APPENDIX A

1. The bond distances of copper with halides in various of N,N'-diphenylthiourea, N-phenylthiourea and N,N'-ethylenethiourea complexes (Pakawatchai, 1990., Singhagomol, 1999. and Tanchatchawal, 2004.)

Complexes	The bond distances of copper with halides	
	Type of bond	The bond distances (°A)
[Cu(dptu) ₂ Cl]H ₂ O	Cu-Cl	2.221
[Cu(dptu) ₂ Br]H ₂ O	Cu-Br	2.3695
[Cu(dptu) ₂ I]H ₂ O	Cu-I	2.5209
[Cu(ptu) ₄]Cl	Cu-Cl	-
$\left[\mathrm{Cu_4(ptu)}_6\mathrm{Br_4}\right]_2$	Cu-Br	2.478-2.496
$\left[\mathrm{Cu_4(ptu)_6I_4}\right]_2$	Cu-I	2.627-2.746
[Cu(etu) ₂ Cl] ₂	Cu-Cl	2.2781-2.3310
[Cu(etu) ₃ Br]	Cu-Br	2.488
[Cu ₂ (etu) ₄ I ₂]	Cu-I	2.552

2. The bond distances of intramolecular hydrogent, NH-halide in various of N,N'-diphenylthiourea complexes (Singhagomol, 1999.)

Complexes	The bond distances of intramolecular hydrogent, NH-halide
	(°A)
[Cu(dptu) ₂ Cl]H ₂ O	2.4600, 2.7179
[Cu(dptu) ₂ Br]H ₂ O	2.6178, 2.7576
[Cu(dptu) ₂ I]H ₂ O	2.9171, 2.9564

3. The bond distances of copper with sulfur in various of N,N'-diphenylthiourea,
N-phenylthiourea and N,N'-ethylenethiourea complexes (Pakawatchai, 1990.,
Singhagomol, 1999. and Tanchatchawal, 2004.)

Complexes	The bond distances of
	Cu-S (°A)
[Cu(dptu) ₂ Cl]H ₂ O	2.207-2.227
[Cu(dptu) ₂ Br]H ₂ O	2.2298-2.2311
[Cu(dptu) ₂ I]H ₂ O	2.2305-2.2391
[Cu(ptu) ₄]C1	2.335
$\left[\mathrm{Cu_4(ptu)}_6\mathrm{Br_4}\right]_2$	2.261-2.352
$\left[\operatorname{Cu_4(ptu)}_6\operatorname{I_4}\right]_2$	2.283-2.421
[Cu(etu) ₂ C1] ₂	2.2084-2.6470
[Cu(etu) ₃ Br]	(*)
$[Cu_2(etu)_4I_2]$	(*)

Remarks: (*) = No data

APPENDIX B

1. Calculations of the concentration of supporting electrolyte

1.1 Preparation of 0.1 M tetrabutylammonium hexafluorophosphate

$$Mw = 387.43 \text{ g/mol}$$

$$V = 25 \times 10^{-3} \text{ L}$$

$$M = 0.1 \text{ mol/L}$$

$$m(g) = Mw \times V \times M$$

$$= (387.43 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (0.1 \text{ mol/L})$$

$$= 0.9686 \text{ g}$$

Therefore, weigh TBAP 0.9686 g and dissolve in CH₃CN 25 ml.

2. Calculations of the concentration of halide ions

2.1 Preparation of 0.01 M tetrabutylammonium chloride

$$Mw = 277.92 \text{ g/mol}$$

$$V = 25 \times 10^{-3} \text{ L}$$

$$M = 0.01 \text{ mol/L}$$

$$m \text{ (g)} = Mw \times V \times M$$

$$= (277.92 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (0.01 \text{ mol/L})$$

$$= 0.069 \text{ g}$$

Therefore, weigh tetrabutylammonium chloride 0.069 g and dissolve in CH₃CN 25 ml.

2.2 Preparation of 0.01 M tetrabutylammonium bromide

$$Mw = 322.37 \text{ g/mol}$$

$$V = 25 \times 10^{-3} \text{ L}$$

$$M = 0.01 \text{ mol/L}$$

$$m (g) = Mw \times V \times M$$

$$= (322.37 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (0.01 \text{ mol/L})$$

$$= 0.081 \text{ g}$$

Therefore, weigh tetrabutylammonium bromide 0.081 g and dissolve in CH₃CN 25 ml.

2.3 Preparation of 0.01 M tetrabutylammonium iodide

$$Mw = 369.37 \text{ g/mol}$$

$$V = 25 \text{ x } 10^{-3} \text{ L}$$

$$M = 0.01 \text{ mol/L}$$

$$m \text{ (g)} = Mw \text{ x } V \text{ x } M$$

$$= (369.37 \text{ g/mol}) \text{ x } (25 \text{ x } 10^{-3} \text{ L}) \text{ x } (0.01 \text{ mol/L})$$

$$= 0.092 \text{ g}$$

Therefore, weigh tetrabutylammonium iodide 0.092 g and dissolve in CH₃CN 25 ml.

3. Calculations of the concentration of substituted thioureas

3.1 Preparation of 0.1 M N,N-diphenylthioureas (dptu)

$$Mw = 228.31 \text{ g/mol}$$

$$V = 25 \times 10^{-3} \text{ L}$$

$$M = 0.1 \text{ mol/L}$$

$$m (g) = Mw \times V \times M$$

$$= (228.31 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (0.1 \text{ mol/L})$$

$$= 0.5708 \text{ g}$$

Therefore, weigh dptu 0.5708 g and dissolve in CH₃CN 25 ml.

3.2 Preparation of 1.0×10^{-2} mole *N,N'*-diphenylthioureas (dptu)

$$Mw = 228.31 \text{ g/mol}$$

N,N'-diphenylthioureas 1 mole = 228.31 g

N, N'-diphenylthioureas 1 x 10⁻² mole = $(228.31 \times 1 \times 10^{-2}) / 1 \text{ g}$

N,N'-diphenylthioureas 1 x 10⁻² mole = 2.2831 g

3.3 Preparation of 5.0 x 10^{-3} mole *N,N'*-diphenylthioureas (dptu)

$$Mw = 228.31 \text{ g/mol}$$

N,N'-diphenylthioureas 1 mole = 228.31 g

N, N'-diphenylthioureas 5.0 x 10⁻³ mole = $(228.31 \times 5.0 \times 10^{-3}) / 1 \text{ g}$

N,N'-diphenylthioureas 5.0×10^{-3} mole = 1.1416 g

3.4 Preparation of 6.0×10^{-3} mole *N,N'*-diphenylthioureas (dptu)

$$Mw = 228.31 \text{ g/mol}$$

N,N'-diphenylthioureas 1 mole = 228.31 g

N, N'-diphenylthioureas $6.0 \times 10^{-3} \text{ mole} = (228.31 \times 6.0 \times 10^{-3}) / 1 \text{ g}$

N,N'-diphenylthioureas 6.0×10^{-3} mole = 1.3699 g

3.5 Preparation of 0.1 M N-phenylthioureas (ptu)

Mw = 152.15 g/mol

 $V = 25x \cdot 10^{-3} L$

M = 0.1 mol/L

 $m(g) = Mw \times V \times M$

= $(152.15 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (0.1 \text{ mol/L})$

= 0.3804 g

Therefore, weigh ptu 0.380 g and dissolve in CH₃CN 25 ml.

3.6 Preparation of 1.0 x 10⁻² mole *N*-phenylthioureas (ptu)

$$Mw = 152.15 \text{ g/mol}$$

N-phenylthioureas 1 mole = 152.15 g

N-phenylthioureas 1×10^{-2} mole = $(152.15 \times 1 \times 10^{-4}) / 1$ g

N-phenylthioureas 1 x 10⁻² mole = 1.5220 g

3.7 Preparation of 1.5 x 10⁻² mole *N*-phenylthioureas (ptu)

$$Mw = 152.15 \text{ g/mol}$$

N-phenylthioureas 1 mole = 152.15 g

N-phenylthioureas 1.5×10^{-2} mole = $(152.15 \times 1.5 \times 10^{-2}) / 1$ g

N-phenylthioureas 1.5×10^{-2} mole = 2.2823 g

3.8 Preparation of 2.6×10^{-3} mole *N*-phenylthioureas (ptu)

$$Mw = 152.15 \text{ g/mol}$$

N-phenylthioureas 1 mole = 152.15 g

N-phenylthioureas $2.6 \times 10^{-3} \text{ mole} = (152.15 \times 2.6 \times 10^{-3}) / 1 \text{ g}$

N-phenylthioureas 2.6×10^{-3} mole = 0.3956 g

3.9 Preparation of 0.1 M N,N'-ethylenethiourea (etu)

Mw = 102.11 g/mol

 $V = 25x \cdot 10^{-3} L$

M = 0.1 mol/L

 $m(g) = Mw \times V \times M$

= $(102.11 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (0.1 \text{ mol/L})$

= 0.2553 g

Therefore, weigh etu 0.2553 g and dissolve in CH₃CN 25 ml.

3.10 Preparation of 1.2 x 10⁻² mole *N,N'*-ethylenethiourea (etu)

$$Mw = 102. g/mol$$

N,N'-ethylenethiourea 1 mole = 102.11 g

N,N'-ethylenethiourea 1.2 x 10⁻² mole = (102.11 x 1.2 x 10⁻²) / 1 g

N,N'-ethylenethiourea 1.2 x 10^{-2} mole = 1.2253 g

3.11 Preparation of 4.3 x 10^{-2} mole *N,N'*-ethylenethiourea (etu)

$$Mw = 102.11 \text{ g/mol}$$

N,N'-ethylenethiourea 1 mole = 102.11 g

N,N'-ethylenethiourea 4.3 x 10^{-2} mole = $(102.11 \text{ x } 4.3 \text{ x } 10^{-2}) / 1 \text{ g}$

N,N'-ethylenethiourea 4.3 x 10^{-2} mole = 4.3907 g

3.12 Preparation of 8.0 x 10⁻³ mole *N,N'*-ethylenethiourea (etu)

$$Mw = 102.11 \text{ g/mol}$$

N,N'-ethylenethiourea 1 mole = 102.11 g

N, N'-ethylenethiourea 8.0 x 10⁻³ mole = (102.11 x 8.0 x 10⁻³) / 1 g

N,N'-ethylenethiourea 8.0 x 10^{-3} mole = 0.8169 g

4. Calculations of the concentration of CuX (X = Cl, Br and I)

4.1 Preparation of 1.5 x 10⁻² mole Copper (I) chloride (CuCl)

$$Mw = 98.999 \text{ g/mol}$$

Copper (I) chloride 1 mole = 102.11 g

Copper (I) chloride 1.5×10^{-2} mole = $(98.999 \times 1.5 \times 10^{-2}) / 1$ g

Copper (I) chloride 1.5×10^{-2} mole = 1.4850 g

4.2 Preparation of 5 x 10⁻³ mole Copper (I) chloride (CuCl)

$$Mw = 98.999 \text{ g/mol}$$

Copper (I) chloride
$$5 \times 10^{-3}$$
 mole = $(98.999 \times 5 \times 10^{-3}) / 1$ g

Copper (I) chloride
$$5 \times 10^{-3}$$
 mole = 0.4950 g

4.3 Preparation of 2.5 x 10⁻³ mole Copper (I) bromide (CuBr)

$$Mw = 143.45 \text{ g/mol}$$

Copper (I) bromide 1 mole =
$$143.45 g$$

Copper (I) bromide
$$2.5 \times 10^{-3}$$
 mole = $(143.45 \times 2.5 \times 10^{-3}) / 1$ g

Copper (I) bromide
$$2.5 \times 10^{-3} \text{ mole} = 0.3586 \text{ g}$$

4.4 Preparation of 3.5 x 10⁻³ mole Copper (I) bromide (CuBr)

$$Mw = 143.45 \text{ g/mol}$$

Copper (I) bromide 1 mole =
$$143.45 g$$

Copper (I) bromide
$$3.5 \times 10^{-3}$$
 mole = $(143.45 \times 3.5 \times 10^{-3}) / 1$ g

Copper (I) bromide
$$3.5 \times 10^{-3}$$
 mole = 0.5020 g

4.5 Preparation of 4 x 10⁻³ mole Copper (I) bromide (CuBr)

$$Mw = 143.45 \text{ g/mol}$$

Copper (I) bromide 1 mole =
$$143.45 g$$

Copper (I) bromide
$$4 \times 10^{-3}$$
 mole = $(143.45 \times 4 \times 10^{-3}) / 1$ g

Copper (I) bromide
$$4 \times 10^{-3}$$
 mole = 0.5738 g

4.6 Preparation of 3 x 10⁻³ mole Copper (I) iodide (CuI)

$$Mw = 190.45 \text{ g/mol}$$

Copper (I) iodide
$$3 \times 10^{-3}$$
 mole = $(190.45 \times 3 \times 10^{-3}) / 1$ g

Copper (I) iodide
$$3 \times 10^{-3}$$
 mole = 0.5713 g

4.7 Preparation of 4 x 10⁻³ mole Copper (I) iodide (CuI)

$$Mw = 190.45 \text{ g/mol}$$

Copper (I) iodide 1 mole =
$$190.45 \text{ g}$$

Copper (I) iodide
$$4 \times 10^{-3}$$
 mole = $(190.45 \times 4 \times 10^{-3}) / 1$ g

Copper (I) iodide
$$4 \times 10^{-3}$$
 mole = 0.7618 g

4.8 Preparation of 7.8 x 10⁻³ mole Copper (I) iodide (CuI)

$$Mw = 190.45 \text{ g/mol}$$

Copper (I) iodide
$$7.8 \times 10^{-3}$$
 mole = $(190.45 \times 7.8 \times 10^{-3}) / 1$ g

Copper (I) iodide
$$7.8 \times 10^{-3} \text{ mole} = 1.4855 \text{ g}$$

- 5. Calculations of the concentration of Cu(I) halides with N,N'-diphenylthiourea complexes
 - 5.1 Preparation of 1x10⁻³ M [Cu(dptu)₂Cl]H₂O complex

$$Mw = 573.44 \text{ g/mol}$$

$$V = 25 \times 10^{-3} L$$

$$M = 1x10^{-3} \text{mol/L}$$

$$m(g) = Mw \times V \times M$$

=
$$(573.44 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{mol/L})$$

$$= 0.0143 \text{ g}$$

Therefore, weigh [Cu(dptu)₂Cl]H₂O 0.0143 g and dissolve in CH₃CN 25 ml.

5.2 Preparation of 1x10⁻³ M [Cu(dptu)₂Br]H₂O complex

$$Mw = 617.89 \text{ g/mol}$$

$$V = 25 \times 10^{-3} L$$

$$M = 1x10^{-3} \text{mol/L}$$

$$m(g) = Mw \times V \times M$$

=
$$(617.89 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{ mol/L})$$

= 0.0154 g

Therefore, weigh [Cu(dptu)₂Br]H₂O 0.0154 g and dissolve in CH₃CN 25 ml.

5.3 Preparation of 1x10⁻³ M [Cu(dptu)₂I]H₂O complex

Mw = 664.89 g/mol

 $V = 25 \times 10^{-3} L$

 $M = 1x10^{-3} \text{mol/L}$

m(g) = Mw x V x M

= $(664.89 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{ mol/L})$

= 0.0166 g

Therefore, weigh $[Cu(dptu)_2I]H_2O$ 0.0166 g and dissolve in CH_3CN 25 ml.

- 6 Calculations of the concentration of Cu(I) halides with N-phenylthiourea complexes
 - 6.1 Preparation of 1x10⁻³ M [Cu(ptu)₄Cl] complex

Mw = 707.9 g/mol

 $V = 25 \times 10^{-3} L$

 $M = 1x10^{-3} \text{mol/L}$

 $m(g) = Mw \times V \times M$

= $(707.9 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{mol/L})$

= 0.0177 g

Therefore, weigh [Cu(ptu)₄Cl] 0.0177 g and dissolve in CH₃CN 25 ml.

6.2 Preparation of 1x10⁻³ M [Cu₄(ptu)₆Br₄], complex

Mw = 2974.25 g/mol

 $V = 25 \times 10^{-3} L$

 $M = 1x10^{-3} \text{mol/L}$

 $m(g) = Mw \times V \times M$

= $(2974.25 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{mol/L})$

$$= 0.0744 g$$

Therefore, weigh [Cu₄(ptu)₆Br₄]₂ 0.0744 g and dissolve in CH₃CN 25 ml.

6.3 Preparation of $1 \times 10^{-3} \text{ M} \left[\text{Cu}_4(\text{ptu})_6 \text{I}_4 \right]_2 \text{ complex}$

$$Mw = 3349.64 \text{ g/mol}$$

$$V = 25 \times 10^{-3} L$$

$$M = 1x10^{-3} \text{mol/L}$$

$$m(g) = Mw \times V \times M$$

=
$$(3349.64 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{ mol/L})$$

$$= 0.0837 g$$

Therefore, weigh [Cu₄(ptu)₆I₄]₂ 0.0837 g and dissolve in CH₃CN 25 ml.

- 7 Calculations of the concentration of Cu(I) halides with N,N'-ethylenethiourea complexes
 - 7.1 Preparation of 1×10^{-3} M [Cu₂(etu)₄Cl₂] complex

$$Mw = 606.438 \text{ g/mol}$$

$$V = 25 \times 10^{-3} L$$

$$M = 1x10^{-3} \text{mol/L}$$

$$m(g) = Mw \times V \times M$$

=
$$(606.438 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{mol/L})$$

$$= 0.0152 g$$

Therefore, weigh [Cu₂(etu)₄Cl₂] 0.0152 g and dissolve in CH₃CN 25 ml.

7.2 Preparation of 1x10⁻³ M [Cu(etu)₃Br] complex

$$Mw = 449.78 \text{ g/mol}$$

$$V = 25 \times 10^{-3} L$$

$$M = 1x10^{-3} \text{mol/L}$$

$$m(g) = Mw \times V \times M$$

=
$$(449.78 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{ mol/L})$$

$$= 0.0112 g$$

Therefore, weigh [Cu(etu)₃Br] 0.0112 g and dissolve in CH₃CN 25 ml.

7.3 Preparation of $1x10^{-3}$ M [$Cu_2(etu)_4I_2$] complex

Mw = 598.89 g/mol

 $V = 25 \times 10^{-3} L$

 $M = 1x10^{-3} \text{mol/L}$

 $m(g) = Mw \times V \times M$

= $(598.89 \text{ g/mol}) \times (25 \times 10^{-3} \text{ L}) \times (1 \times 10^{-3} \text{ mol/L})$

= 0.0150 g

Therefore, weigh [Cu₂(etu)₄I₂] 0.0150 g and dissolve in CH₃CN 25 ml.

APPENDIX C

Presentations of this thesis

This research was published in abstract of 56th Annual Meeting of the International Society of Electrochemistry (ISE2005), 25-30 September 2005, BEXCO (Busan Exhibition and Convention Center), Busan, South Korea. With the topic of Electrochemistry of copper (I) halides and *N,N'*-diphenylthiourea complexes.

This research was poster presented of 32nd Congress on science and Technology of Thailand (STT.32), 10-12 October 2006, Queen Sirikit National Convention Center, Bangkok, Thailand. The poster presentation in the topic of Electrochemical properties of copper (I) halides and substituted thiourea complexes which is presented by Miss Rattiya Chuaysong.