Contents

		Page
Contents		vii
List of Tables		ix
List of Figures		xii
Chapter		
1. Introduction		1
1.1 Chitin-Chitosan	1	2
1.2 Ethanol		8
1.3 Membrane prod	cess	9
1.4 Pervaporation J	process	10
1.5 Advantages of	membrane process	12
1.6 Synthetic mem	branes	12
1.7 Review of Lite	ratures	14
1.8 Research objec	tives	22
2. Theory		23
2.1 Pervaporation J	process	23
2.2 Response Surfa	ace Methodology	28
3. Experiment		31
3.1 Materials		31
3.2 Equipments		31
3.3 Method		32
3.3.1 Meml	prane Preparation	32
3.3.2 Meml	orane Characterization	34
3.3.3 Perva	poration Experiment	35

Contents (Continued)

		Page
4.	Results and Discussion	39
	4.1 Membrane Characterization	39
	4.1.1 Swelling ratio	39
	4.1.2 Tensile strength	43
	4.1.3 Sorption selectivity	45
	4.1.4 Pervaporation performance	47
	4.2 Pervaporation studies	55
	4.2.1 Feed concentration	55
	4.2.2 Feed temperature	58
5.	Conclusions	63
6.	References	65
7.	Appendixes	71
8.	Vitae	115

List of Tables

Table	Page
1.1 Comparison of Mark-Houwink constants	5
1.2 Important membrane separation processes	11
1.3 Examples of Applications and Alternative Separation Processes	11
2.1 Coded variables of independent variables	29
3.1 Maximum and minimum values of each variable	32
3.2 Coded and Natural variables of each independent variable for	33
membrane preparation	
3.3 Coded and Natural variables of each independent variable for	38
pervaporation study	
4.1 Comparison of pervaporation dehydration of ethanol using various	61
membranes	
A1 Results from viscosity measurement of chitosan solution at 25 °C	72
C1 Refractive index of water-ethanol mixtures at 20 °C	77
D1 Swelling ratio of each experiment	80
D2 Sorption selectivity of each experiment	81
D3 The efficiency of chitosan membrane for dehydration of ethanol	82
using pervaporation process (Flux)	
D4 The efficiency of chitosan membrane for dehydration of ethanol	83
using pervaporation process (Seperaton factor)	
D5 Effect of feed concentrations (ethanol) and feed temperature on	84
flux using pervaporation process	
D6 Effect of feed concentrations (ethanol) and feed temperature on	85
separation factor using pervaporation process	
D7a, b and c Computer output from essential linear regression for	86
fitting a model of swelling ratio	
D8 Effect of crosslinking time and membrane formation temperature	88
on swelling ratio	

List of Tables (Continued)

Table	Page
D9 Effect of crosslinking time and concentration of sulfuric acid on	89
swelling ratio	
D10 Effect of membrane formation temperature and concentration	90
of sulfuric acid on swelling ratio	
D11a, b and c Computer output from essential linear regression for	91
fitting a model of tensile strength	
D12 Effect of membrane formation temperature and concentration	93
of sulfuric acid on tensile strength	
D13 Effect of membrane formation temperature and crosslinking	94
time on tensile strength	
D14 Effect of crosslinking time and concentration of sulfuric	95
acid on tensile strength	
D15a, b and c Computer output from essential linear regression	96
for fitting a model of sorption selectivity	
D16 Effect of crosslinking time and concentration of sulfuric	98
acid on sorption selectivity	
D17 Effect of crosslinking time and membrane formation	99
temperature on sorption selectivity	
D18 Effect of concentration of sulfuric acid and membrane	100
formation temperature on sorption selectivity	
D19a, b and c Computer output from essential linear regression	101
for fitting a model of separation factor	
D20 Effect of crosslinking time and concentration of sulfuric	103
acid on separation factor	
D21 Effect of crosslinking time and membrane formation temperature	104
on separation factor	

List of Tables (Continued)

Table	Page
D22 Effect of concentration of sulfuric acid and membrane	105
formation temperature on separation factor	
D23a, b and c Computer output from essential linear regression	106
for fitting a model of flux	
D24 Effect of crosslinking time and concentration of sulfuric	108
acid on flux	
D25 Effect of crosslinking time and membrane formation	109
temperature on flux	
D26 Effect of concentration of sulfuric acid and membrane	110
formation temperature on flux	
D27 a, b and c Computer output from essential linear regression	111
for fitting a model of separation factor	
D28 a, b and c Computer output from essential linear regression	113
for fitting a model of flux	

List of Figures

Figuı	re	Page
1.1	Structural examples of chitin and chitosan	3
1.2	Principle of membrane process	10
1.3	Schematic drawing of porous and non-porous membranes	13
1.4	Schematic drawing of symmetric and asymmetric membrane	14
	cross-section	
2.1	Schematic diagram of solution-diffusion model	24
3.1	Schematic diagram of sorption apparatus	35
3.2	Schematic diagram of cross-section of permeation cell	36
3.3	Schematic diagram of pervaporation setup	37
4.1	Chemical structures of ionic crosslinked chitosan membrane	40
4.2	Effect of concentration of sulfuric acid on swelling ratio at	41
	different crosslinking times and membrane formation temperatures	
4.3	Effect of crosslinking time on swelling ratio at different concentrations	41
	of sulfuric acid and membrane formation temperatures	
4.4	Effect of membrane formation temperature on swelling ratio at	42
	different concentrations of sulfuric acid and crosslinking times	
4.5	Effect of concentration of sulfuric acid on tensile strength at different	43
	crosslinking times and membrane formation temperatures	
4.6	Effect of crosslinking time on tensile strength at different concentrations	44
	of sulfuric acid and membrane formation temperatures	
4.7	Effect of membrane formation temperature on tensile strength at	44
	different concentrations of sulfuric acid and crosslinking times	
4.8	Effect of concentration of sulfuric acid on sorption selectivity of water	45
	at different crosslinking times and membrane formation temperatures	

Figure	e	Page
4.9	Effect of crosslinking time on sorption selectivity of water at	46
(different concentrations of sulfuric acid and membrane	
]	formation temperatures	
4.10	Effect of membrane formation temperature on sorption selectivity	46
	of water at different concentrations of sulfuric acid and crosslinking	
	times	
4.11	Effect of concentration of sulfuric acid on total flux for dehydration	47
	of 87 %w/w ethanol at 60 °C through membrane prepared at different	
	crosslinking times and membrane formation temperatures	
4.12	Effect of concentration of sulfuric acid on separation factor for	48
	dehydration of 87 %w/w ethanol at 60 °C through membrane prepared	d
	at different crosslinking times and membrane formation temperatures	
4.13	Effect of crosslinking time on total flux for dehydration of 87 %w/w	49
	ethanol at 60 °C through membrane prepared at different	
	concentrations of sulfuric acid and membrane formation temperatures	
4.14	Effect of crosslinking time on separation factor for dehydration of	49
	87 %w/w ethanol at 60 °C through membrane prepared at different	
	concentrations of sulfuric acid and membrane formation temperatures	
4.15	Effect of membrane formation temperature on total flux for	50
	dehydration of 87 %w/w ethanol at 60 °C through membrane prepared	
	at different concentrations of sulfuric acid and crosslinking times	
4.16	Effect of membrane formation temperature on separation factor for	50
	dehydration of 87 %w/w ethanol at 60 °C through membrane prepared	1
	at different concentrations of sulfuric acid and crosslinking times	

Figure		Page
4.17	Effect of (a) concentration of sulfuric acid and crosslinking time, (b)	52
	crosslinking time and heating temperature, and (c) concentration of	
	sulfuric acid and heating temperature, on separation factor for	
	dehydration of 87 %w/w ethanol at 60 °C	
4.18	Effect of (a) concentration of sulfuric acid and crosslinking time,	54
	(b) crosslinking time and heating temperature, and	
	(c) concentration of sulfuric acid and heating temperature, on	
	flux for dehydration of 87 %w/w ethanol at 60 °C	
4.19	Effect of feed concentration on total flux for dehydration of	55
	ethanol at downstream pressure of 2.54 mm of Hg and different	
	feed temperatures	
4.20	Effect of feed concentration on separation factor for dehydration	56
	of ethanol at downstream pressure 2.54 mm of Hg and different	
	feed temperatures	
4.21	Effect of feed concentration on ethanol flux for dehydration of	56
	ethanol at downstream pressure 2.54 mm of Hg and different feed	
	temperatures	
4.22	Effect of feed concentration on water flux for dehydration of	57
	ethanol at downstream pressure 2.54 mm of Hg and different feed	
	temperatures	
4.23	Effect of feed temperature on total flux for dehydration of	58
	ethanol at downstream pressure 2.54 mm of Hg and different feed	
	concentrations	
4.24	Effect of feed temperature on separation factor for dehydration of	58
	ethanol at downstream pressure 2.54 mm of Hg and different feed	
	concentrations	

Figure	Page
4.25 Effect of feed temperature on ethanol flux for dehydration of	59
ethanol at downstream pressure 2.54 mm of Hg and different feed	
concentrations	
4.26 Effect of feed temperature on water flux for dehydration of	59
ethanol at downstream pressure 2.54 mm of Hg and different feed	
concentrations	
4.27 Effect of feed concentration and feed temperature on	60
separation factor for dehydration of ethanol at downstream	
pressure 2.54 mm of Hg	
4.28 Effect of feed concentration and feed temperature on	61
flux for dehydration of ethanol at downstream pressure	
2.54 mm of Hg	
A1 Relation between η_{sp}/C and concentration of chitosan solution	73
B1 IR spectrum of chitosan membrane	75
B2 Calibration curve of Degree of Deacetylation	76
C1 Refractive index of water-ethanol mixtures	79
D1 Effect of crosslinking time and membrane formation temperature	88
on swelling ratio	
D2 Effect of crosslinking time and concentration of sulfuric acid on	89
swelling ratio	
D3 Effect of membrane formation temperature and concentration	90
of sulfuric acid on swelling ratio	
D4 Effect of membrane formation temperature and concentration	93
of sulfuric acid on tensile strength	
D5 Effect of membrane formation temperature and crosslinking	94
time on tensile strength	

Figure	Page
D6 Effect of crosslinking time and concentration of sulfuric	95
acid on tensile strength	
D7 Effect of crosslinking time and concentration of sulfuric	98
acid on sorption selectivity	
D8 Effect of crosslinking time and membrane formation temperature	99
on sorption selectivity	
D9 Effect of concentration of sulfuric acid and membrane	100
formation temperature on sorption selectivity	
D10 Effect of crosslinking time and concentration of sulfuric	103
acid on separation factor	
D11 Effect of crosslinking time and membrane formation	104
temperature on separation factor	
D12 Effect of concentration of sulfuric acid and membrane	105
formation temperature on separation factor	
D13 Effect of crosslinking time and concentration of sulfuric	108
acid on flux	
D14 Effect of crosslinking time and membrane formation	109
temperature on flux	
D15 Effect of concentration of sulfuric acid and membrane	110
formation temperature on flux	
D16 Effect of feed concentration and feed temperature on	112
separation factor	
D17 Effect of feed concentration and feed temperature on flux	114