APPENDIX A

Method for the determination of inulin concentration (Davidson et al., 1963)

Preparation of anthrone reagent

- Add 100 ml of H₂SO₄ slowly to 26 ml of ice-cooled DW in a flask immersed in an ice-bath. The mixture was allowed to cool.
- 2. Add 147 mg of anthron.
- 3. Stir until the mixture completely dissolved.

Precipitation of plasma protein

- 1. Mix 30 µl of plasma with 1.8 ml of 3% trichloroacetic acid (CCl₃COOH).
- 2. Mix well and stand for 10 min, shaking again at least once.
- 3. Centrifuge at 4000 rpm for 20 min to precipitated protein.

- Add 0.5 ml of DW (blank), fructose standard solution, plasma filtrate and diluted urine into cold test tubes, which the bottom of tubes are completed immersed in ice-bath. All determinations were done is duplicate.
- Add 3.0 ml of anthrone reagent, mix well. Cool in ice-bath before its place in water bath.
- 3. Place in water bath at 38°C for 50 min.
- 4. The concentration of inulin is determined directly from standard curve for range of 2 to 6.8 mg% of fructose.

APPENDIX B

Method for the determination of para-aminohippuric acid concentration

(Smith et al., 1945)

Solutions

1. 0.1% sodium nitrite (NaNO₂)

Add 0.1 g of NaNO₂ into DW and dilute to make 100 ml solution.

2. 0.5% ammonium sulfamate ($H_6N_2O_3S$)

Add 0.5 g of $H_6N_2O_3S$ into DW and dilute to make 100 ml solution.

- 3. 0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride ($C_{12}H_{16}Cl_2N_2$) Add 0.1 g of $C_{12}H_{16}Cl_2N_2$ into DW and dilute to make 100 ml solution.
- 4. 3.2% trichloroacetic acid (CCl₃COOH)
 Add 3.2 g of CCl₃COOH into distilled water and dilute to make 100 ml solution.
- 5. 0.2N hydrochloric acid (HCl)

Dilute 1.67 ml of HCl with DW, make up to 100 ml solution.

- Add 50 μl of PAH standard solution, plasma and diluted urine into 1100 μl of 3.2% CCl₃COOH. Mix well and after about 10 min, centrifuge plasma for 2 min at 4000 rpm to precipitated protein. All determinations were done is duplicate.
- Pipette 1.0 ml of 3.2% CCl₃COOH (blank) and solution from (1) into test tubes.

- 3. Add 0.2 ml of 0.2 N HCl and 0.1 ml of 0.1% NaNO₂. Mix thoroughly, let stand not less than 3 min or more than 5 min after NaNO₂.
- 4. Add 0.1 ml of 0.5% $H_6N_2O_3S$. Mix thoroughly, let stand not less than 3 min or more than 5 min later.
- 5. Add 0.1 ml of 0.1% $C_{12}H_{16}Cl_2N_2$, mix well.
- 6. Let stand at room temperature for 15-60 min.
- 7. Measure the developed color by the spectrophotometer at 540 nm.
- 8. The concentration of PAH is determined directly from standard curve for the range of 1-10 mg% of PAH.

APPENDIX C

Method for the determination of malondialdehyde content in renal tissue

homogenate (Modified from Ohkawa et al., 1979)

Solutions

1. 8.1% sodium dodecyl sulfate ($C_{12}H_{25}NaO_4S$)

Add 8.1 g of $C_{12}H_{25}NaO_4S$ into DW and dilute to make 100 ml solution.

2. 20% acetic acid

Dilute 20 ml acetic acid with DW and make up to 100 ml solution.

3. 0.8% thiobarbituric acid (TBA)

Add 0.8 g of TBA into DW, heat and stir until the solution completely dissolved. Make up to 100 ml solution.

4. 1.5 N sodium hydroxide (NaOH)

Add 6.122 g of NaOH into DW and dilute to make 100 ml solution.

5. n-butanol

- 1. Add 0.2 ml of DW, 1,1,3,3-tetramethoxypropane (MDA standard solution) and tissue homogenate solution into the test tubes for blank, standard and sample, respectively. All determinations were done is triplicate.
- Add 0.2 ml of 8.1% C₁₂H₂₅NaO₄S and 1.5 ml of 20% acetic acid, mix thoroughly.
- 3. Adjust the pH of mixture to 3.5 with 1.5 N NaOH.
- 4. Add 1.5 ml of 0.8% TBA and make up to 4.0 ml with DW, mix well.

- 5. Heat for 60 min in 95°C water bath.
- 6. Cool in ice-bath.
- 7. Add 1.0 ml of DW and 5.0 ml of n-butanol, shake vigorously.
- 8. Centrifuge at 4000 rpm for 10 min.
- 9. Read absorbance of the organic layer (upper layer) at 532 nm.
- 10. The concentration of MDA is determined directly from standard curve of

1,1,3,3-tetramethoxypropane for the range of 0.2 to 1×10^{-4} M.

APPENDIX D

Method for the determination of protein content in renal tissue homogenate

(Itzhaki and Gill, 1964)

Preparation of biuret reagent (0.21% CuSO₄·5H₂O in 30% NaOH)

- 1. Add 0.525 g of CuSO₄·5H₂O into DW and dilute to make 50 ml solution.
- 75 g of NaOH is added to DW and diluted to make 200 ml solution.
 The solution was allowed to cool at room temperature.
- 3. Mix 50 ml of $CuSO_4$ ·5H₂O solution with 200 ml of NaOH solution.

- 1. Dilute tissue homogenate into 200 times with DW, mix thoroughly.
- Add 1 ml of DW, protein standard solution and tissue homogenate solution into test tubes for blank, standard and unknown, respectively.
 All determinations were done is triplicate.
- 3. Add to all tubes with 1 ml of biuret reagent, mix well.
- 4. Read absorbance at 310 nm after 10 min.
- The concentration of protein is determined directly from a standard curve of bovine serum albumin for the range of 50-650 μg.

APPENDIX E

Effects of cisplatin on mean arterial blood pressure (MABP), urine flow rate (\dot{V}), clearance of inulin (C_{in}), clearance of para-aminohippuric acid (C_{PAH}), sodium excretion rate ($U_{Na} \dot{V}$), fractional excretion of sodium (FE_{Na}), potassium excretion rate ($U_K \dot{V}$), fractional excretion of potassium (FE_K), plasma concentration of inulin and para-aminohippuric acid (P_{in} and P_{PAH}) and blood urea nitrogen (BUN) in rats.

	vehicle	Cisplatin concentration (mg/kg bw)				
	(n=6)	4.5 (n=6)	6.0 (n=6)	7.5 (n=5)	9.0 (n=5)	
MABP (mmHg)	126 ± 9	114 ± 3	128 ± 11	106 ± 9	106 ± 3	
V (μl/min/g kw)	13.58 ± 2.85	21.55 ± 3.54	15.88 ± 3.40	$30.06 \pm 5.40^{*\ddagger}$	$39.69 \pm 2.58^{*^{\ddagger}}$	
C _{in} (ml/min/g kw)	1.13 ± 0.04	0.95 ± 0.12	0.89 ± 0.19	$0.44 \pm 0.08^{*^{\ddagger}}$	$0.25 \pm 0.05^{*11}$	
C _{PAH} (ml/min/g kw)	3.82 ± 0.13	3.24 ± 0.68	2.41 ± 0.62	$0.51 \pm 0.20^{*^{\ddagger}}$	$0.22 \pm 0.05^{*^{\ddagger}}$	
U _{Na} (mmol/min/g kw)	2.32 ± 0.58	3.48 ± 0.53	2.27 ± 0.47	3.15 ± 0.43	4.01 ± 0.35	
FE _{Na} (%)	1.49 ± 0.38	2.82 ± 0.58	2.60 ± 0.82	6.48 ± 1.18*	$14.07 \pm 2.23^{*^{\ddagger}\#}$	
$U_{K} \dot{V}$ (mmol/min/g kw)	0.56 ± 0.06	0.66 ± 0.09	0.50 ± 0.10	$0.23 \pm 0.04^{*^{\ddagger}}$	$0.16 \pm 0.02^{*^{\ddagger}}$	
FE _K (%)	14.46 ± 1.35	19.32 ± 0.83	18.97 ± 2.73	16.71 ± 2.16	22.40 ± 2.28	
P _{in} (mg%)	21.27 ± 0.77	28.87 ± 3.20	31.13 ± 7.68	38.40 ± 5.14	$60.48 \pm 6.48^{*^{\ddagger}\#}$	
P _{PAH} (mg%)	6.00 ± 0.22	9.81 ± 2.48	14.82 ± 6.30	$27.20 \pm 4.43^{*^{\ddagger}}$	38.82 ± 3.51* ^{†‡}	
BUN (mmol/l)	2.9 ± 0.2	4.2 ± 1.0	5.2 ± 1.6	$11.7 \pm 1.8^{*^{\ddagger}}$	$16.1 \pm 1.1^{*^{\dagger^{\ddagger}\#}}$	

Animals were tested on the third day after cisplatin injection. Data are mean \pm S.E.M.

*, [†], [‡] and [#] P < 0.05 compared to vehicle and cisplatin treated group at the doses of 4.5, 6 and 7.5 mg/kg, respectively (one-way ANOVA with multiple comparison using Student-Newman Keuls post hoc test).

APPENDIX F

Effects of *Hibiscus sabdariffa* Linn. extract on mean arterial blood pressure (MABP), urine flow rate (\dot{V}), clearance of inulin (C_{in}), clearance of para-aminohippuric acid (C_{PAH}) sodium excretion rate ($U_{Na}\dot{V}$), fractional excretion of sodium (FE_{Na}), potassium excretion rate ($U_K\dot{V}$), fractional excretion of potassium (FE_K), plasma concentration of inulin and para-aminohippuric acid (P_{in} and P_{PAH}) and blood urea nitrogen (BUN) in cisplatin-induced ARF rats.

	Short term treatment of HSE				Long term treatment of HSE				
	DW (n=6)	HSE (n=6)	C+DW (n=5)	C+HSE (n=6)	DW (n=6)	HSE (n=7)	C+DW (n=5)	C+HSE (n=7)	
MABP (mmHg)	126 ± 9	125 ± 4	106 ± 9	126 ± 4	112 ± 7	114 ± 6	93 ± 2	100 ± 5	
V (μl/min/g kw)	13.58 ± 2.85	15.72 ± 2.72	$30.06 \pm 5.40^{*^{\dagger}}$	22.85 ± 1.99	14.80 ± 3.26	9.52 ± 1.71	$28.13 \pm 2.31^{*^{\dagger}}$	$26.03 \pm 4.90^{*^{\dagger}}$	
C _{in} (ml/min/g kw)	1.13 ± 0.04	1.30 ± 0.05	$0.44 \pm 0.08^{*\dagger}$	$0.80 \pm 0.17^{*^{\ddagger}}$	1.08 ± 0.02	1.18 ± 0.07	$0.34 \pm 0.03^{*\dagger}$	$0.58\pm0.16^{\star\dagger}$	
C _{PAH} (ml/min/g kw)	3.82 ± 0.13	4.00 ± 0.22	$0.51 \pm 0.20^{*\dagger}$	$2.16 \pm 0.74^{*^{\ddagger}}$	3.56 ± 0.80	3.63 ± 0.21	$0.34 \pm 0.05^{*^{\dagger}}$	$1.29 \pm 0.60^{*\dagger}$	
$U_{Na} \dot{V} (mmol/min/g kw)$	2.32 ± 0.58	2.90 ± 0.72	3.15 ± 0.43	3.49 ± 0.50	3.00 ± 0.94	1.51 ± 0.27	3.88 ± 0.68	3.40 ± 0.46	
FE _{Na} (%)	1.49 ± 0.38	1.77 ± 0.54	$6.48 \pm 1.18^{*\dagger}$	4.47 ± 1.77	1.97 ± 0.59	0.90 ± 0.16	$7.85 \pm 1.16^{*\dagger}$	$7.09 \pm 1.62^{*\dagger}$	
$U_K \overset{.}{V}$ (mmol/min/g kw)	0.56 ± 0.06	0.81 ± 0.07	$0.23 \pm 0.04^{*\dagger}$	$0.55\pm0.12^\ddagger$	0.69 ± 0.07	0.60 ± 0.09	$0.22\pm0.01^{\bigstar\dagger}$	$0.30\pm0.07^{\bigstar\dagger}$	
FE _K (%)	14.46 ± 1.35	17.74 ± 1.98	16.71 ± 2.16	20.94 ± 1.35	16.66 ± 1.63	13.52 ± 1.21	19.16 ± 1.80	16.64 ± 1.86	
P _{in} (mg%)	21.27 ± 0.77	22.52 ± 0.56	$38.40 \pm 5.14^{*^{\dagger}}$	$35.96 \pm 6.61^{*\dagger}$	24.61 ± 0.97	22.75 ± 0.80	$50.97 \pm 3.09^{*\dagger}$	$41.70 \pm 5.95^{*\dagger}$	
P _{PAH} (mg%)	6.00 ± 0.22	7.26 ± 0.20	$27.20 \pm 4.43^{*\dagger}$	22.34 ± 8.41	7.21 ± 0.23	6.95 ± 0.49	$37.45 \pm 3.26^{*\dagger}$	$25.94 \pm 5.69^{*^{\ddagger}}$	
BUN (mmol/l)	2.9 ± 0.2	2.5 ± 0.1	$11.7 \pm 1.8^{*^{\dagger}}$	$7.0 \pm 2.4^{\ddagger}$	2.8 ± 0.2	3.1 ± 0.1	$14.2 \pm 1.5^{*\dagger}$	$10.0 \pm 2.1^{*^{\ddagger}}$	

Animals were tested on the third day after cisplatin injection. DW = distilled water, HSE = Hibiscus sabdariffa Linn. water extract 250 mg/kg, C+DW = cisplatin 7.5 mg/kg + distilled water, C+HSE = cisplatin 7.5 mg/kg + Hibiscus sabdariffa Linn. water extract 250 mg/kg. Data are mean \pm S.E.M.

*, \dagger and $\ddagger P < 0.05$ compared with DW, HSE and C+DW groups, respectively (one-way ANOVA with multiple comparison using Student-Newman Keuls post hoc test).

APPENDIX G

	vehicle (n=6)	Cisplatin concentration (mg/kg)					
		4.5 (n=10)	6.0 (n=6)	7.5 (n=12)	9.0 (n=9)		
MDA (nmol)	6.29 ± 0.45	7.67 ± 0.33	7.58 ± 0.68	8.32 ± 0.30	7.36 ± 0.34		
Renal protein (mg)	6.45 ± 0.15	5.69 ± 0.16	5.15 ± 0.11	6.09 ± 0.15	5.95 ± 0.17		
MDA (nmol/mg protein)	0.97 ± 0.05	$1.35 \pm 0.06^{*}$	$1.47 \pm 0.14^{*}$	$1.38 \pm 0.06^{*}$	$1.25\pm0.08^{\bigstar}$		

Table 1 Effect of cisplatin on renal MDA level in rats.

Animals were tested on the third day after cisplatin injection.

Data are mean \pm S.E.M. * P < 0.05 compared to vehicle group (one-way ANOVA with multiple comparison using Student-Newman Keuls post hoc test).

	Short term treatment of HSE				Long term treatment of HSE			
	DW (n=6)	HSE (n=8)	C+DW (n=12)	C+HSE (n=7)	DW (n=16)	HSE (n=19)	C+DW (n=6)	C+HSE (n=16)
MDA (nmol)	6.29 ± 0.45	7.02 ± 0.32	8.32 ± 0.30	5.51 ± 0.40	7.36 ± 0.34	7.58 ± 0.68	8.32 ± 0.30	7.36 ± 0.34
Renal protein (mg)	6.45 ± 0.15	6.64 ± 0.13	6.09 ± 0.15	6.07 ± 0.15	5.95 ± 0.17	5.15 ± 0.11	6.09 ± 0.15	5.95 ± 0.17
MDA (nmol/mg protein)	0.97 ± 0.05	1.06 ± 0.04	$1.38 \pm 0.06^{*\dagger}$	$0.91 \pm 0.08^{\ddagger}$	1.14 ± 0.06	$1.55 \pm 0.04^{*}$	$1.44 \pm 0.12^{*}$	$1.45\pm0.09^{\bigstar}$

Animals were tested on the third day after cisplatin injection. DW = distilled water, HSE = Hibiscus sabdariffa Linn. water extract 250 mg/kg,

C+DW = cisplatin 7.5 mg/kg + distilled water, C+HSE = cisplatin 7.5 mg/kg + *Hibiscus sabdariffa* Linn. water extract 250 mg/kg.

Data are mean \pm S.E.M. *, [†] and [‡] P < 0.05 compared with DW, HSE and C+DW groups, respectively (one-way ANOVA with multiple comparison

using Student-Newman Keuls post hoc test).