Selection and Enzyme Assays of Pyrethroid Resistance in

Anopheles minimus Colony

Piyanooot Juntarumporn

Master of Science Thesis in Entomology

Prince of Songkla University

2003
Abstract

This study was conducted to test susceptibilities of *Anopheles minimus* species A mosquitoes following exposures to deltamethrin, during each of 19 generations. The LD$_{50}$ and LD$_{90}$ (or LT$_{50}$ and LT$_{90}$) values were determined for populations from each subsequent generation by probit analysis and significant increases occurring from one generation to the next. They were analyzed by chi-square test ($P<0.01$). Selection for resistance via the World Health Organization test protocol (was by exposing), sequential generations of *An. minimus* females to LD$_{50}$ and LT$_{50}$ values of deltamethrin. There was approximately a 26-fold increase in the LD$_{50}$ and a 23-fold increase in LD$_{90}$ when the F$_{10}$ generation was compared to the parent colony (F$_{0}$). Similarly, the LT$_{50}$ and LT$_{90}$ values were also increased during selection experiments from generations 14-19. There was roughly a 3-fold increase in LT50 and LT90 values of F19 females compared to F$_{14}$ females.

In addition, enzyme-based mechanisms of insecticide resistance were performed on susceptible and resistant colonies of *An. minimus* to deltamethrin using biochemical assay. Three enzyme assays, esterase, monoxygenases and glutathione S-transferases, were performed on 4 test populations (F$_{0}$, F$_{6}$, F$_{12}$ and F$_{18}$). F$_{0}$ was found completely susceptible to deltamethrin, whereas F$_{6}$, F$_{12}$ and F$_{18}$ demonstrated levels of tolerance/resistance to deltamethrin. Monoxygenases (MFOs) activity was continuously elevated in resistant test populations (F$_{6}$, F$_{12}$ and F$_{18}$) than those from the parent colony (F$_{0}$). There was a 5-fold increase in specific activity of MFOs in F$_{18}$ compared to the control colony (F$_{0}$). Specific activities of alpha and beta-esterases as measured by the
hydrolysis of alpha and beta-naphthyl propionate to naphthol showed it was unclear whether it is responsible for pyrethroid resistance. Glutathione S-transferases (GSTs) were not elevated in the 4 resistant test populations. Based on our results, it is more likely that the development of physiological resistance to deltamethrin may be related to elevated MFOs activity.