CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
1.1 Background and Rationale
1.2 Literature Review
1.3 Objectives of this Present Work
1.4 Expected Result
1.5 Scopes

2 **THEORIES**
2.1 History of Biodiesel
2.2 Esterification
2.3 Transesterification
2.4 Saponification
2.5 Rate Law of Reversible Reaction
2.6 Kinetics of Esterification
2.7 Kinetics of Transesterification
2.8 Activation Energy
2.9 Raw Materials
2.9.1 Oils and Fats
2.9.2 Alcohol
CONTENTS (Cont’)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10 Effect of Parameter in Biodiesel Procedure</td>
<td>18</td>
</tr>
<tr>
<td>2.10.1 Catalyst</td>
<td>18</td>
</tr>
<tr>
<td>2.10.2 Molar Ratio of Methanol to Oil</td>
<td>18</td>
</tr>
<tr>
<td>2.10.3 Mixing Intensity</td>
<td>19</td>
</tr>
<tr>
<td>2.10.4 Reaction Temperature</td>
<td>19</td>
</tr>
<tr>
<td>2.10.5 Moisture and FFA Content</td>
<td>19</td>
</tr>
<tr>
<td>2.11 Specifications and Properties of Biodiesel</td>
<td>19</td>
</tr>
<tr>
<td>2.12 Method of High Free Fatty Acid Oils and Fats</td>
<td>21</td>
</tr>
<tr>
<td>2.13 Runge–Kutta Method for Solving Ordinary Differential Equation (O.D.E)</td>
<td>22</td>
</tr>
</tbody>
</table>

3 RESEARCH METHODOLOGY

3.1 Materials 25
3.2 Apparatus 25
3.3 Two–Stage Process 26
 - 3.3.1 The Experiment of Two–Stage Process 26
 - 3.3.2 Reaction Conditions 27
 - 3.3.3 Sampling 27
 - 3.3.4 Monitoring Analysis 27
3.4 Kinetics of Two–Stage Process 28
3.5 Two–Stage Process Modeling 28

4 RESULTS AND DISCUSSION

4.1 Pre–Experiment for Two–Stage Process of Biodiesel Production from MCPO
 - 4.1.1 The Amount of Methanol (MeOH) 32
 - 4.1.2 The Speed of Stirrer 33
CONTENTS (Cont’)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3</td>
<td>The Amount of Catalyst</td>
<td>34</td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>The Amount of H_2SO_4</td>
<td>34</td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>The Amount of NaOH</td>
<td>35</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Water and H_2SO_4 Separation</td>
<td>36</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Purification Methods</td>
<td>37</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Reaction Time</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Two-Stage Process of Biodiesel Production from MCPO</td>
<td>39</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Esterification</td>
<td>39</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Transesterification</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Effect of Methanol Ratio on Two-Stage Process</td>
<td>41</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Effect of Temperature on Two-Stage Process</td>
<td>42</td>
</tr>
<tr>
<td>4.2.5</td>
<td>The Properties of Methyl Ester from MCPO</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Kinetics of Two-Stage Process</td>
<td>45</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Rate Coefficients and Reaction Rates of Two-Stage Process</td>
<td>45</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Activation Energies (E_a) of Two-Stage Process</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Two-Stage Process Modeling</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>CONCLUSIONS</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Two-Stage Process</td>
<td>58</td>
</tr>
<tr>
<td>5.2</td>
<td>Two-Stage Process Modeling</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Recommendations</td>
<td>59</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>CALCULATION OF THE MOLECULAR WEIGHT OF MCPO</td>
<td>66</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>KARL FISCHER ANALYSIS</td>
<td>69</td>
</tr>
</tbody>
</table>
CONTENTS (Cont’)

APPENDIX C COMPARISON OF ANALYTICAL INSTRUMENT 71
APPENDIX D RAW DATA FOR THE TWO-STAGE PROCESS 74
APPENDIX E ANALYTICAL DATA FOR THE TWO-STAGE PROCESS 81
APPENDIX F % DATA ERROR MEAN AND STANDARD DEVIATION IN CATEGORIES OF THE TWO-STAGE PROCESS FROM MATLAB7 CURVE FITTING TOOL 95
VITAE 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Fatty acid structure</td>
<td>16</td>
</tr>
<tr>
<td>2.2 The percentage of common fatty acids in oils and fats</td>
<td>17</td>
</tr>
<tr>
<td>2.3 The requirement of commercial biodiesel qualities and quantities in Thailand</td>
<td>20</td>
</tr>
<tr>
<td>2.4 The requirement of biodiesel qualities and quantities for agricultural engines in Thailand</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Pre-experiment conditions for the two-stage process production</td>
<td>29</td>
</tr>
<tr>
<td>4.1 Comparison between properties of methyl ester from MCPO and some requirements of biodiesel qualities and quantities in Thailand</td>
<td>44</td>
</tr>
<tr>
<td>4.2 Rate coefficients and reaction orders for esterification reaction</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Rate coefficients for transesterification reaction</td>
<td>46</td>
</tr>
<tr>
<td>4.4 Activation energies (cal/mol) of the two-stage process at different molar ratios of methanol to oil</td>
<td>49</td>
</tr>
<tr>
<td>A.1 The concentration of compounds in MCPO from analysis using standard methods</td>
<td>68</td>
</tr>
<tr>
<td>D.1 FFA conversion in MCPO by using a 1:1 molar ratio of methanol to oil at a temperature of 55 degree Celsius</td>
<td>75</td>
</tr>
<tr>
<td>D.2 FFA conversion in MCPO by using a 1:1 molar ratio of methanol to oil at a temperature of 60 degree Celsius</td>
<td>75</td>
</tr>
<tr>
<td>D.3 FFA conversion in MCPO by using a 1:1 molar ratio of methanol to oil at a temperature of 65 degree Celsius</td>
<td>75</td>
</tr>
<tr>
<td>D.4 FFA conversion in MCPO by using a 2.5:1 molar ratio of methanol to oil at a temperature of 55 degree Celsius</td>
<td>76</td>
</tr>
<tr>
<td>D.5 FFA conversion in MCPO by using a 2.5:1 molar ratio of methanol to oil at a temperature of 60 degree Celsius</td>
<td>76</td>
</tr>
<tr>
<td>TABLE</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>D.6</td>
<td>FFA conversion in MCPO by using a 2.5:1 molar ratio of methanol to oil at a temperature of 65 degree Celsius</td>
</tr>
<tr>
<td>D.7</td>
<td>FFA conversion in MCPO by using a 3.5:1 molar ratio of methanol to oil at a temperature of 55 degree Celsius</td>
</tr>
<tr>
<td>D.8</td>
<td>FFA conversion in MCPO by using a 3.5:1 molar ratio of methanol to oil at a temperature of 60 degree Celsius</td>
</tr>
<tr>
<td>D.9</td>
<td>FFA conversion in MCPO by using a 3.5:1 molar ratio of methanol to oil at a temperature of 65 degree Celsius</td>
</tr>
<tr>
<td>D.10</td>
<td>ME conversion in MCPO by using a 2.5:1 molar ratio of methanol to oil at a temperature of 55 degree Celsius</td>
</tr>
<tr>
<td>D.11</td>
<td>ME conversion in MCPO by using a 2.5:1 molar ratio of methanol to oil at a temperature of 60 degree Celsius</td>
</tr>
<tr>
<td>D.12</td>
<td>ME conversion in MCPO by using a 2.5:1 molar ratio of methanol to oil at a temperature of 65 degree Celsius</td>
</tr>
<tr>
<td>D.13</td>
<td>ME conversion in MCPO by using a 5:1 molar ratio of methanol to oil at a temperature of 55 degree Celsius</td>
</tr>
<tr>
<td>D.14</td>
<td>ME conversion in MCPO by using a 5:1 molar ratio of methanol to oil at a temperature of 60 degree Celsius</td>
</tr>
<tr>
<td>D.15</td>
<td>ME conversion in MCPO by using a 5:1 molar ratio of methanol to oil at a temperature of 65 degree Celsius</td>
</tr>
<tr>
<td>D.16</td>
<td>ME conversion in MCPO by using a 7.5:1 molar ratio of methanol to oil at a temperature of 55 degree Celsius</td>
</tr>
<tr>
<td>D.17</td>
<td>ME conversion in MCPO by using a 7.5:1 molar ratio of methanol to oil at a temperature of 60 degree Celsius</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.18</td>
<td>ME conversion in MCPO by using a 7.5:1 molar ratio of methanol to oil at a temperature of 65 degree Celsius</td>
<td>80</td>
</tr>
<tr>
<td>F.1</td>
<td>Rate coefficients and reaction orders of esterification from MATLAB7</td>
<td>96</td>
</tr>
<tr>
<td>F.2</td>
<td>Rate coefficients of transesterification from MATLAB7</td>
<td>96</td>
</tr>
<tr>
<td>F.3</td>
<td>Comparison between the % data error mean and the standard deviation in categories of the two-stage process between raw data and MATLAB7</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>24</td>
</tr>
<tr>
<td>Diagram of research methodology</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>26</td>
</tr>
<tr>
<td>Equipment used in this study</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>30</td>
</tr>
<tr>
<td>Two-stage process</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>31</td>
</tr>
<tr>
<td>Diagram of the two-stage process modeling</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>33</td>
</tr>
<tr>
<td>Effect of stirring speed on FFA conversion in MCPO by using a 20:1 molar ratio of methanol to FFA, at a temperature of 60 degree Celsius, catalyzed by 10 %wt H$_2$SO$_4$ of FFA</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>35</td>
</tr>
<tr>
<td>Effect of the amount of H$_2$SO$_4$ on FFA conversion in MCPO by using a 10:1 molar ratio of methanol to FFA, at temperature of 60 degree Celsius, and a speed of stirrer of 300 rpm</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>36</td>
</tr>
<tr>
<td>Effect of the amount of NaOH on ME conversion in MCPO by using a 6:1 molar ratio of methanol to TG, at temperature of 60 degree Celsius, and a speed of stirrer of 300 rpm</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>36</td>
</tr>
<tr>
<td>Standing time for water and H$_2$SO$_4$ separation of first stage process</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>37</td>
</tr>
<tr>
<td>Effect of purification method on FFA conversion in MCPO under a 10:1 molar ratio of methanol to FFA, at temperature of 60 degree Celsius, a speed of stirrer of 300 rpm, and catalyzed by 5 %wt H$_2$SO$_4$ of FFA</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>49</td>
</tr>
<tr>
<td>Variations of the reaction mixture composition during esterification of MCPO by using a 10 %wt H$_2$SO$_4$ of FFA and a 10:1 molar ratio of methanol to FFA at 60 degree Celsius</td>
<td>49</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>Variations of the reaction mixture composition during transesterification of MCPO by using a 0.6 %wt NaOH of TG and a 6:1 molar ratio of methanol to TG at 60 degree Celsius</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (Cont’)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Effect of molar ratio of methanol to oil on FFA concentration in MCPO using 10 %wt H₂SO₄ of FFA and a stirring rate of 300 rpm at 55 (A), 60 (B), 65 (C) degree Celsius, respectively</td>
<td>42</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of molar ratio of methanol to oil on FFA in MCPO using 0.6 %wt NaOH of TG and a stirring rate of 300 rpm at 55 (A), 60 (B), 65 (C) degree Celsius, respectively</td>
<td>43</td>
</tr>
<tr>
<td>4.10</td>
<td>The temperature dependency of reaction rate coefficients of esterification at a 10:1 molar ratio of methanol to FFA</td>
<td>47</td>
</tr>
<tr>
<td>4.11</td>
<td>The temperature dependency of the reaction rate coefficients of transesterification at a 6:1 molar ratio of methanol to TG</td>
<td>48</td>
</tr>
<tr>
<td>4.12</td>
<td>The procedure used in the two-stage process part</td>
<td>51</td>
</tr>
<tr>
<td>4.13</td>
<td>Inputting initial concentrations of substances (FFA, ME, and WT) in %wt</td>
<td>51</td>
</tr>
<tr>
<td>4.14</td>
<td>Unit conversions for concentration in the esterification reaction (%wt to mol/L)</td>
<td>52</td>
</tr>
<tr>
<td>4.15</td>
<td>Conditions for reducing FFA concentration in MCPO</td>
<td>52</td>
</tr>
<tr>
<td>4.16</td>
<td>The table and curves of the component concentrations (FFA, ME, and WT) in mol/L</td>
<td>53</td>
</tr>
<tr>
<td>4.17</td>
<td>Unit conversions for concentration in the esterification reaction (mol/L to %wt)</td>
<td>53</td>
</tr>
<tr>
<td>4.18</td>
<td>The table and curves of FFA, ME, and WT concentrations the optimal condition in mol/L</td>
<td>54</td>
</tr>
<tr>
<td>4.19</td>
<td>Unit conversions for concentration in the esterification reaction (mol/L to %wt) of the optimal condition</td>
<td>54</td>
</tr>
<tr>
<td>4.20</td>
<td>Inputting initial concentrations of TG, DG, MG, and GL in %wt</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (Cont’)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21</td>
<td>Unit conversions for concentrations in the transesterification reaction</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(%wt to mol/L)</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Conditions for producing ME from MCPO</td>
<td>56</td>
</tr>
<tr>
<td>4.23</td>
<td>The table and curves of TG, DG, MG, ME, and GL concentrations in mol/L</td>
<td>56</td>
</tr>
<tr>
<td>4.24</td>
<td>Unit conversions for concentrations in the transesterification reaction</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(mol/L to %wt)</td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>Comparison of FFA determination between TLC/FID and Titration</td>
<td>72</td>
</tr>
<tr>
<td>C.2</td>
<td>Comparison of ME determination between TLC/FID and GC/FID</td>
<td>72</td>
</tr>
<tr>
<td>C.3</td>
<td>Comparison of GL determination between Titration and GC/FID</td>
<td>73</td>
</tr>
<tr>
<td>E.1</td>
<td>Remained methanol content in the first stage solution</td>
<td>82</td>
</tr>
<tr>
<td>E.2</td>
<td>Ester content of first-stage process at different times</td>
<td>83</td>
</tr>
<tr>
<td>E.3</td>
<td>Free fatty acid value of MCPO</td>
<td>84</td>
</tr>
<tr>
<td>E.4</td>
<td>MG, DG and TG content in MCPO</td>
<td>85</td>
</tr>
<tr>
<td>E.5</td>
<td>The % ester content of biodiesel produce from MCPO</td>
<td>86</td>
</tr>
<tr>
<td>E.6</td>
<td>Density of biodiesel prepared from MCPO</td>
<td>87</td>
</tr>
<tr>
<td>E.7</td>
<td>Flash point and viscosity of biodiesel from MCPO</td>
<td>88</td>
</tr>
<tr>
<td>E.8</td>
<td>Sulphur content of biodiesel made from MCPO</td>
<td>89</td>
</tr>
<tr>
<td>E.9</td>
<td>Sulphur ash content of biodiesel made from MCPO</td>
<td>90</td>
</tr>
<tr>
<td>E.10.1</td>
<td>Water and sediment in biodiesel obtained from MCPO</td>
<td>91</td>
</tr>
<tr>
<td>E.10.2</td>
<td>Water and sediment in biodiesel obtained from MCPO</td>
<td>92</td>
</tr>
<tr>
<td>E.11</td>
<td>Acid number of biodiesel made from MCPO</td>
<td>93</td>
</tr>
<tr>
<td>E.12</td>
<td>Free GL, MG, DG, TG, and total GL in biodiesel produced from MCPO</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pre-exponential factor or frequency factor</td>
</tr>
<tr>
<td>A</td>
<td>The initial reactant</td>
</tr>
<tr>
<td>ACE</td>
<td>The acid-catalyzed esterification</td>
</tr>
<tr>
<td>AL</td>
<td>Alcohol</td>
</tr>
<tr>
<td>ASTM</td>
<td>American standard test method</td>
</tr>
<tr>
<td>[AL]</td>
<td>The molar concentration of alcohol</td>
</tr>
<tr>
<td>[A]</td>
<td>The molar concentration of reagent A</td>
</tr>
<tr>
<td>[A]</td>
<td>The molar concentration of reagent A</td>
</tr>
<tr>
<td>a</td>
<td>Order of free fatty acid in reaction sequence</td>
</tr>
<tr>
<td>a</td>
<td>Order of reagent A</td>
</tr>
<tr>
<td>a</td>
<td>The coefficient of reagent A</td>
</tr>
<tr>
<td>[a, b]</td>
<td>Interval</td>
</tr>
<tr>
<td>B</td>
<td>The initial reactant</td>
</tr>
<tr>
<td>BCM</td>
<td>The base-catalyzed methanolysis</td>
</tr>
<tr>
<td>[B]</td>
<td>The molar concentration of reagent B</td>
</tr>
<tr>
<td>b</td>
<td>Order of alcohol in reaction sequence</td>
</tr>
<tr>
<td>b</td>
<td>Order of reagent B</td>
</tr>
<tr>
<td>b</td>
<td>The coefficient of reagent B</td>
</tr>
<tr>
<td>C</td>
<td>The product</td>
</tr>
<tr>
<td>(\text{C}{12}\text{H}{24}\text{O}_2)</td>
<td>Lauric</td>
</tr>
<tr>
<td>(\text{C}{14}\text{H}{28}\text{O}_2)</td>
<td>Myristic</td>
</tr>
<tr>
<td>(\text{C}{16}\text{H}{32}\text{O}_2)</td>
<td>Palmitic</td>
</tr>
<tr>
<td>(\text{C}{18}\text{H}{36}\text{O}_2)</td>
<td>Linolenic</td>
</tr>
<tr>
<td>(\text{C}{18}\text{H}{32}\text{O}_2)</td>
<td>Linoleic</td>
</tr>
<tr>
<td>(\text{C}{18}\text{H}{34}\text{O}_2)</td>
<td>Oleic</td>
</tr>
<tr>
<td>(\text{C}{18}\text{H}{36}\text{O}_2)</td>
<td>Stearic</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND SYMBOLS (Cont’)

\(\text{C}_{20}\text{H}_{40}\text{O}_2 \) Arachidic
\(\text{C}_{22}\text{H}_{42}\text{O}_2 \) Erucic
\(\text{C}_{22}\text{H}_{44}\text{O}_2 \) Behenic
\(\text{C}_{24}\text{H}_{48}\text{O}_2 \) Lignoceric
CPOME Mixed crude palm oil methyl Ester
[C] The molar concentration of product C
c Order of ester in reaction sequence
c Order of product C
c The coefficient of product C
cal Calorie
cm\(^3\) Cubic millimeter
cSt Centistokes
D The product
DG Diglyceride
[D] The molar concentration of product D
[DG] The molar concentration of diglyceride
d Order of product D
d Order of water in reaction sequence
d The coefficient of product D
E Activation energy, J/mol or cal/mol
E Ester
E\(_a\) Activation Energies
EN European test method
[E] The molar concentration of ester
FAME Fatty acid methyl ester
FFA Free fatty acid
LIST OF ABBREVIATIONS AND SYMBOLS (Cont’)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FFA]</td>
<td>The molar concentration of free fatty acid</td>
</tr>
<tr>
<td>f(x,y)</td>
<td>Function (x,y)</td>
</tr>
<tr>
<td>GC/FID</td>
<td>Gas chromatography/ flame ionization detector</td>
</tr>
<tr>
<td>GL</td>
<td>Glycerol</td>
</tr>
<tr>
<td>[GL]</td>
<td>The molar concentration of glycerol</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>h</td>
<td>Width</td>
</tr>
<tr>
<td>I.V.P.</td>
<td>The initial value problem</td>
</tr>
<tr>
<td>i</td>
<td>Order</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>k_λ</td>
<td>The rate coefficient</td>
</tr>
<tr>
<td>k_a</td>
<td>The rate coefficient of the forward reaction</td>
</tr>
<tr>
<td>k⁻a</td>
<td>The rate coefficient of the reverse reaction</td>
</tr>
<tr>
<td>k₁</td>
<td>The rate coefficient of free fatty acid (forward reaction)</td>
</tr>
<tr>
<td>k₂</td>
<td>The rate coefficient of free fatty acid (reverse reaction)</td>
</tr>
<tr>
<td>k₃</td>
<td>The rate coefficient of TG (forward reaction)</td>
</tr>
<tr>
<td>k₄</td>
<td>The rate coefficient of TG (reverse reaction)</td>
</tr>
<tr>
<td>k₅</td>
<td>The rate coefficient of DG (forward reaction)</td>
</tr>
<tr>
<td>k₆</td>
<td>The rate coefficient of DG (reverse reaction)</td>
</tr>
<tr>
<td>k₇</td>
<td>The rate coefficient of MG (forward reaction)</td>
</tr>
<tr>
<td>k₈</td>
<td>The rate coefficient of MG (reverse reaction)</td>
</tr>
<tr>
<td>kg/m³</td>
<td>Kilogram/ cubic metre</td>
</tr>
<tr>
<td>k₁₁</td>
<td>The first step of the Runge–Kutta Method calculation</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND SYMBOLS (Cont’)

k2 The second step of the Runge-Kutta Method calculation
k3 The third step of the Runge-Kutta Method calculation
k4 The fourth step of the Runge-Kutta Method calculation
L Liter
ln Natural logarithm
M Subinterval
MCPO Mixed crude palm oil
ME Methyl ester
ME1 Methyl ester from the first-stage process
MeOH Methanol
MG Monoglycerides
[MG] The concentration of monoglyceride
m The number of categories
mg/kg Milligram/ kilogram
mg KOH/g Milligram potassium hydroxide/ gram
min Minute
ml. Milliliter
NaOH Sodium hydroxide
N_{RE} Reynolds Number
n Number of population
n_i Sizes of categories
O.D.E Ordinary Differential Equation
ode23 Runge-Kutta Method order 2-3
ode45 Runge-Kutta Method order 4-5
prEN European test method
R Alkyl group
LIST OF ABBREVIATIONS AND SYMBOLS (Cont’)

R Gas constant = 8.314 J/mol K or 1.987 cal/mol K
R Short chain alkyl groups
RK4 The fourth–order Runge–Kutta Method
RPO Refined palm oil
R² The determination coefficient
R’ Alkyl group
R’ Long chain alkyl groups
R” Alkyl group
R” Long chain alkyl groups
R”O Hydrocarbon group
R”’ Long chain alkyl groups
rpm Revolutions per minute
T Absolute temperature, K
T Temperature
TLC/FID Thin layer chromatography/ flame ionization detector
TG Triglycerides
TSO Tobacco seed oil
[TG] The molar concentration of triglyceride
t Time
WT Water
[WT] The molar concentration of water
xi Population x
x_{i,j} Data measurements
(x_i, y_i) The discrete approximations
yi Population y
° C Degree Celsius
LIST OF ABBREVIATIONS AND SYMBOLS (Cont’)

\(\mu \) Mean

\(\mu_i \) Mean

\(\sigma \) The standard deviation

\(\sigma_i \) Standard deviation

\(\%v \) \%volume by volume

\(\%v/v \) \%volume by volume

\(\%vol \) \%volume by volume

\(\%wt \) \%weight by weight

\(\%wt/v \) \%weight by volume

\(\%wt/wt \) \%weight by weight