CONTENTS

	Page
CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS AND SYMBOLS	xii
CHAPTER	
1. INTRODUCTION	
1.1 Introduction	1
1.2 Literatures Review	4
1.3 Principle of cyclic voltammetry	9
1.4 The objectives	16
2. EXPERIMENTS	
2.1 Chemicals and reagents	17
2.2 Instruments	19
2.3 Procedure	21
2.3.1 Preparation of complexes	21
2.3.2 Electrochemical procedures	23
2.3.2.1 Cyclic voltammetry of the blank solution	23
2.3.2.2 Cyclic voltammetry of copper ions	24
2.3.2.3 Cyclic voltammetry of halide ions	24
2.3.2.4 Cyclic voltammetry of substituted thioureas	25
2.3.2.5 Cyclic voltammetry of $Cu(I)$ halide with N,N' -diphenylthiourea	25
complexes	
2.3.2.6 Cyclic voltammetry of Cu(I) halide with N-phenylthiourea complexes	26
2.3.2.7 Cyclic voltammetry of $Cu(I)$ halide with N,N' -ethylenethiourea	27
complexes	

CONTENTS (Continued)

3. RESULTS AND DISCUSSION		
3.1.	The preparation of the complexes	28
3.2.	The electrochemical behavior of blank solution	30
3.3.	The electrochemical behavior of copper ion	30
3.4.	The electrochemical behavior of halide ions	32
	3.4.1 The electrochemical behavior of chloride ion	32
	3.4.2 The electrochemical behavior of bromide ion	33
	3.4.3 The electrochemical behavior of iodide ion	34
3.5.	The electrochemical behavior of substituted thioureas	35
	3.5.1 The electrochemical behavior of N,N -diphenylthiourea (dptu)	35
	3.5.2 The electrochemical behavior of N-phenylthiourea (ptu)	38
	3.5.3 The electrochemical behavior of N,N -ethylenethiourea (etu)	40
	3.5.4 Discussion on the electrochemical behavior of substituted	43
	thiourea compounds	
3.6.	The electrochemical behavior of Cu(I) halide with N,N'-diphenylthiourea	44
	complexes	
	3.6.1 The electrochemical behavior of $[Cu(dptu)_2Cl]H_2O$ complex	44
	3.6.2 The electrochemical behavior of $[Cu(dptu)_2Br]H_2O$ complex	45
	3.6.3 The electrochemical behavior of $[Cu(dptu)_2I]H_2O$ complex	46
	3.6.4 Discussion on the electrochemical behavior of Cu(I) halide with	47
	<i>N</i> , <i>N</i> '-diphenylthiourea complexes	
3.7.	The electrochemical behavior of Cu(I) halide with N-phenylthiourea complexes	48
	3.7.1 The electrochemical behavior of $[Cu(ptu)_4]Cl$ complex	48
	3.7.2 The electrochemical behavior of $[Cu_4(ptu)_6Br_4]_2$ complex	49
	3.7.3 The electrochemical behavior of $[Cu_4(ptu)_6I_4]_2$ complex	51
	3.7.4 Discussion on the electrochemical behavior of Cu(I) halide with	52
	N-phenylthiourea complexes	

Page

CONTENTS (Continued)

	Page
3.8. The electrochemical behavior of $Cu(I)$ halide with N,N' -ethylenethiourea	53
complexes	
3.8.1 The electrochemical behavior of $[Cu_2(etu)_4Cl_2]$ complex	53
3.8.2 The electrochemical behavior of $[Cu(etu)_3Br]$ complex	54
3.8.3 The electrochemical behavior of $[Cu_2(etu)_4I_2]$ complex	56
3.8.4 Discussion on the electrochemical behavior of Cu(I) halide with	57
<i>N,N'</i> -ethylenethiourea complexes	
4. CONCLUSION	59
REFERENCES	61
APPENDIX	66
A	67
В	69
C	79
VITAE	80

LIST OF TABLES

T٤	Table	
1.	Chemicals and reagents	17
2.	The suitable conditions of complexes synthesis	28
3.	The physical properties of ligands and complexes	29
4.	The relationship of the square roots of scan rates and current peaks of	36
	N,N'-diphenylthiourea	
5.	The relationship of the square roots of scan rates and current peaks of	39
	N-phenylthiourea	
6.	The relationship of the square roots of scan rates and current peaks of	41
	N,N'-ethylenethiourea	
7.	The difference in peak potentials Δ Ep, Δ Epa and Δ Epc of copper in various	48
	<i>N</i> , <i>N</i> '-diphenylthiourea complexes	
8.	The difference in peak potentials Δ Ep, Δ Epa and Δ Epc of copper in various	53
	N-phenylthiourea complexes	
9.	The difference in peak potentials Δ Ep, Δ Epa and Δ Epc of copper in various	58
	<i>N</i> , <i>N</i> '-ethylenethiourea complexes	

LIST OF FIGURES

Fig	Figure Pa	
1.	The structures of thiourea, TU and substituted thioureas, TUs	1
2.	The tautomerism structure of thiourea	1
3.	The structures of N,N' -diphenylthiourea, N -phenylthiourea and N,N' -ethylenethiourea	3
	ligands	
4.	The redox reaction of thiourea	4
5.	The reduction mechanisms of PATS2	6
6.	The three electrode system in the electrochemical cell of cyclic voltammetry	9
7.	Typical excitation signal for cyclic voltammetry	10
8.	Cyclic voltammogram of a Nerntian redox couple	11
9.	Cyclic voltammogram responses of 5.0 mmol/l $K_3[Fe(CN)_6]$ containing	14
	1.0 mol/l KCl, at a glassy carbon electrode, scan rate 100 mV/s	
10.	Cyclic voltammogram for irreversible and quasi- reversible redox processes	15
11.	The electrochemical apparatus, AUTOLAB PGSTAT 100 (Metrohm)	20
12.	The three electrode system in the electrochemical cell	20
13.	Cyclic voltammogram of blank solution at GCE	30
14.	Cyclic voltammogram of 1×10^{-3} M copper (II) nitrate at GCE	31
15.	The redox reactions of copper(II)/copper(I) and copper(I)/copper(0)	31
16.	Cyclic voltammogram of 1×10^{-2} M tetrabutylammonium chloride at GCE	32
17.	The redox reactions of chloride ions	32
18.	Cyclic voltammogram of 1x10 ⁻² M tetrabutylammonium bromide at GCE	33
19.	The redox reactions of bromide ions	34
20.	Cyclic voltammogram of 1x10 ⁻² M tetrabutylammonium iodide at GCE	34
21.	The redox reactions of iodide ions	35
22.	Cyclic voltammogram of 0.1 M N,N'-diphenylthiourea (dptu) at GCE	35
23.	The relationship between square roots of scan rates and oxidation currents	37
	(Ipa) of <i>N</i> , <i>N</i> '-diphenylthiourea	

LIST OF FIGURES (Continued)

Figure		Page
24.	The relationship between square roots of scan rates and reduction currents	37
	(Ipc) of <i>N</i> , <i>N</i> '-diphenylthiourea	
25.	Cyclic voltammogram of 0.1 M N-phenylthiourea (ptu) at GCE	38
26.	The relationship between square roots of scan rates and oxidation currents	39
	(Ipa) of N-phenylthiourea	
27.	The relationship between square roots of scan rates and reduction currents	40
	(Ipc) of N-phenylthiourea	
28.	Cyclic voltammogram of 0.1 M N,N'-ethylenethiourea (etu) at GCE	40
29.	The relationship between square roots of scan rates and oxidation currents	42
	(Ipa) of <i>N</i> , <i>N</i> '-ethylenethiourea	
30.	The relationship between square roots of scan rates and reduction currents	42
	(Ipc) of <i>N</i> , <i>N</i> '-ethylenethiourea	
31.	Cyclic voltammogram of 1×10^{-3} M [Cu(dptu) ₂ Cl]H ₂ O complex at GCE	44
32.	Cyclic voltammogram of 1×10^{-3} M [Cu(dptu) ₂ Br]H ₂ O complex at GCE	45
33.	Cyclic voltammogram of 1×10^{-3} M [Cu(dptu) ₂ I]H ₂ O complex at GCE	46
34.	Cyclic voltammogram of 1×10^{-3} M [Cu(ptu) ₄]Cl complex at GCE	49
35.	Cyclic voltammogram of 1×10^{-3} M $[Cu_4(ptu)_6Br_4]_2$ complex at GCE	50
36.	Cyclic voltammogram of 1×10^{-3} M $[Cu_4(ptu)_6I_4]_2$ complex at GCE	51
37.	Cyclic voltammogram of 1×10^{-3} M [Cu ₂ (etu) ₄ Cl ₂] complex at GCE	54
38.	Cyclic voltammogram of 1×10^{-3} M [Cu(etu) ₃ Br] complex at GCE	55
39.	Cyclic voltammogram of 1×10^{-3} M [Cu ₂ (etu) ₄ I ₂] complex at GCE	56

LIST OF ABBREVIATIONS AND SYMBOLS

A = AmpereAg/AgCl = Silver/Silver chloride Au = GoldBr = BromideBTU = N-benzoylthiourea C = ConcentrationCd = Cadmium $CH_3CN = Acetonitrile$ Cl = Chloride Co = CobaltCu = CopperCuBr = Copper bromide CuCl = Copper chloride CuI = Copper iodide $Cu(NO_3)_2 = Copper(II)$ nitrate CV = Cyclic voltammogram CVs = Cyclic voltammograms D = Diffusion coefficientDMTU = 1,3-dimethylthiourea dptu = N, N'-diphenylthiourea E = Potential $E^{\circ\prime}$ = Formal potential Epa = Oxidation peak potential Epc = Reduction peak potential $E_{p/2}$ = Half-peak potential $E_{1/2}$ = Half-wave potential $\Delta Ep =$ Separation potential

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

- Δ Epa = Oxidation separation potential
- Δ Epc = Reduction separation potential
- etu = N, N'-ethylenethiourea
- Fe = Iron
- g = Gram
- GCE = Glassy carbon electrode
- Hg = Mercury
- hrs = Hours
- i = Current
- I = Iodide
- Ipa = Anodic peak current
- Ipc = Cathodic peak current

LH₂OCH₃ = 5- methoxy-5-6-diphenyl-4,5-dihydro-2H-[1,2,4] trazine-3-thion

- M = Molar
- $\mu = Micron$
- mA = Milliampere
- MTU = Methylthiourea
- mg = Milligram
- $mg L^{-1} = Milligram per litre$
- mL = Millilitre
- mV = Millivolt
- $mV s^{-1} = Millivolt per second$
- n = Number of electron
- $NH_2 = Amine$

Ni = Nickel

PATS2 = 2-formylpyridine thiosemicarbazone

ptu = N-phenylthiourea

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

s = Second

S = Sulfur

SERS = Surface Enhanced Raman Spectroscopy

SHE = Standard Hydrogen Electrode

 $SO_4^{2-} = Sulfate$

t = Time

 $TBAP = Tetrabutylammonium\ hexafluorophosphate$

TMTU = Tetrametylthiourea

TU = Thiourea

- TUs = Substituted thiourea
- UV-vis = Ultraviolet-Visible

V = Volt

U = Scan rate

Zn = Zinc