CONTENTS

	Page
CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER	
1 INTRODUCTION	1
1.1 Background and Rationale	1
1.2 Review of Literature	3
1.2.1 General description of arsenic	3
1.2.2 The toxicology of arsenic	6
1.2.3 Arsenic in the environment and human exposure	8
1.2.3.1 Arsenic in air	8
1.2.3.2 Arsenic in water	9
1.2.3.3 Arsenic in soil	9
1.2.3.4 Arsenic in plants	11
1.2.4 Arsenic speciation analysis	13
1.3 Objectives	23
1.4 Anticipated outcome	23
2 METHODOLOGY	24
2.1 Safety	24
2.2 Chemicals and materials	24
2.3 Instrumentation	24
2.3.1 Flow injection-hydride generation-atomic absorption	
spectrophotometer (FI-HG-AAS)	24
2.3.2 Square wave cathodic stripping voltammetry (SWCSV)	25
2.4 Optimization of instrumental parameters of FI-HG-AAS	28

CONTENTS (CONTINUED)

	Page
2.4.1 Effect of carrier gas flow rate	27
2.4.2 Effect of HCl concentrations	28
2.4.3 Effect of $NaBH_4$ concentrations	28
2.4.4 Effect of As ^V over As ^{III} detection	29
2.4.5 Effect of KI/ascorbic acid concentration	29
2.4.6 Effect of reducing time	30
2.4.7 Efficiency of reduction of As^{V} to As^{III}	30
2.5 Optimization of instrumental parameters of CSV	30
2.5.1 Optimization of conditions for the determination of As^{III}	30
2.5.1.1 Deposition potential	31
2.5.1.2 Deposition time	31
2.5.1.3 HCl concentration	31
2.5.1.4 Copper (II) concentration	32
2.5.2 Optimization of conditions for the determination of total-As (TAs)	32
2.5.2.1 Deposition potential	32
2.5.2.2 Deposition time	33
2.5.2.3 Copper (II) concentration	33
2.5.2.4 Reducing agent concentration	33
2.5.2.5 Reducing time	34
2.5.2.6 Efficiency of reduction of As^{V} to As^{III}	34
2.6 Analytical performances of FI-HG-AAS and CSV methods	34
2.6.1 Linear range	34
2.6.2 Limit of detection (LOD)	35
2.6.3 Limit of quantification (LOQ)	35
2.6.4 Precision	35
2.6.5 Accuracy	36

CONTENTS (CONTINUED)

	Page
2.6.6 Recovery	37
2.7 Application to edible plant samples (arsenic speciation analysis)	37
2.7.1 Sample collection	37
2.7.2 Water extraction for arsenic speciation	40
2.7.3 Sample digestion for total arsenic determination	41
2.7.4 Determination of inorganic arsenic species	41
2.7.4.1 Determination of arsenic species by FI-HG-AAS	41
2.7.4.2 Determination of arsenic species by CVS	42
3 RESULTS AND DISCUSSIONS	43
3.1 Optimization of FI-HG-AAS parameters	43
3.1.1 Effect of carrier gas flow rate	44
3.1.2 Effect of HCl concentrations	45
3.1.3 Effect of $NaBH_4$ concentrations	47
3.1.4 Effect of As ^v over As ^{III} detection	48
3.1.5 KI/ascorbic acid concentration	49
3.1.6 Effect of reducing time	50
3.1.7 Efficiency of reduction of As^{V} to As^{III}	51
3.2 Analytical performances data for FI-HG-AAS	53
3.2.1 Linear range	53
3.2.1.1 Linear range of As^{III} detection	53
3.2.1.2 Linear range of TAs detection	53
3.2.2 Limit of detection (LOD) and Limit of quantification (LOQ)	58
3.2.2.1 LOD and LOQ of As^{III} determination	58
3.2.1.2 LOD and LOQ of TAs determination	58
3.2.3 Accuracy and precision	60
3.2.4 Recovery	63

CONTENTS (CONTINUED)

	Page
3.3 Determination of As species in edible plant samples using FI-HG-AAS	64
3.4 Optimization of CSV parameters	68
3.4.1 Deposition potential	70
3.4.2 Deposition time	72
3.4.3 HCl concentration	76
3.4.4 Copper (II) concentration	78
3.4.5 Reducing agent concentration	81
3.4.6 Reducing time	83
3.4.7 Efficiency of As^{V} to As^{III} conversion	84
3.5 Analytical performance data for SWCSV	86
3.5.1 Linear range	86
3.5.1.1 Linear range of As^{III} detection	86
3.5.1.2 Linear range of TAs detection	88
3.5.2 Limit of detection (LOD) and Limit of quantification (LOQ)	90
3.5.2.1 LOD and LOQ of As ^{III} determination	90
3.5.2.2 LOD and LOQ of TAs determination	91
3.5.3 Accuracy and precision	93
3.6 Determination of As species in edible plant samples using SWCSV	95
3.7 A comparison between FI-HG-AAS and SWCSV method for inorganic	
arsenic speciation	98
4 CONCLUSION	101
REFERENCES	103
APPENDICES	114
Α	115
В	117
С	119

LIST OF TABLES

Table		Page
1-1	Main modern uses of arsenic compounds	4
1-2	Arsenic species commonly found in the environment	5
1-3	The LD_{50} values in rats for some arsenic species	7
1-4	Episodes of arsenic caused poisonings and areas of potential arsenic	
	contamination around the world	10
1-5	Natural arsenic concentration in plants (μgg^{-1})	12
1-6	Molecular forms and boiling points of arsines	15
1-7	Summary of cathodic stripping voltammetry methods for the determination	
	of arsenic	19
2-1	Optimized operating conditions for FI-HG-AAS	26
2-2	Optimized operating conditions for SWCSV	27
2-3	Common vegetables for direct consumption and trading at the local market	38
3-1	The signals obtained from peak height and peak area measurements	43
3-2	Influence of carrier gas flow rates on signal of 10 μ g l ⁻¹ As ^{III} standard	
	solution	45
3-3	Influence of HCl concentrations on hydride generation reaction	46
3-4	Influence of $NaBH_4$ concentrations on hydride generation reaction	47
3-5	Influence of As ^V over As ^{III} determination	48
3-6	Influence of KI/ascorbic acid concentrations on hydride generation reaction	50
3-7	Influence of time on the reduction of As^{V} to As^{III}	51
3-8	The efficiency of the conversion of As^{V} to As^{III}	52
3-9	The peak area of As^{III} detection at different As^{III} concentrations	54
3-10	The peak area of TAs detection at different As ^V concentrations	56
3-11	The determination of 10 blanks for LOD and LOQ quantification (As^{III}) by	
	FI-HG-AAS	59

LIST OF TABLES (CONTINUED)

Table		Page
3-12	The determination of 10 blanks for LOD and LOQ quantification (TAs) by	
	FI-HG-AAS	60
3-13	The experimental and certified values for As determination in the CRM by	
	FI-HG-AAS	61
3-14	Experimental recovery on arsenic determination by FI-HG-AAS in edible	
	plant samples spiked with 1, 10 and 20 $\mu g l^{-1}$ of As ^{III} and As ^V	61
3-15	The determination of 10 μ gl ⁻¹ As ^{III} for evaluating the precision	62
3-16	The determination of 10 μ gl ⁻¹ TAs for evaluating the precision	63
3-17	The determination of spiked samples	64
3-18	Concentrations of total-As and inorganic arsenic species in Lemongrass	
	(as μgg^{-1} dry weight, mean \pm SD)	66
3-19	Concentrations of total-As and inorganic arsenic species in Turmeric	
	(as μgg^{-1} dry weight, mean \pm SD)	67
3-20	The maximum contamination level of arsenic in food for several countries	68
3-21	Influence of deposition potential on As ^{III} peak height ($E_{1/2} \approx -0.680$ to	
	-0.724 V)	70
3-22	Influence of deposition potential on TAs peak height (E $_{\rm 1/2}\thickapprox$ -0.680 to	
	-0.724 V)	72
3-23	Influence of deposition time on As ^{III} peak height	73
3-24	Influence of deposition time on TAs peak height	75
3-25	Influence of HCl concentration on As peak height	77
3-26	Influence of Cu^{II} concentration on As^{III} peak height	79
3-27	Influence of Cu ^{II} concentration on TAs peak height	80
3-28	Influence of thiosulfate concentration on the SWCSV determination of 20	
	$\mu g l^{-1}$ of As ^V	82

LIST OF TABLES (CONTINUED)

Table		Page
3-29	Effect of reduction time for conversion of As^{V} to As^{III} with addition of	
	3 mM thiosulfate to a sample containing 20 $\mu g l^{-1} A s^{V}$	84
3-30	Efficiency of thiosulfate on the reduction of As^{V} to As^{III}	85
3-31	The peak height of As^{III} detection at different As^{III} concentrations	86
3-32	The peak height of TAs detection at different As ^V concentrations	88
3-33	The determination of 10 blanks for LOD and LOQ quantification (As ^{III});	
	SWCSV	91
3-34	The 10 times determination of blanks for LOD and LOQ quantification	
	(TAs); SWCSV	92
3-35	The experimental and certified values for As determination in the CRM by	
	using SWCSV	93
3-36	Experimental recovery on arsenic determination by SWCSV in edible plant	
	samples spiked with 20 and 30 $\mu g I^{-1}$ of As ^{III} and As ^V	93
3-37	The determination of 10 μ gl ⁻¹ As ^{III} for evaluating the precision (SWCSV)	94
3-38	The determination of 10 μ gl ⁻¹ TAs for evaluating the precision (SWCSV)	95
3-39	Concentrations of total-As and inorganic arsenic species in Lemongrass	
	(as μgg^{-1} dry weight, mean \pm SD); SWCSV	96
3-40	Concentrations of total-As and inorganic arsenic species in Turmeric	
	(as μgg^{-1} dry weight, mean \pm SD); SWCSV	97
3-41	A comparison between FI-HG-AAS and SWCSV techniques for arsenic	
	speciation in edible plants samples (as μgg^{-1} dry weight)	99
3-42	Performance of FI-HG-AAS and SWCSV method	100

LIST OF FIGURES

Figure		Page
1-1	Biological transformation of arsenic in soil	11
2-1	FI-HG-AAS system (Perkin Elmer Aanalyst 800)	25
2-2	Voltammetric equipment (AUTOLAB model PG-STAT 100)	27
2-3	Map showing the location to collect samples	39
2-4	Common vegetables for direct consumption and trading at the local market	
	of Ron Phibun district, Nakhon Si Thammarat province	40
3-1	The signals obtained from peak height and peak area measurements	44
3-2	Influence of carrier gas flow rate on signal of 10 $\mu g l^{-1} A s^{III}$ standard solution	45
3-3	Influence of HCl concentrations on hydride generation reaction	46
3-4	Influence of $NaBH_4$ concentrations on hydride generation reaction	47
3-5	Influence of As ^v over As ^{III} determination	49
3-6	Influence of KI/ascorbic acid concentrations on hydride generation reaction	50
3-7	Influence of time on the reduction of As^{V} to As^{III}	51
3-8	The efficiency of the conversion of As^{V} to As^{III}	52
3-9	The calibration graph of As^{III} at the different concentration; (a) 0-40 μgl^{-1} ,	
	(b) 0-20 $\mu g l^{-1}$	55
3-10	The calibration graph of TAs at the different concentration; (a) 0-40 μ gl ⁻¹ ,	
	(b) $0-20 \ \mu g l^{-1}$	57
3-11	A comparison between SWCSV and DPCSV mode; (a) the linear sweep	
	voltammograms and (b) the calibration graphs of each mode	69
3-12	A comparison between peak height and peak area for SWCSV mode	69
3-13	Influence of deposition potential on As ^{III} peak height ($E_{1/2} \approx -0.680$ to	
	-0.724 V)	71
3-14	Influence of deposition potential on TAs peak height ($E_{1/2} \approx -0.680$ to	
	-0.724 V)	72
3-15	Influence of deposition time on As ^{III} peak height	74

LIST OF FIGURES (CONTINUED)

Figure		Page
3-16	Influence of deposition time on TAs peak height; (a) the graph plotting	
	between peak current versus deposition time and (b) voltammograms of	
	varied deposition time (120-390 s)	76
3-17	Influence of HCl concentration on As peak height	78
3-18	Influence of Cu ^{II} concentration on As ^{III} peak height	79
3-19	Influence of Cu ^{II} concentration on TAs peak height	81
3-20	Effect of Cu^{II} concentration on the SWCSV determination of 20 $\mu gl^{-1} As^{V}$	81
3-21	The influence of thiosulfate concentration on the SWCSV determination of	
	$20 \ \mu g l^{-1} \text{ of } As^{V}$	83
3-22	Effect of reduction time for conversion of As^{V} to As^{III} with addition of	
	3 mM thiosulfate to a sample containing 20 $\mu g l^{-1} A s^{V}$	84
3-23	Efficiency of thiosulfate on the reduction of As^{V} to As^{III}	85
3-24	The calibration graph of As^{III} at the different concentration; (a) 0-100 μgl^{-1}	
	and (b) 0-70 $\mu g l^{-1}$	87
3-25	The calibration graph of As^{V} at the different concentration; (a) 0-150 μgl^{-1}	
	and (b) 0-100 $\mu g l^{-1}$	89
3-26	Voltammetric curves of 10, 20, 30, 40 and 50 $\mu g l^{-1} A s^{III}$ for plotting the	
	calibration curve	90
3-27	Voltammetric curves of 10, 20, 30 and 40 μ gl ⁻¹ TAs for plotting the	
	calibration curve	92

LIST OF ABBREVIATIONS AND SYMBOLS

ASV	=	Anodic stripping voltammetry
As^{V}	=	Arsenate
As ^{III}	=	Arsenite
AsB	=	Arsenobetaine
AsC	=	Arsenocholine
AFS	=	Atomic fluorescence spectrometry
CE-UV	=	Capillary electrophoresis-ultraviolet detector
CSV	=	Cathodic stripping voltammetry
CRM	=	Certified Reference Material
m ³ day ⁻¹	=	Cubic meter per day
CV	=	Cyclic voltammetry
DPCSV	=	Differential pulse cathodic stripping voltammetry
DMAA	=	Dimethylarsinic acid
E _{dep}	=	Electrodeposition potential
t _{dep}	=	Electrodeposition time
EFs	=	Enrichment factors
E _f	=	Final scanning potential
FI-HG-AAS	=	Flow injection-hydride generation-atomic absorption
		spectrophotometry
HMDE	=	Hanging mercury drop electrode
HG	=	Hydride generation
HPLC	=	High performance liquid chromatography
ICP-AES	=	Inductively coupled plasma-atomic emission
		spectrometry
ICP-MS	=	Inductively coupled plasma-mass spectrometry
LD ₅₀	=	50% lethal oral dose
LOD	=	Limit of detection

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

LOQ	=	Limit of quantification
MCL	=	Maximum contaminant level
μΑ	=	Microampere
$\mu \mathrm{gg}^{-1}$	=	Microgram per gram
$\mu g l^{-1}$	=	Microgram per liter
mgkg ⁻¹	=	Milligram per kilogram
mgl^{-1}	=	Milligram per liter
mM	=	Millimolar
М	=	Molar
MMAA	=	Monomethylarsonic acid
ND	=	Not detected
ppb	=	Part per billion
ppm	=	Part per million
SWCSV	=	Square wave cathodic stripping voltammetry
E _{1/2}	=	Stripping peak potential
TAs	=	Total arsenic
TMAO	=	Trimethylarsine oxide
USEPA	=	United States Environmental Protection Agency
V	=	Volt