CONTENTS

	Page
CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
CHAPTER	
1 INTRODUCTION	1
1.1 Introduction	1
1.1.1 Solid phase extraction (SPE)	4
1.1.1.1 Solid phase extraction procedure	4
1.1.1.2 Adsorption of metals	5
1.1.1.3 Chelation	5
1.1.1.4 Sorbent formats	7
1.2 Review of literatures	12
1.2.1 Physical and chemical properties of Cd and Pb	12
1.2.2 Uses of Cd and Pb	13
1.2.3 Sources and potential exposure of Cd and Pb	13
1.2.4 Toxicity and Health Effect of Cd and Pb	14
1.2.5 Instrumentation Analysis method	17
1.2.6 Sample digestion method	18
1.2.7 Solid phase extraction	21
1.3 Objectives	25
2 EXPERIMENTAL	26
2.1 Chemicals and materials	26
2.1.1 Standard chemicals	26
2.1.2 General chemicals and solvents	26
2.1.3 Samples	26
2.2 Instruments and apparatus	27
2.2.1 Graphite furnace atomic absorption spectrometry (GFAAS)	27

	_
2.2.2 Apparatus	27
2.2.3 Solid phase extraction	28
2.3 Methodology	29
2.3.1 Preparation of standard stock solutions	29
2.3.2 Preparation of glassware and plasticware	29
2.3.3 Optimization of temperature program for graphite furnace atomic absorption	
spectrometer (GFAAS)	29
2.3.3.1 Pyrolysis temperature	30
2.3.3.2 Atomization temperature	30
2.3.3.3 Type of matrix modifier	30
2.3.3.4 The effect of utilizing matrix modifier and without matrix modifier	
for determination of Cd and Pb in real seafood sample	31
2.3.3.5 Linear range	31
2.3.3.6 Detection limits (DL)	31
2.3.3.7 Accuracy and precision	32
2.4 Sample preparation using solid phase extraction	32
2.4.1 Preparation of octadecyl silica membrane disks	32
2.4.2 Effect of pH of sample solution on adsorption of Cd and Pb on octadecyl	
silica membrane disks	35
2.4.3 Effect of amount of 8-hyderoxyquinoline on adsorption of Cd and Pb on	
octadecyl silica membrane disks	35
2.4.4 Effect of eluent type and concentration on desorption of Cd and Pb on	
octadecyl silica membrane disks	35
2.4.5 Effect of eluent volume on desorption of Cd and Pb on octadecyl silica	
membrane disks	35
2.4.6 The comparison of the calibration and standard addition method for	
determination of Cd and Pb in seafood samples	36

Page

	Page
2.4.7 The study of percent recovery of Cd and Pb in seafood sample	36
2.5 Analytical performance of the modified octadecyl silica membrane disks	36
2.5.1 Maximum capacity of the modified octadecyl silica membrane disks	36
2.5.2 Breakthrough volume of the modified octadecyl silica membrane disk	
on adsorption of Cd and Pb	36
2.5.3 Interference of coexist ion on adsorption of Cd and Pb by using	
the modified octadecyl silica membrane disks	37
2.6 Application of this investigation method in seafood samples	37
2.6.1 Sampling	37
2.6.2 Sample pretreatment	37
2.6.3 The study of digestion method for Cd and Pb determination in seafood samples	37
2.6.3.1 Hot plate digestion method	38
2.6.3.2 Water bath digestion method	38
2.6.3.3 Dry ashing method	39
2.6.4 Determination of Cd and Pb in seafood sample using GFAAS	40
2.6.5 Determination of Cd and Pb in seafood sample using ICP-OES	40
2.6.6 Statistical analysis	40
3 RESULTS AND DISCUSSION	41
3.1 Optimization of graphite furnace atomic absorption spectrophotometer (GFAAS)	41
3.1.1 Pyrolysis temperature	41
3.1.2 Atomization temperature	43
3.1.3 Type of matrix modifier	47
3.1.4 The effect of utilizing matrix modifier and without matrix modifier on	
the determination of Cd and Pb in seafood samples	50
3.1.5 Linear range	53
3.1.6 Detection limit (DL)	57
3.1.7 Accuracy and precision	59

	Page
3.2 Sample preparation using solid phase extraction	60
3.2.1 The effect of pH of sample solution on adsorption of Cd and Pb on octadecyl	
silica membrane disks	60
3.2.2 The effect of amount of 8-hyderoxyquinoline on adsorption of Cd and Pb on	
octadecyl silica membrane disks	62
3.2.3 The effect of eluent type and concentration on desorption of Cd and Pb on	
octadecyl silica membrane disks	63
3.2.4 The effect of eluent volume on desorption of Cd and Pb on octadecyl silica	
membrane disks	66
3.2.5 The comparison of the calibration and standard addition method for	
determination of Cd and Pb in seafood samples	68
3.2.6 The study of percent recovery of Cd and Pb in seafood samples	71
3.3 Analytical performance of the modified octadecyl silica membrane disks	72
3.3.1 Maximum capacity of the modified octadecyl silica membrane disks	
on adsorption of Cd and Pb	72
3.3.2 Breakthrough volume of the modified octadecyl silica membrane disks	
on adsorption of Cd and Pb	72
3.3.3 Interference of coexist ions on adsorption of Cd and Pb using	
the modified octadecyl silica membrane disks	73
3.4 Application of the studied method in seafood samples	75
3.4.1 The study of sample digestion method for Cd and Pb determination	
in seafood samples	75
3.4.1.1 Hot plate digestion method	75
3.4.1.2 Water bath digestion method	75
3.4.1.3 Dry ashing method	76
3.4.2 Determination of Cd and Pb in seafood samples using the studied	
method (GFAAS)	76

	Page
3.4.3 Comparison between the studied method and ICP-OES for Cd and Pb	
determination in seafood samples	90
4 CONCLUSION	91
REFERENCES	93
APPENDICES	104
A	105
В	116
C	119
D	124
Ε	130
VITAE	135

LIST OF TABLES

Table		Page
1-1	Some physical properties of cadmium	12
1-2	Some physical properties of lead	13
1-3	Toxic level of cadmium in human body	15
1-4	Lead level in blood and human health effect	16
1-5	The acceptance of heavy metals contamination in food	17
2-1	The type of matrix modifiers used in this investigation	31
3-1	The absorbance of 2.0 μ g L ⁻¹ Cd and 50.0 μ g L ⁻¹ Pb at the different	
	pyrolysis temperature	42
3-2	The absorbance of 2.0 μ g L ⁻¹ Cd and 50.0 μ g L ⁻¹ Pb at the different	
	atomization temperature	43
3-3	The optimum conditions of GFAAS for determination of Cd and Pb	47
3-4	The effect of different matrix modifier on the absorbance of 4.0 μ g L ⁻¹ Cd	
	in aqueous solution	48
3-5	The effect of different matrix modifier on the absorbance of 100.0 μ g L ⁻¹ Pb	
	in aqueous solution	49
3-6	The effect of matrix modifier (0.06% (w/v) Mg(NO ₃) ₂ + 1% (w/v) (NH ₄ H ₂ PO ₄)	
	on the absorbance of Cd in seafood sample.	51
3-7	The effect of matrix modifier (0.06% (w/v) Mg(NO ₃) ₂ + 1% (w/v) (NH ₄ H ₂ PO ₄)	
	on the absorbance of Pb in seafood sample	52
3-8	The absorbance of Cd at the different concentration	53
3-9	The absorbance of Pb at the different concentration	55
3-10	The concentration and absorbance of Cd and Pb in reagent blank ($n = 10$)	58
3-11	The detection limits for Cd and Pb with optimum condition of GFAAS	58
3-12	The comparison of the experimental and certified values for Cd and Pb	
	determination in certified reference materials $(n = 3)$ by using the investigation	59
3-13	The absorbance of Cd and Pb for evaluating the precision	60
3-14	The effect of pH of sample solution on adsorption of Cd and Pb on the modified	

LIST OF TABLES (CONTINUED)

Table		Page
	octadecyl silica membrane disks	61
3-15	The effect of amount of 8- hydroxyquinoline on adsorption of Cd and Pb on	
	octadecyl silica membrane disks	62
3-16	The effect of eluent type and concentration on desorption of Cd and Pb on	
	the modified octadecyl silica membrane disks	64
3-17	Equilibrium constant of 8-hydroxyquinoline and EDTA	66
3-18	The effect of eluent volume on desorption of Cd and Pb on the modified	
	octadecyl silica membrane disks	67
3-19	The optimum conditions for solid phase extraction using 8-hydroxyquinoline	
	modified octadecyl silica membrane disk.	68
3-20	The comparison of absorbance using calibration and standard addition method	
	for Cd determination in seafood sample	69
3-21	The comparison of absorbance using calibration and standard addition method	
	for Pb determination in seafood sample	70
3-22	Recovery test for the studied method using spiked 1.0 μ g L ⁻¹ Cd	
	and 20.0 μ g.L ⁻¹ Pb seafood sample (Preconcentration 5 times)	71
3-23	Recovery test for the studied method using spiked 1.0 μ g L ⁻¹ Cd	
	and 20.0 μ g.L ⁻¹ Pb seafood sample (Preconcentration 5 times)	71
3-24	Maximum capacities of the 10.00 mg 8-hydroxyquinoline modified octadecyl	
	silica membrane disks on adsorption of Cd and Pb	72
3-25	Maximum sample volume passed through the 10.00 mg 8-hydroxyquinoline	
	modified octadecyl silica membrane disks Cd and Pb extraction in this study	72
3-26	Interferences of coexist ions on adsorption of Cd and Pb using the modified	
	octadecyl silica membrane disks	73
3-27	Analytical results (mg kg ⁻¹ , Mean \pm SD, n = 3) for the determination of trace	
	Cd and Pb in the certified reference material using hot plate digestion	75
3-28	Analytical results (mg kg ⁻¹ , Mean \pm SD, n = 3) for the determination of trace	

LIST OF TABLES (CONTINUED)

Table		Page
	Cd and Pb in the certified reference material using water bath digestion	75
3-29	Analytical results (mg kg ⁻¹ , Mean \pm SD, n = 3) for the determination of trace	
	Cd and Pb in the certified reference material using dry ashing method	76
3-30	The concentration of Cd and Pb in frozen tunafishes from the seafood	
	companies in the South of Thailand	77
3-31	The concentration of Cd and Pb in frozen squids, cuttlefishes and	
	octopuses from the seafood companies in the South of Thailand	78
3-32	The concentration of Cd and Pb in frozen squids, cuttlefishes and octopuses	
	from the seafood companies in the South of Thailand	79
3-33	The concentration of Cd and Pb in frozen tunafishes determined by using the	
	studied method and ICP-OES	90

LIST OF FIGURES

Figu	res	Page
1-1	Disposable sorbent containers; (a) Micro column, (b) Syringe barrel	
	(c) Cartridges, (d) Disks	8
1-2	Chemical structure of C18 silica membrane disks	9
1-3	Scanning Electron Microscope (SEM) of the membrane disk material	
	(a) Polytetrafluoroethylene (PTFE) fibril, (b) Boned silica	10
1-4	The structure of 8-hydroxyquinoline (a) and metal oxinate complex (b).	11
2-1	Atomic absorption spectrometer (Perkin Elmer AAnalyst 800 with Zeeman Effect	
	background correction)	28
2-2	The solid phase extraction procedure by using 8-hydroxyquinoline modified	
	octadecyl silica membrane disks	34
2-3	Hot plate digestion	38
2-4	Water bath digestion	39
2-5	Dry ashing	39
3-1	The absorbance of 2.0 μ g L ⁻¹ Cd and 50.0 μ g L ⁻¹ Pb at the different	
	pyrolysis temperatures	42
3-2	The absorbance of 2.0 μ g L ⁻¹ Cd and 50.0 μ g L ⁻¹ Pb at the different	
	atomization temperatures	44
3-3	Peak shape of 2.0 μ g L ⁻¹ Cd (a) and 8.0 μ g L ⁻¹ Cd (b)	
	at the optimum pyrolysis and atomization temperature	45
3-4	Peak shape of 50.0 μ g L ⁻¹ Pb (a) and 100.0 μ g L ⁻¹ Pb (b)	
	at the optimum pyrolysis and atomization temperature	46
3-5	The effect of different matrix modifier on the absorbance of 4.0 μ g L ⁻¹ Cd	
	in aqueous solution.	48
3-6	The effect of different matrix modifier on the absorbance of 100.0 μ g L ⁻¹	
	Pb in aqueous solution	49
3-7	The effect of matrix modifier (0.06% (w/v) Mg(NO ₃) ₂ + 1% (w/v)	
	$(NH_4H_2PO_4)$ on the absorbance of Cd in seafood sample	51

LIST OF FIGURES (CONTINUED)

Figur	es	Page
3-8	The effect of matrix modifier (0.06% (w/v) Mg(NO ₃) ₂ + 1% (w/v)	
	$(NH_4H_2PO_4)$ on the absorbance of Pb in seafood sample	52
3-9	The calibration graph of Cd at the different concentration; (a) 0.0-24.0 μ g L ⁻¹ ,	
	(b) 0.1-8.0 μ g L ⁻¹	54
3-10	The calibration graph of Pb at the different concentration; (a) 0.0 -240.0 μ g L ⁻¹ ,	
	(b) 0.1-160.0 μ g L ⁻¹	56
3-11	The effect of pH of sample solution on adsorption of Cd and Pb on	
	the modified octadecyl silica membrane disks	61
3-12	The effect of amount of 8- hydroxyquinoline on adsorption of Cd and Pb on	
	octadecyl silica membrane disks	63
3-13	The effect of eluent type and concentration on desorption of Cd (a) and Pb (b)	
	on the modified octadecyl silica membrane disks	65
3-14	The effect of eluent volume on desorption of Cd and Pb on the modified	
	octadecyl silica membrane disks	67
3-15	The comparison of calibration curve and standard addition curve	
	for Cd determination in seafood sample	69
3-16	The comparison of calibration curve and standard addition curve	
	for Pb determination in seafood sample	70
3-17	Interferences of coexist ions on adsorption of Cd using the modified	
	octadecyl silica membrane disks	73
3-18	Interferences of coexist ions on adsorption of Pb using the modified	
	octadecyl silica membrane disks	74
3-19	The concentration of Cd in frozen tunafishes from the seafood	
	companies in the South of Thailand	80
3-20	The concentration of Pb in frozen tunafishes from the seafood companies	
	in the South of Thailand	81
3-21	The concentration of Cd in frozen squids from the seafood company	

LIST OF FIGURES (CONTINUED)

Figure	28	Page
	in the South of Thailand	82
3-22	The concentration of Pb in frozen squids from the seafood company in	
	the South of Thailand	83
3-23	The concentration of Cd in frozen cuttlefishes from the seafood company	
	in the South of Thailand	84
3-24	The concentration of Pb in frozen cuttlefishes from the seafood company	
	in the South of Thailand	85
3-25	The concentration of Cd in frozen octopuses from the seafood company	
	in the South of Thailand	86
3-26	The concentration of Pb in frozen octopuses from the seafood company	
	in the South of Thailand	87
3-27	The concentration of Cd in frozen prawns from the seafood company	
	in the South of Thailand	88
3-28	The concentration of Pb in frozen prawns from the seafood company	
	in the South of Thailand	89

•