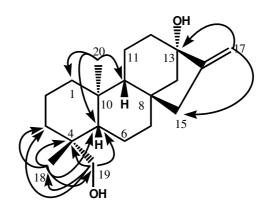

CHAPTER 3 RESULTS AND DISCUSSION

3.1 Structure elucidation of compounds from the roots of B. cylindrica

The air-dried and pulverized roots (4.0 kg) were exhaustively extracted with methylene chloride and acetone successively. The crude methylene chloride extract was subjected to quick column chromatography and/or crystallization to give ten diterpenoids as one new pimarane: **TK10** and one known: **TK8**; seven kauranes: **TK1-TK7** and a beyerane: **TK9**; seven known lupane triterpenoids: **TK11-TK17**; three known steroids: **TK18-TK20** and a ferulic acid ester: **TK21**.

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC and ¹H-¹H COSY. Mass spectra were determined for a new compound **TK10** and a known **TK21**. The physical data of the known compounds were also compared with the reported values. In addition X-ray crystallographic structures were reported for compounds **TK1** and **TK5**.

3.1.1 Compound TK1


Compound **TK1** was obtained as a white amorphous solid, mp. 255-257 °C, $[\alpha]^{27}_{D}$: -22.7° (c = 0.30, CHCl₃). It exhibited hydroxyl (3292 cm⁻¹) and double bond (1620 cm⁻¹) absorptions in the IR spectrum (**Figure 4**). X-ray crystallographic analysis of **TK1** was carried out and gave ORTEP drawing as shown in **Figure 2** (Salae *et al.*, 2007). The ¹³C NMR spectrum and a DEPT experiment indicated that **TK1** has a total of 20 carbons, which is consistent with a diterpene skeleton.

The ¹H NMR spectral data of **TK1** (**Table 2, Figure 5**) revealed the presence of an exocyclic methylene protons (δ 4.74 *brs* and 4.91 *brt*, J = 2.2 Hz) and oxy-methylene protons (δ 3.35 *d*, J = 11.4 Hz and 3.65 *d*, J = 11.4 Hz). The latter formed an AB system, implying of their connection to a quaternary carbon.

The ¹³C NMR spectral data of **TK1** (**Table 2, Figure 6**) showed all 20 carbon signals, whose DEPT spectrum enabled assignment as two methyl (δ 17.9 and 27.0), eleven methylene (δ 18.2, 20.2, 20.4, 35.5, 39.3, 40.4, 41.7, 47.0, 47.5, 65.5 and 102.8), two methine (δ 54.9 and 56.7) and five quaternary carbons (δ 38.6, 39.0, 41.6, 80.3 and 156.1). The ¹³C NMR signals at δ 65.5, 102.8 and 156.5 confirmed the presence of oxy-methylene and exocyclic methylene carbons. Comparison of ¹³C NMR chemical shifts with those of related kauranoid diterpenes (Subrahmanyam *et al.*, 1999) and relative configurations from X-ray ORTEP diagram (**Figure 2**),

suggested that **TK1** possesses an *ent*-kaurane-type skeleton with oxy-methylene protons at C-19.

The position of oxy-methylene protons at C-19 was determined through an HMBC experiment (**Table 2, Figure 7**) in which the oxy-methylene protons at δ 3.35 and 3.65 (H₂-19) showed correlations with C-3 (δ 35.6), C-4 (δ 39.0) and C-18 (δ 27.0). The methyl protons at δ 0.89 (H₃-18) showed correlations with C-3 (δ 35.6), C-4 (δ 39.0), C-5 (δ 56.7) and C-19 (δ 65.5). Thus on the basis of its spectroscopic data and comparison with the previous report [Subrahmanyam *et al.*, 1999, [α]²⁷_D: -47° (c = 0.10, CH₃OH)] (**Table 2**), compound **TK1** was assigned as *ent*-kaur-16-en-13,19-diol.

Selected HMBC correlation of TK1

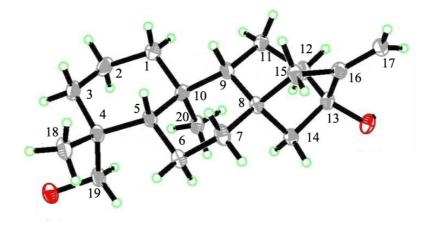


Figure 2 X-ray ORTEP diagram of compound TK1

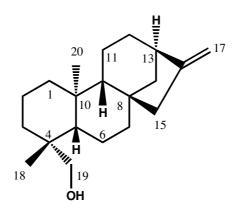
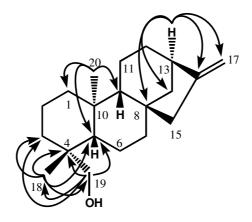

Position	Type of C	$\delta_{\rm C}/{ m I}$	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
FOSILIOII	Type of C	TK1	R	TK1	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	40.4	40.6	$0.75 (m), 1.80 (m)^{a}$	-
2	CH_2	20.2	20.5	$1.61 (m), 1.74 (m)^{a}$	-
3	CH_2	35.6	36.1	$0.86(m), 1.73(m)^{a}$	-
4	С	39.0	39.2	-	-
5	СН	56.7	57.0	$0.91 (m)^{a}$	-
6	CH_2	20.4	20.7	$1.28 (qd, J = 12.4, 3.6 \text{ Hz})^{a}$	-
7	CH_2	41.7	42.2	$1.40 (m), 1.46 (m)^{a}$	-
8	С	41.6	41.7	-	-
9	СН	54.9	55.2	$0.88 (m)^{a}$	-
10	С	38.6	39.3	-	-
11	CH_2	18.2	18.7	$1.35 (m), 1.50 (m)^{a}$	-
12	CH_2	39.3	40.6	$1.49 (m), 1.76 (m)^{a}$	-
13	С	80.3	79.8	-	8, 14, 16, 17
14	CH_2	47.0	47.3	1.17 (dd, J = 10.8, 2.4 Hz),	-
				$2.02 (m)^{a}$	-
15	CH_2	47.5	48.2	$1.17 (m), 2.11 (m)^{a}$	-
16	С	156.1	157.4	-	-
17	CH_2	102.8	102.9	4.74 (brs),	13, 15
				4.91 (<i>brt</i> , $J = 2.2$ Hz)	
18	CH ₃	27.0	28.0	0.89 (s)	3, 4, 5, 19
19	CH_2	65.5	64.0	$3.35 (d, J = 11.4 \text{ Hz})^{\text{b}}$	ן
				$3.65 (d, J = 11.4 \text{ Hz})^{\text{b}}$	3, 4, 18
20	CH ₃	17.9	18.2	0.93 (s)	1, 5, 9

Table 2 ¹H, ¹³C NMR and HMBC spectral data of compound **TK1** and *ent*-kaur-16en-13,19-diol (**R**, C₅D₅N)

^a Deduced from HMQC experiment


^b May be interchanged

3.1.2 Compound TK2

Compound **TK2** was isolated as a white amorphous solid, mp. 140-141 $^{\circ}$ C, $[\alpha]^{27}_{D}$: -75.0° (*c* = 0.34, CHCl₃). The IR spectrum showed absorption bands similar to those of compound **TK1**.

The ¹H and ¹³C NMR spectral data of **TK2** (**Table 3, Figures 11** and **12**) were similar to those of **TK1** (**Table 2, Figures 5** and **6**). The difference in the spectrum of **TK2** was shown as an additional broad singlet methine proton signal at δ 2.64 and a methine carbon signal at δ 43.9 replaced an oxyquarternary carbon at δ 80.3 in **TK1**, thus suggesting a methine proton at C-13. By comparison of the ¹³C NMR spectral data with the previously reported data [Antonio *et al.*, 1981; Piozzi *et al.*, 1971, $[\alpha]^{20}_{D}$: -82.0° (*c* = 0.42, CHCl₃)] (**Table 3**), therefore compound **TK2** was identified as *ent*-kaurenol.

Selected HMBC correlation of TK2

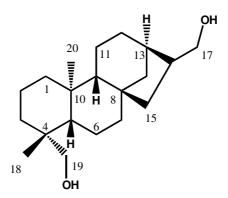
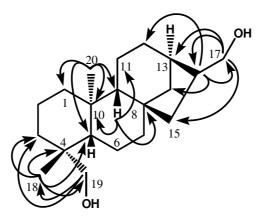

Position	Type of C*	$\delta_{ m C}$ /ppm			δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}H\rightarrow^{13}C$
		TK2	TK1	R	TK2	
1	CH ₂	40.4	40.4	40.5	$0.81 (m), 1.87 (m)^{a}$	-
2	CH_2	18.3	20.2	18.3	$1.40(m)^{a}$	-
3	CH_2	35.6	35.5	35.6	$0.94 (m), 1.79 (m)^{a}$	-
4	С	38.6	39.0	38.7	-	-
5	СН	56.8	56.7	56.8	$0.96 (m)^{a}$	-
6	CH_2	20.5	20.4	20.5	$1.66 (m)^{a}$	-
7	CH_2	41.6	41.7	41.6	$1.50 (m)^{a}$	-
8	С	44.1	41.6	44.2	-	-
9	СН	56.2	54.9	56.2	$1.09 (m)^{a}$	-
10	С	39.2	38.6	39.2	-	-
11	CH_2	18.2	18.2	18.2	$1.58 (m)^{a}$	-
12	CH_2	33.1	39.3	33.2	1.46 (<i>m</i>), 1.64 (<i>m</i>) ^a	-
13	СН	43.9	80.3	44.0	2.64 (brs)	-
14	CH_2	39.6	47.0	39.7	$1.10 (m), 1.98 (brd)^{a}$	-
15	CH_2	49.1	47.5	49.1	2.07 (dd, J = 5.1, 2.4 Hz)	-
16	С	155.8	156.1	155.8	-	-
17	CH_2	102.9	102.8	103.0	4.73 (brs), 4.81 (brs)	-
18	CH ₃	27.0	27.0	27.1	0.99 (s)	3, 4, 5, 19
19	CH_2	65.5	65.5	65.4	α 3.49 (<i>d</i> , <i>J</i> = 10.8 Hz) ^b	ן
					β 3.75 (<i>d</i> , <i>J</i> = 10.8 Hz) ^b	3, 4, 5, 18
20	CH ₃	18.1	17.9	18.5	1.02 (s)	1, 5, 9

Table 3 ¹H, ¹³C NMR and HMBC spectral data of compounds **TK2**, **TK1** and *ent*-kaurenol (**R**, CDCl₃)

^a Deduced from HMQC experiment


^b May be interchanged

3.1.3 Compound TK3

Compound **TK3** was isolated as a white amorphous solid, mp. 112-114 °C, $[\alpha]^{27}_{\text{D}}: -32.0^{\circ}$ (c = 0.40, CHCl₃). It exhibited hydroxyl (3446 cm⁻¹) absorptions in the IR spectrum.

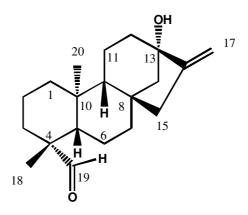
The ¹H and ¹³C NMR spectral data of **TK3** (**Table 4, Figures 17** and **18**) were similar to those of **TK2** (**Table 3, Figures 11** and **12**). Difference in the spectrum of **TK3** was shown as the disappearance of an exocyclic methylene carbon at C-17 (δ 102.9 in **TK2**) and the appearance of oxymethylene carbon (δ 67.5) in the ¹³C NMR spectrum of **TK3**. The ¹H NMR spectrum displayed a signal of oxymethylene protons at δ 3.40 instead of exocyclic methylene protons, thus suggesting oxymethylene protons at C-17 and a signal of a methine proton was shown at δ 1.93 (C-16). The position of oxymethylene protons at C-17 was determined through an HMBC experiment (**Table 4**) whose proton signals at δ 3.40 showed correlations with C-13 (δ 38.3), C-15 (δ 45.1) and C-16 (δ 43.4). Thus on the basis of its spectroscopic data and comparison with the previous report (Han *et al.*, 2004; Bohlmann *et al.*, 1981), compound **TK3** was assigned as 16α *H*-17,19-*ent*-kauranediol.

Selected HMBC correlation of TK3

Table 4 ¹ H, ¹³ C NMR and HMBC spectral data of compounds TK3 and TK2

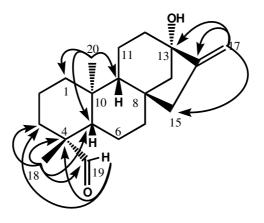
Desition	Туре	$\delta_{\rm C}/_{ m I}$	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
Position	of C*	TK3	TK2	ТК3	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	40.5	40.4	$0.80(m), 1.87(m)^{a}$	-
2	CH ₂	18.6	18.3	$1.59 (m)^{a}$	-
3	CH_2	35.6	35.6	$0.97 (m), 1.75 (m)^{a}$	-
4	С	38.6	38.6	-	-
5	СН	56.8	56.8	$0.94 (m)^{a}$	-
6	CH ₂	20.9	20.5	$1.34(m), 1.67(m)^{a}$	-
7	CH ₂	42.0	41.6	$1.45 (m)^{a}$	-
8	С	44.7	44.1	-	-
9	СН	56.4	56.2	$1.03 (m)^{a}$	8, 12, 20
10	С	39.2	39.2	-	-
11	CH ₂	18.3	18.2	$1.42 (m)^{a}$	-
12	CH_2	31.5	33.1	$1.46 (m), 1.59 (m)^{a}$	-
13	СН	38.3	43.9	$2.08 (brs)^{a}$	15
14	CH ₂	37.2	39.6	$0.92 (m), 1.84 (m)^{a}$	-
15	CH ₂	45.1	49.1	$0.90(m), 1.55(m)^{a}$	-
16	СН	43.4	155.8	$1.93 (m)^{a}$	12, 14, 17

Table 4 (continued)


Position	Type of C*	$\delta_{ m C}$ /ppm		δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
		TK3	TK2	TK3	/ _
17	CH ₂	67.5	102.9	3.40 (<i>m</i>)	13, 15, 16
18	CH ₃	27.0	27.0	0.96 (s)	3, 4, 5, 19
19	CH ₂	65.5	65.5	α 3.49 (<i>d</i> , <i>J</i> = 10.9 Hz) ^b	J
				$\beta 3.79 (d, J = 10.9 \text{ Hz})^{\text{b}}$	3, 18
20	CH ₃	18.0	18.1	1.00 (s)	1, 5, 9, 10

* For TK3

^a Deduced from HMQC experiment


^b May be interchanged

3.1.4 Compound TK4

Compound **TK4** was isolated as a white amorphous solid, mp. 118-119 $^{\circ}$ C, $[\alpha]^{27}_{D}$: -56.9° (*c* = 1.00, CHCl₃). It exhibited hydroxyl (3340 cm⁻¹), carbonyl (1712 cm⁻¹) and double bond (1650 cm⁻¹) absorptions in the IR spectrum (**Figure 23**).

The ¹H and ¹³C NMR spectral data of **TK4** (**Table 5**, **Figures 24** and **25**) were similar to those of **TK1** (**Table 2**, **Figures 5** and **6**). The difference was found in ring A, where the aldehydic proton at δ 9.70 (*s*, H-19) replaced signals of oxy-methylene protons at δ 3.35 and 3.65 in **TK1**. The aldehydic proton H-19 showed HMBC correlations (**Table 5**) with C-3 (δ 34.1) and C-4 (δ 48.4). The methyl protons at δ 1.01 (H₃-18) showed correlations with C-3 (δ 34.1), C-4 (δ 48.4), C-5 (δ 56.6) and C-19 (δ 205.7). Thus on the basis of its spectroscopic data and comparison with the previous report [Subrahmanyam *et al.*, 1999, [α]³⁰_D : -59.0° (*c* = 0.10, CHCl₃)], compound **TK4** was assigned as *ent*-kaur-16-en-13-hydroxy-19-al.

Selected HMBC correlation of TK4

Table 5 ¹H, ¹³C NMR and HMBC spectral data of compounds TK4, TK1 and ent-
kaur-16-en-13-hydroxy-19-al (**R**, CDCl₃)

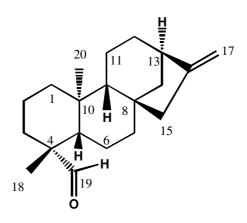
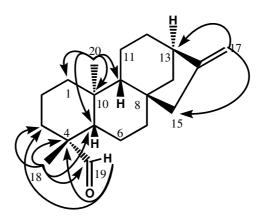

Position	Туре		$\delta_{\rm C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 OSITION	of C*	TK4	TK1	R	TK4	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	39.7	40.4	39.5	$0.87 (m), 182 (m)^{a}$	-
2	CH ₂	19.8	20.2	19.6	$1.50 (m), 2.08 (m)^{a}$	-
3	CH_2	34.1	35.5	39.0	$2.18 (m)^{a}$	-
4	С	48.4	39.0	48.2	-	-
5	СН	56.6	56.7	56.4	1.19 (dd, J = 12.6, 2.1 Hz)	-
6	CH ₂	20.3	20.4	20.1	$1.55 (m), 1.77 (m)^{a}$	-
7	CH_2	39.1	41.7	34.0	$1.05 (m), 2.12 (m)^{a}$	-
8	С	41.5	41.6	41.3	-	-
9	СН	53.2	54.9	53.1	$1.03 (m)^{a}$	-
10	С	39.1	38.6	39.2	-	-
11	CH_2	18.3	18.2	18.1	$1.42 (m)^{a}$	-
12	CH_2	41.2	39.3	41.0	$1.50 (m), 1.65 (m)^{a}$	-
13	С	80.1	80.3	79.9	-	-
14	CH ₂	47.1	47.0	46.8	1.29 (<i>d</i> , <i>J</i> = 11.1 Hz),	-
					$2.12 (m)^{a}$	-

Table 5 (continued)


Position	Туре		$\delta_{\rm C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 OSITION	of C*	TK4	TK1	R	TK4	$^{1}\text{H}\rightarrow^{13}\text{C}$
15	CH ₂	47.4	47.5	47.3	1.31 (d, J = 10.8 Hz),	-
					$2.08 (m)^{a}$	-
16	С	155.8	156.1	155.4	-	-
17	CH_2	103.1	102.8	103.0	4.82 (brs), 4.99 (brs)	13, 15, 16
18	CH ₃	24.2	27.0	24.1	1.01 (s)	3, 4, 5, 19
19	СНО	205.7	65.5	205.6	9.70 (s)	3, 4
20	CH ₃	16.2	17.9	16.1	0.87 (s)	1, 5, 9

^a Deduced from HMQC experiment

3.1.5 Compound TK5

Compound **TK5** was isolated as white needles, mp. 114-115 °C, $[\alpha]^{27}{}_{D}$: -76.0° (c = 0.43, CHCl₃). The IR spectrum was closely related to that of **TK4**. The ¹H and ¹³C NMR spectral data of **TK5** (**Table 6, Figures 30** and **31**) resembled those of **TK4** (**Table 5, Figures 24** and **25**). The difference was shown as the additional proton signal at $\delta 2.65$ (brs) and the carbon signal at $\delta 43.7$ in **TK5** replaced C-13 signal at $\delta 80.1$ in **TK4**. The exocyclic methylene protons H₂-17 showed HMBC correlations with C-13 ($\delta 43.7$) and C-15 ($\delta 49.0$). Thus on the basis of its spectroscopic data and comparison with the previous report [Stefan *et al.*, 2003; Piozzi *et al.*, 1971, $[\alpha]^{20}{}_{D}$: -95.0° (c = 0.39, CHCl₃)], compound **TK5** was assigned as *ent*-kaurenal. X-ray crystallographic analysis of **TK5** (Chantrapromma *et al.*, 2007) was also carried out and gave ORTEP drawing as shown in **Figure 3**.

Selected HMBC correlation of TK5

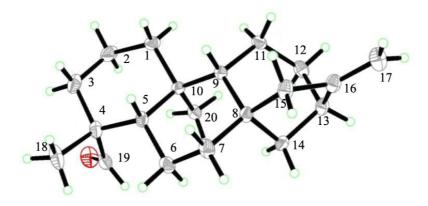


Figure 3 X-ray ORTEP diagram of compound TK5

Table 6¹H, ¹³C NMR and HMBC spectral data of compounds TK5 and TK4

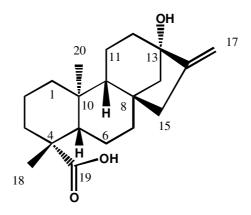
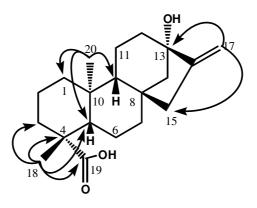

Position	Type of C*	$\delta_{\rm C}/$	ppm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 OSITION	rosition rype of C		TK4	TK5	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	39.9	39.7	$0.80 (m)^{a}$	-
2	CH ₂	18.4	19.8	$1.68 (m)^{a}$	-
3	CH ₂	34.2	34.1	1.01 (<i>m</i>), 2.16 (<i>m</i>) ^a	-
4	С	48.4	48.4	-	-
5	СН	56.7	56.6	$1.17 (m)^{a}$	-
6	CH ₂	19.8	20.3	1.72 (<i>m</i>), 1.91 (<i>m</i>) ^a	-
7	CH ₂	41.1	39.1	$1.60 (m)^{a}$	-
8	С	44.0	41.5	-	-
9	СН	54.5	53.2	$1.11 (m)^{a}$	-
10	С	39.3	39.1	-	-
11	CH ₂	18.3	18.3	$1.50 (m)^{a}$	-
12	CH ₂	32.9	41.2	$1.64 (m)^{a}$	-
13	СН	43.7	80.1	$2.65 (brs)^{a}$	-
14	CH ₂	39.8	47.1	1.17 (<i>m</i>), 1.98 (<i>m</i>) ^a	-

Table 5 (continued)

Position	Type of C*	$\delta_{ m C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 051001	Type of C	TK5	TK4	TK4	$^{1}\text{H}\rightarrow^{13}\text{C}$
15	CH ₂	49.0	47.4	$2.09 (m)^{a}$	-
16	С	155.5	155.8	-	-
17	CH_2	103.2	103.1	4.75 (brs), 4.80 (brs)	13, 15
18	CH ₃	24.2	24.2	1.00 (s)	3, 4, 5, 19
19	СНО	205.8	205.7	9.75 (s)	3, 4
20	CH ₃	16.3	16.2	0.89 (s)	1, 5, 9, 10


^a Deduced from HMQC experiment

3.1.6 Compound TK6

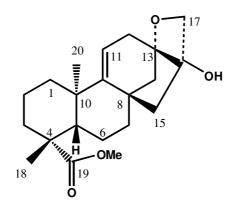
Compound **TK6** was isolated as a white amorphous solid, mp. 199-201 $^{\circ}$ C, $[\alpha]^{27}_{D}$: -58.1° (*c* = 2.00, CHCl₃). It exhibited hydroxyl (3396 cm⁻¹) and carboxyl (1687 cm⁻¹) absorptions in the IR spectrum (**Figure 36**).

The ¹H and ¹³C NMR spectral data of **TK6** (**Table 7**, **Figures 37** and **38**) were similar to those of **TK4** (**Table 5**, **Figures 24** and **25**). The difference in the spectrum of **TK6** was shown as the disappearance of an aldehydic proton at δ 9.70 (H-19) in the ¹H NMR of **TK4** and the ¹³C NMR spectrum of **TK6** displayed a signal of carboxyl carbon at δ 183.3 instead of an aldehydic carbon at δ 205.7, thus suggesting a carboxylic functionality at C-19. The location of the carboxyl group was confirmed by HMBC experiment (**Table 7**) in which the methyl protons at δ 1.21 (H₃-18) showed correlations with C-3 (δ 37.8), C-4 (δ 43.6), C-5 (δ 56.9) and C-19 (δ 183.3). NOESY correlation between H₃-20 and H₂- α 14 (δ 2.10) supported the assignment. Thus on the basis of its spectroscopic data and comparison with the previous report [Subrahmanyam *et al.*, 1999, [α]³⁰_D: -69.0° (*c* = 0.06, CHCl₃); Yang *et al.*, 2007], compound **TK6** was assigned as *ent*-kaur-16-en-13-hydroxy-19-oic acid (steviol).

Selected HMBC correlation of TK6

Table 7 ¹H, ¹³C NMR and HMBC spectral data of compounds **TK6**, **TK4** and *ent*-kaur-16-en-13-hydroxy-19-oic acid (**R**, C₅D₅N)

Position	Type of C*	δ _C /ppm TK6 TK4 R			δ _H /ppm (multiplicity, <i>J</i> /Hz) TK6	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	40.0	39.7	41.1	$0.86(m), 1.18(m)^{a}$	-
2	CH ₂	19.0	19.8	19.9	$1.50 (m), 2.18 (m)^{a}$	-
3	CH_2	37.8	34.1	38.7	$1.05 (m), 2.16 (m)^{a}$	-
4	С	43.6	48.4	44.0	-	-
5	СН	56.9	56.6	57.1	$1.03 (m)^{a}$	-
6	CH ₂	21.8	20.1	22.7	$1.81 (m), 2.17 (m)^{a}$	-
7	CH ₂	39.4	39.1	42.0	$1.42 (m), 1.51 (m)^{a}$	-
8	С	41.7	41.3	41.9	-	-
9	СН	53.9	53.1	54.4	$0.96 (m)^{a}$	-
10	С	39.5	39.2	39.9	-	-
11	CH ₂	19.0	18.3	20.0	$1.63 (m), 1.81 (m)^{a}$	-
12	CH ₂	41.3	41.2	40.8	$1.63 (m), 1.71 (m)^{a}$	-
13	С	80.4	80.1	79.9	-	-
14	CH_2	46.9	47.1	47.6	$1.32 (m), 2.10 (m)^{a}$	-
15	CH_2	47.4	47.4	48.3	$1.29 (m), 2.07 (m)^{a}$	-

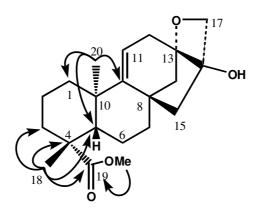

Table 7 (continued)

Position	Type of C*	$\delta_{ m C}$ /ppm			δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
		TK6	TK4	R	TK6	
16	С	155.7	155.8	157.8	-	-
17	CH ₂	103.0	103.1	103.0	4.97 (brs), 4.98 (brs)	13, 15
18	CH ₃	28.8	24.2	29.4	1.21 (s)	3, 4, 5, 19
19	COO	183.3	205.7	180.2	-	-
20	CH ₃	15.5	16.2	16.0	0.95 (s)	1, 5, 9

* For TK6

^a Deduced from HMQC experiment

3.1.7 Compound TK7



Compound **TK7** was isolated as a white amorphous solid, mp. 169-171 $^{\circ}$ C, $[\alpha]^{27}_{D}$: +36.3° (c = 0.40, CHCl₃). It exhibited hydroxyl (3427 cm⁻¹), carbonyl (1728 cm⁻¹) and double bond (1649 cm⁻¹) absorptions in the IR spectrum (**Figure 43**).

The ¹³C NMR and DEPT spectral data of **TK7** (**Table 8**, **Figures 45**, **46 and 47**) showed the presence of 21 carbon signals of a diterpenoid with an acetoxyl group. The ¹³C NMR signals were displayed as an ester carbonyl (δ 177.8), a trisubstituted double bond (δ 157.3), two quaternary oxygen bearing carbons (δ 78.6 and 80.1), an oxymethylene carbon (δ 67.8), a methoxyl carbon (δ 51.3), two methyl carbons (δ 23.3 and 28.0), eight methylene carbons (δ 17.9, 20.1, 30.0, 37.5, 38.2, 40.9, 49.2 and 52.9), one methine carbon (δ 46.5), one olefinic methine carbon (δ 114.7) and three quaternary carbons (δ 38.6 40.2 and 44.8).

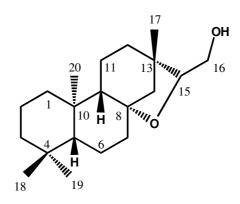
The ¹H NMR spectral data of **TK7** (**Table 8, Figure 44**) showed a signal of a trisubstituted olefinic proton (δ 5.32 *brs*, H-11), carbomethoxyl protons (δ 3.61 *s*, H₃-21), two methyl groups (δ 0.91 *s*, H₃-20 and 1.16 *s*, H₃-18) and an AB system of oxymethylene protons (δ 3.53 *d*, *J* = 11.1 Hz and 3.57 *d*, *J* = 11.1 Hz, H₂-17). The coupling constant 11.4 Hz of oxymethylene protons of oxetane in **TK7** was in agreement with the reported value (11.4 Hz, Ammanamanchi *et al.*, 2003). The location of the carbomethoxyl group was confirmed by HMBC experiment (**Table 8**) in which the methyl protons δ 1.16 (H₃-18) showed correlations with C-3 (δ 37.5), C-4 (δ 44.8), C-5 (δ 46.5) and C-19 (δ 177.8). Thus on the basis of its spectroscopic data

and comparison with the previous report [Subrahmanyam *et al.*, 1999, $[\alpha]_{D}^{30}$: +22.0° (*c* = 0.10, CH₃OH); Ammanamanchi *et al.*, 2003], compound **TK7** was assigned as methyl *ent*-kaur-9(11)-ene-13,17-epoxy-16-hydroxy-19-oate.

Selected HMBC correlation of TK7

Table 8 ¹H, ¹³C NMR and HMBC spectral data of compound **TK7** and methyl *ent*-
kaur-9(11)-ene-13,17-epoxy-16-hydroxy-19-oate (**R**, CDCl₃)

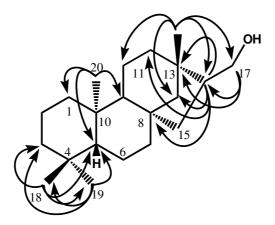
Position	Type of C*	$\delta_{\rm C}/_{ m J}$	ppm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 051000	Type of C	TK7	R	TK7	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	40.9	41.0	$1.18 (m), 1.80 (m)^{a}$	-
2	CH_2	20.1	20.1	$1.46(m), 1.76(m)^{a}$	-
3	CH_2	37.5	37.6	$2.46 (m), 2.52 (m)^{a}$	-
4	С	44.8	44.8	-	-
5	СН	46.5	46.5	$1.52 (m)^{a}$	-
6	CH_2	17.9	18.0	$2.44 (m)^{a}$	-
7	CH_2	30.0	30.0	$1.45 (m), 1.99 (m)^{a}$	-
8	С	40.2	40.3	-	-
9	С	157.3	157.4	-	-
10	С	38.6	38.7	-	-
11	СН	114.7	114.7	5.32 (brs)	-


Table 8 (continued)

Position	Type of C*	$\delta_{\rm C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 OSITION	r ostuon r ype of C		R	TK7	$^{1}\text{H}\rightarrow^{13}\text{C}$
12	CH ₂	38.2	38.3	$1.01 (m), 2.13 (brd)^{a}$	-
13	С	80.1	80.0	-	-
14	CH ₂	49.2	49.2	$1.53 (m), 2.00 (m)^{a}$	-
15	CH ₂	52.9	52.9	1.73 (<i>m</i>), 1.82 (m) ^a	-
16	С	78.6	78.7	-	-
17	CH_2	67.8	67.9	$\alpha 3.53 (d, J = 11.1 \text{ Hz})^{\text{b}}$	-
				$\beta 3.57 (d, J = 11.1 \text{ Hz})^{\text{b}}$	-
18	CH ₃	28.0	28.0	1.16 (<i>s</i>)	3, 4, 5, 19
19	COO	177.8	177.8	-	-
20	CH ₃	23.3	23.4	0.91 (s)	1, 5, 9, 10
21	OCH ₃	51.3	51.4	3.61 (s)	19

^a Deduced from HMQC experiment

^b May be interchanged


3.1.8 Compound TK8

Compound **TK8** was isolated as a white amorphous solid, mp. 85-86°C, $[\alpha]^{27}_{\text{ D}}$: -67.2° (c = 0.01, CHCl₃). It exhibited hydroxyl (3346 cm⁻¹) absorption in the IR spectrum.

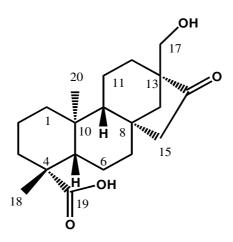
The ¹³C NMR spectral data of **TK8** (**Table 9**, **Figure 50**) showed all 20 carbon signals. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four methyl (δ 14.8, 19.9, 22.2 and 33.9), nine methylene (δ 18.4, 19.3, 19.4, 38.5, 39.2, 40.2, 42.0, 52.2 and 64.7), three methine (δ 55.2, 55.3, and 84.7) and four quaternary carbons (δ 33.1, 37.0, 41.0 and 82.7).

The ¹H NMR spectral data of **TK8** (**Table 9, Figure 51**) showed oxymethylene protons (δ 3.38 *dd*, J = 11.1, 7.5 Hz and 3.49 *dd*, J = 11.1, 3.6 Hz, H₂-16), an oxymethine proton (δ 3.72 *dd*, J = 7.5, 3.6 Hz, H-15), four methyl singlets at δ 0.86 (x 2), 0.93, and 1.00. Comparison of the chemical shifts of all these groups with literature data (Herz *et al.*, 1983) confirmed the presence of an *ent*-pimarane skeleton. The location of the oxymethylene and oxymethine protons was confirmed by HMBC experiment (**Table 8**) in which the oxymethylene protons at δ 3.38 and 3.49 (H₂-16) showed correlations with C-13 (δ 41.0) and C-15 (δ 84.7) and an oxymethine proton at δ 3.72 (H-15) showed correlations with C-12 (δ 39.2), C-13 (δ 41.0) and C-14 (δ 52.2). NOESY correlation between H₃-20 and H₃-19 supported the assignment. Thus on the basis of its spectroscopic data and comparison with the previous report (Herz *et* *al.*, 1983; Ammanamanchi *et al.*, 2003), compound **TK8** was assigned as *ent*-8,15*R*-epoxypimaran-16-ol.

Selected HMBC correlation of TK8

Table 9 ¹H, ¹³C NMR and HMBC spectral data of compound TK8 and *ent*-8,15*R*-
epoxypimaran-16-ol (**R**, CDCl₃)

Position	Position Type of C*		/ppm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
rosmon			R	TK8	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	38.5	38.5	$1.73 (m)^{a}$	-
2	CH_2	18.4	18.4	$1.41 (m)^{a}$	-
3	CH_2	42.0	42.0	1.50 (<i>dd</i> , <i>J</i> = 12.9, 3.9 Hz),	-
4	С	33.1	33.1	$1.40 (m)^{a}$	-
5	СН	55.2	55.2	-	-
6	CH_2	19.3	19.3	0.80 or 1.01 $(m)^{a}$	-
7	CH_2	40.2	40.1	$1.58 (m)^{a}$	-
8	С	82.7	82.7	$0.81 (m), 1.65 (m)^{a}$	-
9	СН	55.3	55.4	-	-
10	С	37.0	37.1	0.80 or 1.01 $(m)^{a}$	-
11	CH_2	19.4	19.5	-	-

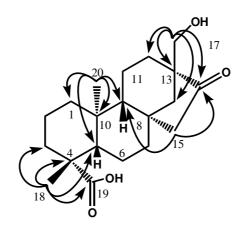

Table 9 (continued)

Position	Type of C*	$\delta_{ m C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 051001	rosition rype of C		TK8 R TK8		$^{1}\text{H}\rightarrow^{13}\text{C}$
12	CH ₂	39.2	39.2	$1.49 (m)^{a}$	-
13	С	41.0	41.2	$1.33 (m), 1.57 (m)^{a}$	-
14	CH_2	52.2	52.2	1.21 (d , J = 11.1 Hz)1.60 (m) ^a	-
15	СН	84.7	82.7	3.72 (dd, J = 7.5, 3.6 Hz)	8,12, 13, 14
16	CH_2	64.7	64.3	$3.38 (dd, J = 11.1, 7.5 \text{ Hz})^{\text{b}}$	ل 13, 15
				$3.49 (dd, J = 11.1, 3.6 \text{ Hz})^{\text{b}}$	ſ
17	CH ₃	19.9	19.9	0.93 (s)	11, 14, 15,
					16
18	CH ₃	33.9	33.8	0.86 (s)	3, 5, 19
19	CH ₃	22.2	22.2	0.86 (s)	3, 5, 18
20	CH ₃	14.8	14.8	1.00 (s)	5, 9, 10

^a Deduced from HMQC experiment

^b May be interchanged

3.1.9 Compound TK9



Compound **TK9** was isolated as a white amorphous solid, mp. 230-232 $^{\circ}C$, $[\alpha]^{27}_{D}$: -35.0° (c = 0.30, CHCl₃). It exhibited hydroxyl (3535 cm⁻¹), carbonyl (1719 cm⁻¹) and carboxyl (1650 cm⁻¹) absorptions in the IR spectrum.

The ¹³C and DEPT spectral data of **TK9** (**Table 10**, **Figures 57**, **59** and **60**) showed all 20 carbon signals as two methyl (δ 13.3 and δ 28.9), ten methylene (δ 18.8, 19.8, 21.6, 32.0, 37.6, 39.7, 41.3, 48.9, 49.0 and 65.0), two methine (δ 55.4 and 56.9) and six quaternary carbons (δ 38.2, 43.5, 43.6, 54.1, 182.8 and 223.7). The ¹³C NMR signals at δ 65.0, 182.8 and 223.7 confirmed the presence of oxymethylene, carboxyl, and keto carbonyl functionalities, respectively.

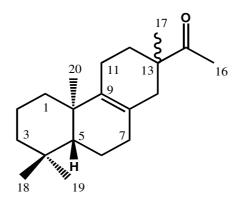
The ¹H NMR spectral data of **TK9** (**Table 10**, **Figure 56**) showed signals for two tertiary methyl groups (δ 0.80 and 1.25). The two oxymethylene protons (δ 3.53 d, J = 11.4 Hz and 3.63 d, J = 11.4 Hz, H₂-17) formed an AB system, suggesting of their conection to a quaternary carbon. The HMBC correlations (**Table 10**) of these protons with carbon signals at δ 32.0 (C-12), 54.1 (C-13), 48.9 (C-14), and 223.7 (C-16) helped to locate the hydroxymethylene group at C-13 and the carbonyl group at C-16. One of the methylene proton (H-15) was displayed as a doublet of doublet 2.60 (J = 18.9, 3.6 Hz) which showed HMBC correlation with C-9 (δ 55.4) and C-16 (δ 223.7). The C-19 was taken as the carboxyl group in view of the presence of only one tertiary methyl carbon at δ 28.9 and H₃-18 showed correlations

with C-3 (δ 37.6), C-4 (δ 43.6), C-5 (δ 56.9) and C-19 (δ 182.8). The complete HMBC correlations were summarized in **Table 10**. The presence of a NOESY correlation between H-5 and H-9 suggested a *trans-trans* relationship between the junction C5-C10 and C10-C9. The NOESY correlation observed between H₃-20 and H₂-15 indicated that the bridge-head at C-8 and C-13 is *trans* to H₃-20 indicating the structure and relative stereochemistry of *ent*-17-hydroxy-16-keto-beyeran-19-oic acid. Thus on the basis of its spectroscopic data and comparison with the previous report (Oliveira *et al.*, 1999), compound **TK9** was assigned as *ent*-17-hydroxy-16-keto-beyeran-19-oic acid.

Selected HMBC correlation of TK9

Table 10 ¹H, ¹³C NMR and HMBC spectral data of compound **TK9** and *ent*-17-hydroxy-16-keto-beyeran-19-oic acid (**R**, CDCl₃)

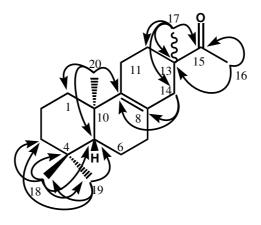
Position	Туре	$\delta_{\rm C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
of C* TK9		R	ТК9	$^{1}\text{H}\rightarrow^{13}\text{C}$	
1	CH ₂	39.7	40.1	$0.94 (dd, J = 13.5, 4.2 \text{ Hz}), 1.78 (m)^{a}$	-
2	CH_2	18.8	19.2	$1.41 (m), 1.83 (m)^{a}$	-
3	CH_2	37.6	38.1	1.04 (dd , $J = 19.2$, 3.9 Hz), 2.15 (m) ^a	-
4	С	43.6	44.0	-	-
5	СН	56.9	57.3	$1.69 (dd, J = 11.4, 2.1 \text{ Hz})^{a}$	-
6	CH_2	21.6	22.0	$1.79(m), 1.89(m)^{a}$	-


Table 10 (continued)

Position	Туре	$\delta_{\rm C}/_{ m I}$	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 OSITION	of C*	TK9	R	ТК9	$^{1}\text{H}\rightarrow^{13}\text{C}$
7	CH ₂	41.3	41.7	1.55 (dd, J = 13.8, 4.2 Hz),	-
				$1.73 (m)^{a}$	-
8	С	43.5	40.1	-	-
9	СН	55.4	55.8	$1.25 (m)^{a}$	-
10	С	38.2	38.7	-	-
11	CH_2	19.8	20.2	$1.28 (m)^{a}$	-
12	CH_2	32.0	32.5	32.5 $1.39 (m), 1.87 (m)^{a}$	
13	С	54.1	54.5	54.5 -	
14	CH_2	48.9 ^b	49.4 ^b	49.4 ^b 1.31 (<i>dd</i> , $J = 11.4$, 3.6 Hz) ^{a,b}	
				$1.85(m)^{a,b}$	-
15	CH_2	49.0 ^b	49.3 ^b	$1.85 (m)^{a,b}$	-
				$2.60 (dd, J = 18.9, 3.6 \text{ Hz})^{a}$	9, 16
16	СО	223.7	223.7	-	-
17	CH ₂	65.0	65.5	65.5 α 3.53 (<i>d</i> , <i>J</i> = 11.4 Hz) ^b	
				β 3.63 (<i>d</i> , <i>J</i> = 11.4 Hz) ^b	∫14, 16
18	CH ₃	28.9	29.3	1.25 (s)	3, 4, 5, 19
19	СООН	182.8	183.2	-	-
20	CH ₃	13.3	13.7	0.80 (s)	1, 5, 9, 10

^a Deduced from HMQC experiment

^b May be interchanged


3.1.10 Compound TK10

Compound **TK10** was obtained as pale yellow viscous oil, $[\alpha]^{27}_{D}$ +53.2° (c = 0.50, CHCl₃) and its molecular formula was assigned as C₂₀H₃₂O from HREIMS (**Figure 70**). It exhibited carbonyl (1705 cm⁻¹) and double bond (1641 cm⁻¹) absorptions in the IR spectrum (**Figure 62**).

The ¹³C NMR spectral data of **TK10** (**Table 11**, **Figure 64**) showed all 20 carbon signals. Analysis of DEPT 90° and 135° spectra of this compound suggested the presence of five methyl (δ 19.4, 20.8, 21.6, 24.7 and 33.2), eight methylene (δ 18.8, 18.9, 20.4, 30.6, 32.6, 36.7, 38.6 and 41.8), one methine (δ 51.7) and six quaternary carbons (δ 33.2, 37.5, 46.1, 123.7, 136.9 and 214.0). The ¹³C NMR signals at δ 214.0, 123.7 and 136.9 confirmed the presence of keto and double bond functionalities, respectively.

The ¹H NMR spectral data of **TK10** (**Table 11**, **Figure 63**) displayed five singlet tertiary methyl groups at δ 0.82 (H₃-19), δ 0.88 (H₃-18), δ 0.94 (H₃- 20), δ 1.06 (H₃-17) and δ 2.03 (H₃-16). The position of methyl groups were determined through an HMBC experiment (**Table 11**) in which the methyl protons at δ 2.03 (H₃-16) showed correlations with C-13 (δ 46.1) and C-15 (δ 214.0), methyl protons at δ 1.06 (H₃-17) showed correlations with C-12 (δ 30.6), C-13 (δ 46.1), C-14 (δ 38.7) and C-15 (δ 214.0), methyl protons at δ 0.94 (H₃-20) showed correlations with C-1 (δ 36.6), C-5 (δ 51.7) and C-9 (δ 136.9), and methyl protons at δ 0.88 (H₃-18) showed correlations with C-3 (δ 41.8), C-4 (δ 33.2), C-5 (δ 51.7) and C-19 (δ 21.6). NOESY correlation between H_3 -20 and H_3 -19 supported the assignment. Thus, compound **TK10** could be deduced as *ent*-8(9)-pimaren-15-one.

Selected HMBC correlation of TK10

Table II H, CINMK and HMBC spectral data of compound IKIV	Table 11 ¹ H.	¹³ C NMR and HMBC spectral data of compound TK10)
---	--------------------------	--	---

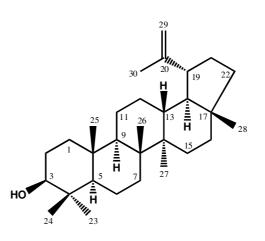
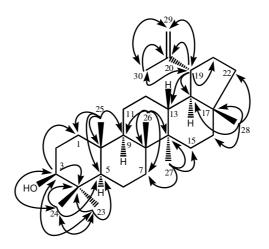

Position	Type of C	$\delta_{\rm C}$ /ppm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC	
rosition	rosmon rype of C		TK10	$^{1}\text{H}\rightarrow^{13}\text{C}$	
1	CH ₂	36.6	$1.05 (m), 1.75 (m)^{a}$	_	
2	CH_2	18.9	$1.43 (m)^{a}$	-	
3	CH_2	41.8	$1.15 (m), 1.42 (m)^{a}$	-	
4	С	33.2	-	-	
5	СН	51.7	$1.15 (m)^{a}$	-	
6	CH_2	18.8	1.61 (<i>m</i>), 1.73 (<i>m</i>) ^a	-	
7	CH ₂	32.6	$1.95 (m)^{a}$	-	
8	С	123.7	-	-	
9	С	136.9	-	-	
10	С	37.5	-	-	
11	CH_2	20.4	$2.20 (m)^{a}$	8, 9	
12	CH ₂	30.6	$1.62 (m)^{a}$	-	
13	С	46.1	-	-	
14	CH_2	38.7	$1.67 (m), 2.20 (m)^{a}$	8, 9	

Table 11 (continued)

Position	Type of C*	$\delta_{\rm C}$ /ppm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
r ostuon r ype or e		TK10	TK10	$^{1}\text{H}\rightarrow^{13}\text{C}$
15	СО	214.0	-	-
16	CH ₃	24.7	2.03 (s)	13, 15
17	CH ₃	20.8	1.06 (s)	12, 13, 14, 15
18	CH ₃	33.2	0.88 (s)	3, 4, 5, 19
19	CH ₃	21.6	0.82 (s)	3, 4, 5, 18
20	CH ₃	19.4	0.94 (s)	1, 5, 9

^a Deduced from HMQC experiment

3.1.11 Compound TK11


Compound **TK11** was obtained as a white solid, mp. 193-194 °C; $[\alpha]^{28}_{D}$: +25.0° (c = 0.20, CHCl₃). It exhibited hydroxyl (3343 cm⁻¹) and double bond (1638 cm⁻¹) absorptions in the IR spectrum (**Figure 71**) and gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹³C and DEPT spectral data of **TK11** (**Table12, Figures 73, 74** and **75**) showed all 30 carbon signals as seven methyl (δ 14.6, 15.4, 16.0, 16.1, 18.0, 19.3 and 28.0), eleven methylene (δ 18.3, 20.9, 25.2, 27.4, 27.5, 29.9, 34.3, 35.6, 38.7, 40.0 and 109.3), six methine (δ 38.1, 48.0, 48.3, 50.5, 55.3 and 79.0) and six quaternary carbons (δ 37.2, 38.9, 40.8, 42.8, 43.0 and 151.0).

The ¹H NMR spectral data of **TK11** (**Table12, Figure 72**) showed characteristic of lupane triterpenoid as seven methyl singlet signals at δ 0.76, 0.79, 0.83, 0.94, 0.97 and 1.03 including one vinylic methyl at δ 1.68, two protons of an isopropenyl moiety at δ 4.68 (1H, d, J = 2.1 Hz) and 4.56 (1H, m) and a typical lupane H_β-19 proton at δ 2.38 (dt, J = 11.1, 5.7 Hz). An oxymethine proton was shown at δ 3.19 (1H, dd, J = 10.8, 5.1 Hz, H-3). The doublet splitting pattern together with a large coupling constant of H-3 with *Jax-ax* = 10.8 Hz and *Jax-aq* = 5.1 Hz indicated an axial (α) orientation of H-3.

The position of the hydroxyl group at C-3 was determined through an HMBC experiment (**Table 12**) in which the oxymethine proton at δ 3.19 (H-3) showed correlations with C-1 (δ 38.7), C-4 (δ 38.9), C-23 (δ 28.0) and C-24 (δ 15.4).

The position of a methine proton at C-19 was determined from HMBC correlation of H-19 (δ 2.38) with C-18 (δ 48.3), C-20 (δ 151.0), C-21 (δ 29.9) and C-30 (δ 19.3). Thus on the basis of its spectroscopic data and comparison with the previous report [Reyolds *et al.*, 1986, $[\alpha]_{D}^{25}$: +23.0° (c = 0.50, EtOH); Thongdeeying 2005], compound **TK11** was assigned as 3 β -lupeol.

Selected HMBC correlation of TK11

Table 12 ¹H, ¹³C NMR and HMBC spectral data of compound **TK11** and 3β-lupeol (**R**, CDCl₃)

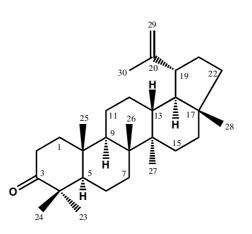
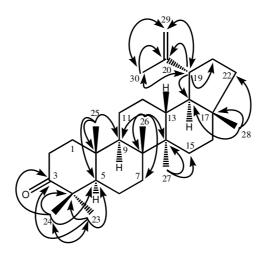

Position	Туре	$\delta_{\rm C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
of C*		TK11 R		TK11	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.7	38.7	$0.91 (m)^{a}$	-
2	CH ₂	27.4	27.4	$1.56 (m)^{a}$	-
3	СН	79.0	79.0	3.19 (dd, J = 10.8, 5.1 Hz)	1, 4, 23, 24
4	С	38.9	38.8	-	-
5	СН	55.3	55.3	$0.69 (m)^{a}$	-
6	CH_2	18.3	18.3	$1.40(m), 1.55(m)^{a}$	-
7	CH_2	34.3	34.2	$1.40 (m)^{a}$	-
8	С	40.8	40.8	-	-

Table 12 (continued)

Position	Туре	$\delta_{\rm C}/{\rm I}$	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
Position	of C*	TK11	R	TK11	$^{1}\text{H}\rightarrow^{13}\text{C}$
9	СН	50.5	50.4	$1.28 (m)^{a}$	-
10	С	37.2	37.1	-	-
11	CH_2	20.9	20.9	$1.22 (m), 1.45 (m)^{a}$	-
12	CH_2	25.2	25.1	$1.08 (m)^{a}$	-
13	СН	38.1	38.0	$1.67 (m)^{a}$	-
14	С	42.8	42.8	-	-
15	CH_2	27.5	27.4	$1.56 (m)^{a}$	-
16	CH_2	35.6	35.5	$1.51 (m)^{a}$	-
17	С	43.0	43.0	-	-
18	СН	48.3	48.2	$1.38 (m)^{a}$	-
19	СН	48.0	47.9	2.38 (dt, J = 11.1, 5.7 Hz)	13, 18, 20, 21,
					29, 30
20	С	151.0	150.9	-	-
21	CH_2	29.9	29.8	$1.94 (m)^{a}$	-
22	CH_2	40.0	40.0	$1.20 (m), 1.40 (m)^{a}$	-
23	CH ₃	28.0	28.0	0.97 (s)	3, 4, 5, 24
24	CH ₃	15.4	15.4	0.76 (s)	3, 4, 5, 23
25	CH ₃	16.1	16.1	0.83 (s)	1, 5, 9, 10
26	CH ₃	16.0	16.0	1.03 (s)	7, 8, 9, 14
27	CH ₃	14.6	14.5	0.94 (s)	8, 14, 15
28	CH ₃	18.0	18.0	0.79 (s)	16, 17, 18, 22
29	CH_2	109.3	109.3	4.56 (m), 4.68 (d, J = 2.1 Hz)	19, 30
30	CH ₃	19.3	19.3	1.68 (s)	19, 30


^a Deduced from HMQC experiment

3.1.12 Compound TK12

Compound **TK12** was obtained as a white solid, mp. 163-165 °C; $[\alpha]_{D}^{28}$: +50.0° (c = 0.10, CHCl₃). It exhibited carbonyl (1704 cm⁻¹) and double bond (1642 cm⁻¹) absorptions in the IR spectrum (**Figure 78**) and gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹H and ¹³C NMR spectral data of **TK12** (**Table 13, Figures 79** and **80**) showed signals similar to **TK11** (**Table12, Figures 72** and **73**) except that in **TK12** a doublet of doublet signal of a methine proton H-3 disappeared and the carbon signal at C-3 (δ 217.0) was displayed as a carbonyl carbon instead of the oxymethylene carbon at δ 79.0 in **TK11**. The location of the carbonyl group was confirmed by HMBC experiment (**Table 13**) in which both H₃-24 (δ 1.02) and H₃-23 (δ 1.07) showed long-range correlation with C-3 (δ 217.0), C-4 (δ 46.3) and C-5 (δ 54.3). Thus on the basis of its spectroscopic data and comparison with the previous report [Laphookhieo *et al.*, 2004; Thongdeeying 2005; Razdan *et al.*, 1988, [α]²⁵_D : +61.0° (CHCl₃)], compound **TK12** was assigned as lupenone.

Selected HMBC correlation of TK12

Table 13 ¹ H, ¹³ C NMR and HMBC	spectral data	of compounds	TK12,	TK11 and
lupenone (R , CDCl ₃)				

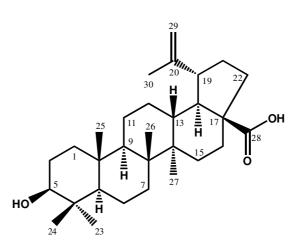
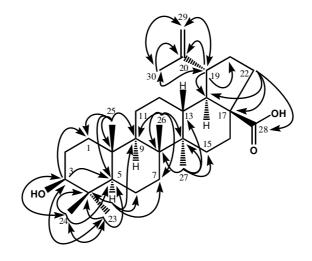

Position	Type of C*	$\delta_{ m C}$ /ppm			$\delta_{\rm H}$ /ppm (multiplicity, J/Hz)	HMBC* $^{1}H\rightarrow^{13}C$
	01 C	TK12	TK11	R	TK12	II / C
1	CH ₂	38.6	38.7	39.6	$0.90 (m)^{a}$	-
2	CH_2	33.1	27.4	34.1	$2.49 (m)^{a}$	-
3	С	217.0	79.0	217.9	-	-
4	С	46.3	38.9	47.2	-	-
5	СН	54.3	55.3	55.8	$1.32 (m)^{a}$	-
6	CH_2	18.7	18.3	19.6	$1.45 (m)^{a}$	-
7	CH_2	32.6	34.3	33.5	$0.87 (m), 1.45 (m)^{a}$	-
8	С	39.8	40.8	40.7	-	-
9	СН	48.8	50.5	49.7	$1.38 (m)^{a}$	-
10	С	35.9	37.2	36.8	-	-
11	CH_2	20.5	20.9	21.4	$1.30 (m)^{a}$	-
12	CH_2	24.2	25.2	25.1	$1.68 (m)^{a}$	-
13	СН	37.2	38.1	38.1	$1.68 (m)^{a}$	-

Table 13 (continued)

					$\delta_{ m H}$ /ppm	
Position	Type of C*	$\delta_{ m C}$ /ppm			(multiplicity,	HMBC*
					J/Hz)	$^{1}\text{H}\rightarrow^{13}\text{C}$
		TK12	TK11	R	TK12	
14	С	41.9	42.8	42.7	-	-
15	CH_2	26.4	27.5	27.4	$0.82 (m)^{a}$	-
16	CH_2	34.5	35.6	35.6	$1.37 (m), 1.50 (m)^{a}$	-
17	С	42.0	43.0	42.7	-	-
18	СН	47.3	48.3	48.2	$1.38 (m)^{a}$	-
19	СН	47.0	48.0	47.8	$2.40 (m)^{a}$	18, 20, 21, 29, 30
20	С	149.8	151.0	150.5	-	-
21	CH_2	28.8	29.9	29.8	$1.26 (m), 1.92 (m)^{a}$	-
22	CH_2	39.0	40.0	39.9	1.19 (<i>m</i>), 1.41 (<i>m</i>) ^a	-
23	CH_3	25.7	28.0	26.6	1.07 (s)	3, 4, 5, 24
24	CH ₃	20.0	15.4	21.0	1.02 (s)	3, 4, 5, 23
25	CH ₃	15.0	16.1	15.8	0.93 (s)	5, 9, 10
26	CH ₃	14.8	16.0	15.4	1.07 (s)	7, 8, 9, 14
27	CH ₃	13.5	14.6	14.4	0.96 (s)	14, 15
28	CH_3	17.0	18.0	18.0	0.80 (s)	17, 18, 22
29	CH_2	108.1	109.3	109.2	4.57 (<i>m</i>), 4.69	19, 30
					(d, J = 2.1 Hz)	
30	CH ₃	18.3	19.3	19.2.	1.68 (s)	19, 20, 29

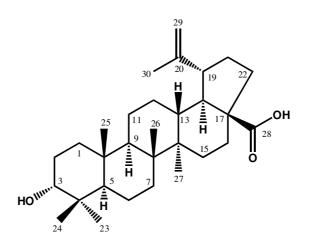

^a Deduced from HMQC experiment

3.1.13 Compound TK13

Compound **TK13** was obtained as a white solid, mp. 279-280 °C; $[\alpha]^{28}_{D}$: +15.0° (c = 0.10, CHCl₃). It exhibited hydroxyl (3415 cm⁻¹) and a carboxyl (1686 cm⁻¹) absorptions in the IR spectrum (**Figure 81**). It also gave a purple vanillin-sulfuric acid test indicating a triterpene.

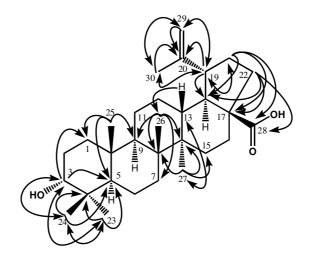
The ¹H and ¹³C NMR spectral data of **TK13** (**Table 14, Figures 82** and **83**) were similar to those of **TK11** (**Table12, Figures 72** and **73**). The difference in the spectrum of **TK13** was shown as disappearance of a methyl signal at $\delta_{\rm H}$ 0.79 (*s*, H₃-28, $\delta_{\rm C}$ 18.0) in **TK11** and the appearance of a carboxyl signal at $\delta_{\rm C}$ 179.6 (C-28) in **TK13**. The location of the carboxyl group was confirmed by HMBC experiment (**Table 14**) in which the methylene proton signals at δ 1.93 (1H, *m*, H-22a) and 1.40 (1H, *m*, H-22b) showed correlation with C-17 (δ 55.3), C-18 (δ 48.3) and C-28 (δ 179.6). Thus on the basis of its spectroscopic data and comparison with the previous report [Tinto *et al.*, 1992, $[\alpha]^{28}_{\rm D}$: +6.8° (*c* = 2.00, pyridine); Thongdeeying 2005; Pakhathirathien 2005], compound **TK13** was assigned as betulinic acid.

Selected HMBC correlation of TK13


Table 14 ¹ H, ¹³ C NMR and HMBC spec	tral data of compounds TK13, TK11 and
betulinic acid (R , CDCl ₃)	

Position	Type of C*	$\delta_{\rm C}$ /ppm			δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}H\rightarrow^{13}C$
		TK13	TK11	R	TK13	
1	CH ₂	37.7	38.7	38.5	$0.87 (m), 1.64 (m)^{a}$	-
2	CH_2	26.4	27.4	28.2	$1.55 (m)^{a}$	-
3	СН	78.0	79.0	78.1	3.19 (dd, J = 10.8, 5.4 Hz)	1, , 23, 24
4	С	37.9	38.9	39.4	-	-
5	СН	54.4	55.3	55.9	$0.69 (m)^{a}$	4, 6, 7, 9
6	CH_2	17.3	18.3	18.7	$1.35 (m), 1.48 (m)^{a}$	-
7	CH_2	33.3	34.3	34.7	$1.35 (m)^{a}$	-
8	С	39.7	40.8	41.0	-	-
9	СН	49.5	50.5	50.9	$1.20 (m)^{a}$	-
10	С	36.2	37.2	37.5	-	-
11	CH_2	19.8	20.9	21.1	$1.42 (m)^{a}$	-
12	CH_2	24.5	25.2	26.0	$1.67 (m)^{a}$	-

 Table 14 (continued)

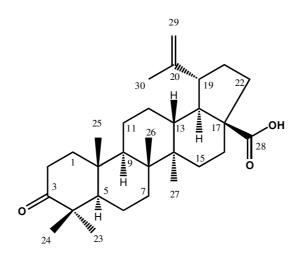

Position	Type of C*	••		δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}H\rightarrow^{13}C$	
	010	TK13	TK11	R	TK13	11 / 0
13	СН	37.4	38.1	39.2	$2.20 (m)^{a}$	-
14	С	41.4	42.8	42.8	-	-
15	CH_2	28.7	27.5	30.2	$1.14 (m), 1.23 (m)^{a}$	-
16	CH_2	31.2	35.6	32.8	$2.22 (m)^{a}$	-
17	С	55.3	43.0	56.6	-	-
18	СН	48.3	48.3	49.7	$1.55 (m)^{a}$	-
19	СН	45.9	48.0	47.7	$3.00 (m)^{a}$	18, 20, 21,
						29,30
20	С	149.4	151.0	151.4	-	-
21	CH_2	29.6	29.9	31.1	$1.89 (m)^{a}$	-
22	CH_2	36.0	40.0	37.4	$1.40(m), 1.93, (m)^{a}$	17, 18, 28
23	CH_3	27.0	28.0	28.5	0.97 (s)	3, 4, 5, 24
24	CH_3	14.3	15.4	16.2	0.75 (s)	3, 4, 5, 23
25	CH_3	15.1	16.1	16.3	0.82 (s)	1, 5, 9,10
26	CH_3	15.0	16.0	16.2	0.94 (s)	7, 8, 9, 14
27	CH_3	13.7	14.6	14.8	0.98 (s)	8, 13, 14, 15
28	COO	179.6	18.0	18.0	-	-
29	CH_2	108.7	109.3	109.2	4.74 (brs), 4.61 (brs)	19, 20, 30
30	CH ₃	18.4	19.3	19.2	1.69 (s)	19, 20, 29

3.1.14 Compound TK14

Compound **TK14** was obtained as a white solid, mp. 257-259 °C; $[\alpha]^{28}_{D}: -10.0^{\circ}$ (c = 0.05, CHCl₃). The IR spectrum showed absorption bands similar to those of compound **TK13**. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

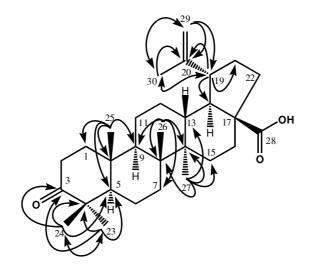
The ¹H and ¹³C NMR spectral data of **TK14** (**Table 15**, **Figures 88** and **89**) were similar to those of **TK13** (**Table 14**, **Figures 82** and **83**), except that the splitting pattern of H-3 in **TK14** at δ 3.38 was a triplet (J = 2.7 Hz) instead of a doublet of doublet (J = 10.8, 5.4 Hz) in **TK13**. The difference in the multiplicity with a small coupling constant of H-3 in compound **TK14** was in agreement with the respective coupling pattern (equatorial-equatorial and equatorial-axial) of H-3 and H-2, indicating that H-3 was situated in an equatorial position. The location of a hydroxyl group at C-3 was determined through an HMBC experiment (**Table 15**) in which the oxymethine proton signal at δ 3.38 (H-3) showed long-rang correlation with C-1 (δ 33.2) and C-5 (δ 49.0). Thus on the basis of its spectroscopic data and comparison with the previous report [Laphookhieo *et al.*, 2004; Kitajima *et al.*, 1990, $[\alpha]^{28}_{\text{D}}$: -12.0° (c = 1.28, CHCl₃); [Pakhathirathien, 2005], compound **TK14** was assigned as 3-*epi*-betulinic acid, an epimer of betulinic acid.

Selected HMBC correlation of TK14


Table 15 ¹ H, ¹³ C NMR and HMBC spectral data of compounds TK14, TK13 and 3-
<i>epi</i> -betulinic acid (\mathbf{R} , CDCl ₃)

Position	Type of C*	$\delta_{ m C}$ /ppm			$\delta_{\rm H}$ /ppm (multiplicity, J/Hz)	HMBC* $^{1}H\rightarrow^{13}C$
	01 C	TK14	TK13	R	TK14	11-7 C
1	CH ₂	33.2	37.7	34.0	$1.18 (m)^{a}$	-
2	CH_2	25.5	26.4	23.2	$1.02 (m), 1.68 (m)^{a}$	-
3	СН	76.2	78.0	75.5	3.38 (t, J = 2.7 Hz)	1, 5, 23, 24
4	С	37.5	37.9	39.0	-	-
5	СН	49.0	54.4	49.3	$1.18 (m)^{a}$	-
6	CH_2	18.2	17.3	18.6	$1.34(m), 1.38(m)^{a}$	-
7	CH_2	34.1	33.3	34.8	$1.30 (m)^{a}$	-
8	С	40.8	39.7	41.3	-	-
9	СН	50.3	49.5	50.7	$1.40 (m)^{a}$	-
10	С	37.3	36.2	37.7	-	-
11	CH_2	20.7	19.8	21.0	$1.42 (m)^{a}$	-
12	CH_2	25.3	24.5	26.1	$1.52 (m), 1.82 (m)^{a}$	-

Table 15 (continued)


Position	Type of C*		$\delta_{\rm C}$ /ppm		$\delta_{\rm H}$ /ppm (multiplicity, J/Hz)	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
		TK14	TK13	R	TK14	
13	СН	38.2	37.4	38.5	$2.21 (m)^{a}$	26, 27
14	С	42.5	41.4	42.9	-	-
15	CH_2	29.6	28.7	31.2	$1.14 (m)^{a}$	-
16	CH_2	32.2	31.2	32.8	$2.24 (m)^{a}$	-
17	С	56.2	55.3	56.6	-	-
18	СН	49.2	48.3	47.7	$1.57 (m)^{a}$	-
19	СН	47.0	45.9	49.7	$3.00 (m)^{a}$	-
20	С	150.7	149.4	151.2	-	-
21	CH_2	30.6	29.6	29.9	$1.93 (m)^{a}$	17, 18, 19, 28
22	CH_2	37.1	36.0	37.5	$1.95 (m)^{a}$	17, 18, 28
23	CH ₃	28.2	27.0	29.2	0.93 (s)	3, 4, 5, 24
24	CH ₃	22.1	14.3	22.5	0.82 (s)	3, 4, 5, 23
25	CH ₃	15.9	15.1	16.4	0.94 (s)	1, 5, 9
26	CH ₃	15.9	15.0	16.4	0.83 (s)	7, 8, 9, 14
27	CH ₃	14.7	13.7	14.9	0.99 (s)	8, 13, 14, 15
28	СООН	179.2	179.6	178.7	-	-
29	CH_2	109.5	108.7	109.8	4.73 (<i>d</i> , <i>J</i> = 1.8 Hz),	19, 20, 30
					4.60 (<i>m</i>)	
30	CH ₃	19.3	18.4	19.4	1.69 (s)	19, 20, 29

3.1.15 Compound TK15

Compound **TK15** was obtained as a white solid, mp. 250-254 °C; $[\alpha]^{28}_{D}$: +32.0° (c = 0.37, MeOH). It exhibited hydroxyl (3326 cm⁻¹), a carboxyl (1704 cm⁻¹) and double bond (1642 cm⁻¹) absorption in the IR spectrum. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹H and ¹³C NMR spectral data of **TK15** (**Table 16, Figures 90** and **91**) were closely related to compound **TK13** (**Table 14, Figures 82** and **83**), except the oxymethine proton (H-3) at δ 3.19 (*dd*, J = 10.8, 5.4 Hz) in **TK13** disappeared and the methylene protons (H₂-2) in **TK15** were shifted downfield to δ 2.45 (*m*) as compared to that of **TK13** at δ 1.55 (*m*). The ¹³C NMR spectral data of **TK15** displayed a signal of a carbonyl group at δ 218.3 which was assigned to C-3 and no signal of oxymethine carbon C-3 (δ 78.0) as observed in **TK13**. The location of the carbonyl group was confirmed by HMBC experiment (**Table 16**) in which both H₃-24 (δ 1.02) and H₃-23 (δ 1.07) showed long-range correlation with C-3 (δ 218.3), C-4 (δ 47.3) and C-5 (δ 54.9). Thus on the basis of its spectroscopic data and comparison with the previous report [Pakhathirathien 2005; Gonzalez *et al.*, 1983, [α]²⁷_D : +27.0° (*c* = 0.28, MeOH)], compound **TK15** was assigned as betulonic acid.

Selected HMBC correlation of TK15

Table 16 ¹ U	¹³ C NMP and	UMPC apactrol	data of compour	ds TK15 and TK13
Table Io H,	C NMR and	HMBC spectral	data of compoun	as IKI5 and IKI5

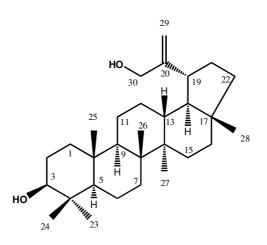
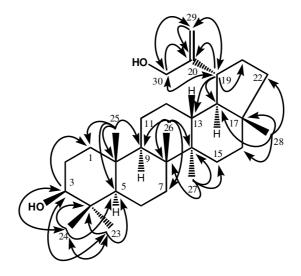

Position Typ	Type of C*		$\delta_{\rm C}/{\rm ppm}$ $\delta_{\rm H}/{\rm ppm}$ (multiplicity, J/Hz)		HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
		TK15	TK13	TK15	
1	CH ₂	39.6	37.7	-	-
2	CH_2	34.1	26.4	$2.45 (m)^{a}$	-
3	СН	218.3	78.0	-	-
4	С	47.3	37.9	-	-
5	СН	54.9	54.4	$1.24 (m)^{a}$	-
6	CH_2	19.6	17.3	-	-
7	CH_2	33.6	33.3	-	-
8	С	40.6	39.7	-	-
9	СН	49.8	49.5	$1.35 (m)^{a}$	-
10	С	36.9	36.2	-	-
11	CH_2	21.4	19.8	-	-

Table 16 (continued)

Position	Type of C*	$\delta_{ m C}$ /ppm		δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* ¹ H→ ¹³ C
		TK15	TK13	TK15	/ -
12	CH ₂	25.5	24.5	-	-
13	СН	38.5	37.4	$2.20 (m)^{a}$	-
14	С	42.5	41.4	-	-
15	CH ₂	30.6	28.7	-	-
16	CH ₂	32.1	31.2	-	-
17	С	56.4	55.3	-	-
18	СН	49.2	48.3	$1.62 (m)^{a}$	-
19	СН	46.9	45.9	$3.01 (m)^{a}$	18, 20, 21,30
20	С	150.3	149.4	-	-
21	CH ₂	29.7	29.6	-	-
22	CH_2	37.0	36.0	-	-
23	CH ₃	26.6	27.0	1.07 (s)	3, 4, 5, 24
24	CH ₃	21.0	14.3	1.02 (s)	3, 4, 5, 23
25	CH ₃	16.0	15.1	0.93 (s)	1, 5, 9,10
26	CH ₃	15.8	15.0	0.98 (s)	7, 8, 9, 14
27	CH ₃	14.6	13.7	0.99 (s)	8, 13,14, 15
28	CH ₃	182.8	179.6	-	-
29	CH ₂	109.8	108.7	4.74 (brs), 4.62 (brs)	19, 20, 30
30	CH ₃	19.4	18.4	1.70 (s)	19, 20, 29

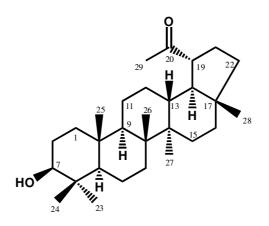

* For **TK15**

3.1.16 Compound TK16

Compound **TK16** was obtained as a white solid, mp. 203-204 °C; $[\alpha]^{28}_{D}$: -13.3° (c = 0.22, CHCl₃). The IR spectrum showed absorption bands similar to those of **TK11**. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

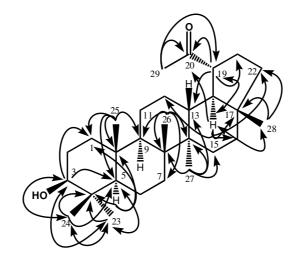
The ¹H and ¹³C NMR spectral data of **TK16** (**Table 17, Figures 92** and **93**) and **TK11** (**Table 12, Figures 73, 74** and **75**) exhibited the same pattern, except that compound **TK16** displayed only six methyl singlets (δ 0.76, 0.78, 0.83, 0.94, 0.97 and 1.03) with disappearance of a vinylic methyl group of H₃-30 at δ 1.68 (*s*). The two signals of terminal olefinic protons of H₂-29 [δ 4.93 (*brs*) and 4.90 (*brs*)] were shown to be shifted more downfield than **TK11** (δ 4.56 and 4.68). In addition, the AB system of oxymethylene protons was shown at δ 4.14 and δ 4.09 with coupling constant 15.3 Hz which was assigned to H₂-30. Based on HMBC experiments (**Table 17**), the oxymethylene protons H₂-30 showed correlations with C-19 (δ 43.8), C-20 (δ 154.8) and C-29 (δ 106.8). Thus on the basis of its spectroscopic data and comparison with the previous report [Burns *et al.*, 2000, [α]²⁵_D : -13.0° (*c* = 0.22, CHCl₃); Thongdeeying 2005], compound **TK16** was assigned as lup-20(29)-en-3 β , 30-diol.

Selected HMBC correlation of TK16


Table 17 ¹H, ¹³C NMR and HMBC spectral data of compounds **TK16**, **TK11** and lup-20(29)-en-3 β , 30-diol (**R**, CDCl₃)

Position Type of C*		$\delta_{ m C}$ /ppm			δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
	UI C	TK16	TK11	R	TK16	- II→ C
1	CH ₂	38.7	38.7	38.7	$1.64 (m)^{a}$	-
2	CH_2	27.4	27.4	27.4	$1.58 (m)^{a}$	-
3	СН	79.0	79.0	79.0	3.19 (dd, J = 10.8,	1, 23, 24
					5.1 Hz)	
4	С	38.9	38.9	38.9	-	-
5	СН	55.3	55.3	55.3	$0.68 (m)^{a}$	-
6	CH_2	18.3	18.3	18.3	$1.41 (m), 1.55 (m)^{a}$	-
7	CH_2	34.3	34.3	34.3	$1.40 (m)^{a}$	-
8	С	40.9	40.8	40.9	-	-
9	СН	50.4	50.5	50.4	$1.25 (m)^{a}$	-
10	С	37.2	37.2	37.2	-	-

Table 17 (continued)

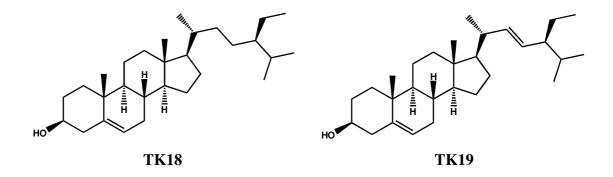

Position	Type of C*	$\delta_{ m C}$ /ppm			$\delta_{\rm H}$ /ppm (multiplicity, J/Hz)	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$
	010	TK16	TK11	R	TK16	
11	CH ₂	21.1	20.9	21.0	$1.25 (m), 1.44 (m)^{a}$	-
12	CH_2	26.7	25.2	26.7	$1.65 (m)^{a}$	-
13	СН	38.0	38.1	38.0	$1.71 (m)^{a}$	-
14	С	42.8	42.8	42.8	-	-
15	CH_2	27.4	27.5	27.4	$1.62 (m)^{a}$	-
16	CH_2	35.5	35.6	35.5	$1.55 (m)^{a}$	-
17	С	43.0	43.0	43.0	-	-
18	СН	48.9	48.3	48.9	$1.46 (m)^{a}$	-
19	СН	43.8	48.0	43.8	2.28 (dt, J = 10.8,	18, 20, 21,30
					4.8 Hz)	
20	С	154.8	151.0	154.8	-	-
21	CH_2	31.8	29.9	31.8	$2.06 (m)^{a}$	-
22	CH_2	39.9	40.0	39.9	$1.24 (m), 1.41 (m)^{a}$	-
23	CH ₃	28.0	28.0	28.0	0.97 (s)	3, 4, 5, 24
24	CH ₃	15.4	15.4	15.4	0.76 (s)	3, 4, 5, 23
25	CH ₃	16.1	16.1	16.1	0.83 (s)	1, 5, 9,10
26	CH ₃	16.0	16.0	16.0	1.03 (s)	7, 8, 9, 14
27	CH ₃	14.5	14.6	14.5	0.94 (<i>s</i>)	8,14, 15
28	CH ₃	17.7	18.0	17.7	0.78 (<i>s</i>)	16, 17, 18,22
29	CH_2	106.8	109.3	106.8	4.90 (brs), 4.93 (brs)	19, 20, 30
30	CH_2	65.0	19.3	65.0	4.09 (d, J = 15.3 Hz)]]
					4.14 (d, J = 15.3 Hz)	J 19, 20, 29

3.1.17 Compound TK17

Compound **TK17** was assigned as a white solid, mp. 234-235 °C; $[\alpha]^{28}_{D}$: -22.7° (c = 0.22, CHCl₃). It exhibited hydroxyl (3414 cm⁻¹) and carbonyl (1694 cm⁻¹) absorptions in the IR spectrum. It gave a blue vanillin-sulfuric acid test indicating a triterpene.

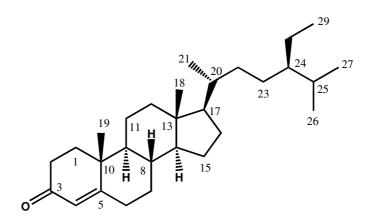
The ¹H and ¹³C NMR spectral data of **TK17** (**Table 18, Figures 94** and **95**) and **TK11** (**Table12, Figures 73, 74** and **75**) exhibited the same pattern, except that the two signals of terminal olefinic protons of H₂-29 at δ 4.68 (*d*, *J* = 2.1) and 4.56 (*m*) and vinylic methyl at δ 1.68 disappeared in **TK17**, whereas a singlet signal of acetyl protons was shown at δ 2.15 (H₃-29, *s*) which was not observed in **TK11**. In addition, the ¹³C NMR spectral data showed carbonyl carbon at δ 212.9. The location of acetyl protons was assigned to be at C-29 on the basis of HMBC experiment (**Table 18**) of the protons at δ 2.15 (H₃-29) which showed long-range correlations with δ 52.6 (C-19) and δ 212.9 (C-20). Thus on the basis of its spectroscopic data and comparison with the previous report [Thongdeeying 2005; Koul *et al.*, 2000, $[\alpha]^{25}_{D}$: - 10.2° (*c* = 0.03, CHCl₃)], compound **TK17** was assigned as 30-nor-lupan-3 β -ol-20-one.

Selected HMBC correlation of TK17


Table 18 ¹ H, ¹³ C NMR and HMBC spectral data of compounds TK17 (C	CDCl ₃),
TK11 and 30-nor-lupan-3 β -ol-20-one (R , CDCl ₃)	

Position	Type of C*		$\delta_{\rm C}$ /ppm		δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}\text{H}\rightarrow^{13}\text{C}$	
		TK17 TK11 R		R	TK17		
1	CH ₂	38.7	38.7	39.2	$0.89 (m), 1.67 (m)^{a}$	-	
2	CH_2	27.4	27.4	25.2	$1.49 (m), 1.57 (m)^{a}$	-	
3	СН	78.9	79.0	76.3	3.19 (dd, J = 11.1, 5.1 Hz)	1, 23, 24	
4	С	38.9	38.9	38.4	-	-	
5	СН	55.3	55.3	55.2	$0.68 (m)^{a}$	1, 4, 10,23	
6	CH_2	18.3	18.3	18.1	$1.40 (m), 1.55 (m)^{a}$	-	
7	CH_2	34.2	34.3	34.2	$1.40 (m)^{a}$	-	
8	С	40.7	40.8	41.1	-	-	
9	СН	50.3	50.5	50.1	$1.28 (m)^{a}$	-	
10	С	37.2	37.2	36.3	-	-	
11	CH_2	20.9 20.9		22.6	1.28 (<i>m</i>), 1.46 (<i>m</i>) ^a	-	
12	CH ₂	27.2	25.2	28.7	$1.06 (m)^{a}$	-	

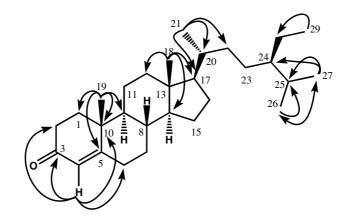
Table 18 (continued)


Position	Type of C*		$\delta_{ m C}$ /ppm		δ _H /ppm (multiplicity, <i>J</i> /Hz)	HMBC* $^{1}H\rightarrow ^{13}C$
	01 C	TK17	TK11	R	TK17	II / C
13	СН	37.0	38.1	37.5	$1.59 (m)^{a}$	-
14	С	42.7	42.8	43.6	-	-
15	CH ₂	27.3	27.5	27.4	$1.64 (m), 1.70 (m)^{a}$	-
16	CH ₂	35.0	35.6	35.5	$1.49 (m)^{a}$	-
17	С	43.1	43.0	42.9	-	-
18	СН	49.7 48.3		48.2	1.81 (t, J = 11.4 Hz)	12, 16, 17,
						19, 20, 22, 28
19	СН	52.6	48.0	47.9	2.58 (dt, J = 11.4, 5.7 Hz)	13, 18, 20, 21
20	С	212.9	151.0	207.3	-	-
21	CH ₂	27.6	29.9	31.0	$2.05 (m)^{a}$	-
22	CH ₂	39.9	40.0	40.1	$1.35 (m), 1.49 (m)^{a}$	-
23	CH ₃	28.0	28.0	28.5	0.97 (s)	3, 4, 5, 24
24	CH ₃	15.4	15.4	15.4	0.76 (<i>s</i>)	3, 4, 5, 23
25	CH ₃	15.9	16.1	16.2	0.82(s)	1, 5, 9, 10
26	CH ₃	16.1	16.0	15.9	1.01 (s)	7, 8, 9, 14
27	CH ₃	14.5	14.6	14.5	0.97 (s)	8, 13,14, 15
28	CH ₃	18.0	18.0	18.4	0.77 (<i>s</i>)	16, 17, 18, 22
29	CH ₃	29.2	109.3	23.5	2.15 (s)	19, 20
30	-	-	19.3	-	-	-

3.1.18 Compounds TK18 and TK19

The mixture of **TK18** and **TK19** was isolated as a white solid. Its IR spectrum showed absorption bands at 3425 (hydroxyl) and 1642 cm⁻¹ (double bond). The ¹H NMR (**Figure 40**) spectral data contained an oxymethine proton at δ 3.57-3.47 (*m*), three olefinic protons at δ 5.36-5.34 (*d*, *J* = 5.1 Hz), 5.16 (*dd*, *J* = 15.1, 8.4 Hz) and 5.01 (*dd*, *J* = 15.1, 8.4 Hz). The ¹H NMR data was corresponded to previous reported data of β -sitosterol and stigmasterol. Thus, this mixture was identified as β -sitosterol (**TK18**) and stigmasterol (**TK19**) (Cheenpracha, 2004).

3.1.19 Compound TK20



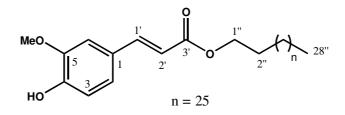
Compound **TK20** was isolated as colorless viscous oil, $[\alpha]^{28}_{D}$: +66.4° (c = 0.40, CHCl₃). Its IR spectrum showed absorption bands for α , β - unsaturated carboxyl group at (1674 cm⁻¹) and double bond (1616 cm⁻¹) (**Figure 98**). The UV absorption was shown at 241 nm (**Figure 97**).

The ¹³C NMR and DEPT spectral data of **TK20** (**Table 19**, **Figure 100**) showed all 29 carbon signals, six methyl (δ 11.9, 12.0, 17.4, 18.7, 19.0 and 19.8), eleven methylene (δ 21.0, 23.1, 24.2, 26.1, 28.2, 32.1, 32.9, 33.9, 34.0, 35.7 and 39.6), eight methine (δ 29.2, 35.6, 36.1, 45.8, 53.8, 55.9, 56.1 and 123.7) and four quaternary carbons (δ 38.6, 42.4, 171.6 and 199.6).

The ¹H NMR spectral data of **TK20** (**Table 19**, **Figure 99**) and the mixture of **TK18** and **TK19** (**Figure 96**) exhibited the same pattern, except that an oxymethine proton signal between δ 3.57-3.47 in **TK18** and **TK19** was not evidenced in **TK20** and **TK20** displayed a more downfield olefinic proton at δ 5.72 (H-4). The ¹³C NMR spectrum confirmed the presence of a carbon - carbon double bond at δ 123.7 (C-4) and 171.6 (C-5) and the downfield chemical shift of C-5 (δ 171.6) also indicated the presence of the conjugated carbonyl function. On the basis of HMBC (**Table 19**) the olefinic proton H-4 (δ 5.72) showed correlation with C-2 (δ 33.9), C-3 (δ 199.6), C-6 (δ 32.9) and C-10 (δ 38.6) suggesting the presence of a double bond between C-4 and C-5 and a carbonyl carbon at C-3. On the basis of its spectroscopic

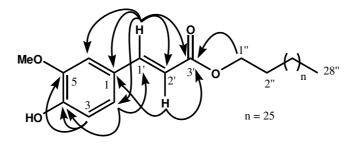
data and comparison with previously reported data (Daengrot, 2006; Della Greca *et al.*, 1990), compound **TK20** was identified as stigmast-4-en-3-one.

Selected HMBC correlation of TK20


Table 19 ¹H, ¹³C NMR and HMBC spectral data of compound **TK20** and stigmast-4en-3-one (**R**, CDCl₃)

Position	Type of C*	δ _C /μ	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
1 Ostiloli	Type of C	TK19 R		TK19	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	35.7	35.7	1.54 (<i>m</i>), 1.67 (<i>m</i>)	-
2	CH_2	33.9	33.9	2.28 (<i>m</i>), 2.20 (<i>m</i>)	-
3	С	199.6	198.9	-	-
4	СН	123.7	123.6	5.72 (brs)	2, 3, 6, 10
5	С	171.6	171.0	-	-
6	CH_2	32.9	32.9	2.25 (<i>m</i>), 2.40 (<i>m</i>)	-
7	CH_2	32.1	32.1	1.01 (<i>m</i>), 1.85 (<i>m</i>)	-
8	СН	35.6	35.7	1.71 (<i>m</i>)	-
9	СН	53.8	53.8	0.92 (<i>m</i>)	-
10	С	38.6	38.6	-	-
11	CH ₂	21.0	21.0	1.40 (<i>m</i>), 1.50 (<i>m</i>)	-
12	CH ₂	39.6	39.5	1.15 (<i>m</i>), 2.04 (<i>m</i>)	-

Table 19 (continued)


Position	Type of C*	δ _C /p	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
rosition	Type of C	TK19 R		TK19	$^{1}\text{H}\rightarrow^{13}\text{C}$
13	С	42.4	42.4	-	-
14	СН	55.9	55.9	1.00 (<i>m</i>)	-
15	CH_2	24.2	24.1	1.23 (<i>m</i>), 1.29 (<i>m</i>)	-
16	CH_2	28.2	28.1	1.27 (<i>m</i>), 1.32 (<i>m</i>)	-
17	СН	56.1	56.1	1.11 (<i>m</i>)	-
18	CH ₃	12.0	12.0	0.71 (<i>m</i>)	12, 14, 17
19	CH ₃	17.4	17.4	1.18 (<i>m</i>)	1, 5, 9, 10
20	СН	36.1	36.1	2.01 (<i>m</i>)	-
21	CH ₃	18.7	18.7	0.92 (d, J = 6.3 Hz)	17, 20, 22
22	CH_2	34.0	34.0	2.39 (<i>m</i>)	-
23	CH_2	26.1	26.0	1.17 (<i>m</i>)	-
24	СН	45.8	45.8	0.93 (<i>m</i>)	-
25	СН	29.2	29.1	1.26 (<i>m</i>)	-
26	CH ₃	19.8	19.8	0.85 (d, J = 6.9 Hz)	24, 25, 27
27	CH ₃	19.0	19.2	0.84 (d, J = 6.6 Hz)	24, 25, 26
28	CH_2	23.1	23.1	1.29 (<i>m</i>)	-
29	CH ₃	11.9	11.4	0.83 (d, J = 6.6 Hz)	24, 28

3.1.20 Compound TK21

Compound **TK21** was isolated as a colorless viscous oil, It exhibited hydroxyl (3375 cm⁻¹), conjugate ester (1695 cm⁻¹) and double bond (1635 cm⁻¹) absorptions in the IR spectrum. The UV spectrum showed absorption bands at λ_{max} : 234, 297 and 325 nm (**Figure 105**), again suggesting the presence of conjugation in the molecule. Its molecular formula, C₃₈H₆₆O₄ ([M]⁺ 586.6, calcd 586.5), was deduced by EI mass spectrum.

In the ¹H NMR spectral data of TK21 (Table 20, Figure 106), the presence of a *trans* double bond was evidenced by two doublet signals at δ 6.30 and 7.60 ppm with a coupling constant of 16.2 Hz. ¹H NMR signals at δ 6.93 (d, J = 8.1 Hz), δ 7.06 (dd, J = 8.1 and 2.1 Hz) and δ 7.03 (d, J = 2.1 Hz) established the presence of three aromatic protons with ortho, ortholmeta and meta coupling, respectively. The presence of one methoxyl group was also shown by a three-proton singlet at δ 3.92 ppm. Furthermore, the calculated MW of 586.5 was in agreement with molecular formula, $C_{38}H_{66}O_4$ as deduced by EI mass spectrum. The ¹H NMR spectrum showed signal of methylene protons at $\delta 4.20$ (H₂-1"), a triplet at $\delta 0.89$ (H₃-28") and a broad signal at δ 1.12-1.14 which could be deduced from molecular formula to be those of 50H. Therefore, compound **TK21** should be a long chain ester of ferulic acid. The ¹³C NMR spectral data of **TK21** (**Table 20**, **Figure 107**) showed signals at δ 167.3 (C-3') due to the carbonyl group of an ester function and δ 144.6 (C-1') and δ 115.7 (C-2') due to a side chain C-C double bond. Further confirmation of this skeleton came from the mass spectrum of TK21 which showed, besides the molecular ion, significant fragment peaks at m/z 177 and 194, both characteristic of a methoxy and hydroxyl substituted cinamic moiety. HMBC correlations were summarized in **Table 20.** On the basis of its spectroscopic data and comparison with previously reported data (Ruan et *al.*, 2007), compound **TK21** was identified as erythrinassinate A.

Selected HMBC correlation of TK21

Table	20	¹ H,	^{13}C	NMR	and	HMBC	spectral	data	of	compound	TK21	and
	er	ythri	nassi	nate A	(R , C	DCl ₃)						

Desition	True of C*	$\delta_{\rm C}/{ m p}$	opm	$\delta_{\rm H}$ /ppm (multiplicity, <i>J</i> /Hz)	HMBC*
Position	Type of C*	TK21	R	TK21	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	С	127.0	127.0	-	-
2	СН	123.4	123.0	7.06 (<i>dd</i> , 8.1, 2.1 Hz)	1 [′] , 4
3	СН	114.6	114.6	6.93 (<i>d</i> , 8.1 Hz)	4, 5
4	С	147.8	147.8	-	-
5	С	146.7	146.7	-	-
6	СН	109.2	109.2	7.03 (<i>d</i> , 2.1 Hz)	-
1	СН	144.6	144.6	7.60 (<i>d</i> , 16.2 Hz)	1, 2, 6, 2', 3'
2	СН	115.7	115.7	6.30 (<i>d</i> , 16.2 Hz)	1, 3
3	COO	167.3	167.3	-	-
1"	CH_2	64.2	64.6	4.20 (<i>t</i> , 6.6 Hz)	3'
2"	CH_2	28.7	31.9	1.70 (<i>m</i>)	-
28"	CH ₃	14.1	14.0	0.89 (<i>t</i> , 6.3 Hz)	-
OMe	CH_3	55.9	55.9	3.92 (s)	-