste sample (sample No. 2)	
	at various spiked concentration levels	131
52	The results of standard addition calibration curves of	
	DEHA in Panang curry paste sample (sample No. 1) at	
	various spiked concentration levels	132

Table		Page
53	The results of standard addition calibration curves of DEHA	
	in Panang curry paste sample (sample No. 2) at various spiked	
	concentration levels	133
54	The DEHA concentrations of each curry paste sample	
	determined by standard addition calibration curves	134
55	Intake of DEHP and DEHA from all curry paste samples	
	when assumed that an adult (60 kg body weight) intakes	
	each curry paste 5 g per day	138
56	Intake of DEHP and DEHA from all curry paste samples	
	when assumed that a child (20 kg body weight) intakes	
	each curry paste 1 g per day	139
57	LOD reported for the determination of DEHP	143
58	Comparison between proposed method and another sample preparation	
	method for analysis of phthalate and adipate esters in food	146

List of Figures

Figure		Page
1	Chemical structure of di (2-ethylhexyl) phthalate (DEHP)	6
2	Production of di (2-ethylhexyl) phthalate	6
3	Chemical structure of di (2-ethylhexyl) adipate (DEHA)	6
4	The analysis system for DEHA and DEHP analysis	37
5	The chemical structure of Florisil	43
6	Packed Florisil® cartridge	44
7	Solid phase extraction of Florisil® cartridges	46
8	Analytical procedure of phthalate and adipate esters	
	for curry paste samples	47
9	Standard addition method	58
10	The van Deemter plot	63
11	Measurement used in calculating total theoretical plates	65
12	The van Deemter plot of DEHA and DEHP	67
13	Response of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA standard	
	solution at various initial temperatures	69
14	Response of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA stand	
	solution at various initial temperature holding times	71
15	Response of 10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard	
	solution at various ramp rates	72
16	Response of 10 μg mL ⁻¹ , 1 μL DEHP-DEHA standard	
	solution at various final temperatures	74
17	Optimun column temperature programming for DEHP	
	and DEHA analysis	75
18	Diagram of splitless inlet	76
19	Response of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA standard	77
	solution at various temperature	
20	Schematic diagram of a flame ionization detector	
	(FID)	79

List of Figures (Continued)

Figure		Page
21	Schematic diagram of flame process in the FID	80
22	Response of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA	
	standard solution at various detector temperatures	82
23	Response of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA	
•	standard solution at various fuel gas flow rates	83
24	Response of 10 µg mL ⁻¹ , 1 µL DEHP-DEHA	
	standard solution at various oxidant gas flow rates	85
25	The chromatogram of di (2-ethylhexyl) phthalate	
	(DEHP) and di (2-ethylhexyl) adipate (DEHA) at	
	optimum GC-FID conditions	86
26	Linear dynamic range of DEHP and DEHA	90
27	Responses of DEHP and DEHA at various extraction times	92
28	Responses of DEHP and DEHA at various extraction solvents	94
29	Responses of DEHP and DEHA at various volumes	
	of extraction solvent	96
30	Responses of DEHP and DEHA at various sample flow rate	98
31	Responses of DEHP and DEHA at various drying times	100
. 32	Responses of DEHP and DEHA at various eluting solvents	102
33	Responses of DEHP and DEHA at various volumes	
	of eluting solvent	104
34	Responses of DEHP and DEHA at various eluting	
	solvent flow rates	105
35	GC-FID Chromatograms of DEHA and DEHP from	
	spiked curry paste sample at optimum conditions	
	of sample preparation	107
36	GC-FID Chromatograms of DEHA and DEHP from	
	spiked curry paste sample with some interference peaks	
	(peak No. 1, 2, 3, 4 and 5)	108

List of Figures (Continued)

Figure		Page
. 37	Matrix match calibration curve of DEHA of curry paste	
	Samples	109
38	Matrix match calibration curve of DEHP of curry paste samples	110
39	GC-FID Chromatogram of DEHP from Sour curry paste sample	120
40	GC-FID Chromatogram of DEHP from Red curry paste sample	121
41	GC-FID Chromatogram of DEHP from Green curry paste sample	121
42	GC-FID Chromatogram of DEHP from Masman curry paste sample	122
43	GC-FID Chromatogram of DEHP from Panang curry paste sample	122
44	The standard addition calibration curve of DEHA in	
	Sour yellow curry paste sample (sample No. 1)	124
45	The standard addition calibration curve of DEHA in	
	Sour yellow curry paste sample (sample No. 2)	125
46	The standard addition calibration curve of DEHA in	
	Red curry paste sample (sample No. 1)	126
47	The standard addition calibration curve of DEHA in	
	Sour yellow curry paste sample (sample No. 2)	127
48	The standard addition calibration curve of DEHA in	
	Green curry paste sample (sample No. 1)	128
49	The standard addition calibration curve of DEHA in	
	Green curry paste sample (sample No. 2)	129
50	The standard addition calibration curve of DEHA in	
	Masman curry paste sample (sample No. 1)	130
51	The standard addition calibration curve of DEHA	
	in Masman curry pastesample (sample No. 2)	131
52	The standard addition calibration curve of DEHA	
	in Panang curry paste (sample No. 1)	132

List of Figures (Continued)

igure			Page
	53	The standard addition calibration curve of DEHA in	
		Panang curry paste sample (sample No. 2)	133
	54	DEHP and DEHA levels in each type of curry paste	
		sample (sample No. 1 and 2)	135