CONTENTS

	Page
CONTENTS	viii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS AND SYMBOLS	xiv
CHAPTER	
1 INTRODUCTION	
General introduction	1
Literature review	2
Objectives	36
2 MATERIALS AND METHODS	
Materials and equipments	37
Method	41
3 RESULTS	47
4 DISCUSSION	65
REFERENCES	72
APPENDIX	87
VITAE	97

LIST OF TABLES

Table		page
1.1	Examples of reactive oxygen species (ROS).	3
1.2	Antioxidants and free radical scavengers that are able to	20
	protect against the renal oxidative damage induced by	
	cisplatin.	
1.3	Chemical constituents of Hibiscus sabdariffa Linn. calyces.	26
1.4	Other biological and pharmacological effects of Hibiscus	34
	sabdariffa Linn.	
3.1	Effects of cisplatin on body weight, heart rate (HR),	54
	hematocrit (Hct) and plasma concentration of sodium and	
	potassium (P_{Na} and P_K) during clearance study.	
3.2	Effects of short and long term treatments of Hibiscus	64
	sabdariffa Linn. extract on body weight, heart rate (HR),	
	hematocrit (Hct) and plasma concentration of sodium and	
	potassium (P_{Na} and P_K) in cisplatin-induced ARF rats.	

LIST OF TABLES (continued)

APPENDIX		page
Е	Effects of cisplatin on mean arterial blood pressure (MABP)	94
	and renal function parameters in rats.	
F	Effects of Hibiscus sabdariffa Linn. extract on mean arterial	95
	blood pressure (MABP) and renal function parameters in	
	cisplatin-induced ARF rats.	
G	Effect of cisplatin on renal MDA level in rats.	96
	Effect of Hibiscus sabdariffa Linn. extract on renal MDA	96
	level in cisplatin-induced ARF rats.	

LIST OF FIGURES

Figure		page
1.1	The products and pathways relating to lipid peroxidation.	5
	This scheme describes the various products as well as several	
	methods used to assess their concentrations.	
1.2	The reaction of thiobarbituric acid (TBA) and	6
	malondialdehyde (MDA).	
1.3	Structure of cisplatin or <i>cis</i> -diamminedichloroplatinum (II).	7
1.4	The cellular uptake of cisplatin and its targets.	8
1.5	Main adducts formed in the interaction of cisplatin with	9
	DNA.	
1.6	Leaves, calyces and flower of Hibiscus sabdariffa Linn.	24
1.7	Structures of the major chemical constituents (organic and	27
	phenolic acid and anthocyanins) from Hibiscus sabdariffa	
	Linn. calyces.	
3.1	Effects of cisplatin on mean arterial blood pressure (MABP)	48
	and urine flow rate (\dot{V}) in rats.	
3.2	Effects of cisplatin on clearance of inulin (C_{in}) and	49
	clearance of para-aminohippuric acid (CPAH) in rats.	
3.3	Effects of cisplatin on sodium excretion rate (U_{Na} \dot{V}) and	51
	fractional excretion of sodium (FE _{Na}) in rats.	

LIST OF FIGURES (continued)

Figure		page
3.4	Effects of cisplatin on potassium excretion rate (U_K \dot{V}) and	52
	fractional excretion of potassium (FE_K) in rats.	
3.5	Effect of cisplatin on blood urea nitrogen (BUN) in rats.	53
3.6	Effect of cisplatin on renal malondialdehyde (MDA) level	55
	in rats.	
3.7	Effects of short and long term treatments of Hibiscus	58
	sabdariffa Linn. extract on mean arterial blood pressure	
	(MABP) and urine flow rate (\dot{V}) in 7.5 mg/kg cisplatin-	
	induced ARF rats.	
3.8	Effects of short and long term treatments of Hibiscus	59
	sabdariffa Linn. extract on clearance of inulin (C_{in}) and	
	clearance of para-aminohippuric acid (C_{PAH}) in 7.5 mg/kg	
	cisplatin-induced ARF rats.	
3.9	Effects of short and long term treatments of Hibiscus	60
	sabdariffa Linn. extract on sodium excretion rate ($U_{Na}\dot{V}$)	
	and fractional excretion of sodium (FE _{Na}) in 7.5 mg/kg	
	cisplatin-induced ARF rats.	

LIST OF FIGURES (continued)

Figure		page
3.10	Effects of short and long term treatments of Hibiscus	61
	sabdariffa Linn. extract on potassium excretion rate (U_K \dot{V})	
	and fractional excretion of potassium (FE _K) in 7.5 mg/kg	
	cisplatin-induced ARF rats.	
3.11	Effect of short and long term treatments of Hibiscus	62
	sabdariffa Linn. extract on blood urea nitrogen (BUN) in 7.5	
	mg/kg cisplatin-induced ARF rats.	
3.12	Effect of short and long term treatments of Hibiscus	63
	sabdariffa Linn. extract on renal malondialdehyde (MDA)	
	level in 7.5 mg/kg cisplatin-induced ARF rats.	

LIST OF ABBREVIATIONS AND SYMBOLS

α	=	alpha
β	=	beta
°C	=	degree celsius
%	=	percent
ADP	=	adenosine diphosphate
AMP	=	adenosine monophosphate
ATP	=	adenosine triphosphate
ANOVA	=	analysis of variance
ARF	=	acute renal failure
BUN	=	blood urea nitrogen
$C_4H_4N_2O_2S$	=	2-thiobarbituric acid
$C_6H_{12}O_6$	=	D(-)-fructose and D(+)-glucose anhydrous
$C_7H_{16}O_4$	=	1,1,3,3-tetramethoxypropane
$C_8H_{18}N_2O_4S$	=	4-(2-hydroxyethyl)piperazine-1-ethanesulonic acid or HEPES
$C_{9}H_{10}N_{2}O_{3}$	=	para-aminohippuric acid
$C_{12}H_{16}Cl_2N_2$	=	N-(1-naphthyl)-ethylenediamine dihydrochloride
$C_{12}H_{25}NaO_4S$	=	sodium dodecyl sulfate
$C_{14}H_{10}O$	=	anthrone
C+DW	=	cisplatin 7.5 mg/kg + distilled water
C+HSE	=	cisplatin 7.5 mg/kg + Hibiscus sabdariffa Linn. water
		extract 250 mg/kg

$CaCl_2 \cdot 2H_2O$	=	calcium chloride dihydrate
CAT	=	catalase
CCl ₃ COOH	=	trichloroacetic acid
CCl ₄	=	carbon tetrachloride
cGMP	=	cyclic guanosine monophosphate
CH ₃ (CH ₂) ₃ OH	=	n-butanol
CH ₃ COOH	=	acetic acid
CH ₃ COONa·3H ₂ O	=	sodium acetate trihydrate
C _{in}	=	clearance of inulin
Cl	=	chloride ion
CLA	=	Cypridina luciferin analog
cm	=	centimeter
C _{PAH}	=	clearance of para-aminohippuric acid
Cu ²⁺	=	copper ion
CuSO ₄	=	copper sulfate
$CuSO_4 \cdot 5H_2O$	=	copper (II) sulfate pentahydrate
C _X	=	clearance of X
DW	=	distilled water
FeCl ₂	=	ferrous chloride
FE _K	=	fractional excretion of potassium
FE _{Na}	=	fractional excretion of sodium

FE _X	=	fractional excretion of X
g	=	gram
GC/MS	=	gas chromatography/mass spectrometry
GFR	=	glomerular filtration rate
GSH	=	glutathione
GSH-Px	=	glutathione peroxidase
GST	=	glutathione-S-transferase
H ₂ DCF-DA	=	dichlorodihydrofluorescein diacetate
H ₂ O	=	water
H_2O_2	=	hydrogen peroxide
H_2SO_4	=	sulfuric acid
$H_6N_2O_3S$	=	ammonium sulfamate
H^{+}	=	hydrogen ion
HCl	=	hydrochloric acid
HCO ₃	=	bicarbonate ion
Hct	=	hematocrit
HNE	=	4-hydroxynonenal
HO [.]	=	hydroxyl radical
HOCI	=	hypochlorous acid
HOO [.]	=	hydroperoxyl radical
HPLC	=	high-performance liquid chromatography

HR	=	heart rate
hr	=	hour
HS	=	Hibiscus sabdariffa Linn.
HSCF	=	chloroform soluble fraction of the ethanolic extract of
		the dried flowers of Hibiscus sabdariffa Linn.
HSE	=	Hibiscus sabdariffa Linn. water extract
HSEA	=	ethyl acetate soluble fraction of the ethanolic extract of
		the dried flowers of Hibiscus sabdariffa Linn.
i.p.	=	intraperitoneally
i.v.	=	intravenously
\mathbf{K}^+	=	potassium ion
KCl	=	potassium chloride
kg	=	kilogram
kw	=	kidney weight
1	=	liter
LDL	=	low-density lipoprotein
LLC-PK1	=	renal proximal tubular epithelial
L-NAME	=	NG-nitro-L-arginine methyl ester
μg	=	microgram
μl	=	microliter
μΜ	=	micromolar

М	=	molar
MABP	=	mean arterial blood pressure
MDA	=	malondialdehyde
mg	=	milligram
MgSO ₄ ·7H ₂ O	=	magnesium sulfate heptahydrate
min	=	minute
ml	=	milliliter
mM	=	millimolar
mmHg	=	millimeter mercury
mmol	=	millimole
Ν	=	normal
NAG	=	N-acetyl-β-D-glucosaminidase
Na ₂ HPO ₄	=	di-sodium hydrogen phosphate
Na ⁺	=	sodium ion
NaCl	=	sodium chloride
NADPH	=	nicotinamide adenine dinucleotide phosphate
NaH ₂ PO ₄ ·2H ₂ O	=	sodium dihydrogen phosphate dihydrate
NaHCO ₃	=	sodium hydrogen carbonate; sodium bicarbonate
NaNO ₂	=	sodium nitrite
NaOH	=	sodium hydroxide
NH ₂ CH ₂ COOH	=	glycine

NH ₃	=	ammonia
$(NH_3)_2Cl_2Pt$	=	cisplatin or cis-diaminedichloroplatinum (II)
nl	=	nanoliter
nm	=	nanometer
nmol	=	nanomole
NO [.]	=	nitric oxide radical
$^{1}O_{2}$	=	singlet oxygen
O_2 .	=	superoxide anion radical
O ₃	=	ozone
ONOO ⁻	=	peroxynitrite
Р	=	p-value
РАН	=	para-aminohippuric acid
PE	=	polyethylene tube
P _{in}	=	plasma concentration of inulin
P _K	=	plasma concentration of potassium
pmol	=	picomole
P _{Na}	=	plasma concentration of sodium
P _{PAH}	=	plasma concentration of para-aminohippuric acid
Pt	=	platinum
$[P_X]$	=	concentration of X in plasma
RBF	=	renal blood flow

RO [.]	=	alkoxyl radical
ROO [.]	=	peroxyl radical
ROS	=	reactive oxygen species
RPF	=	renal plasma flow
rpm	=	round per minute
SHR	=	spontaneously hypertensive rat
S.E.M.	=	standard error of mean
SOD	=	superoxide dismutase
TBA	=	thiobarbituric acid
TBARs	=	thiobarbituric acid-reactive substances
t-BHP	=	tert-butylhydroperoxide
TEA	=	tetraethylammonium
TUNEL	=	terminal deoxynucleotidyl transferase biotin-dUTP nick
		end labeling
U	=	enzyme activity unit
USA	=	United States of America
$U_K \dot{V}$	=	potassium excretion rate
$U_{Na}\dot{V}$	=	sodium excretion rate
[U _X]	=	concentration of X in urine
V	=	urine flow rate