CHAPTER 3
 RESULTS AND DISCUSSION

3.1 Structure elucidation of compounds from the roots of B. cylindrica

The air-dried and pulverized roots (4.0 kg) were exhaustively extracted with methylene chloride and acetone successively. The crude methylene chloride extract was subjected to quick column chromatography and/or crystallization to give ten diterpenoids as one new pimarane: TK10 and one known: TK8; seven kauranes: TK1-TK7 and a beyerane: TK9; seven known lupane triterpenoids: TK11-TK17; three known steroids: TK18-TK20 and a ferulic acid ester: TK21.

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT 135°, DEPT 90°, HMQC, HMBC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY. Mass spectra were determined for a new compound TK10 and a known TK21. The physical data of the known compounds were also compared with the reported values. In addition X-ray crystallographic structures were reported for compounds TK1 and TK5.

3.1.1 Compound TK1

Compound TK1 was obtained as a white amorphous solid, mp. 255$257{ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:-22.7^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3292 \mathrm{~cm}^{-1}\right)$ and double bond ($1620 \mathrm{~cm}^{-1}$) absorptions in the IR spectrum (Figure 4). X-ray crystallographic analysis of TK1 was carried out and gave ORTEP drawing as shown in Figure 2 (Salae et al., 2007). The ${ }^{13} \mathrm{C}$ NMR spectrum and a DEPT experiment indicated that TK1 has a total of 20 carbons, which is consistent with a diterpene skeleton.

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK1 (Table 2, Figure 5) revealed the presence of an exocyclic methylene protons ($\delta 4.74 \mathrm{brs}$ and $4.91 \mathrm{brt}, J=2.2 \mathrm{~Hz}$) and oxy-methylene protons ($\delta 3.35 d$, $J=11.4 \mathrm{~Hz}$ and $3.65 d$, $J=11.4 \mathrm{~Hz}$). The latter formed an AB system, implying of their connection to a quaternary carbon.

The ${ }^{13} \mathrm{C}$ NMR spectral data of TK1 (Table 2, Figure 6) showed all 20 carbon signals, whose DEPT spectrum enabled assignment as two methyl ($\delta 17.9$ and 27.0), eleven methylene ($\delta 18.2,20.2,20.4,35.5,39.3,40.4,41.7,47.0,47.5,65.5$ and 102.8), two methine ($\delta 54.9$ and 56.7) and five quaternary carbons ($\delta 38.6,39.0$, 41.6, 80.3 and 156.1). The ${ }^{13} \mathrm{C}$ NMR signals at $\delta 65.5,102.8$ and 156.5 confirmed the presence of oxy-methylene and exocyclic methylene carbons. Comparison of ${ }^{13} \mathrm{C}$ NMR chemical shifts with those of related kauranoid diterpenes (Subrahmanyam et al., 1999) and relative configurations from X-ray ORTEP diagram (Figure 2),
suggested that TK1 possesses an ent-kaurane-type skeleton with oxy-methylene protons at C-19.

The position of oxy-methylene protons at C -19 was determined through an HMBC experiment (Table 2, Figure 7) in which the oxy-methylene protons at $\delta 3.35$ and $3.65\left(\mathrm{H}_{2}-19\right)$ showed correlations with $\mathrm{C}-3(\delta 35.6), \mathrm{C}-4(\delta 39.0)$ and C-18 ($\delta 27.0)$. The methyl protons at $\delta 0.89\left(\mathrm{H}_{3}-18\right)$ showed correlations with $\mathrm{C}-3$ (δ 35.6), $\mathrm{C}-4(\delta$ 39.0), $\mathrm{C}-5(\delta 56.7)$ and $\mathrm{C}-19(\delta 65.5)$. Thus on the basis of its spectroscopic data and comparison with the previous report [Subrahmanyam et al., 1999, $[\alpha]^{27}{ }_{\mathrm{D}}:-47^{\circ}\left(c=0.10, \mathrm{CH}_{3} \mathrm{OH}\right)$] (Table 2), compound TK1 was assigned as ent-kaur-16-en-13,19-diol.

Selected HMBC correlation of TK1

Figure 2 X-ray ORTEP diagram of compound TK1

Table $2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK1 and ent-kaur-16-en-13,19-diol ($\mathbf{R}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)

Position	Type of C	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	$\begin{aligned} & \mathrm{HMBC}{ }^{*} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK1	R	TK1	
1	CH_{2}	40.4	40.6	0.75 (m), 1.80 (m) ${ }^{\text {a }}$	-
2	CH_{2}	20.2	20.5	$1.61(m), 1.74(m)^{\mathrm{a}}$	-
3	CH_{2}	35.6	36.1	0.86 (m), 1.73 (m) ${ }^{\text {a }}$	-
4	C	39.0	39.2	-	-
5	CH	56.7	57.0	0.91 (m) ${ }^{\text {a }}$	-
6	CH_{2}	20.4	20.7	$1.28(q d, J=12.4,3.6 \mathrm{~Hz})^{\mathrm{a}}$	-
7	CH_{2}	41.7	42.2	1.40 (m), 1.46 (m) ${ }^{\text {a }}$	-
8	C	41.6	41.7	-	-
9	CH	54.9	55.2	$0.88(m)^{\text {a }}$	-
10	C	38.6	39.3	-	-
11	CH_{2}	18.2	18.7	$1.35(m), 1.50(m)^{\mathrm{a}}$	-
12	CH_{2}	39.3	40.6	1.49 (m), 1.76 (m) ${ }^{\text {a }}$	-
13	C	80.3	79.8	-	8, 14, 16, 17
14	CH_{2}	47.0	47.3	1.17 ($d d, J=10.8,2.4 \mathrm{~Hz}$),	-
				$2.02(m)^{\mathrm{a}}$	-
15	CH_{2}	47.5	48.2	$1.17(m), 2.11(m)^{\mathrm{a}}$	-
16	C	156.1	157.4	-	-
17	CH_{2}	102.8	102.9	4.74 (brs),	13, 15
				4.91 (brt, $J=2.2 \mathrm{~Hz})$	
18	CH_{3}	27.0	28.0	0.89 (s)	3, 4, 5, 19
19	CH_{2}	65.5	64.0	$3.35(d, J=11.4 \mathrm{~Hz})^{\mathrm{b}}$	
				$3.65(d, J=11.4 \mathrm{~Hz})^{\text {b }}$	\} $3,4,18$
20	CH_{3}	17.9	18.2	0.93 (s)	1, 5, 9

[^0]
3.1.2 Compound TK2

Compound TK2 was isolated as a white amorphous solid, mp. 140-141 ${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:-75.0^{\circ}\left(c=0.34, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands similar to those of compound TK1.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK2 (Table 3, Figures 11 and 12) were similar to those of TK1 (Table 2, Figures 5 and 6). The difference in the spectrum of TK2 was shown as an additional broad singlet methine proton signal at δ 2.64 and a methine carbon signal at $\delta 43.9$ replaced an oxyquarternary carbon at δ 80.3 in TK1, thus suggesting a methine proton at C-13. By comparison of the ${ }^{13} \mathrm{C}$ NMR spectral data with the previously reported data [Antonio et al., 1981; Piozzi et al., 1971, $[\alpha]^{20}{ }_{\mathrm{D}}:-82.0^{\circ}\left(c=0.42, \mathrm{CHCl}_{3}\right)$] (Table 3), therefore compound TK2 was identified as ent-kaurenol.

Selected HMBC correlation of TK2

Table $3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK2, TK1 and entkaurenol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / \mathrm{Hz})$	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK2	TK1	R	TK2	
1	CH_{2}	40.4	40.4	40.5	0.81 (m), 1.87 (m) ${ }^{\text {a }}$	-
2	CH_{2}	18.3	20.2	18.3	$1.40(m)^{\text {a }}$	-
3	CH_{2}	35.6	35.5	35.6	$0.94(m), 1.79(m)^{\text {a }}$	-
4	C	38.6	39.0	38.7	-	-
5	CH	56.8	56.7	56.8	0.96 (m) ${ }^{\text {a }}$	-
6	CH_{2}	20.5	20.4	20.5	1.66 (m) ${ }^{\text {a }}$	-
7	CH_{2}	41.6	41.7	41.6	$1.50(m)^{\text {a }}$	-
8	C	44.1	41.6	44.2	-	-
9	CH	56.2	54.9	56.2	1.09 (m) ${ }^{\text {a }}$	-
10	C	39.2	38.6	39.2	-	-
11	CH_{2}	18.2	18.2	18.2	$1.58(m)^{\text {a }}$	-
12	CH_{2}	33.1	39.3	33.2	1.46 (m), 1.64 (m) ${ }^{\text {a }}$	-
13	CH	43.9	80.3	44.0	2.64 (brs)	-
14	CH_{2}	39.6	47.0	39.7	1.10 (m), 1.98 (brd) ${ }^{\text {a }}$	-
15	CH_{2}	49.1	47.5	49.1	$2.07(d d, J=5.1,2.4 \mathrm{~Hz})$	-
16	C	155.8	156.1	155.8	-	-
17	CH_{2}	102.9	102.8	103.0	4.73 (brs), 4.81 (brs)	-
18	CH_{3}	27.0	27.0	27.1	0.99 (s)	3, 4, 5, 19
19	CH_{2}	65.5	65.5	65.4	$\alpha 3.49$ ($d, J=10.8 \mathrm{~Hz})^{\text {b }}$	
					$\beta 3.75(d, J=10.8 \mathrm{~Hz})^{\text {b }}$	$\} 3,4,5,18$
20	CH_{3}	18.1	17.9	18.5	1.02 (s)	1,5, 9

[^1]
3.1.3 Compound TK3

Compound TK3 was isolated as a white amorphous solid, mp. 112-114 ${ }^{\circ} \mathrm{C}$, $[\alpha]^{27}{ }_{\mathrm{D}}:-32.0^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3446 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK3 (Table 4, Figures 17 and 18) were similar to those of TK2 (Table 3, Figures 11 and 12). Difference in the spectrum of TK3 was shown as the disappearance of an exocyclic methylene carbon at C-17 ($\delta 102.9$ in TK2) and the appearance of oxymethylene carbon ($\delta 67.5$) in the ${ }^{13} \mathrm{C}$ NMR spectrum of TK3. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed a signal of oxymethylene protons at $\delta 3.40$ instead of exocyclic methylene protons, thus suggesting oxymethylene protons at $\mathrm{C}-17$ and a signal of a methine proton was shown at $\delta 1.93$ ($\mathrm{C}-16$). The position of oxymethylene protons at $\mathrm{C}-17$ was determined through an HMBC experiment (Table 4) whose proton signals at $\delta 3.40$ showed correlations with $\mathrm{C}-13(\delta 38.3), \mathrm{C}-15(\delta 45.1)$ and $\mathrm{C}-16(\delta 43.4)$. Thus on the basis of its spectroscopic data and comparison with the previous report (Han et al., 2004; Bohlmann et al., 1981), compound TK3 was assigned as $16 \alpha H-17,19-$ entkauranediol.

Selected HMBC correlation of TK3

Table $4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK3 and TK2

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	HMBC*
		TK3	TK2	TK3	${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$
1	CH_{2}	40.5	40.4	0.80 (m), 1.87 (m) ${ }^{\text {a }}$	-
2	CH_{2}	18.6	18.3	1.59 (m) ${ }^{\text {a }}$	-
3	CH_{2}	35.6	35.6	0.97 (m), 1.75 (m) ${ }^{\text {a }}$	-
4	C	38.6	38.6	-	-
5	CH	56.8	56.8	0.94 (m) ${ }^{\text {a }}$	-
6	CH_{2}	20.9	20.5	$1.34(m), 1.67$ (m) ${ }^{\text {a }}$	-
7	CH_{2}	42.0	41.6	1.45 (m) ${ }^{\text {a }}$	-
8	C	44.7	44.1	-	-
9	CH	56.4	56.2	1.03 (m) ${ }^{\text {a }}$	8, 12, 20
10	C	39.2	39.2	-	-
11	CH_{2}	18.3	18.2	1.42 (m) ${ }^{\text {a }}$	-
12	CH_{2}	31.5	33.1	1.46 (m), $1.59(m)^{\mathrm{a}}$	-
13	CH	38.3	43.9	$2.08(b r s)^{\text {a }}$	15
14	CH_{2}	37.2	39.6	0.92 (m), 1.84 (m) ${ }^{\text {a }}$	-
15	CH_{2}	45.1	49.1	0.90 (m), 1.55 (m) ${ }^{\text {a }}$	-
16	CH	43.4	155.8	1.93 (m) ${ }^{\text {a }}$	12, 14, 17

Table 4 (continued)

[^2]${ }^{\mathrm{b}}$ May be interchanged

3.1.4 Compound TK4

Compound TK4 was isolated as a white amorphous solid, mp. 118-119 ${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:-56.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3340 \mathrm{~cm}^{-1}\right)$, carbonyl ($1712 \mathrm{~cm}^{-1}$) and double bond ($1650 \mathrm{~cm}^{-1}$) absorptions in the IR spectrum (Figure 23). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK4 (Table 5, Figures 24 and 25) were similar to those of TK1 (Table 2, Figures 5 and 6). The difference was found in ring A, where the aldehydic proton at $\delta 9.70(s, \mathrm{H}-19)$ replaced signals of oxy-methylene protons at $\delta 3.35$ and 3.65 in TK1. The aldehydic proton $\mathrm{H}-19$ showed HMBC correlations (Table 5) with C-3 ($\delta 34.1$) and C-4 ($\delta 48.4$). The methyl protons at $\delta 1.01\left(\mathrm{H}_{3}-18\right)$ showed correlations with $\mathrm{C}-3(\delta 34.1), \mathrm{C}-4(\delta 48.4), \mathrm{C}-5(\delta 56.6)$ and C-19 (δ 205.7). Thus on the basis of its spectroscopic data and comparison with the previous report [Subrahmanyam et al., 1999, $[\alpha]^{30}{ }_{\mathrm{D}}$: $\left.-59.0^{\circ}\left(c=0.10, \mathrm{CHCl}_{3}\right)\right]$, compound TK4 was assigned as ent-kaur-16-en-13-hydroxy-19-al.

Selected HMBC correlation of TK4

Table $5{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK4, TK1 and ent-kaur-16-en-13-hydroxy-19-al (R, CDCl_{3})

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J/Hz)	HMBC*
		TK4	TK1	R	TK4	${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$
1	CH_{2}	39.7	40.4	39.5	0.87 (m), 182 (m) ${ }^{\text {a }}$	-
2	CH_{2}	19.8	20.2	19.6	1.50 (m), $2.08(m)^{\mathrm{a}}$	-
3	CH_{2}	34.1	35.5	39.0	$2.18(m)^{\text {a }}$	-
4	C	48.4	39.0	48.2	-	-
5	CH	56.6	56.7	56.4	1.19 ($d d, J=12.6,2.1 \mathrm{~Hz}$)	-
6	CH_{2}	20.3	20.4	20.1	1.55 (m), 1.77 (m) ${ }^{\text {a }}$	-
7	CH_{2}	39.1	41.7	34.0	1.05 (m), $2.12(m)^{\text {a }}$	-
8	C	41.5	41.6	41.3	-	-
9	CH	53.2	54.9	53.1	1.03 (m) ${ }^{\text {a }}$	-
10	C	39.1	38.6	39.2	-	-
11	CH_{2}	18.3	18.2	18.1	1.42 (m) ${ }^{\text {a }}$	-
12	CH_{2}	41.2	39.3	41.0	1.50 (m), $1.65(m)^{\text {a }}$	-
13	C	80.1	80.3	79.9	-	-
14	CH_{2}	47.1	47.0	46.8	$\begin{gathered} 1.29(d, J=11.1 \mathrm{~Hz}), \\ 2.12(m)^{\mathrm{a}} \end{gathered}$	-

Table 5 (continued)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	$\begin{aligned} & \text { HMBC* } \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK4	TK1	R	TK4	
15	CH_{2}	47.4	47.5	47.3	1.31 ($d, J=10.8 \mathrm{~Hz}$),	-
					$2.08(m)^{\text {a }}$	-
16	C	155.8	156.1	155.4	-	-
17	CH_{2}	103.1	102.8	103.0	4.82 (brs), 4.99 (brs)	13, 15, 16
18	CH_{3}	24.2	27.0	24.1	1.01 (s)	3, 4, 5, 19
19	CHO	205.7	65.5	205.6	9.70 (s)	3, 4
20	CH_{3}	16.2	17.9	16.1	0.87 (s)	1, 5, 9

[^3]
3.1.5 Compound TK5

Compound TK5 was isolated as white needles, mp. 114-115 ${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}$: $-76.0^{\circ}\left(c=0.43, \mathrm{CHCl}_{3}\right)$. The IR spectrum was closely related to that of TK4.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK5 (Table 6, Figures 30 and 31) resembled those of TK4 (Table 5, Figures 24 and 25). The difference was shown as the additional proton signal at $\delta 2.65$ (brs) and the carbon signal at $\delta 43.7$ in TK5 replaced C-13 signal at $\delta 80.1$ in TK4. The exocyclic methylene protons $\mathrm{H}_{2}-17$ showed HMBC correlations with C-13 ($\delta 43.7$) and C-15 ($\delta 49.0$). Thus on the basis of its spectroscopic data and comparison with the previous report [Stefan et al., 2003; Piozzi et al., 1971, $\left.[\alpha]^{20}{ }_{\mathrm{D}}:-95.0^{\circ}\left(c=0.39, \mathrm{CHCl}_{3}\right)\right]$, compound TK5 was assigned as ent-kaurenal. X-ray crystallographic analysis of TK5 (Chantrapromma et al., 2007) was also carried out and gave ORTEP drawing as shown in Figure 3.

Selected HMBC correlation of TK5

Figure 3 X-ray ORTEP diagram of compound TK5

Table $6{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK5 and TK4

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	
		TK5	TK4	TK5	${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$
1	CH_{2}	39.9	39.7	0.80 (m) ${ }^{\text {a }}$	-
2	CH_{2}	18.4	19.8	1.68 (m) ${ }^{\text {a }}$	-
3	CH_{2}	34.2	34.1	1.01 (m), 2.16 (m) ${ }^{\text {a }}$	-
4	C	48.4	48.4	-	-
5	CH	56.7	56.6	1.17 (m) ${ }^{\text {a }}$	-
6	CH_{2}	19.8	20.3	1.72 (m), $1.91(m)^{\text {a }}$	-
7	CH_{2}	41.1	39.1	1.60 (m) ${ }^{\text {a }}$	-
8	C	44.0	41.5	-	-
9	CH	54.5	53.2	1.11 (m) ${ }^{\text {a }}$	-
10	C	39.3	39.1	-	-
11	CH_{2}	18.3	18.3	1.50 (m) ${ }^{\text {a }}$	-
12	CH_{2}	32.9	41.2	1.64 (m) ${ }^{\text {a }}$	-
13	CH	43.7	80.1	2.65 (brs) ${ }^{\text {a }}$	-
14	CH_{2}	39.8	47.1	1.17 (m), $1.98(m)^{\text {a }}$	-

Table 5 (continued)

Position	Type of C*	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J/Hz)	HMBC
		TK5	TK4	TK4	
15	CH_{2}	49.0	47.4	$2.09(m)^{\mathrm{a}}$	-
16	C	155.5	155.8	-	-
17	CH_{2}	103.2	103.1	$4.75(b r s), 4.80(b r s)$	13,15
18	CH_{3}	24.2	24.2	$1.00(s)$	$3,4,5,19$
19	CHO_{2}	205.8	205.7	$9.75(s)$	3,4
20	CH_{3}	16.3	16.2	$0.89(s)$	$1,5,9,10$

* For TK5
${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.6 Compound TK6

Compound TK6 was isolated as a white amorphous solid, mp. 199-201 ${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:-58.1^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3396 \mathrm{~cm}^{-1}\right)$ and carboxyl $\left(1687 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum (Figure 36).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK6 (Table 7, Figures 37 and 38) were similar to those of TK4 (Table 5, Figures 24 and 25). The difference in the spectrum of TK6 was shown as the disappearance of an aldehydic proton at $\delta 9.70$ (H-19) in the ${ }^{1} \mathrm{H}$ NMR of TK4 and the ${ }^{13} \mathrm{C}$ NMR spectrum of TK6 displayed a signal of carboxyl carbon at $\delta 183.3$ instead of an aldehydic carbon at δ 205.7, thus suggesting a carboxylic functionality at $\mathrm{C}-19$. The location of the carboxyl group was confirmed by HMBC experiment (Table 7) in which the methyl protons at $\delta 1.21\left(\mathrm{H}_{3}-\right.$ 18) showed correlations with $\mathrm{C}-3(\delta 37.8), \mathrm{C}-4(\delta 43.6), \mathrm{C}-5(\delta 56.9)$ and $\mathrm{C}-19(\delta$ 183.3). NOESY correlation between $\mathrm{H}_{3}-20$ and $\mathrm{H}_{2}-\alpha 14$ (δ 2.10) supported the assignment. Thus on the basis of its spectroscopic data and comparison with the previous report [Subrahmanyam et al., 1999, $[\alpha]^{30}{ }_{\mathrm{D}}:-69.0^{\circ}\left(c=0.06, \mathrm{CHCl}_{3}\right)$; Yang et al., 2007], compound TK6 was assigned as ent-kaur-16-en-13-hydroxy-19-oic acid (steviol).

Selected HMBC correlation of TK6

Table $7{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK6, TK4 and ent-kaur-16-en-13-hydroxy-19-oic acid ($\mathbf{R}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)

Position	Type of C*	$\delta_{\mathrm{C}} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, $J / \mathrm{Hz})$	HMBC* ${ }^{1} \mathrm{H}_{\rightarrow}{ }^{13} \mathrm{C}$
		TK6	TK4	R	TK6	
1	CH_{2}	40.0	39.7	41.1	$0.86(m), 1.18(m)^{\mathrm{a}}$	-
2	CH_{2}	19.0	19.8	19.9	$1.50(m), 2.18(m)^{\mathrm{a}}$	-
3	CH_{2}	37.8	34.1	38.7	$1.05(m), 2.16(m)^{\mathrm{a}}$	-
4	C	43.6	48.4	44.0	-	-
5	CH	56.9	56.6	57.1	$1.03(m)^{\mathrm{a}}$	-
6	CH_{2}	21.8	20.1	22.7	$1.81(m), 2.17(m)^{\mathrm{a}}$	-
7	CH_{2}	39.4	39.1	42.0	$1.42(m), 1.51(m)^{\mathrm{a}}$	-
8	C	41.7	41.3	41.9	-	-
9	CH^{2}	53.9	53.1	54.4	$0.96(m)^{\mathrm{a}}$	-
10	C	39.5	39.2	39.9	-	-
11	CH_{2}	19.0	18.3	20.0	$1.63(m), 1.81(m)^{\mathrm{a}}$	-
12	CH_{2}	41.3	41.2	40.8	$1.63(m), 1.71(m)^{\mathrm{a}}$	-
13	C	80.4	80.1	79.9	-	-
14	CH_{2}	46.9	47.1	47.6	$1.32(m), 2.10(m)^{\mathrm{a}}$	-
15	CH_{2}	47.4	47.4	48.3	$1.29(m), 2.07(m)^{\mathrm{a}}$	-

Table 7 (continued)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / \mathrm{Hz})$	$\begin{aligned} & \mathrm{HMBC} \\ & \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK6	TK4	R	TK6	
16	C	155.7	155.8	157.8	-	-
17	CH_{2}	103.0	103.1	103.0	4.97 (brs), 4.98 (brs)	13, 15
18	CH_{3}	28.8	24.2	29.4	1.21 (s)	3, 4, 5, 19
19	COO	183.3	205.7	180.2	-	-
20	CH_{3}	15.5	16.2	16.0	0.95 (s)	1, 5, 9

* For TK6
${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.7 Compound TK7

Compound TK7 was isolated as a white amorphous solid, mp. 169-171 ${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:+36.3^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3427 \mathrm{~cm}^{-1}\right)$, carbonyl $\left(1728 \mathrm{~cm}^{-1}\right)$ and double bond ($1649 \mathrm{~cm}^{-1}$) absorptions in the IR spectrum (Figure 43).

The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data of TK7 (Table 8, Figures 45, 46 and 47) showed the presence of 21 carbon signals of a diterpenoid with an acetoxyl group. The ${ }^{13} \mathrm{C}$ NMR signals were displayed as an ester carbonyl ($\delta 177.8$), a trisubstituted double bond (δ 157.3), two quaternary oxygen bearing carbons ($\delta 78.6$ and 80.1), an oxymethylene carbon ($\delta 67.8$), a methoxyl carbon ($\delta 51.3$), two methyl carbons ($\delta 23.3$ and 28.0), eight methylene carbons ($\delta 17.9,20.1,30.0,37.5,38.2$, 40.9, 49.2 and 52.9), one methine carbon ($\delta 46.5$), one olefinic methine carbon (δ 114.7) and three quaternary carbons ($\delta 38.640 .2$ and 44.8).

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK7 (Table 8, Figure 44) showed a signal of a trisubstituted olefinic proton ($\delta 5.32 \mathrm{brs}, \mathrm{H}-11$), carbomethoxyl protons (δ $3.61 s, \mathrm{H}_{3}-21$), two methyl groups ($\delta 0.91 s, \mathrm{H}_{3}-20$ and $1.16 s, \mathrm{H}_{3}-18$) and an AB system of oxymethylene protons $\left(\delta 3.53 d, J=11.1 \mathrm{~Hz}\right.$ and $3.57 d, J=11.1 \mathrm{~Hz}, \mathrm{H}_{2^{-}}$ 17). The coupling constant 11.4 Hz of oxymethylene protons of oxetane in TK7 was in agreement with the reported value (11.4 Hz , Ammanamanchi et al., 2003). The location of the carbomethoxyl group was confirmed by HMBC experiment (Table 8) in which the methyl protons $\delta 1.16\left(\mathrm{H}_{3}-18\right)$ showed correlations with $\mathrm{C}-3(\delta 37.5)$, C $4(\delta 44.8), \mathrm{C}-5(\delta 46.5)$ and $\mathrm{C}-19(\delta 177.8)$. Thus on the basis of its spectroscopic data
and comparison with the previous report [Subrahmanyam et al., 1999, $[\alpha]^{30}{ }_{\mathrm{D}}:+22.0^{\circ}$ ($c=0.10, \mathrm{CH}_{3} \mathrm{OH}$); Ammanamanchi et al., 2003], compound TK7 was assigned as methyl ent-kaur-9(11)-ene-13,17-epoxy-16-hydroxy-19-oate.

Selected HMBC correlation of TK7

Table $8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK7 and methyl ent-kaur-9(11)-ene-13,17-epoxy-16-hydroxy-19-oate ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C*	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	HMBC*
		TK7	R	TK7	${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$
1	CH_{2}	40.9	41.0	1.18 (m), $1.80(m)^{\mathrm{a}}$	-
2	CH_{2}	20.1	20.1	1.46 (m), 1.76 (m) ${ }^{\text {a }}$	-
3	CH_{2}	37.5	37.6	2.46 (m), 2.52 (m) ${ }^{\text {a }}$	-
4	C	44.8	44.8	-	-
5	CH	46.5	46.5	1.52 (m) ${ }^{\text {a }}$	-
6	CH_{2}	17.9	18.0	2.44 (m) ${ }^{\text {a }}$	-
7	CH_{2}	30.0	30.0	1.45 (m), $1.99(m)^{\mathrm{a}}$	-
8	C	40.2	40.3	-	-
9	C	157.3	157.4	-	-
10	C	38.6	38.7	-	-
11	CH	114.7	114.7	5.32 (brs)	-

Table 8 (continued)

Position	Type of C*	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J/Hz)	$\mathrm{HMBC}{ }^{*}$
		\mathbf{R}	TK7	${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$	
12	CH_{2}	38.2	38.3	$1.01(m), 2.13(b r d)^{\mathrm{a}}$	-
13	C	80.1	80.0	-	-
14	CH_{2}	49.2	49.2	$1.53(m), 2.00(m)^{\mathrm{a}}$	-
15	CH_{2}	52.9	52.9	$1.73(m), 1.82(\mathrm{~m})^{\mathrm{a}}$	-
16	C	78.6	78.7	-	-
17	CH_{2}	67.8	67.9	$\alpha 3.53(d, J=11.1 \mathrm{~Hz})^{\mathrm{b}}$	-
				$\beta 3.57(d, J=11.1 \mathrm{~Hz})^{\mathrm{b}}$	-
18	CH_{3}	28.0	28.0	$1.16(s)$	$3,4,5,19$
19	COO_{2}	177.8	177.8	-	-
20	CH_{3}	23.3	23.4	$0.91(s)$	$1,5,9,10$
21	OCH_{3}	51.3	51.4	$3.61(s)$	19

* For TK7
${ }^{\text {a }}$ Deduced from HMQC experiment
${ }^{\mathrm{b}}$ May be interchanged

3.1.8 Compound TK8

Compound TK8 was isolated as a white amorphous solid, mp. 85$86^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:-67.2^{\circ}\left(c=0.01, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3346 \mathrm{~cm}^{-1}\right)$ absorption in the IR spectrum.

The ${ }^{13} \mathrm{C}$ NMR spectral data of TK8 (Table 9, Figure 50) showed all 20 carbon signals. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four methyl ($\delta 14.8,19.9,22.2$ and 33.9), nine methylene (δ $18.4,19.3,19.4,38.5,39.2,40.2,42.0,52.2$ and 64.7), three methine ($\delta 55.2,55.3$, and 84.7) and four quaternary carbons ($\delta 33.1,37.0,41.0$ and 82.7).

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK8 (Table 9, Figure 51) showed oxymethylene protons ($\delta 3.38 d d, J=11.1,7.5 \mathrm{~Hz}$ and $3.49 \mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, \mathrm{H}_{2^{-}}$ 16), an oxymethine proton ($\delta 3.72 d d, J=7.5,3.6 \mathrm{~Hz}, \mathrm{H}-15$), four methyl singlets at δ 0.86 (x 2), 0.93 , and 1.00. Comparison of the chemical shifts of all these groups with literature data (Herz et al., 1983) confirmed the presence of an ent-pimarane skeleton. The location of the oxymethylene and oxymethine protons was confirmed by HMBC experiment (Table 8) in which the oxymethylene protons at $\delta 3.38$ and $3.49\left(\mathrm{H}_{2}-16\right)$ showed correlations with $\mathrm{C}-13(\delta 41.0)$ and $\mathrm{C}-15(\delta 84.7)$ and an oxymethine proton at $\delta 3.72(\mathrm{H}-15)$ showed correlations with $\mathrm{C}-12(\delta 39.2), \mathrm{C}-13(\delta 41.0)$ and $\mathrm{C}-14(\delta$ 52.2). NOESY correlation between $\mathrm{H}_{3}-20$ and $\mathrm{H}_{3}-19$ supported the assignment. Thus on the basis of its spectroscopic data and comparison with the previous report (Herz et
al., 1983; Ammanamanchi et al., 2003), compound TK8 was assigned as ent-8,15R-epoxypimaran-16-ol.

Selected HMBC correlation of TK8

Table $9{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK8 and ent-8,15R-epoxypimaran-16-ol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C*	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J/Hz)	HMBC
		$\mathbf{T K 8}$	\mathbf{R}	$\mathbf{T K 8}$	
1	CH_{2}	38.5	38.5	$1.73(m)^{\mathrm{a}}$	-
2	CH_{2}	18.4	18.4	$1.41(m)^{\mathrm{a}}$	-
3	CH_{2}	42.0	42.0	$1.50(d d, J=12.9,3.9 \mathrm{~Hz})$,	-
4	C	33.1	33.1	$1.40(m)^{\mathrm{a}}$	-
5	CH	55.2	55.2	-	-
6	CH_{2}	19.3	19.3	0.80 or $1.01(m)^{\mathrm{a}}$	-
7	CH_{2}	40.2	40.1	$1.58(m)^{\mathrm{a}}$	-
8	C	82.7	82.7	$0.81(m), 1.65(m)^{\mathrm{a}}$	-
9	CH	55.3	55.4	-	-
10	C	37.0	37.1	0.80 or $1.01(m)^{\mathrm{a}}$	-
11	CH	19.4	19.5	-	-

Table 9 (continued)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$		$\frac{\delta_{\mathrm{H}} / \mathrm{ppm}(\text { multiplicity, } \mathrm{J} / \mathrm{Hz})}{\text { TK8 }}$	$\begin{aligned} & \text { HMBC* } \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK8	R		
12	CH_{2}	39.2	39.2	1.49 (m) ${ }^{\text {a }}$	-
13	C	41.0	41.2	1.33 (m), 1.57 (m) ${ }^{\text {a }}$	-
14	CH_{2}	52.2	52.2	$1.21(d, J=11.1 \mathrm{~Hz}) 1.60(m)^{\text {a }}$	-
15	CH	84.7	82.7	3.72 ($d d, J=7.5,3.6 \mathrm{~Hz}$)	8,12, 13, 14
16	CH_{2}	64.7	64.3	$3.38(d d, J=11.1,7.5 \mathrm{~Hz})^{\text {b }}$	$\}^{13,15}$
				$3.49(d d, J=11.1,3.6 \mathrm{~Hz})^{\text {b }}$	
17	CH_{3}	19.9	19.9	0.93 (s)	11, 14, 15,
					16
18	CH_{3}	33.9	33.8	0.86 (s)	3, 5, 19
19	CH_{3}	22.2	22.2	0.86 (s)	3, 5, 18
20	CH_{3}	14.8	14.8	1.00 (s)	5, 9, 10

* For TK8
${ }^{\text {a }}$ Deduced from HMQC experiment
${ }^{\mathrm{b}}$ May be interchanged

3.1.9 Compound TK9

Compound TK9 was isolated as a white amorphous solid, mp. 230-232 ${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}:-35.0^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3535 \mathrm{~cm}^{-1}\right)$, carbonyl $\left(1719 \mathrm{~cm}^{-1}\right)$ and carboxyl $\left(1650 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum.

The ${ }^{13} \mathrm{C}$ and DEPT spectral data of TK9 (Table 10, Figures 57, 59 and 60) showed all 20 carbon signals as two methyl ($\delta 13.3$ and $\delta 28.9$), ten methylene (δ $18.8,19.8,21.6,32.0,37.6,39.7,41.3,48.9,49.0$ and 65.0), two methine ($\delta 55.4$ and 56.9) and six quaternary carbons ($\delta 38.2,43.5,43.6,54.1,182.8$ and 223.7). The ${ }^{13} \mathrm{C}$ NMR signals at $\delta 65.0,182.8$ and 223.7 confirmed the presence of oxymethylene, carboxyl, and keto carbonyl functionalities, respectively.

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK9 (Table 10, Figure 56) showed signals for two tertiary methyl groups ($\delta 0.80$ and 1.25). The two oxymethylene protons ($\delta 3.53 \mathrm{~d}, J=11.4 \mathrm{~Hz}$ and $3.63 \mathrm{~d}, J=11.4 \mathrm{~Hz}, \mathrm{H}_{2}-17$) formed an AB system, suggesting of their conection to a quaternary carbon. The HMBC correlations (Table 10) of these protons with carbon signals at $\delta 32.0$ (C-12), 54.1 (C-13), 48.9 (C-14), and 223.7 ($\mathrm{C}-16$) helped to locate the hydroxymethylene group at $\mathrm{C}-13$ and the carbonyl group at $\mathrm{C}-16$. One of the methylene proton ($\mathrm{H}-15$) was displayed as a doublet of doublet $2.60(J=18.9,3.6 \mathrm{~Hz})$ which showed HMBC correlation with C-9 ($\delta 55.4$) and C-16 ($\delta 223.7$). The $\mathrm{C}-19$ was taken as the carboxyl group in view of the presence of only one tertiary methyl carbon at $\delta 28.9$ and $\mathrm{H}_{3}-18$ showed correlations
with C-3 ($\delta 37.6$), C-4 ($\delta 43.6$), C-5 ($\delta 56.9$) and C-19 (δ 182.8). The complete HMBC correlations were summarized in Table 10. The presence of a NOESY correlation between $\mathrm{H}-5$ and $\mathrm{H}-9$ suggested a trans-trans relationship between the junction C5-C10 and C10-C9. The NOESY correlation observed between $\mathrm{H}_{3}-20$ and $\mathrm{H}_{2}-15$ indicated that the bridge-head at $\mathrm{C}-8$ and $\mathrm{C}-13$ is trans to $\mathrm{H}_{3}-20$ indicating the structure and relative stereochemistry of ent-17-hydroxy-16-keto-beyeran-19-oic acid. Thus on the basis of its spectroscopic data and comparison with the previous report (Oliveira et al., 1999), compound TK9 was assigned as ent-17-hydroxy-16-keto-beyeran-19-oic acid.

Selected HMBC correlation of TK9

Table $10{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK9 and ent-17-hydroxy-16-keto-beyeran-19-oic acid ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	$\begin{aligned} & \mathrm{HMBC} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK9	R	TK9	
1	CH_{2}	39.7	40.1	$0.94(d d, J=13.5,4.2 \mathrm{~Hz}), 1.78$ (m) ${ }^{\text {a }}$	-
2	CH_{2}	18.8	19.2	1.41 (m), 1.83 (m) ${ }^{\text {a }}$	-
3	CH_{2}	37.6	38.1	$1.04(d d, J=19.2,3.9 \mathrm{~Hz}), 2.15(m)^{\text {a }}$	-
4	C	43.6	44.0	-	-
5	CH	56.9	57.3	$1.69(d d, J=11.4,2.1 \mathrm{~Hz})^{\mathrm{a}}$	-
6	CH_{2}	21.6	22.0	1.79 (m), 1.89 (m) ${ }^{\text {a }}$	-

Table 10 (continued)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J / Hz)TK9	$\begin{aligned} & \hline \mathrm{HMBC}^{*} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK9	R		
7	CH_{2}	41.3	41.7	$\begin{gathered} \hline 1.55(d d, J=13.8,4.2 \mathrm{~Hz}), \\ 1.73(m)^{\mathrm{a}} \end{gathered}$	-
8	C	43.5	40.1	-	-
9	CH	55.4	55.8	1.25 (m) ${ }^{\text {a }}$	-
10	C	38.2	38.7	-	-
11	CH_{2}	19.8	20.2	$1.28(m)^{\text {a }}$	-
12	CH_{2}	32.0	32.5	1.39 (m), 1.87 (m) ${ }^{\text {a }}$	-
13	C	54.1	54.5	-	-
14	CH_{2}	$48.9^{\text {b }}$	$49.4{ }^{\text {b }}$	$1.31(d d, J=11.4,3.6 ~ H z)^{\text {a,b }}$	-
15				$1.85(m)^{\text {a,b }}$	-
	CH_{2}	$49.0{ }^{\text {b }}$	$49.3{ }^{\text {b }}$	$1.85(m)^{\text {a,b }}$	-
				$2.60(d d, J=18.9,3.6 \mathrm{~Hz})^{\text {a }}$	9, 16
16	CO	223.7	223.7	-	-
17	CH_{2}	65.0	65.5	$\alpha 3.53(d, J=11.4 \mathrm{~Hz})^{\text {b }}$	\} 12, 13,
				$\beta 3.63(d, J=11.4 \mathrm{~Hz})^{\text {b }}$	\} 14,16
18	CH_{3}	28.9	29.3	1.25 (s)	3, 4, 5, 19
19	COOH	182.8	183.2	-	-
20	CH_{3}	13.3	13.7	0.80 (s)	1, 5, 9, 10

[^4]
3.1.10 Compound TK10

Compound TK10 was obtained as pale yellow viscous oil, $[\alpha]^{27}{ }_{D}$ $+53.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$ and its molecular formula was assigned as $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}$ from HREIMS (Figure 70). It exhibited carbonyl ($1705 \mathrm{~cm}^{-1}$) and double bond ($1641 \mathrm{~cm}^{-1}$) absorptions in the IR spectrum (Figure 62).

The ${ }^{13}$ C NMR spectral data of TK10 (Table 11, Figure 64) showed all 20 carbon signals. Analysis of DEPT 90° and 135° spectra of this compound suggested the presence of five methyl ($\delta 19.4,20.8,21.6,24.7$ and 33.2), eight methylene (δ $18.8,18.9,20.4,30.6,32.6,36.7,38.6$ and 41.8), one methine $(\delta 51.7)$ and six quaternary carbons ($\delta 33.2,37.5,46.1,123.7,136.9$ and 214.0). The ${ }^{13} \mathrm{C}$ NMR signals at $\delta 214.0,123.7$ and 136.9 confirmed the presence of keto and double bond functionalities, respectively.

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK10 (Table 11, Figure 63) displayed five singlet tertiary methyl groups at $\delta 0.82\left(\mathrm{H}_{3}-19\right), \delta 0.88\left(\mathrm{H}_{3}-18\right), \delta 0.94\left(\mathrm{H}_{3}-20\right)$, $\delta 1.06\left(\mathrm{H}_{3}-17\right)$ and $\delta 2.03\left(\mathrm{H}_{3}-16\right)$. The position of methyl groups were determined through an HMBC experiment (Table 11) in which the methyl protons at $\delta 2.03\left(\mathrm{H}_{3^{-}}\right.$ 16) showed correlations with $\mathrm{C}-13(\delta 46.1)$ and $\mathrm{C}-15(\delta 214.0)$, methyl protons at δ $1.06\left(\mathrm{H}_{3}-17\right)$ showed correlations with $\mathrm{C}-12(\delta 30.6), \mathrm{C}-13(\delta 46.1), \mathrm{C}-14(\delta 38.7)$ and $\mathrm{C}-15(\delta 214.0)$, methyl protons at $\delta 0.94\left(\mathrm{H}_{3}-20\right)$ showed correlations with $\mathrm{C}-1$ ($\delta 36.6$), $\mathrm{C}-5(\delta 51.7)$ and $\mathrm{C}-9(\delta 136.9)$, and methyl protons at $\delta 0.88\left(\mathrm{H}_{3}-18\right)$ showed correlations with C-3 ($\delta 41.8$), $\mathrm{C}-4(\delta 33.2)$, $\mathrm{C}-5(\delta 51.7)$ and $\mathrm{C}-19(\delta 21.6)$. NOESY
correlation between $\mathrm{H}_{3}-20$ and $\mathrm{H}_{3}-19$ supported the assignment. Thus, compound TK10 could be deduced as ent-8(9)-pimaren-15-one.

Selected HMBC correlation of TK10

Table $11{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK10

Position	Type of C	$\delta_{\mathrm{C}} / \mathrm{ppm}$	$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	$\begin{aligned} & \hline \text { HMBC } \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK10	TK10	
1	CH_{2}	36.6	1.05 (m), 1.75 (m) ${ }^{\text {a }}$	-
2	CH_{2}	18.9	1.43 (m) ${ }^{\text {a }}$	-
3	CH_{2}	41.8	1.15 (m), 1.42 (m) ${ }^{\text {a }}$	-
4	C	33.2	-	-
5	CH	51.7	1.15 (m) ${ }^{\text {a }}$	-
6	CH_{2}	18.8	1.61 (m), 1.73 (m) ${ }^{\text {a }}$	-
7	CH_{2}	32.6	1.95 (m) ${ }^{\text {a }}$	-
8	C	123.7	-	-
9	C	136.9	-	-
10	C	37.5	-	-
11	CH_{2}	20.4	2.20 (m) ${ }^{\text {a }}$	8, 9
12	CH_{2}	30.6	$1.62(m)^{\text {a }}$	-
13	C	46.1	-	-
14	CH_{2}	38.7	1.67 (m), 2.20 (m) ${ }^{\text {a }}$	8, 9

Table 11 (continued)

Position	Type of C ${ }^{*}$	$\delta_{\mathrm{C}} / \mathrm{ppm}$	$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J/Hz)	HMBC
		TK10	TK10	
15	CO	214.0	-	-
16	CH_{3}	24.7	$2.03(s)$	13,15
17	CH_{3}	20.8	$1.06(s)$	$12,13,14,15$
18	CH_{3}	33.2	$0.88(s)$	$3,4,5,19$
19	CH_{3}	21.6	$0.82(s)$	$3,4,5,18$
20	CH_{3}	19.4	$0.94(s)$	$1,5,9$

${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.11 Compound TK11

Compound TK11 was obtained as a white solid, mp. 193-194 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}:+25.0^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3343 \mathrm{~cm}^{-1}\right)$ and double bond $\left(1638 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum (Figure 71) and gave a purple vanillinsulfuric acid test indicating a triterpene.

The ${ }^{13} \mathrm{C}$ and DEPT spectral data of TK11 (Table12, Figures 73, 74 and 75) showed all 30 carbon signals as seven methyl ($\delta 14.6,15.4,16.0,16.1,18.0$, 19.3 and 28.0), eleven methylene ($\delta 18.3,20.9,25.2,27.4,27.5,29.9,34.3,35.6$, $38.7,40.0$ and 109.3), six methine ($\delta 38.1,48.0,48.3,50.5,55.3$ and 79.0) and six quaternary carbons ($\delta 37.2,38.9,40.8,42.8,43.0$ and 151.0).

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK11 (Table12, Figure 72) showed characteristic of lupane triterpenoid as seven methyl singlet signals at $\delta 0.76,0.79$, $0.83,0.94,0.97$ and 1.03 including one vinylic methyl at $\delta 1.68$, two protons of an isopropenyl moiety at $\delta 4.68(1 \mathrm{H}, d, J=2.1 \mathrm{~Hz})$ and $4.56(1 \mathrm{H}, m)$ and a typical lupane $\mathrm{H}_{\beta}-19$ proton at $\delta 2.38(d t, J=11.1,5.7 \mathrm{~Hz})$. An oxymethine proton was shown at δ $3.19(1 \mathrm{H}, d d, J=10.8,5.1 \mathrm{~Hz}, \mathrm{H}-3)$. The doublet splitting pattern together with a large coupling constant of H-3 with Jax-ax $=10.8 \mathrm{~Hz}$ and Jax-aq $=5.1 \mathrm{~Hz}$ indicated an axial (α) orientation of H-3.

The position of the hydroxyl group at C-3 was determined through an HMBC experiment (Table 12) in which the oxymethine proton at $\delta 3.19$ (H-3) showed correlations with C-1 ($\delta 38.7$), $\mathrm{C}-4(\delta 38.9), \mathrm{C}-23(\delta 28.0)$ and $\mathrm{C}-24(\delta 15.4)$.

The position of a methine proton at $\mathrm{C}-19$ was determined from HMBC correlation of $\mathrm{H}-19(\delta 2.38)$ with $\mathrm{C}-18(\delta 48.3), \mathrm{C}-20(\delta 151.0), \mathrm{C}-21(\delta 29.9)$ and $\mathrm{C}-30(\delta 19.3)$. Thus on the basis of its spectroscopic data and comparison with the previous report [Reyolds et al., 1986, $[\alpha]^{25}{ }_{\mathrm{D}}:+23.0^{\circ}(c=0.50$, EtOH); Thongdeeying 2005], compound TK11 was assigned as 3β-lupeol.

Selected HMBC correlation of TK11

Table $12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK11 and 3β-lupeol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J/Hz)	HMBC
		\mathbf{R}	$\mathbf{T K 1 1}$	${ }^{13} \mathrm{C}$	
1	CH_{2}	38.7	38.7	$0.91(m)^{\mathrm{a}}$	-
2	CH_{2}	27.4	27.4	$1.56(m)^{\mathrm{a}}$	-
3	CH	79.0	79.0	$3.19(d d, J=10.8,5.1 \mathrm{~Hz})$	$1,4,23,24$
4	C	38.9	38.8	-	-
5	CH	55.3	55.3	$0.69(m)^{\mathrm{a}}$	-
6	CH_{2}	18.3	18.3	$1.40(m), 1.55(m)^{\mathrm{a}}$	-
7	CH_{2}	34.3	34.2	$1.40(m)^{\mathrm{a}}$	-
8	C	40.8	40.8	-	-

Table 12 (continued)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz) TK11	$\begin{aligned} & \text { HMBC }{ }^{*} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK11	R		
9	CH	50.5	50.4	1.28 (m) ${ }^{\text {a }}$	-
10	C	37.2	37.1	-	-
11	CH_{2}	20.9	20.9	$1.22(m), 1.45(m)^{\mathrm{a}}$	-
12	CH_{2}	25.2	25.1	$1.08(m)^{\text {a }}$	-
13	CH	38.1	38.0	1.67 (m) ${ }^{\text {a }}$	-
14	C	42.8	42.8	-	-
15	CH_{2}	27.5	27.4	1.56 (m) ${ }^{\text {a }}$	-
16	CH_{2}	35.6	35.5	$1.51(m)^{\text {a }}$	-
17	C	43.0	43.0	-	-
18	CH	48.3	48.2	1.38 (m) ${ }^{\text {a }}$	-
19	CH	48.0	47.9	$2.38(d t, J=11.1,5.7 \mathrm{~Hz})$	13, 18, 20, 21,
					29, 30
20	C	151.0	150.9	-	-
21	CH_{2}	29.9	29.8	1.94 (m) ${ }^{\text {a }}$	-
22	CH_{2}	40.0	40.0	1.20 (m), $1.40(m)^{\mathrm{a}}$	-
23	CH_{3}	28.0	28.0	0.97 (s)	3, 4, 5, 24
24	CH_{3}	15.4	15.4	0.76 (s)	3, 4, 5, 23
25	CH_{3}	16.1	16.1	0.83 (s)	1, 5, 9, 10
26	CH_{3}	16.0	16.0	1.03 (s)	7, 8, 9, 14
27	CH_{3}	14.6	14.5	0.94 (s)	8, 14, 15
28	CH_{3}	18.0	18.0	0.79 (s)	16, 17, 18, 22
29	CH_{2}	109.3	109.3	4.56 (m), 4.68 ($d, J=2.1 \mathrm{~Hz}$)	19, 30
30	CH_{3}	19.3	19.3	1.68 (s)	19, 30

* For TK11

${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.12 Compound TK12

Compound TK12 was obtained as a white solid, mp. $163-165{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}:+50.0^{\circ}\left(c=0.10, \mathrm{CHCl}_{3}\right)$. It exhibited carbonyl $\left(1704 \mathrm{~cm}^{-1}\right)$ and double bond $\left(1642 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum (Figure 78) and gave a purple vanillinsulfuric acid test indicating a triterpene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK12 (Table 13, Figures 79 and 80) showed signals similar to TK11 (Table12, Figures 72 and 73) except that in TK12 a doublet of doublet signal of a methine proton H-3 disappeared and the carbon signal at C-3 (δ 217.0) was displayed as a carbonyl carbon instead of the oxymethylene carbon at $\delta 79.0$ in TK11. The location of the carbonyl group was confirmed by HMBC experiment (Table 13) in which both $\mathrm{H}_{3}-24$ ($\delta 1.02$) and $\mathrm{H}_{3}-23$ (δ 1.07) showed long-range correlation with C-3 ($\delta 217.0$), C-4 ($\delta 46.3$) and C-5 (δ 54.3). Thus on the basis of its spectroscopic data and comparison with the previous report [Laphookhieo et al., 2004; Thongdeeying 2005; Razdan et al., 1988, $[\alpha]^{25}{ }_{\mathrm{D}}$: $\left.+61.0^{\circ}\left(\mathrm{CHCl}_{3}\right)\right]$, compound TK12 was assigned as lupenone.

Selected HMBC correlation of TK12

Table $13{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK12, TK11 and lupenone $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\begin{array}{\|c\|} \hline \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, J/Hz) } \end{array}$	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK12	TK11	R		
1	CH_{2}	38.6	38.7	39.6	0.90 (m) ${ }^{\text {a }}$	-
2	CH_{2}	33.1	27.4	34.1	2.49 (m) ${ }^{\text {a }}$	-
3	C	217.0	79.0	217.9	-	-
4	C	46.3	38.9	47.2	-	-
5	CH	54.3	55.3	55.8	1.32 (m) ${ }^{\text {a }}$	-
6	CH_{2}	18.7	18.3	19.6	1.45 (m) ${ }^{\text {a }}$	-
7	CH_{2}	32.6	34.3	33.5	$0.87(m), 1.45(m)^{\text {a }}$	-
8	C	39.8	40.8	40.7	-	-
9	CH	48.8	50.5	49.7	$1.38(m)^{\text {a }}$	-
10	C	35.9	37.2	36.8	-	-
11	CH_{2}	20.5	20.9	21.4	1.30 (m) ${ }^{\text {a }}$	-
12	CH_{2}	24.2	25.2	25.1	1.68 (m) ${ }^{\text {a }}$	-
13	CH	37.2	38.1	38.1	1.68 (m) ${ }^{\text {a }}$	-

Table 13 (continued)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz) TK12	$\begin{aligned} & \mathrm{HMBC}{ }^{*} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK12	TK11	R		
14	C	41.9	42.8	42.7	-	-
15	CH_{2}	26.4	27.5	27.4	$0.82(m)^{\text {a }}$	-
16	CH_{2}	34.5	35.6	35.6	$1.37(m), 1.50(m)^{\text {a }}$	-
17	C	42.0	43.0	42.7	-	-
18	CH	47.3	48.3	48.2	$1.38(m)^{\text {a }}$	-
19	CH	47.0	48.0	47.8	2.40 (m) ${ }^{\text {a }}$	18, 20, 21, 29, 30
20	C	149.8	151.0	150.5	-	-
21	CH_{2}	28.8	29.9	29.8	$1.26(m), 1.92(m)^{\text {a }}$	-
22	CH_{2}	39.0	40.0	39.9	1.19 (m), $1.41(m)^{\text {a }}$	-
23	CH_{3}	25.7	28.0	26.6	1.07 (s)	3, 4, 5, 24
24	CH_{3}	20.0	15.4	21.0	1.02 (s)	3, 4, 5, 23
25	CH_{3}	15.0	16.1	15.8	0.93 (s)	5, 9, 10
26	CH_{3}	14.8	16.0	15.4	1.07 (s)	7, 8, 9, 14
27	CH_{3}	13.5	14.6	14.4	0.96 (s)	14, 15
28	CH_{3}	17.0	18.0	18.0	0.80 (s)	17, 18, 22
29	CH_{2}	108.1	109.3	109.2	4.57 (m), 4.69	19, 30
					$(d, J=2.1 \mathrm{~Hz})$	
30	CH_{3}	18.3	19.3	19.2.	1.68 (s)	19, 20, 29

* For TK12

${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.13 Compound TK13

Compound TK13 was obtained as a white solid, mp. 279-280 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}:+15.0^{\circ}\left(c=0.10, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3415 \mathrm{~cm}^{-1}\right)$ and a carboxyl $\left(1686 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum (Figure 81). It also gave a purple vanillinsulfuric acid test indicating a triterpene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK13 (Table 14, Figures 82 and 83) were similar to those of TK11 (Table12, Figures 72 and 73). The difference in the spectrum of TK13 was shown as disappearance of a methyl signal at $\delta_{\mathrm{H}} 0.79$ (s, $\mathrm{H}_{3}-28, \delta_{\mathrm{C}} 18.0$) in TK11 and the appearance of a carboxyl signal at $\delta_{\mathrm{C}} 179.6$ (C-28) in TK13. The location of the carboxyl group was confirmed by HMBC experiment (Table 14) in which the methylene proton signals at $\delta 1.93(1 \mathrm{H}, m, \mathrm{H}-22 \mathrm{a})$ and 1.40 $(1 \mathrm{H}, m, \mathrm{H}-22 \mathrm{~b})$ showed correlation with $\mathrm{C}-17(\delta 55.3)$, $\mathrm{C}-18(\delta 48.3)$ and $\mathrm{C}-28(\delta$ 179.6). Thus on the basis of its spectroscopic data and comparison with the previous report [Tinto et al., 1992, $[\alpha]^{28}{ }_{\mathrm{D}}:+6.8^{\circ}(c=2.00$, pyridine); Thongdeeying 2005; Pakhathirathien 2005], compound TK13 was assigned as betulinic acid.

Selected HMBC correlation of TK13

Table $14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK13, TK11 and betulinic acid $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / \mathrm{Hz})$	$\begin{aligned} & \mathrm{HMBC} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK13	TK11	R	TK13	
1	CH_{2}	37.7	38.7	38.5	0.87 (m), 1.64 (m) ${ }^{\text {a }}$	-
2	CH_{2}	26.4	27.4	28.2	1.55 (m) ${ }^{\text {a }}$	-
3	CH	78.0	79.0	78.1	3.19 (dd, $J=10.8,5.4 \mathrm{~Hz})$	1, , 23, 24
4	C	37.9	38.9	39.4	-	-
5	CH	54.4	55.3	55.9	0.69 (m) ${ }^{\text {a }}$	4, 6, 7, 9
6	CH_{2}	17.3	18.3	18.7	1.35 (m), $1.48(m)^{\mathrm{a}}$	-
7	CH_{2}	33.3	34.3	34.7	1.35 (m) ${ }^{\text {a }}$	-
8	C	39.7	40.8	41.0	-	-
9	CH	49.5	50.5	50.9	1.20 (m) ${ }^{\text {a }}$	-
10	C	36.2	37.2	37.5	-	-
11	CH_{2}	19.8	20.9	21.1	1.42 (m) ${ }^{\text {a }}$	-
12	CH_{2}	24.5	25.2	26.0	1.67 (m) ${ }^{\text {a }}$	-

Table 14 (continued)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / \mathrm{Hz})$	$\begin{aligned} & \mathrm{HMBC}{ }^{*} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK13	TK11	R	TK13	
13	CH	37.4	38.1	39.2	2.20 (m) ${ }^{\text {a }}$	-
14	C	41.4	42.8	42.8	-	-
15	CH_{2}	28.7	27.5	30.2	$1.14(m), 1.23(m)^{\text {a }}$	-
16	CH_{2}	31.2	35.6	32.8	$2.22(m)^{\text {a }}$	-
17	C	55.3	43.0	56.6	-	-
18	CH	48.3	48.3	49.7	1.55 (m) ${ }^{\text {a }}$	-
19	CH	45.9	48.0	47.7	3.00 (m) ${ }^{\text {a }}$	18, 20, 21,
						29,30
20	C	149.4	151.0	151.4	-	-
21	CH_{2}	29.6	29.9	31.1	1.89 (m) ${ }^{\text {a }}$	-
22	CH_{2}	36.0	40.0	37.4	1.40 (m) , 1.93, (m) ${ }^{\text {a }}$	17, 18, 28
23	CH_{3}	27.0	28.0	28.5	0.97 (s)	3, 4, 5, 24
24	CH_{3}	14.3	15.4	16.2	0.75 (s)	3, 4, 5, 23
25	CH_{3}	15.1	16.1	16.3	0.82 (s)	1, 5, 9,10
26	CH_{3}	15.0	16.0	16.2	0.94 (s)	7, 8, 9, 14
27	CH_{3}	13.7	14.6	14.8	0.98 (s)	8, 13,14, 15
28	COO	179.6	18.0	18.0	-	-
29	CH_{2}	108.7	109.3	109.2	4.74 (brs), 4.61 (brs)	19, 20, 30
30	CH_{3}	18.4	19.3	19.2	1.69 (s)	19, 20, 29

* For TK13

${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.14 Compound TK14

Compound TK14 was obtained as a white solid, mp. 257-259 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}$ D $:-10.0^{\circ}\left(c=0.05, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands similar to those of compound TK13. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK14 (Table 15, Figures 88 and 89) were similar to those of TK13 (Table 14, Figures 82 and 83), except that the splitting pattern of H-3 in TK14 at $\delta 3.38$ was a triplet ($J=2.7 \mathrm{~Hz}$) instead of a doublet of doublet ($J=10.8,5.4 \mathrm{~Hz}$) in TK13. The difference in the multiplicity with a small coupling constant of H-3 in compound TK14 was in agreement with the respective coupling pattern (equatorial-equatorial and equatorial-axial) of $\mathrm{H}-3$ and H 2, indicating that $\mathrm{H}-3$ was situated in an equatorial position. The location of a hydroxyl group at C-3 was determined through an HMBC experiment (Table 15) in which the oxymethine proton signal at $\delta 3.38(\mathrm{H}-3)$ showed long-rang correlation with $\mathrm{C}-1(\delta 33.2)$ and $\mathrm{C}-5(\delta 49.0)$. Thus on the basis of its spectroscopic data and comparison with the previous report [Laphookhieo et al., 2004; Kitajima et al., 1990, $[\alpha]^{28}{ }_{\mathrm{D}}:-12.0^{\circ}\left(c=1.28, \mathrm{CHCl}_{3}\right)$; [Pakhathirathien, 2005], compound TK14 was assigned as 3-epi-betulinic acid, an epimer of betulinic acid.

Selected HMBC correlation of TK14

Table $15{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK14, TK13 and 3-epi-betulinic acid ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J/Hz)	$\begin{aligned} & \mathrm{HMBC}{ }^{*} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK14	TK13	R	TK14	
1	CH_{2}	33.2	37.7	34.0	1.18 (m) ${ }^{\text {a }}$	-
2	CH_{2}	25.5	26.4	23.2	$1.02(\mathrm{~m}), 1.68(\mathrm{~m})^{\mathrm{a}}$	-
3	CH	76.2	78.0	75.5	$3.38(t, J=2.7 \mathrm{~Hz})$	1, 5, 23, 24
4	C	37.5	37.9	39.0	-	-
5	CH	49.0	54.4	49.3	1.18 (m) ${ }^{\text {a }}$	-
6	CH_{2}	18.2	17.3	18.6	$1.34(m), 1.38(m)^{\text {a }}$	-
7	CH_{2}	34.1	33.3	34.8	1.30 (m) ${ }^{\text {a }}$	-
8	C	40.8	39.7	41.3	-	-
9	CH	50.3	49.5	50.7	1.40 (m) ${ }^{\text {a }}$	-
10	C	37.3	36.2	37.7	-	-
11	CH_{2}	20.7	19.8	21.0	1.42 (m) ${ }^{\text {a }}$	-
12	CH_{2}	25.3	24.5	26.1	1.52 (m), $1.82(\mathrm{~m})^{\mathrm{a}}$	-

Table 15 (continued)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / H z)$	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK14	TK13	R	TK14	
13	CH	38.2	37.4	38.5	2.21 (m) ${ }^{\text {a }}$	26, 27
14	C	42.5	41.4	42.9	-	-
15	CH_{2}	29.6	28.7	31.2	1.14 (m) ${ }^{\text {a }}$	-
16	CH_{2}	32.2	31.2	32.8	2.24 (m) ${ }^{\text {a }}$	-
17	C	56.2	55.3	56.6	-	-
18	CH	49.2	48.3	47.7	1.57 (m) ${ }^{\text {a }}$	-
19	CH	47.0	45.9	49.7	3.00 (m) ${ }^{\text {a }}$	-
20	C	150.7	149.4	151.2	-	-
21	CH_{2}	30.6	29.6	29.9	1.93 (m) ${ }^{\text {a }}$	17, 18, 19, 28
22	CH_{2}	37.1	36.0	37.5	1.95 (m) ${ }^{\text {a }}$	17, 18, 28
23	CH_{3}	28.2	27.0	29.2	0.93 (s)	3, 4, 5, 24
24	CH_{3}	22.1	14.3	22.5	0.82 (s)	3, 4, 5, 23
25	CH_{3}	15.9	15.1	16.4	0.94 (s)	1, 5, 9
26	CH_{3}	15.9	15.0	16.4	0.83 (s)	7, 8, 9, 14
27	CH_{3}	14.7	13.7	14.9	0.99 (s)	8, 13,14, 15
28	COOH	179.2	179.6	178.7	-	-
29	CH_{2}	109.5	108.7	109.8	4.73 ($d, J=1.8 \mathrm{~Hz})$,	19, 20, 30
					4.60 (m)	
30	CH_{3}	19.3	18.4	19.4	1.69 (s)	19, 20, 29

* For TK14
${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.15 Compound TK15

Compound TK15 was obtained as a white solid, mp. 250-254 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{28}:+32.0^{\circ}(c=0.37, \mathrm{MeOH})$. It exhibited hydroxyl $\left(3326 \mathrm{~cm}^{-1}\right)$, a carboxyl (1704 cm^{-1}) and double bond ($1642 \mathrm{~cm}^{-1}$) absorption in the IR spectrum. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK15 (Table 16, Figures 90 and 91) were closely related to compound TK13 (Table 14, Figures 82 and 83), except the oxymethine proton (H-3) at $\delta 3.19(d d, J=10.8,5.4 \mathrm{~Hz})$ in TK13 disappeared and the methylene protons $\left(\mathrm{H}_{2}-2\right)$ in TK15 were shifted downfield to δ $2.45(\mathrm{~m})$ as compared to that of TK13 at $\delta 1.55(\mathrm{~m})$. The ${ }^{13} \mathrm{C}$ NMR spectral data of TK15 displayed a signal of a carbonyl group at $\delta 218.3$ which was assigned to C-3 and no signal of oxymethine carbon $\mathrm{C}-3(\delta 78.0)$ as observed in TK13. The location of the carbonyl group was confirmed by HMBC experiment (Table 16) in which both $\mathrm{H}_{3}-24(\delta 1.02)$ and $\mathrm{H}_{3}-23(\delta 1.07)$ showed long-range correlation with $\mathrm{C}-3(\delta 218.3)$, $\mathrm{C}-4(\delta 47.3)$ and $\mathrm{C}-5(\delta 54.9)$. Thus on the basis of its spectroscopic data and comparison with the previous report [Pakhathirathien 2005; Gonzalez et al., 1983, $\left.[\alpha]^{27}{ }_{\mathrm{D}}:+27.0^{\circ}(c=0.28, \mathrm{MeOH})\right]$, compound TK15 was assigned as betulonic acid.

Selected HMBC correlation of TK15

Table $16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK15 and TK13

Position	Type of C				
		$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, $J / H z)$	$\mathrm{HMBC}{ }^{*}$ ${ }^{1} \mathrm{H}^{13} \mathrm{C}$
	TK15	TK13	TK15		
1	CH_{2}	39.6	37.7	-	-
2	CH_{2}	34.1	26.4	$2.45(m)^{\mathrm{a}}$	-
3	CH	218.3	78.0	-	-
4	C	47.3	37.9	-	-
5	CH	54.9	54.4	$1.24(m)^{\mathrm{a}}$	-
6	CH_{2}	19.6	17.3	-	-
7	CH_{2}	33.6	33.3	-	-
8	C	40.6	39.7	-	-
9	CH	49.8	49.5	$1.35(m)^{\mathrm{a}}$	-
10	C	36.9	36.2	-	-
11	CH	21.4	19.8	-	-

Table 16 (continued)

Position	Type of C*	$\delta_{\mathrm{C}} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, $J / \mathrm{Hz})$ TK15	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK15	TK13		
12	CH_{2}	25.5	24.5	-	-
13	CH	38.5	37.4	$2.20(m)^{\text {a }}$	-
14	C	42.5	41.4	-	-
15	CH_{2}	30.6	28.7	-	-
16	CH_{2}	32.1	31.2	-	-
17	C	56.4	55.3	-	-
18	CH	49.2	48.3	$1.62(m)^{\text {a }}$	-
19	CH	46.9	45.9	3.01 (m) ${ }^{\text {a }}$	18, 20, 21,30
20	C	150.3	149.4	-	-
21	CH_{2}	29.7	29.6	-	-
22	CH_{2}	37.0	36.0	-	-
23	CH_{3}	26.6	27.0	1.07 (s)	3, 4, 5, 24
24	CH_{3}	21.0	14.3	1.02 (s)	3, 4, 5, 23
25	CH_{3}	16.0	15.1	0.93 (s)	1, 5, 9,10
26	CH_{3}	15.8	15.0	0.98 (s)	7, 8, 9, 14
27	CH_{3}	14.6	13.7	0.99 (s)	8, 13,14, 15
28	CH_{3}	182.8	179.6	-	-
29	CH_{2}	109.8	108.7	4.74 (brs), 4.62 (brs)	19, 20, 30
30	CH_{3}	19.4	18.4	1.70 (s)	19, 20, 29

* For TK15

${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.16 Compound TK16

Compound TK16 was obtained as a white solid, mp. 203-204 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}$ D : $-13.3^{\circ}\left(c=0.22, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands similar to those of TK11. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK16 (Table 17, Figures 92 and 93) and TK11 (Table 12, Figures 73, 74 and 75) exhibited the same pattern, except that compound TK16 displayed only six methyl singlets ($\delta 0.76,0.78,0.83,0.94,0.97$ and 1.03) with disappearance of a vinylic methyl group of $\mathrm{H}_{3}-30$ at $\delta 1.68$ (s). The two signals of terminal olefinic protons of $\mathrm{H}_{2}-29$ [$\delta 4.93$ (brs) and 4.90 (brs)] were shown to be shifted more downfield than TK11 ($\delta 4.56$ and 4.68). In addition, the AB system of oxymethylene protons was shown at $\delta 4.14$ and $\delta 4.09$ with coupling constant 15.3 Hz which was assigned to $\mathrm{H}_{2}-30$. Based on HMBC experiments (Table 17), the oxymethylene protons $\mathrm{H}_{2}-30$ showed correlations with $\mathrm{C}-19$ ($\delta 43.8$), $\mathrm{C}-20(\delta 154.8)$ and C-29 ($\delta 106.8$). Thus on the basis of its spectroscopic data and comparison with the previous report [Burns et al., 2000, $[\alpha]^{25}$: $-13.0^{\circ}\left(c=0.22, \mathrm{CHCl}_{3}\right)$; Thongdeeying 2005], compound TK16 was assigned as lup-20(29)-en-3 β, 30-diol.

Selected HMBC correlation of TK16

Table $17{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds TK16, TK11 and lup-20(29)-en-3 β, 30-diol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / H z)$	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK16	TK11	R	TK16	
1	CH_{2}	38.7	38.7	38.7	1.64 (m) ${ }^{\text {a }}$	-
2	CH_{2}	27.4	27.4	27.4	1.58 (m) ${ }^{\text {a }}$	-
3	CH	79.0	79.0	79.0	3.19 (dd, $J=10.8$,	1,23, 24
					$5.1 \mathrm{~Hz})$	
4	C	38.9	38.9	38.9	-	-
5	CH	55.3	55.3	55.3	0.68 (m) ${ }^{\text {a }}$	-
6	CH_{2}	18.3	18.3	18.3	1.41 (m), $1.55(m)^{\mathrm{a}}$	-
7	CH_{2}	34.3	34.3	34.3	1.40 (m) ${ }^{\text {a }}$	-
8	C	40.9	40.8	40.9	-	-
9	CH	50.4	50.5	50.4	1.25 (m) ${ }^{\text {a }}$	-
10	C	37.2	37.2	37.2	-	-

Table 17 (continued)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / \mathrm{Hz})$	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK16	TK11	R	TK16	
11	CH_{2}	21.1	20.9	21.0	1.25 (m), 1.44 (m) ${ }^{\text {a }}$	-
12	CH_{2}	26.7	25.2	26.7	1.65 (m) ${ }^{\text {a }}$	-
13	CH	38.0	38.1	38.0	1.71 (m) ${ }^{\text {a }}$	-
14	C	42.8	42.8	42.8	-	-
15	CH_{2}	27.4	27.5	27.4	$1.62(m)^{\text {a }}$	-
16	CH_{2}	35.5	35.6	35.5	1.55 (m) ${ }^{\text {a }}$	-
17	C	43.0	43.0	43.0	-	-
18	CH	48.9	48.3	48.9	1.46 (m) ${ }^{\text {a }}$	-
19	CH	43.8	48.0	43.8	$2.28(d t, J=10.8$,	18, 20, 21,30
					$4.8 \mathrm{~Hz})$	
20	C	154.8	151.0	154.8	-	-
21	CH_{2}	31.8	29.9	31.8	2.06 (m) ${ }^{\text {a }}$	-
22	CH_{2}	39.9	40.0	39.9	$1.24(m), 1.41(m)^{\text {a }}$	-
23	CH_{3}	28.0	28.0	28.0	0.97 (s)	3, 4, 5, 24
24	CH_{3}	15.4	15.4	15.4	0.76 (s)	3, 4, 5, 23
25	CH_{3}	16.1	16.1	16.1	0.83 (s)	1, 5, 9,10
26	CH_{3}	16.0	16.0	16.0	1.03 (s)	7, 8, 9, 14
27	CH_{3}	14.5	14.6	14.5	0.94 (s)	8,14, 15
28	CH_{3}	17.7	18.0	17.7	0.78 (s)	16, 17, 18,22
29	CH_{2}	106.8	109.3	106.8	4.90 (brs), 4.93 (brs)	19, 20, 30
30	CH_{2}	65.0	19.3	65.0	$4.09(d, J=15.3 \mathrm{~Hz})$	\}
					$4.14(d, J=15.3 \mathrm{~Hz})$	$\int_{19,20,29}$

[^5]
3.1.17 Compound TK17

Compound TK17 was assigned as a white solid, mp. 234-235 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}:-22.7^{\circ}\left(c=0.22, \mathrm{CHCl}_{3}\right)$. It exhibited hydroxyl $\left(3414 \mathrm{~cm}^{-1}\right)$ and carbonyl $\left(1694 \mathrm{~cm}^{-1}\right)$ absorptions in the IR spectrum. It gave a blue vanillin-sulfuric acid test indicating a triterpene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TK17 (Table 18, Figures 94 and 95) and TK11 (Table12, Figures 73, 74 and 75) exhibited the same pattern, except that the two signals of terminal olefinic protons of $\mathrm{H}_{2}-29$ at $\delta 4.68(d, J=2.1)$ and $4.56(\mathrm{~m})$ and vinylic methyl at $\delta 1.68$ disappeared in TK17, whereas a singlet signal of acetyl protons was shown at $\delta 2.15\left(\mathrm{H}_{3}-29, s\right)$ which was not observed in TK11. In addition, the ${ }^{13} \mathrm{C}$ NMR spectral data showed carbonyl carbon at δ 212.9. The location of acetyl protons was assigned to be at C-29 on the basis of HMBC experiment (Table 18) of the protons at $\delta 2.15\left(\mathrm{H}_{3}-29\right)$ which showed long-range correlations with $\delta 52.6$ (C-19) and $\delta 212.9$ (C-20). Thus on the basis of its spectroscopic data and comparison with the previous report [Thongdeeying 2005; Koul et al., 2000, $[\alpha]^{25}{ }_{D}$: $\left.10.2^{\circ}\left(c=0.03, \mathrm{CHCl}_{3}\right)\right]$, compound TK17 was assigned as 30 -nor-lupan-3 β-ol-20one.

Selected HMBC correlation of TK17

Table $18{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds $\mathbf{T K 1 7}\left(\mathrm{CDCl}_{3}\right)$, TK11 and 30-nor-lupan-3 β-ol-20-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / \mathrm{Hz})$	$\begin{aligned} & \mathrm{HMBC} * \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK17	TK11	R	TK17	
1	CH_{2}	38.7	38.7	39.2	0.89 (m), 1.67 (m) ${ }^{\text {a }}$	-
2	CH_{2}	27.4	27.4	25.2	1.49 (m), 1.57 (m) ${ }^{\text {a }}$	-
3	CH	78.9	79.0	76.3	3.19 (dd, J = 11.1, 5.1 Hz)	1, 23, 24
4	C	38.9	38.9	38.4	-	-
5	CH	55.3	55.3	55.2	0.68 (m) ${ }^{\text {a }}$	1, 4, 10,23
6	CH_{2}	18.3	18.3	18.1	1.40 (m), $1.55(m)^{\mathrm{a}}$	-
7	CH_{2}	34.2	34.3	34.2	1.40 (m) ${ }^{\text {a }}$	-
8	C	40.7	40.8	41.1	-	-
9	CH	50.3	50.5	50.1	$1.28(m)^{\text {a }}$	-
10	C	37.2	37.2	36.3	-	-
11	CH_{2}	20.9	20.9	22.6	$1.28(m), 1.46(m)^{\text {a }}$	-
12	CH_{2}	27.2	25.2	28.7	1.06 (m) ${ }^{\text {a }}$	-

Table 18 (continued)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C* } \end{aligned}$	$\delta_{\text {C }} / \mathrm{ppm}$			$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, $J / H z)$	$\begin{aligned} & \mathrm{HMBC} \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK17	TK11	R	TK17	
13	CH	37.0	38.1	37.5	1.59 (m) ${ }^{\text {a }}$	-
14	C	42.7	42.8	43.6	-	-
15	CH_{2}	27.3	27.5	27.4	1.64 (m) , 1.70 (m) ${ }^{\text {a }}$	-
16	CH_{2}	35.0	35.6	35.5	1.49 (m) ${ }^{\text {a }}$	-
17	C	43.1	43.0	42.9	-	-
18	CH	49.7	48.3	48.2	$1.81(t, J=11.4 \mathrm{~Hz})$	12, 16, 17,
						19, 20, 22, 28
19	CH	52.6	48.0	47.9	$2.58(d t, J=11.4,5.7 \mathrm{~Hz})$	13, 18, 20, 21
20	C	212.9	151.0	207.3	-	-
21	CH_{2}	27.6	29.9	31.0	2.05 (m) ${ }^{\text {a }}$	-
22	CH_{2}	39.9	40.0	40.1	1.35 (m), $1.49(m)^{\mathrm{a}}$	-
23	CH_{3}	28.0	28.0	28.5	0.97 (s)	3, 4, 5, 24
24	CH_{3}	15.4	15.4	15.4	0.76 (s)	3, 4, 5, 23
25	CH_{3}	15.9	16.1	16.2	0.82 (s)	1, 5, 9, 10
26	CH_{3}	16.1	16.0	15.9	1.01 (s)	7, 8, 9, 14
27	CH_{3}	14.5	14.6	14.5	0.97 (s)	8, 13,14, 15
28	CH_{3}	18.0	18.0	18.4	0.77 (s)	16, 17, 18, 22
29	CH_{3}	29.2	109.3	23.5	2.15 (s)	19, 20
30	-	-	19.3	-	-	-

* For TK17

${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.18 Compounds TK18 and TK19

TK18

TK19

The mixture of TK18 and TK19 was isolated as a white solid. Its IR spectrum showed absorption bands at 3425 (hydroxyl) and $1642 \mathrm{~cm}^{-1}$ (double bond). The ${ }^{1} \mathrm{H}$ NMR (Figure 40) spectral data contained an oxymethine proton at $\delta 3.57$ $3.47(m)$, three olefinic protons at $\delta 5.36-5.34(d, J=5.1 \mathrm{~Hz}), 5.16(d d, J=15.1,8.4$ $\mathrm{Hz})$ and $5.01(d d, J=15.1,8.4 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ NMR data was corresponded to previous reported data of β-sitosterol and stigmasterol. Thus, this mixture was identified as β sitosterol (TK18) and stigmasterol (TK19) (Cheenpracha, 2004).

3.1.19 Compound TK20

Compound TK20 was isolated as colorless viscous oil, $[\alpha]^{28}{ }_{\mathrm{D}}:+66.4^{\circ}$ ($c=0.40, \mathrm{CHCl}_{3}$). Its IR spectrum showed absorption bands for α, β - unsaturated carboxyl group at ($1674 \mathrm{~cm}^{-1}$) and double bond ($1616 \mathrm{~cm}^{-1}$) (Figure 98). The UV absorption was shown at 241 nm (Figure 97).

The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data of TK20 (Table 19, Figure 100) showed all 29 carbon signals, six methyl ($\delta 11.9,12.0,17.4,18.7,19.0$ and 19.8), eleven methylene ($\delta 21.0,23.1,24.2,26.1,28.2,32.1,32.9,33.9,34.0,35.7$ and 39.6), eight methine ($\delta 29.2,35.6,36.1,45.8,53.8,55.9,56.1$ and 123.7) and four quaternary carbons ($\delta 38.6,42.4,171.6$ and 199.6).

The ${ }^{1} \mathrm{H}$ NMR spectral data of TK20 (Table 19, Figure 99) and the mixture of TK18 and TK19 (Figure 96) exhibited the same pattern, except that an oxymethine proton signal between $\delta 3.57-3.47$ in TK18 and TK19 was not evidenced in TK20 and TK20 displayed a more downfield olefinic proton at $\delta 5.72$ (H-4). The ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the presence of a carbon - carbon double bond at δ 123.7 (C-4) and 171.6 (C-5) and the downfield chemical shift of C-5 ($\delta 171.6$) also indicated the presence of the conjugated carbonyl function. On the basis of HMBC (Table 19) the olefinic proton $\mathrm{H}-4(\delta 5.72)$ showed correlation with $\mathrm{C}-2(\delta 33.9), \mathrm{C}-3$ (δ 199.6), $\mathrm{C}-6$ ($\delta 32.9$) and $\mathrm{C}-10(\delta 38.6)$ suggesting the presence of a double bond between C-4 and C-5 and a carbonyl carbon at C-3. On the basis of its spectroscopic
data and comparison with previously reported data (Daengrot, 2006; Della Greca et al., 1990), compound TK20 was identified as stigmast-4-en-3-one.

Selected HMBC correlation of TK20

Table $19{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK20 and stigmast-4-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz) TK19	$\begin{aligned} & \text { HMBC* } \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK19	R		
1	CH_{2}	35.7	35.7	1.54 (m), 1.67 (m)	-
2	CH_{2}	33.9	33.9	2.28 (m), 2.20 (m)	-
3	C	199.6	198.9	-	-
4	CH	123.7	123.6	5.72 (brs)	2, 3, 6, 10
5	C	171.6	171.0	-	-
6	CH_{2}	32.9	32.9	2.25 (m), 2.40 (m)	-
7	CH_{2}	32.1	32.1	1.01 (m), 1.85 (m)	-
8	CH	35.6	35.7	1.71 (m)	-
9	CH	53.8	53.8	0.92 (m)	-
10	C	38.6	38.6	-	-
11	CH_{2}	21.0	21.0	1.40 (m), 1.50 (m)	-
12	CH_{2}	39.6	39.5	1.15 (m), 2.04 (m)	-

Table 19 (continued)

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$		$\frac{\delta_{\mathrm{H}} / \mathrm{ppm}(\text { multiplicity }, \mathrm{J} / \mathrm{Hz})}{\text { TK19 }}$	$\begin{aligned} & \text { HMBC* } \\ & { }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		TK19	R		
13	C	42.4	42.4	-	-
14	CH	55.9	55.9	1.00 (m)	-
15	CH_{2}	24.2	24.1	1.23 (m), 1.29 (m)	-
16	CH_{2}	28.2	28.1	1.27 (m), 1.32 (m)	-
17	CH	56.1	56.1	1.11 (m)	-
18	CH_{3}	12.0	12.0	0.71 (m)	12, 14, 17
19	CH_{3}	17.4	17.4	1.18 (m)	1, 5, 9, 10
20	CH	36.1	36.1	2.01 (m)	-
21	CH_{3}	18.7	18.7	$0.92(d, J=6.3 \mathrm{~Hz})$	17, 20, 22
22	CH_{2}	34.0	34.0	2.39 (m)	-
23	CH_{2}	26.1	26.0	1.17 (m)	-
24	CH	45.8	45.8	0.93 (m)	-
25	CH	29.2	29.1	1.26 (m)	-
26	CH_{3}	19.8	19.8	$0.85(d, J=6.9 \mathrm{~Hz})$	24, 25, 27
27	CH_{3}	19.0	19.2	$0.84(d, J=6.6 \mathrm{~Hz})$	24, 25, 26
28	CH_{2}	23.1	23.1	1.29 (m)	-
29	CH_{3}	11.9	11.4	$0.83(d, J=6.6 \mathrm{~Hz})$	24, 28

* For TK20
${ }^{\text {a }}$ Deduced from HMQC experiment

3.1.20 Compound TK21

Compound TK21 was isolated as a colorless viscous oil, It exhibited hydroxyl ($3375 \mathrm{~cm}^{-1}$), conjugate ester ($1695 \mathrm{~cm}^{-1}$) and double bond ($1635 \mathrm{~cm}^{-1}$) absorptions in the IR spectrum. The UV spectrum showed absorption bands at $\lambda_{\max }$: 234, 297 and 325 nm (Figure 105), again suggesting the presence of conjugation in the molecule. Its molecular formula, $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{4}\left([\mathrm{M}]^{+} 586.6\right.$, calcd 586.5), was deduced by EI mass spectrum.

In the ${ }^{1} \mathrm{H}$ NMR spectral data of TK21 (Table 20, Figure 106), the presence of a trans double bond was evidenced by two doublet signals at $\delta 6.30$ and 7.60 ppm with a coupling constant of $16.2 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR signals at $\delta 6.93(d, J=8.1$ $\mathrm{Hz}), \delta 7.06(d d, J=8.1$ and 2.1 Hz$)$ and $\delta 7.03(d, J=2.1 \mathrm{~Hz})$ established the presence of three aromatic protons with ortho, ortholmeta and meta coupling, respectively. The presence of one methoxyl group was also shown by a three-proton singlet at $\delta 3.92 \mathrm{ppm}$. Furthermore, the calculated MW of 586.5 was in agreement with molecular formula, $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{4}$ as deduced by EI mass spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signal of methylene protons at $\delta 4.20\left(\mathrm{H}_{2}-1^{\prime \prime}\right)$, a triplet at $\delta 0.89\left(\mathrm{H}_{3^{-}}\right.$ $28^{\prime \prime}$) and a broad signal at δ 1.12-1.14 which could be deduced from molecular formula to be those of 50 H . Therefore, compound TK21 should be a long chain ester of ferulic acid. The ${ }^{13} \mathrm{C}$ NMR spectral data of TK21 (Table 20, Figure 107) showed signals at $\delta 167.3$ (C-3') due to the carbonyl group of an ester function and $\delta 144.6$ ($\mathrm{C}-1^{\prime}$) and $\delta 115.7$ ($\mathrm{C}-2^{\prime}$) due to a side chain $\mathrm{C}-\mathrm{C}$ double bond. Further confirmation of this skeleton came from the mass spectrum of TK21 which showed, besides the molecular ion, significant fragment peaks at $\mathrm{m} / \mathrm{z} 177$ and 194, both characteristic of a methoxy and hydroxyl substituted cinamic moiety. HMBC correlations were
summarized in Table 20. On the basis of its spectroscopic data and comparison with previously reported data (Ruan et al., 2007), compound TK21 was identified as erythrinassinate A .

Selected HMBC correlation of TK21

Table $20{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound TK21 and erythrinassinate $\mathrm{A}\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	Type of C*	$\delta_{\text {C }} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)	HMBC*
		TK21	R	TK21	${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$
1	C	127.0	127.0	-	-
2	CH	123.4	123.0	7.06 (dd, 8.1, 2.1 Hz)	1', 4
3	CH	114.6	114.6	6.93 (d, 8.1 Hz)	4, 5
4	C	147.8	147.8	-	-
5	C	146.7	146.7	-	-
6	CH	109.2	109.2	7.03 (d, 2.1 Hz)	-
$1{ }^{\prime}$	CH	144.6	144.6	7.60 (d, 16.2 Hz)	1, 2, 6, 2, 3^{\prime}
2^{\prime}	CH	115.7	115.7	6.30 (d, 16.2 Hz)	1,3
$3{ }^{\prime}$	COO	167.3	167.3	-	-
$1{ }^{\prime \prime}$	CH_{2}	64.2	64.6	4.20 (t, 6.6 Hz)	3
$2^{\prime \prime}$	CH_{2}	28.7	31.9	1.70 (m)	-
$28{ }^{\prime \prime}$	CH_{3}	14.1	14.0	$0.89(t, 6.3 \mathrm{~Hz})$	-
OMe	CH_{3}	55.9	55.9	3.92 (s)	-

[^6]
[^0]: * For TK1
 ${ }^{\text {a }}$ Deduced from HMQC experiment
 ${ }^{\mathrm{b}}$ May be interchanged

[^1]: * For TK2
 ${ }^{\text {a }}$ Deduced from HMQC experiment
 ${ }^{\mathrm{b}}$ May be interchanged

[^2]: * For TK3
 ${ }^{\text {a }}$ Deduced from HMQC experiment

[^3]: * For TK4
 ${ }^{\text {a }}$ Deduced from HMQC experiment

[^4]: * For TK9
 ${ }^{\text {a }}$ Deduced from HMQC experiment
 ${ }^{\mathrm{b}}$ May be interchanged

[^5]: * For TK16
 ${ }^{\text {a }}$ Deduced from HMQC experiment

[^6]: * For TK21

