1. INTRODUCTION

1.1 Introduction

The genus Ceriops (Rhizophoraceae) comprises two species: *Ceriops decandra* (Griff.) Ding Hou and *Ceriops tagal* (Perr.) C.B. Robinson. They are mangrove plants widely distributed from East Africa and Madagascar throughout tropical Asia and Queensland to Melanesia and Micronesia (Tomlinson, 1986). In Thailand, *C. decandra* has been found in Chonburi, Chantaburi, Krabi, Phuket, Satun, Surat Thani and Chumphon. It has many local Thai names: Prong Khao (ไปรงชาว), Prong Nu (ไปรง หนู), Prong (โปรง) and also a synonym of *Ceriops roxburghiana* Arn. (Smitinand and Larsen, 1970).

Ceriops decandra (Griff.) Ding Hou is a shrub or small tree, up to 4 m high. Leaves are rounded, having obovate tendencies and a shiny green upper surface. The flowers are whitish and tend to be clustered on short, thick stalks. Fruit length is 1.0 - 1.5 cm, blunt apically and hypocotyl length up to 16 cm. The hypocotyl is often broadened at the lower end and may develop purple tip. The hypocotyl of *C. decandra* points up unlike that of *C. tagal* which hangs down. The bark from this species has been used as a folk medicine for treatment of diarrhea, vomiting, amoebiasis and ulcer (Bamroongrugsa, 1999).

Figure 1 Parts of Ceriops decandra (Griff.) Ding Hou (a-e) and Ceriops tagal (f)

1.2 Review of Literatures

Chemical constituents isolated from the two species of ceriops genus were summarized in **Table 1**. Information from NAPRALERT database developed by University of Illinois at Chicaco and SciFinder Scholar copyright in 2005 will be presented and classified into groups: carbohydrates, diterpenoids, triterpenoids, and steroids.

 Table 1 Compounds from plant of Ceriops genus

a. Carbohydrates

b. Diterpenoids

c. Triterpenoids

d. Steroids

Scientific name	Investigated part	Compound	Bibliography
C. decandra	leaves	α -amyrin, 19c	Ghosh, et al.,
		campesterol, 23d	1985
		cholesterol, 24d	
		lupeol, 20c	
		oleanolic acid, 21c	
		β -sitosterol, 25d	
		stigmast-7-en-3 β -ol, 26d	
		stigmasterol, 27d	
		ursolic acid, 22c	
	roots	ceriopsin A, 2b	Anjaneyulu and
		ceriopsin B, 3b	Rao, 2002
		ceriopsin B, 3b	
		ceriopsin C, 4b	
		ceriopsin D, 5b	
		ceriopsin E, 6b	Anjaneyulu, et al.,
			2002
		ceriopsin F, 7b	Anjaneyulu and
		ceriopsin G, 8b	Rao, 2003
C. tagal	shoots	1-D-1-O- methyl- muco-	Richter, et al.,
		inositol, 1a	1990

Table 1 (Continued)

Scientific name	Investigated part	Compound	Bibliography
C. tagal	stems and	tagalsin A, 9b	Zhang, et al.,
	twigs	tagalsin B, 10b	2005 (a)
		tagalsin C, 11b	
		tagalsin D, 12b	
		tagalsin E, 13b	
		tagalsin F, 14b	
		tagalsin G, 15b	
		tagalsin H, 16b	
		tagalsin I, 17b	Zhang, et al.,
		tagalsin J, 18b	2005 (b)

Structures

a. Carbohydrates

1a: 1-D-1-O- methyl- muco- inositol

b. Diterpenoids

2b: ceriopsin A

3b: ceriopsin B

4b: ceriopsin C

5b: ceriopsin D

6b: ceriopsin E

7b: ceriopsin F

8b: ceriopsin G

9b: tagalsin A

10b: tagalsin B

11b: tagalinsin C

12b: tagalsin D

13b: tagalsin E

14b: tagalsin F

15b: tagalsin G

16b: tagalsin H

17b: tagalsin I

18b: tagalsin J

c. Triterpenoids

9c: α -amyrin

10c: lupeol

11c: oleanolic acid

12c: ursolic acid

d. Steroids

13d: campesterol

14d: cholesterol

15d: β -sitosterol

17d: stigmasterol