Contents

P	age
บทคัด ย่อ	
(3)	
Abstract	(5)
Acknowledgement	.(7)
Contents	(8)
List of Tables	11)
List of Figures	(13)
Abbreviations and Symbols	20)
CHAPTER	
1. GENERAL INTRODUCTION	1
1. Prebiotic Oligosaccharides	1
2. Manufacturing of Prebiotic Oligosaccharides	.17
3. Dextrans	24
4. Gluconobacter oxydans	.27
5. The Human Large Intestine and The Gut Microflora	33
6. Methods for Evaluating Prebiotics	.49
7. Aims and Objectives	.57
2. MATERIALS AND METHODS	58
1. Materials	.58
2. General methods	.61
3. Experimental Procedures	.69
3. RESULTS AND DISCUSSION.	.76
1. Optimization for production of oligodextran	.76
2. Studies on the influence of reaction parameters on the molecular	
weight distribution and chemical structure of oligodextran	.87
3. Pilot-scale production and recovery of oligodextran	.92
4. Studies on the prebiotic properties of oligodextran	.96

Contents (Continued)

4. GENERAL DISCUSSION AND FUTURE WORK	Page 155
1. General discussion	155
2. Future work	168
REFERENCE	170
APPENDIX	.198
1.1 G. oxydans cell dry weight calibration	198
2.1 Total sugar concentration by the phenol-sulphuric acid assay	199
3.1 Reducing sugar concentration by the dinitro-salicylic acid	
assay (DNS)	200
4.1 Elution characteristics of the dextran standards used to calibrate	
the HPSEC system	201
4.2 Calibration of the high performance size exclusion	
chromatographic system (HPSEC)	202
5.1 Chromatograph of maltodextrin substrate (a) and oligodextran	
product (b) obtained by HPSEC	203
6.1 Chromatograph of maltodextrin substrate (a) and oligodextran	
product (b) obtained by GC-MS	205
7.1 ¹ H-NMR of C_1 of Glucidex 19 maltodextrin substrate (a)	
and G19 oligodextran (b)	207
8.1 Numeric values of the responses used in the persistence of the	
G19 oligodextran on human salivary amylase using response	
surface methodology	209
8.2 Numeric values of the responses used in the persistence of the	
G19 oligodextran on human pancreatic amylase using response	
surface methodology	210
9.1 Area response for the quantification of SCFA by HPLC	211
10.1 Growth of <i>G. oxydans</i> NCIMB 4943 on GYC agar	214
10.2 Assembly of lab-scale ultrafiltration system	214
10.3 Pilot-scale fermenter (150 l) for production of oligodextran	215

Contents (Continued)

1	10.4 Stirred pH-controlled batch culture for fermentation studies	Page 215
]	10.5 Three-stage system for fermentation of G19 oligodextran	
PUBLICAT	ION	.217
VITAE		.218

List of Tables

Table		Page
1.1	Health promoting effects and mechanisms of probiotic bacteria and	
	prebiotic substances	2
1.2	Design parameters for enhanced activity prebiotics	4
1.3	Studies on effects of inulin and fructo-oligosaccharides	7
1.4	Studies on effects of galacto-oligosaccharides	8
1.5	Studies on effects of soybean oligosaccharides	10
1.6	Studies on effects of lactosucrose	11
1.7	Studies on effects of isomalto-oligosaccharides	13
1.8	Studies on effects of gluco-oligosaccharides	15
1.9	Minimum effective doses for a prebiotic effect in humans for various	
	oligosaccharides	17
1.10	Structure of commercial available prebiotic oligosaccharides	18
1.11	The adult colonic microflora composition as determined by bacterial culture	e
	and molecular methods	37
1.12	FISH probes used in the bacterial enumeration in this study	55
3.1	Effect of maltodextrin type on the molar ratio of linkages in oligodextrans	
	made using the culture medium method, as determined by methylation	
	analysis	90
3.2	Effect of maltodextrin type on the molar ratio of linkages in oligodextrans	
	made using the cell suspension method, as determined by methylation	
	analysis	91
3.3	Effect of maltodextrin type on the molar ratio of linkages in oligodextrans	
	made using the culture medium method as determined by ¹ H-NMR	92
3.4	Permeate flux of cell-free culture sample produced from various maltodextr	in
	types obtained by pilot-scale ultrafiltration	96
3.5	SCFA production by G12, G19, G20 and G29 oligodextran fermentations	
	in stirred pH-controlled batch culture	.140

List of Tables (Continued)

Table		Page
3.6	SCFA production by G37 oligodextran, levan, inulin-ST and inulin-HP	
	fermentations in stirred pH-controlled batch culture	142
3.7	SCFA production by G12, G19, G20 and G29 maltodextrin fermentations	
	in stirred pH-controlled batch culture	144
3.8	SCFA production by G37 maltodextrin fermentations in stirred	
	pH-controlled batch culture	145
3.9	SCFA production by G19 oligodextran fermentations in V1, V2 and V3	
	of three stage continuous system	152

List of Figures

Figure	Page
1.1	Simplified map for the carbohydrate metabolism of
	Gluconobacter oxydans
1.2	Summary of DDase modes of action
1.3	Composition of the human colonic microflora and the activities of beneficial,
	benign and harmful bacterial components
1.4	The 'Bifidus' pathway for hexose fermentation in bifidobacteria40
1.5	Simplified overview of pyruvate metabolism in relation to SCFA formation
	and electron sinks, by the large intestine microflora44
1.6	Schematic representation of pathways for carbohydrate fermentation in the
	large intestine
3.1	Growth characteristics of G. oxydans NCIMB 4943 cultivated in
	GY medium in shake-flask culture (175 rev min ⁻¹ , 30°C)76
3.2	Growth and culture pH during cultivation of G. oxydans NCIMB 4943 in
	GY medium using 10-1 batch fermenter, under uncontrolled and controlled
	culture pH (6.8) for 48 h77
3.3	Comparison of oligodextran yields obtained by the culture method and the
	cell suspension method on 10 g l^{-1} G19 maltodextrin by 5 g l^{-1} G. oxydans
	cells
3.4	Effect of concentrations of G. oxydans NCIMB 4943 cells performed in
	shake-flask culture (200 rev min ⁻¹ , 30°C) using the cell suspension method
	containing 10 g l^{-1} G19 maltodextrin dissolved in acetate buffer (pH 4.5)80
3.5	Effect of sodium acetate buffer pH on oligodextran yields carried out in
	shake-flask culture (200 rev min ⁻¹ , 30°C) using the cell suspension method
	containing 5 g l ⁻¹ G. oxydans cells, 10 g l ⁻¹ G19 maltodextrin dissolved in
	sodium acetate buffer at various pH values

Figure	Page
3.6	Effect of reaction temperature on oligodextran yield carried out in
	shake-flask culture (200 rev min ⁻¹) at various temperatures using the cell
	suspension method containing 5 g l^{-1} G. oxydans cells, 10 g l^{-1} G19
	maltodextrin dissolved in sodium acetate buffer (pH 4.5)82
3.7	Effect of various commercial maltodextrins on growth of G.oxydans
	NCIMB 4943 cultivated in maltodextrin complex medium in shake-flask
	culture (200 rev min ⁻¹ , 30°C)
3.8	Effect of various commercial maltodextrins on culture pH of G. oxydans
	NCIMB 4943 cultivated on maltodextrin complex medium in shake-flask
	culture (200 rev min ⁻¹ , 30°C)
3.9	Effect of substrate types on oligodextran yields from G. oxydans NCIMB
	4943 cultivated on maltodextrin complex medium with 10 g l ⁻¹ maltodextrin
	by shake-flask culture (200 rev min ⁻¹ , 30°C) using the culture medium
	method85
3.10	Effect of substrate type on oligodextran yields performed in shake-flask
	culture (200 rev min ⁻¹ , 30°C) using the cell suspension method containing
	5 g l ⁻¹ G. oxydans cells, 10 g l ⁻¹ maltodextrin dissolved in sodium acetate
	buffer (pH 4.5)
3.11	Effect of substrate concentration on oligodextran yields carried out in
	shake-flask culture (200 rev min ⁻¹ , 30°C) using the cell suspension method
	containing 5 g l ⁻¹ G. oxydans cells and various amounts of G19 maltodextrin
	dissolved in sodium acetate buffer (pH 4.5)87
3.12	Molecular weight distributions of maltodextrin substrate (at 0 h) and
	products formed by G. oxydans NCIMB 4943 cultivated in maltodextrin
	complex medium with 10 g l ⁻¹ G19 maltodextrin in shake-flask culture
	(200 rev min ⁻¹ , 30°C) using the culture medium method

Figure	Pag	ge
3.13	Molecular weight distributions of maltodextrin substrate (0 h) and	
	products formed by G. oxydans NCIMB 4943 cultivated in	
	shake-flask culture (200 rev min ⁻¹ , 30°C) using the cell suspension	
	method (containing 5 g l^{-1} G. oxydans cells, 10 g l^{-1} G19 maltodextrin	
	dissolved in sodium acetate buffer (pH 4.5)	;9
3.14	Growth of G. oxydans NCIMB 4943 in GY medium under controlled	
	pH (6.8) conditions in a pilot-scale fermenter (150-l, agitation speed of	
	150 rpm, 30°C)9	3
3.15	Production of oligodextran by G. oxydans NCIMB 4943 in a pilot-scale	
	fermenter (150-l, agitation speed of 150 rpm, 30°C) using the cell suspension	
	method containing 5 g l ⁻¹ cells and 10 g l ⁻¹ G19 maltodextrin dissolved	
	in sodium acetate buffer (pH 4.5)9	94
3.16	Molecular weight distributions of maltodextrin substrate and oligodextran	
	formed by G. oxydans NCIMB 4943 cultivated for 48 h in a pilot-scale	
	fermenter (150-l, 150 rpm, 30°C) using the cell suspension method containing	g
	5 g l^{-1} G. oxydans cells and 10 g l^{-1} G19 maltodextrin	
	dissolved in sodium acetate buffer (pH 4.5)9	95
3.17	Susceptibility of G19 oligodextran (a) and G20 oligodextran (b) to HCl	
	(pH1-5) incubated for 6 h, at 37°C9	7
3.18	Susceptibility of G19 maltodextrin (a) and G20 maltodextrin (b) to HCl	
	(pH1-5) incubated for 6 h, at 37°C9	9
3.19	Susceptibility of G19 oligodextran to HCl buffer (pH 1) incubated for 6 h,	
	at 37°C10	0
3.20	Susceptibility of G19 oligodextran to human salivary amylase at pH 4-8,	
	1-2 U ml ⁻¹ enzyme, incubated at 37°C for 6 h10)1

Pa	ge
Contour plot of susceptibility of G19 oligodextran to human salivary	
amylase as a function of pH and time, $1-2 \text{ U ml}^{-1}$ enzyme, incubated at	
37°C10	02
Susceptibility of G20 oligodextran to human salivary amylase at pH 4-8,	
1-2 U ml ⁻¹ enzyme, incubated at 37°C for 6 h	03
Contour plot of susceptibility of G20 oligodextran to human salivary	
amylase as a function of pH and time using $1-2 \text{ U ml}^{-1}$ enzyme and	
incubated at 37°C1	04
Susceptibility of G20 maltodextrin to human salivary amylase at pH 4-8,	
1-2 U ml ⁻¹ of enzyme, incubated at 37°C for 3 h1	05
Contour plot of susceptibility of G20 maltodextrin to human salivary	
amylase at various pH and times using 1-2 $\mathrm{U}\ ml^{\text{-1}}$ enzyme and incubation at	
37°C10	06
Susceptibility of G19 oligodextran to human pancreatic amylase at pH 4-8	
using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 6 h10	07
Contour plot of susceptibility of G19 oligodextran to human pancreatic	
amylase as a function of pH and time using $1-2 \text{ U ml}^{-1}$ enzyme and	
incubation at 37°C10)8
Susceptibility of G20 oligodextran to α -amylase from A. oryzae at pH 4-8	
using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 6 h10	09
Susceptibility of G20 oligodextran to α -amylase from <i>A. oryzae</i> at pH 4-8	
using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 6 h	10
Susceptibility of G20 maltodextrin to α-amylase from <i>A. oryzae</i> at pH 4-8	
using 1-2 U ml ⁻¹ of enzyme and incubation at 37°C for 3 h1	11
	PaContour plot of susceptibility of G19 oligodextran to human salivaryamylase as a function of pH and time, 1-2 U ml ⁻¹ enzyme, incubated at37°C

Figure	Page
3.31	Contour plot of susceptibility of G20 maltodextrin to α -amylase from
	A. oryzae as a function of pH and time using $1-2 \text{ U ml}^{-1}$ enzyme and
	incubation at 37°C112
3.32	Susceptibility of G20 oligodextran to α -amylase from <i>B. licheniformis</i> at
	pH 4-8 using 1-2 U ml ⁻¹ enzyme and incubation at 37 °C for 6 h113
3.33	Contour plot of susceptibility of G20 oligodextran to α -amylase from
	<i>B. licheniformis</i> as a function of pH and time using $1-2 \text{ U ml}^{-1}$ enzyme
	and incubation at 37°C114
3.34	Susceptibility of G20 maltodextrin to α -amylase from <i>B. licheniformis</i> at
	pH 4-8 using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 3 h115
3.35	Contour plot of susceptibility of G20 maltodextrin to α -amylase from
	<i>B. licheniformis</i> as a function of pH and time using $1-2 \text{ U ml}^{-1}$ enzyme
	and incubation at 37°C116
3.36	Susceptibility of G20 oligodextran to α -amylase from <i>Bacillus spp</i> . at
	pH 4-8 using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 6 h117
3.37	Contour plot of susceptibility of G20 oligodextran to α -amylase from
	Bacillus spp. as a function of pH and time using 1-2 U ml ⁻¹ enzyme
	and incubation at 37°C118
3.38	Susceptibility of G20 maltodextrin to α -amylase from <i>Bacillus spp</i> . at
	pH 4-8 using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 3 h119
3.39	Contour plot of susceptibility of G20 maltodextrin to α -amylase from
	Bacillus spp. as a function of pH and time, 1-2 U ml ⁻¹ enzyme, incubated at
	37°C120
3.40	Susceptibility of G20 oligodextran to β -amylase from barley at pH 4-8
	using 1-2 U ml ⁻¹ enzyme and incubation at 37°C for 6 h121

Figure		Page
3.41	Contour plot of susceptibility of G20 oligodextran to β -amylase from	
	barley as a function of pH and time using $1-2 \text{ U ml}^{-1}$ enzyme and	
	incubation at 37°C	.122
3.42	Susceptibility of G20 maltodextrin to β -amylase from barley at pH 4-8	
	using 1-2 U ml ⁻¹ of enzyme and incubation at 37°C for 3 h	123
3.43	Contour plot of susceptibility of G20 maltodextrin to β -amylase from	
	barley as a function of pH and time using 1-2 U ml ⁻¹ enzyme and incubate	d
	at 37°C	.124
3.44	Effect of temperatures used for incubation of G19 oligodextran with vario	us
	sources of α -amylases and β -amylase (2 U ml ⁻¹) at pH 7	125
3.45	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	
	G12 oligodextran (a) and G12 maltodextrin (b)	127
3.46	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	
	G19 oligodextran (a) and G19 maltodextrin (b)	129
3.47	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	
	G20 oligodextran (a) and G20 maltodextrin (b)	131
3.48	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	
	G29 oligodextran (a) and G29 maltodextrin (b)	133
3.49	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	
	G37 oligodextran (a) and G37 maltodextrin (b)	135
3.50	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	

commercial levan	6
------------------	---

Figure	P	Page
3.51	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with	
	commercial inulin-ST	137
3.52	Changes in bacterial populations enumerated using fluorescent in situ	
	hybridization in stirred pH-controlled batch culture fermentation with i	
	nulin-HP	138
3.53	Prebiotic index (PI) scores from stirred pH-controlled batch culture	
	fermentations of 1% (w/v) G12, G19, G20, G29, G37 oligodextrans,	
	G12, G19, G20, G29, G37 maltodextrins, levan, inulin-ST and inulin-HP	.147
3.54	Changes in bacterial populations enumerated using FISH technique in V1	
	of three-stage continuous system and 1% (w/v) G19 oligodextran was	
	supplemented during day 10 to 20	148
3.55	Changes in bacterial populations enumerated using FISH technique in V2	
	of three-stage continuous system and 1% (w/v) G19 oligodextran was	
	supplemented during day 10 to 20	149
3.56	Changes in bacterial populations enumerated using FISH technique in V3	
	of three-stage continuous system and 1% (w/v) G19 oligodextran was	
	supplemented during day 10 to 20	150
3.57	Prebiotic index (PI) scores in V1, V2 and V3 from three-stage continuous	
	system with the supplementation of 1% (w/v) G19 oligodextran during	
	day 10 to 20 of fermentation.	.153

Abbreviations and Symbols

D	= dilution rate
DAPI	= 4', 6-diamidino-2-phenylindole
DDase	= dextran dextrinase
DE	= dextrose equivalent
DP	= degree of polymerization
F	= flow rate
FCM	= flow cytometry
FISH	= fluorescent in situ hybridization
FOS	= fructo-oligosaccharide
Fru	= fructose
F6PPK	= fructose-6-phosphate phosphoketolase
Gal	= galactose
GC-MS	= gas chromatography-mass spectrometry
GEOS	= gentio-oligosaccharide
GI	= gastrointestinal tract
Glu	= glucose
GYC	= glucose yeast chalk
GY	= glucose yeast
HFA	= human flora associated
HPSEC	= high performance size exclusion chromatography
HPLC	= high performance liquid chromatography
IBS	= irritate bowel syndrome
IMO	= isomalto-oligosaccharide
IMO2	= disaccharide fraction of isomalto-900
IMO3	= trisaccharide fraction of isomalto-900
IMO 900	= isomalto-900, the commercial isomalto-
	oligosaccharide preparation
LAB	= lactic acid bacteria

= lactosucrose

Abbreviations and Symbols (Continued)

MW	= molecular weight
MWCO	= molecular weight cut off
NDO	= non digestible oligosaccharide
NMR	= nuclear magnetic resonance
NSP	= non-starch polysaccharide
PCR-DGGE/TGGE	= polymerase chain reaction-denaturing gradient gel
	electrophoresis/
	temperature gradient gel electrophoresis
RS	= resistant starch
RSM	= response surface methodology
SCFA	= short chain fatty acid
SDS-PAGE	= sodium sodesylsulphate-polyacrylamide gel
	electrophoresis
SOS	= soybean oligosaccharide
TD	= transgalactosylated disaccharide
TLC	= thin layer chromatography
TOS	= transgalacto-oligosaccharide
UF	= ultrafiltration
V	= volume of vessel
VCR	= volume concentration ratio
V1	= vessel 1
VLDL	= very low density lipoprotein
XOS	= xylo-oligosaccharide
μ	= specific growth rate