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ชื่อวิทยานิพนธ์ ภาวะคู่กันของปริภูมิซีกัล-บาร์กมันน์ถ่วงน้ำหนักส่วนกลับ

ผู้เขียน นางสาวแพรวไหม วรรณธีระเดช

สาขาวิชา คณิตศาสตร์

ปีการศึกษา 2564

บทคัดย่อ

นิยามปริภูมิซีกัล-บาร์กมันน์ถ่วงน้ำหนัก สำหรับฟังก์ชันบวกφ(z)ดังนี้

H0 :=

{
f : C → C

∣∣∣‖f‖20 = 1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
H1 :=

{
f : C → C

∣∣∣‖f‖21 = 1

π

∫
C
|f(z)|2φ(z)e−|z|2 dz <∞

}
H−1 :=

{
f : C → C

∣∣∣‖f‖2−1 = 1

π

∫
C
|f(z)|2 1

φ(z)
e−|z|

2

dz <∞
}

จุดมุ่งหมายของวิทยานิพนธ์นี้ คือการหาขอบเขตบนของ
‖zk‖21‖zk‖2−1

‖zk‖40
และใช้ค่าขอบเขต

ดังกล่าว เพื่อแสดงว่าH∗1 = H−1 ภายใต้ปริพันธ์แบบคู่กันที่เหมาะสม
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ABSTRACT

Define weighted Segal-Bargmann spaces for a positive function φ(z) by

H0 :=

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
,

H1 :=

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2φ(z)e−|z|

2

dz <∞
}
,

H−1 :=

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2 1

φ(z)
e−|z|

2

dz <∞
}
.

The aim of this work is to establish an upper bound for
‖zk‖21‖zk‖2−1
‖zk‖40

and use this bound

together with an appropriate integral pairing to show that H∗1 = H−1.
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CHAPTER 1

Introduction

1.1 Literature Review

David Hilbert, a German mathematician, was the first to introduce Hilbert spaces.

Later on, it was possible to generalize linear algebra and calculus approaches from two-

dimensional and three-dimensional Euclidean spaces to infinite-dimensional spaces. A

Hilbert space is a vector space equipped with an inner product that allows a distance

function and perpendicularity to be defined. Furthermore, Hilbert spaces are complete

with respect to the norm defined by its linear product, implying that the space contains

all of its limit points and allows us to use techniques from calculus.

Hilbert spaces, being a powerful mathematical tool, has widely used in func-

tional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces

include spaces of square-integrable functions, spaces of sequences, Sobolev spaces con-

sisting of generalized functions, and Hardy spaces of holomorphic functions.

In mathematics, every vector space V has a corresponding dual vector space

(or simply dual space) that contains all bounded linear functional on V , as well as the

vector space structure of pointwise addition and scalar multiplication by constants.

Many fields of mathematics that use vector spaces, such as tensor analysis with

finite-dimensional vector spaces, make use of dual vector spaces. Dual spaces are used

to explain measures, distributions, and Hilbert spaces when applied to function vector

spaces. As a result, in functional analysis, the dual space is a key idea.

The Segal-Bargmann space (also called a Fock space) is the holomorphic func-
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tion space HL2(C, α) where α(z) =
1

π
e−|z|

2 . It is a Hilbert space of holomorphic

functions on C with inner product given by

〈f, g〉 =
1

π

∫
C
f(z)g(z)e−|z|

2

dz.

(See [2], [9], [12], [14]). The norm of zk in this space can be calculated using polar

coordinates as follows:

‖zk‖20 =
1

π

∫
C
|zk|2e−|z|2 dz =

1

π

∫ 2π

0

∫ ∞
0

r2k+1e−r
2

drdθ = k!.

Therefore, the set
{
zk√
k!

}∞
k=0

forms an orthonormal basis for this space and hence for

every f ∈ HL2(C, α), we can express f as

f(z) =
∞∑
k=0

akz
k

when ak ∈ C. (See [9]).

We commonly weight the measure by multiplying a positive function in a weighted

Segal-Bargmann space or a weighted Fock space. There are, however, various variants

of these spaces. For example, the author of [14] defined and investigated a weighted

Fock space associated with the perturbed Dunkl operator. The inner product in this

space is given by

〈f, g〉Q =

∫
C
fe(z)ge(z) dmQ

a (z) + 2(a+ 1)

∫
C
fo(z)go(z)|z|−2 dmQ

a+1(z)

where a > −1/2, fe(z) =
f(z) + f(−z)

2
, fo(z) =

f(z)− f(−z)

2
and a measure

dmQ
a (z) associated with a function Q. In [13] and [6], a weighted Fock space is defined

as HL2(C, eφ(z)) for some plurisubharmonic function φ(z). In [5], the t-weighted Fock

space is introduced as a space consisting of all holomorphic functions f on Cn such that

the integral ∫
Cn

∣∣∣f(z)e−
a
2
|z|2
∣∣∣p 1

(1 + |z|)t
dV (z) <∞

where a > 0, 0 < p < ∞ and dV (z) is the volume measure on Cn. The version we

use in this work is the radial weighted Segal-Bargmann space. For h(z) := h(|z|), this

a weighted Segal-Bargmann space consists of all holomorphic functions on C such that
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∫
C
|f(z)|2e−h(z) dz <∞.

(See [1]).

In this work, we denote the classical Segal-Bargmann space by

H0 := HL2(C, α) =

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
.

By multiplying a positive function φ(z) to the measure dα(z), we obtain another holo-

morphic function space HL2(C, φα). This new space will be referred to as a weighted

Segal-Bargmann space. To make use of polar coordinates as we compute the norm

‖zk‖20, one may assume that the function φ is rotation invariant as φ = φ(|z|). Since the

function α(z) =
1

π
e−|z|

2 , the space HL2(C, φα) is a radial weighted Segal-Bargmann

space.

For m ≥ 1, let φ1 = φ(z) = e|z|
m and φ−1 =

1

φ(z)
=

1

e|z|m
. Then we define the

spaces H1 and H−1 as follows.

H1 := HL2(C, φ1α) =

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2φ(z)e−|z|

2

dz <∞
}
,

H−1 := HL2(C, φ−1α) =

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2 1

φ(z)
e−|z|

2

dz <∞
}
.

Consider

1

π

∫
C
|zk|2ea|z|me−|z|2 dz = 2

∫ ∞
0

r2k+1ear
m−r2 dr.

where a = ±1 and m ≤ 2. Now, the integral
∫
r2k+1ear

m−r2 dr does not result in a

basic function. However, the integral
1

π

∫
C
|zk|2ea|z|me−|z|2 dz is finite as the term e−|z|

2

dominates all other terms.

Despite the fact that the formula for ‖zk‖2a,m=1 :=
1

π

∫
C
|zk|2ea|z|e−|z|2 dz is im-

plicit, the behavior of the growth of ‖zk‖2a,m=1 in terms of k is remarkably similar to

that of ‖zk‖20. We shall show in this work that the functions r2k+1e−r
2 , r2k+1e−r−r

2

and r2k+1er−r
2 are all concentrated towards the peaks of these functions. As with the

normal distribution, definite integrals can be used to approximate it. (See Figure 1).
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Figure 1. The graphs of the normal distribution.

The area under the curve can be approximated by the definite integral∫ a

−a

1√
2πσ2

e−
(x−µ)2

2σ2 dx

for some a ∈ R+. As a result, the norm ‖zk‖20, ‖zk‖2−1 and ‖zk‖21 can be approximated

asymptotically by definite integrals.

In [3], the authors shows that the boundedness of
‖zk‖2µ‖zk‖2β
‖zk‖4γ

plays an im-

portant role in a proof of the dual of a generalized Bergman spaces, HL2(Bd, µ)∗ =

HL2(Bd, β) under the integral pairing

〈f, g〉γ =

∫
Bd
f(z)g(z)cλ

(
1− |z|2

)λ−(d+1)
dz

for f ∈ HL2(Bd, µ) and g ∈ HL2(Bd, β).

In this work, we try to find a weight φ such that H∗1 = H−1 under the integral

pairing

〈F, S〉0 =
1

π

∫
C
F (z)S(z)e−|z|

2

dz

where F ∈ H1 and S ∈ H−1.

If we let TS(F ) = 〈F, S〉0, then
∣∣TS(F )

∣∣ ≤ ∥∥S∥∥−1∥∥F∥∥1. Therefore, TS is an

element in H∗1 . Thus, an element S in H−1 defines a functional TS on H∗1 .

Let P is an element in H∗1 , by Riesz representation, we have an element G̃ in

H1 such that P (F ) = 〈F, G̃〉1 and
∥∥P∥∥ =

∥∥G̃∥∥
1

for all F in H1. If there exist an

element G in H−1, then we have H∗1 = H−1. We write G̃ =
∞∑
i=0

aiz
i and G =

∞∑
j=0

bj . If



5

bk =

(
‖zk‖1
‖zk‖0

)2

ak, then

‖G‖2−1 =
∞∑
k=0

(
‖zk‖21‖zk‖2−1
‖zk‖40

)
‖zk‖21|ak|2 =

∞∑
k=0

(
‖zk‖21‖zk‖2−1
‖zk‖40

)∥∥G̃∥∥2
1
.

The purpose of this work is to demonstrate that
‖zk‖21‖zk‖2−1
‖zk‖40

is bounded and

independent of k. Then, we obtain that G is an element in H−1. We see that this upper

bound which is independent of k is a key to prove that H∗1 = H−1 under the integral

pairing.

Finally, we obtain the following theorem

Theorem 1. If there is a constant C which is independent of k such that

‖zk‖21‖zk‖2−1
‖zk‖40

< C,

then H∗1 = H−1.

1.2 Procedure

This thesis consists of Chapter 1 Introduction, Chapter 2 Preliminaries, Chap-

ter 3 Duality of reciprocal weighted Segal-Bargmann spaces and Chapter 4 Norms of

monomials in Segal-Bargmann spaces.

We review the literature and research on the Segal-Bargmann space, the weighted

Segal-Bargmann space and dual spaces in Chapter 1. After that, we discuss the purpose

of this work.

Several definitions and basic properties of Hilbert spaces of holomorphic func-

tions, including their dual spaces are collected in Chapter 2. Moreover, we also discuss

asymptotic analysis and the Taylor series approximation.

The spaces H0,H1 and H−1 are defined in Chapter 3. In this chapter, we intro-

duce the quantity Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

. We also discover the condition for establishing

H∗1 = H−1 that under the integral pairing.

Finally, in Chapter 4, we find a weight φ(z) so that Ck is bounded and indepen-

dent of k. We divided this chapter into three sections. We find the weight φ(z) = e|z|
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such that H∗1 = H−1 under the integral pairing defined in Chapter 3. We consider a

weight φ(z) = e|z|
m where m ≥ 2 and show that Ck is unbounded and depends on k

in the second section. In the third section, we consider a weight φ(z) = e|z|
1+p where

0 < p < 1 and we prove that H∗1 6= H−1.
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CHAPTER 2

Preliminaries

In this chapter, we collect several definitions and basic properties of Hilbert

spaces of holomorphic functions, including their dual spaces. After that, we will intro-

duce the concept of asymptotic analysis and the Taylor series approximation.

2.1 Hilbert space of holomorphic functions

The notion and properties of a Hilbert space of holomorphic functions are intro-

duced in this section. The proof can be found in [2] for more information.

Let U be a non-empty open subset of the complex plane C. Let H(U) denote

the space of holomorphic (or complex analytic) functions on U . Recall that a function

of complex variables, f : U → C, is said to be holomorphic on U if f is differentiable

at any point z ∈ U . Assume that µ is a continuous, strictly positive function on U . Let

L2(U, µ) denote the space of square-integrable functions with respect to the measure

dµ(z), that is,

L2(U, µ) =

{
f : U → C

∣∣∣∫
U

|f(z)|2 dµ(z) <∞
}
.

Then L2(U, µ) is a Hilbert space. We can write HL2(U, µ) = H(U) ∩ L2(U, µ), the

space of holomorphic functions on U which are square-integrable with respect to the

measure dµ(z), that is,

HL2(U, µ) =

{
f ∈ H(U)

∣∣∣∫
U

|f(z)|2 dµ(z) <∞
}

where dµ(z) denotes Lebesgue measure on C ∼= R2.
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Remark 2.1.1. If f and g are continuous functions and f = g µ-a.e., then f = g

everywhere. Therefore, we can consider the spaceHL2(U, µ) as a subspace ofL2(U, µ).

Theorem 2.1. Let z ∈ U . Then there exists a constant cz such that

|f(z)|2 ≤ cz‖f‖2L2(U,µ)

for any f ∈ HL2(U, µ).

Theorem 2.2. HL2(U, µ) is a closed subspace of L2(U, µ), and therefore a Hilbert

space.

Theorem 2.3. (Hölder′s inequality). Let f, g be nonnegative measurable functions on

a measure space (U, µ). Let p, q > 1 be such that
1

p
+

1

q
= 1. Then

∫
U

fg dµ ≤
{∫

U

fp dµ

}1/p

·
{∫

U

gq dµ

}1/q

.

Theorem 2.4. (Cauchy − Schwarz inequality). LetX be an inner product space. Then

for any x, y ∈ X ,

|〈x, y〉| ≤ ‖x‖‖y‖,

and the equality holds if and only if x and y are linearly dependent.

Definition 2.1.1. The Segal-Bargmann space is the space HL2(C, α), where

α(z) =
1

π
e−|z|

2

.

Remark 2.1.2. The Segal-Bargmann space HL2(C, α) is a Hilbert space of holomor-

phic functions on C with inner product given by

〈f, g〉 =

∫
C
f(z)g(z)α(z) dz.

In these spaces, we have

‖f‖2 =

∫
C
|f(z)|2α(z) dz.

By using the polar coordinates, we obtain the norm of zk in this space which is

an element in an orthonormal basis
{
zk√
k!

}∞
k=0

as

‖zk‖2 =
1

π

∫
C
|zk|2e−|z|2 dz = 2

∫ ∞
0

r2k+1e−r
2

dr = k!.
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Theorem 2.5.
{
zk√
k!

}∞
k=0

is an orthonormal basis for the Segal-Bargmann space.

If f is a holomorphic function on C, f has a power series expansion

f(z) =
∞∑
k=0

akz
k

when ak ∈ C.

Theorem 2.6. Let f(z) =
∞∑
k=0

akz
k be a holomorphic function on C, and

fn(z) =
n∑
k=0

akz
k.

Then ‖fn − f‖2 → 0.

Definition 2.1.2. For φ(z) > 0, the space HL2(C, φ α) is called a weighted Segal-

Bargmann space.

Remark 2.1.3. The weighted Segal-Bargmann space HL2(C, φ α) is a Hilbert space of

holomorphic functions on C with inner product given by

〈f, g〉 =

∫
C
f(z)g(z)φ(z)α(z) dz.

In these spaces, we have

‖f‖2 =

∫
C
|f(z)|2φ(z)α(z) dz.

2.2 Dual spaces

Any vector space V in mathematics has a corresponding dual vector space (or

just dual space for short) that contains all bounded linear functionals on V as well as

the vector space structure of pointwise addition and scalar multiplication by constants.

The dual space, as defined above, is defined for all vector spaces, and it is also

known as the algebraic dual space to prevent misunderstanding. The continuous dual

space is a subspace of the dual space that corresponds to continuous linear functionals

when specified for a topological vector space.

Many branches of mathematics that use vector spaces, such as tensor analysis
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with finite-dimensional vector spaces, use dual vector spaces. Dual spaces are used to

describe measures, distributions, and Hilbert spaces when applied to vector spaces of

functions (which are typically infinite-dimensional). As a result, dual space is a crucial

idea in functional analysis.

Definition 2.2.1. Let V be a vector space over a field F , where F = R or C. A linear

map from V to F is called a linear functional on V .

The (algebraic) dual space V ∗ is defined as the set of all bounded linear maps

ϕ : V → F (linear functionals) given any vector space V over a field F . The dual space

can be denoted hom(V, F ) because linear maps are vector space homomorphisms. The

dual space V ∗ itself becomes a vector space over F when equipped with an addition

and scalar multiplication satisfying:

(ϕ+ ψ)(x) = ϕ(x) + ψ(x)

(aϕ)(x) = a(ϕ(x))

for all ϕ, ψ ∈ V ∗, x ∈ V , and a ∈ F . Elements of the algebraic dual space V ∗ are

sometimes called covectors or one-forms.

The pairing of a functional ϕ in the dual space V ∗ and an element x of V is

denoted by 〈x, ϕ〉. This pairing defines a nondegenerate bilinear mapping 〈·, ·〉 : V ∗ ×

V → F called the natural pairing.

In linear algebra, identifying any vector space V with its dual vector space V ∗ is

a highly important example of duality. Its elements are the linear functionals ϕ : V →

F , where F is the field over which V is defined. With replacing subsets of R2 with

vector space and inclusions of such subsets by linear maps, the three properties of the

dual cone are carried over to this sort of duality. That is:

• Applying the operation of taking the dual vector space twice gives another

vector space V ∗∗. There is always a map V → V ∗∗. For some V , namely precisely the

finite-dimensional vector spaces, this map is an isomorphism.

• A linear map V → W gives rise to a map in the opposite direction W ∗ → V ∗.

• Given two vector spaces V and W , the maps from V to W ∗ correspond to the

maps from W to V ∗.
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This duality has a particular feature in that V and V ∗ are isomorphic for certain

objects, namely finite-dimensional vector spaces. This is, however, a fortunate coinci-

dence, because obtaining such an isomorphism necessitates a specific decision, such as

selecting a V basis. The Riesz representation theorem holds in the case where V is a

Hilbert space.

The Riesz representation theorem, sometimes known as the Riesz-Fréchet rep-

resentation theorem in honor of Frigyes Riesz and Maurice René Fréchet, establishes

a crucial link between a Hilbert space and its continuous dual space. The two are iso-

metrically isomorphic if the underlying field is real numbers; the two are isometrically

anti-isomorphic if the underlying field is complex numbers.

Finally, we will look at the Riesz representation theorem, which is the last

theorem in this section.

Theorem 2.7. (The Riesz representation theorem). If ϕ is a bounded linear functional

on a Hilbert space H , then there exists a unique y ∈ H such that

ϕ(x) = 〈x, y〉

for each x ∈ H . Moreover, ‖ϕ‖ = ‖y‖.

It follows by Theorem 2.1 and Theorem 2.2 that the pointwise evaluation is

continuous. This means that for each z ∈ U , the evaluation map Tz : HL2(U, µ) → C

defined by

Tz(f) = f(z)

for any f ∈ HL2(U, µ) is a continuous linear functional on HL2(U, µ). Thus, by the

Riesz representation theorem, for each z ∈ C this linear functional can be represented

uniquely as inner product with some κz ∈ HL2(U, µ), that is,

Tz(f) = 〈f, κz〉L2(U,µ) =

∫
U

f(z)κz(z)µ(z) dz.

for any f ∈ HL2(U, µ).

2.3 Asymptotic analysis

In mathematical analysis, asymptotic analysis, also known as asymptotics, is

a method of describing limiting behavior. Suppose that we have a function f(z) and we
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are interested in the behavior of f(z) as z close to z0. If the lim
z→z0

f/g exists and is equal

to 1, we say that f(z) is asymptotically equivalent or equal to g(z) under the limit

z → z0. We write

f(z) ∼ g(z) as z → z0 if and only if lim
z→z0

f(z)

g(z)
= 1.

The symbol∼ is the tilde. The relation is an equivalence relation on the set of functions

of z; the functionsf and g are said to be asymptotically equivalent. The domain of f

and g can be any set for which the limit is defined: e.g. real numbers, complex numbers,

positive integers.

Proposition 2.3.1. If f ∼ g and a ∼ b, then the following hold.

• f r ∼ gr, for every real r.

• log(f) ∼ log(g) if lim g 6= 1.

• f × a ∼ g × b.

• f/a ∼ g/b.

Example 2.3.1. Examples of asymptotic formulas:

• Factorial

n! ∼
√

2πn
(n
e

)n
this is Stirling’s approximation.

• Partition function

For a positive integer n, the partition function, p(n), gives the number of ways

of writing the integer n as a sum of positive integers, where the order of addends is not

considered.

p(n) ∼ 1

4n
√

3
eπ
√

2n
3 .

• Hankel functions

H(1)
α (z) ∼

√
2

πz
ei(z−

2πα−π
4 ),

H(2)
α (z) ∼

√
2

πz
e−i(z−

2πα−π
4 ).
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2.4 The Taylor series

In mathematics, Brook Taylor introduced the Taylor series in 1715. A func-

tion’s Taylor series is an infinite sum of terms expressed in terms of the derivatives of

the function at a single point. For most common functions, the function and the sum of

its Taylor series are equal near this point. A Taylor series is also known as a Maclaurin

series if zero is the point at which the derivatives are evaluated.

The partial sum formed by the first n + 1 terms of a Taylor series is a polyno-

mial of degree n, which is known as the nth Taylor polynomial of the function. Taylor

polynomials are approximations of a function, which become generally better as n in-

creases. Taylor’s theorem gives quantitative estimates on the error introduced by the

use of such approximations.

Definition 2.4.1. The Taylor series of a real or complex-valued function f(x) that is

infinitely differentiable at a real or complex number a is the power series

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . ,

where n! denotes the factorial of n.

In the more compact sigma notation, this can be written as

∞∑
n=0

fn(a)

n!
(x− a)n

where fn(a) denotes the nth derivative of f evaluated at the point a.

When a = 0, the series is also called a Maclaurin series.

Theorem 2.8. Let HL2(U, µ) be the space of holomorphic functions on U which are

square-integrable with respect to the measure dµ(z). For every f ∈ HL2(U, µ) can be

written as a Taylor series.
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CHAPTER 3

Duality of reciprocal weighted

Segal-Bargmann spaces

The Segal-Bargmann space is the holomorphic function spaceHL2(C, α) where

α is the Gaussian function. That is α(z) =
1

π
e−|z|

2 . In this thesis, we denote the

classical Segal-Bargmann space by

H0 := HL2(C, α) =

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
.

By multiplying positive functions φ(z) and
1

φ(z)
to the Gaussian measure dα(z), we

obtain holomorphic function spaces HL2(C, φ α) and HL2(C,
1

φ
α). These spaces will

be referred to as weighted Segal-Bargmann spaces.

Let φ1 = φ(z) and φ−1 =
1

φ(z)
. Then we define the spaces H1 and H−1 as follows.

H1 := HL2(C, φ1α) =

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2φ(z)e−|z|

2

dz <∞
}
,

H−1 := HL2(C, φ−1α) =

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2 1

φ(z)
e−|z|

2

dz <∞
}
.

With the properties of the dual space of Hilbert spaces, it is known that for each

T ∈ H∗1 , by Riesz representation, there exist a function G in H1 such that

T (F ) = 〈F,G〉1 =
1

π

∫
C
F (z)G(z)φ(z)e−|z|

2

dz

for all F ∈ H1, and the operator norm ‖T‖ = ‖G‖1.
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In this thesis, we want to find a weight φ such that H∗1 = H−1 under the in-

tegral pairing

〈F, S〉0 =
1

π

∫
C
F (z)S(z)e−|z|

2

dz

where F ∈ H1 and S ∈ H−1.

The purpose of this chapter is to prove the main following theorem, which re-

quires us to find the condition for establishing H∗1 = H−1 under integral pairing.

Theorem 1. If there is a constant C which is independent of k such that

‖zk‖21‖zk‖2−1
‖zk‖40

< C,

then H∗1 = H−1.

Proof. Let F be an element in H1, and let S be an element in H−1. We compute

〈F, S〉0 =
1

π

∫
C
F (z)S(z)e−|z|

2

dz.

Consider ∣∣〈F, S〉0∣∣ ≤ 1

π

∫
C

∣∣F (z)
∣∣ ∣∣∣S(z)

∣∣∣ e−|z|2 dz
=

1

π

∫
C

∣∣∣F (z)φ(z)
1
2

∣∣∣ ∣∣∣S(z)φ(z)−
1
2

∣∣∣ e−|z|2 dz.
From Hölder’s inequality, we get

∣∣〈F, S〉0∣∣ ≤ { 1

π

∫
C

∣∣F (z)
∣∣2φ(z)e−|z|

2

dz

} 1
2
{

1

π

∫
C

∣∣∣S(z)
∣∣∣2 1

φ(z)
e−|z|

2

dz

} 1
2

.

Now, if we let TS be an element in H∗1 defined by TS(F ) = 〈F, S〉0, then we have∣∣TS(F )
∣∣ ≤ ∥∥S∥∥−1∥∥F∥∥1. It means that a functional TS is an element in H∗1 . Therefore,

an element S in H−1 defines a functional TS on H∗1 .

On the other hand, let P be an element in H∗1 . Then we want to prove that there

exist an element G in H−1 such that for each element F in H1, P (F ) = 〈F,G〉0. Since

P is an element in H∗1 , we have an element G̃ in H1 such that P (F ) = 〈F, G̃〉1 and the

operator norm
∥∥P∥∥ =

∥∥G̃∥∥
1

for all F in H1.

Consider

〈F,G〉0 =
1

π

∫
C
F (z)G(z)e−|z|

2

dz.
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We can write G̃ =
∞∑
i=0

aiz
i and G =

∞∑
j=0

bjz
j . Then

〈zk, G〉0 =
1

π

∫
C
zkG(z)e−|z|

2

dz

=
1

π

∫
C
zk

(
∞∑
j=0

bjz
j

)
e−|z|

2

dz

= b̄k‖zk‖20.

Now, we obtain that bk =
〈zk, G〉0
‖zk‖20

. Similarly, for G̃ we get ak =
〈zk, G̃〉1
‖zk‖21

.

Observe that, if bk satisfies the following equality:

bk =

(
‖zk‖1
‖zk‖0

)2

ak,

then

G(z) =
∞∑
k=0

bkz
k =

∞∑
k=0

(
‖zk‖1
‖zk‖0

)2

akz
k.

We compute the following result,

‖G‖2−1 = 〈G,G〉−1

=
∞∑
k=0

|bk|2‖zk‖2−1

=
∞∑
k=0

‖zk‖41
‖zk‖40

|ak|2‖zk‖2−1

=
∞∑
k=0

(
‖zk‖21‖zk‖2−1
‖zk‖40

)
‖zk‖21|ak|2

=
∞∑
k=0

Ck‖zk‖21|ak|2

where Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

.
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If Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

is bounded and independent of k, then we obtain that

‖G‖2−1 = 〈G,G〉−1

=
∞∑
k=0

|bk|2‖zk‖2−1

=
∞∑
k=0

Ck‖zk‖21|ak|2

≤ C
∞∑
k=0

‖zk‖21|ak|2

= C
∥∥G̃∥∥2

1

<∞

and hence G is an element in H−1. This implies that H∗1 = H−1 under the integral

pairing.
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CHAPTER 4

Norms of monomials in

Segal-Bargmann spaces

We introduced the properties of the dual space of Hilbert spaces in the previous

chapter and found the condition for demonstrating that H∗1 = H−1 under the integral

pairing.

The goal of this chapter is to find a weight φ(z) such that Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

is

both bounded and independent of k. Let us demonstrate this concept in the following

section.

4.1 φ(z) = e|z|

In the classical Segal-Bargamann space,

H0 := HL2(C, α(z)) =

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
.

By using the polar coordinates, we obtain the norm of zk which is an element in an

orthonormal basis
{
zk√
k!

}∞
k=0

as

‖zk‖20 =
1

π

∫
C
|zk|2e−|z|2 dz

= 2

∫ ∞
0

r2k+1e−r
2

dr.

Consider the graph of fk(r) = r2k+1e−r
2 . It resembles a Gaussian-shaped wave func-

tion that propagates to the right as k increases. (See Figure 2).
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Figure 2. The graphs of fk(r) = r2k+1e−r
2 for different k’s.

We shall show in this paragraph that the function fk behaves like a Gaussian

shaped wave function in the sense that it is concentrated near its peak and has a finite

width that is measured from where the function is cut off. Consequently, the integral∫ ∞
0

r2k+1e−r
2

dr can be estimated by a definite integral
∫ 2r0

0

r2k+1e−r
2

dr for some

r0 > 0. Explicitly, we will show that∫ ∞
0

r2k+1e−r
2

dr ∼
∫ 2r0

0

r2k+1e−r
2

dr as k →∞

where r0 =

√
2k + 1

2
is a critical point of r2k+1e−r

2 . (See Figure 3).

Figure 3. The graphs of
∫ ∞
0

r2k+1e−r
2

dr ∼
∫ 2r0

0

r2k+1e−r
2

dr as k →∞.
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Let us compute some useful formulas that will be used in our study.

Lemma 4.1. Let n = 2k + 1 where k is a nonnegative integer. For any a > 0.∫ ∞
0

xne−ax
2

dx =
k!

2(ak+1)
. (4.1)

Proof. We compute a definite integral
∫ ∞
0

xne−ax
2

dx by using the gamma function.

By using integration by substitution, we have∫ ∞
0

x2k+1e−ax
2

dx =
1

2a

∫ ∞
0

(
t

a

)k
e−t dt

=
1

2a

∫ ∞
0

(
t

a

)k
e−t dt

=
1

2(ak+1)

∫ ∞
0

tke−t dt.

Since ∫ ∞
0

tke−t dt = Γ(k + 1) = k!,

we obtain ∫ ∞
0

x2k+1e−ax
2

dx =
1

2(ak+1)

∫ ∞
0

tke−t dt

=
1

2(ak+1)
Γ(k + 1)

=
1

2(ak+1)
k!.

Therefore, ∫ ∞
0

xne−ax
2

dx =
k!

2(ak+1)
.

Lemma 4.2. For a nonnegative integer n and a, b > 0,∫ b

0

xne−ax dx =
n!

an+1

(
1− e−ab

n∑
i=0

(ab)i

i!

)
. (4.2)
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Proof. Integration by parts gives∫ b

0

xne−ax dx = −x
ne−ax

a
− nxn−1e−ax

a2
− · · · − n!xe−ax

an
− n!e−ax

an+1

∣∣∣∣∣
b

0

=
n!

an+1
−
(
bne−ab

a
+
nbn−1e−ab

a2
+ · · ·+ n!be−ab

an
+
n!e−ab

an+1

)
=

n!

an+1
− e−ab

(
bn

a
+
nbn−1

a2
+ · · ·+ n!b

an
+

n!

an+1

)
=

n!

an+1
− e−ab

an+1

(
anbn + nan−1bn−1 + · · ·+ n!ab+ n!

)
=

n!

an+1
− n!e−ab

an+1

(
(ab)n

n!
+

(ab)n−1

(n− 1)!
+ · · ·+ ab+ 1

)

=
n!

an+1

(
1− e−ab

n∑
i=0

(ab)i

i!

)
.

Lemma 4.3. For r0 =

√
2k + 1

2
,

lim
k→∞

e−4r0
2
k∑
i=0

(4r0
2)i

i!
= 0.

Proof. For i = 0, 1, 2, . . . , k, we have i+ 1 < 4k + 2 for all nonnegative integer k.

Thus,
(4r0

2)i

i!
<

(4r0
2)i+1

(i+ 1)!
and hence

0 < e−4r0
2
k∑
i=0

(4r0
2)i

i!

< e−4r0
2

(k + 1)
(4r0

2)k

k!

= e−(4k+2)(k + 1)
(4k + 2)k

k!
.

Since k! ∼
√

2πk

(
k

e

)k
,

e−(4k+2)(k + 1)
(4k + 2)k

k!
∼ (k + 1)(4k + 2)k

e3k+2
√

2πk(kk)
.

It is not hard to see that the limit of the last term is equal to zero.

Therefore,

lim
k→∞

e−4r0
2
k∑
i=0

(4r0
2)i

i!
= 0.
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Next, we will show that ‖zk‖20 ∼ 2

∫ 2r0

0

r2k+1e−r
2

dr.

From Lemma 4.1, we obtain∫ ∞
0

r2k+1e−r
2

dr =
k!

2(1k+1)
=
k!

2
. (4.3)

By using integration by substitution, we have∫ 2r0

0

r2k+1e−r
2

dr =

∫ 4r02

0

r2k+1e−s
ds

2r

=
1

2

∫ 4r02

0

ske−s ds.

Substituting n = k, a = 1, and b = 4r0
2 into the equation (4.2), we obtain∫ 2r0

0

r2k+1e−r
2

dr =
k!

2

(
1− e−4r02

k∑
i=0

(4r0
2)i

i!

)
. (4.4)

From equations (4.3) and (4.4), we obtain∫ ∞
0

r2k+1e−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

=

k!

2

k!

2

(
1− e−4r02

k∑
i=0

(4r0
2)i

i!

) .
Thus,

lim
k→∞

∫ ∞
0

r2k+1e−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

= lim
k→∞

1(
1− e−4r02

k∑
i=0

(4r0
2)i

i!

) .
From Lemma 4.3, we obtain

lim
k→∞

e−4r0
2
k∑
i=0

(4r0
2)i

i!
= 0.

Thus,

lim
k→∞

∫ ∞
0

r2k+1e−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

= lim
k→∞

1(
1− e−4r02

k∑
i=0

(4r0
2)i

i!

)
=

1

1− 0

= 1.
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Therefore, ∫ ∞
0

r2k+1e−r
2

dr ∼
∫ 2r0

0

r2k+1e−r
2

dr.

Hence,

‖zk‖20 = 2

∫ ∞
0

r2k+1e−r
2

dr ∼ 2

∫ 2r0

0

r2k+1e−r
2

dr.

4.1.1 Asymptotic behavior of the norms of monomials in weighted

Segal-Bargmann spaces

In this section, we will introduce two Segal-Bargmann spaces which are weighted

by the exponential growth e|z| and e−|z|. Then we will estimate the norm of zk in these

spaces.

With the weight φ1 = e|z| and φ−1 = e−|z| =
1

e|z|
, we have the following Hilbert

spaces

H1 := HL2(C, φ1α(z)) =

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2e|z|e−|z|2 dz <∞

}
,

H−1 := HL2(C, φ−1α(z)) =

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2 1

e|z|
e−|z|

2

dz <∞
}
.

In these spaces, we have

‖zk‖21 = 2

∫ ∞
0

r2k+1er−r
2

dr,

‖zk‖2−1 = 2

∫ ∞
0

r2k+1e−r−r
2

dr.

Although we can use integration by substitution and induction to find the closed form

of the integral
∫ ∞
0

r2k+1e−r
2

dr, there is no elementary function whose derivative is

r2k+1e−r−r
2 or r2k+1er−r

2 . However, if we consider the graphs of fk,−1(r) = r2k+1e−r−r
2

and fk,1(r) = r2k+1er−r
2 compared with that of fk(r) = r2k+1e−r

2 . We can see that

they are also concentrated near their peaks and have finite widths. (See Figure 4).
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Figure 4. The graphs of fk,−1(r), fk,1(r) and fk(r).

So it makes sense to estimate those integrals by definite integrals.

In this subsection, we are interested in the behavior of
‖zk‖2−1
‖zk‖20

and
‖zk‖21
‖zk‖20

as

k →∞. Consider

‖zk‖2−1
‖zk‖20

=

∫ ∞
0

r2k+1e−r−r
2

dr∫ ∞
0

r2k+1e−r
2

dr

∼

∫ ∞
0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

=

∫ 2r̂0

0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

+

∫ ∞
2r̂0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

where r̂0 =
−1 +

√
16k + 9

4
is a critical point of r2k+1e−r−r

2 .
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Consider ∫ ∞
2r̂0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

≤

∫ ∞
2r̂0

r2k+1e−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

=

∫ ∞
0

r2k+1e−r
2

dr −
∫ 2r̂0

0

r2k+1e−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

.

By using integration by substitution and substituting n = k, a = 1, and b = 4r̂20 into

the equation (4.2), we obtain∫ 2r̂0

0

r2k+1e−r
2

dr =
k!

2

(
1− e−4r̂20

k∑
i=0

(4r̂20)
i

i!

)
. (4.5)

From equations (4.3), (4.4) and (4.5), we obtain

∫ ∞
2r̂0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

≤

k!

2
− k!

2

(
1− e−4r̂20

k∑
i=0

(4r̂20)
i

i!

)
k!

2

(
1− e−4r02

k∑
i=0

(4r0
2)i

i!

) .

Obviously,

∫ ∞
2r̂0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

→ 0 as k →∞.

Therefore, we obtain the following proposition

Proposition 4.1.1. Let k = 0, 1, 2, 3, . . .. Then

‖zk‖2−1
‖zk‖20

∼

∫ 2r̂0

0

r2k+1e−r−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

(4.6)

where r0 =

√
2k + 1

2
, and r̂0 =

−1 +
√

16k + 9

4
.
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Now, let r̃0 =
1 +
√

16k + 9

4
be a critical point of r2k+1er−r

2 .

Since
∫ ∞
0

r2k+1e−r
2

dr ∼
∫ 2r0

0

r2k+1e−r
2

dr, we have

‖zk‖21
‖zk‖20

∼

∫ ∞
0

r2k+1er−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

=

∫ 2r̃0

0

r2k+1er−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

+

∫ ∞
2r̃0

r2k+1er−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

.

If we can show that∫ ∞
2r̃0

r2k+1er−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

≤

∫ ∞
2r̃0

(r − 1)2k+1e−(r−1)
2

dr∫ 2r0

0

r2k+1e−r
2

dr

→ 0 as k →∞

then, we obtain

‖zk‖21
‖zk‖20

∼

∫ 2r̃0

0

r2k+1er−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

.

Let r be an element in an interval (2r̃0,∞).

The function
e

er
is decreasing and

e

er
→ 0 as r →∞;

On the other hand, the function
(r − 1)2k+1

r2k+1
is increasing and

(r − 1)2k+1

r2k+1
→ 1 as k →∞.

Then

e

er
≤
(
r − 1

r

)2k+1

for all r ≥ 2r̃0.
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We also obtain that

r2k+1 ≤ er−1(r − 1)2k+1

for all r ≥ 2r̃0.

Therefore, ∫ ∞
2r̃0

r2k+1er−r
2

dr ≤
∫ ∞
2r̃0

(r − 1)2k+1e−(r−1)
2

dr.

By using integration by substitution and equations (4.2) and (4.1), we have∫ ∞
2r̃0

(r − 1)2k+1e−(r−1)
2

dr =
k!

2
− k!

2

(
1− e−(2r̃0−1)2

k∑
i=0

(2r̃0 − 1)2i

i!

)
. (4.7)

From equations (4.4) and (4.7), we obtain

∫ ∞
2r̃0

(r − 1)2k+1e−(r−1)
2

dr∫ 2r0

0

r2k+1e−r
2

dr

=

k!

2

(
1− 1 + e−(2r̃0−1)

2

k∑
i=0

(2r̃0 − 1)2i

i!

)
k!

2

(
1− e−4r02

k∑
i=0

(4r0
2)i

i!

)

=

e−(2r̃0−1)
2

k∑
i=0

(2r̃0 − 1)2i

i!

1− e−4r02
k∑
i=0

(4r0
2)i

i!

→ 0

as k →∞.

Therefore, we obtain the following proposition

Proposition 4.1.2. Let k = 0, 1, 2, 3, . . .. Then

‖zk‖21
‖zk‖20

∼

∫ 2r̃0

0

r2k+1er−r
2

dr∫ 2r0

0

r2k+1e−r
2

dr

(4.8)

where r0 =

√
2k + 1

2
, and r̃0 =

1 +
√

16k + 9

4
.
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4.1.2 The boundedness of Ck

Recall that Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

. The boundedness of Ck plays an important role

in a proof of the dual of reciprocal weighted Segal-Bargmann spaces, H∗1 = H−1 under

the integral pairing

〈F, S〉0 =
1

π

∫
C
F (z)S(z)e−|z|

2

dz

where F ∈ H1 and S ∈ H−1.

In this subsection, we will show that Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

is asymptotically

equivalent to some constant. From Proposition 4.1.1 and Proposition 4.1.2, we obtain

‖zk‖21‖zk‖2−1
‖zk‖40

∼

∫ 2r̃0

0

r2k+1er−r
2

dr

∫ 2r̂0

0

r2k+1e−r−r
2

dr(∫ 2r0

0

r2k+1e−r
2

dr

)2 . (4.9)

First, we consider the definite integral∫ 2r0

0

r2k+1e−r
2

dr =

∫ 2r0

0

e−r
2+(2k+1) ln r dr

=

∫ 2r0

0

ef(r) dr

where f(r) = −r2 + (2k + 1) ln r.

Obviously, r0 =

√
2k + 1

2
is the critical point of f(r).

With the function f(r) = −r2 +(2k+1) ln r, the Taylor series expansion of f(r) about

r = r0 is given by

f(r) =
∞∑
n=0

fn(r0)

n!
(r − r0)n

with the interval of convergence (0, 2r0). Thus,∫ 2r0

0

ef(r) dr =

∫ 2r0

0

ef(r0)+f
′(r0)(r−r0)+ f ′′(r0)(r−r0)

2

2!
+
∑∞
n=3

fn(r0)(r−r0)
n

n! dr.

We have f ′(r0) = 0 and f ′′(r0) = −4. If we consider k →∞, then fm(r0)→ 0 for all

m ≥ 3.

Therefore, ∫ 2r0

0

ef(r) dr = ef(r0)
∫ 2r0

0

e−2(r−r0)
2

dr = ef(r0)
∫ r0

−r0
e−2u

2

du (4.10)

where u = r − r0.



29

Next, we consider the definite integral∫ 2r̃0

0

r2k+1er−r
2

dr =

∫ 2r̃0

0

er−r
2+(2k+1) ln r dr

=

∫ 2r̃0

0

ef̃(r) dr

where f̃(r) = r − r2 + (2k + 1) ln r and r̃0 =
1 +
√

16k + 9

4
.

By the Taylor series expansion of f̃(r) about r = r̃0, we obtain∫ 2r̃0

0

ef̃(r) dr =

∫ 2r̃0

0

ef̃(r̃0)+f̃
′(r̃0)(r−r̃0)+ f̃ ′′(r̃0)(r−r̃0)

2

2!
+
∑∞
n=3

f̃n(r̃0)(r−r̃0)
n

n! dr.

For each m ≥ 3, we have f̃m(r̃0)→ 0 as k →∞. Also, f̃ ′′(r̃0)→ −4 as k →∞.

Hence, ∫ 2r̃0

0

ef̃(r) dr = ef̃(r̃0)
∫ 2r̃0

0

e−2(r−r̃0)
2

dr = ef̃(r̃0)
∫ r̃0

−r̃0
e−2ũ

2

dũ (4.11)

where ũ = r − r̃0.

Similarly, ∫ 2r̂0

0

ef̂(r) dr = ef̂(r̂0)
∫ 2r̂0

0

e−2(r−r̂0)
2

dr = ef̂(r̂0)
∫ r̂0

−r̂0
e−2û

2

dû (4.12)

where f̂(r) = −r − r2 + (2k + 1) ln r, r̂0 =
−1 +

√
16k + 9

4
and û = r − r̂0.

Substituting equation (4.10), (4.11) and (4.12) into the equation (4.9), we obtain

‖zk‖21‖zk‖2−1
‖zk‖40

∼

∫ 2r̃0

0

r2k+1er−r
2

dr

∫ 2r̂0

0

r2k+1e−r−r
2

dr(∫ 2r0

0

r2k+1e−r
2

dr

)2

=

(
ef̃(r̃0)

∫ r̃0

−r̃0
e−2ũ

2

dũ

)(
ef̂(r̂0)

∫ r̂0

−r̂0
e−2û

2

dû

)
(
ef(r0)

∫ r0

−r0
e−2u

2

du

)2

= ef̃(r̃0)+f̂(r̂0)−2f(r0)

(∫ r̃0

−r̃0
e−2ũ

2

dũ

)(∫ r̂0

−r̂0
e−2û

2

dû

)
(∫ r0

−r0
e−2u

2

du

)2 .

Observe that

lim
k→∞

r0
r̃0

= lim
k→∞

√
k + 1

2

1
4

+
√
k + 9

16

= 1,
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and

lim
k→∞

r̃0
r̂0

= lim
k→∞

1
4

+
√
k + 9

16

−1
4

+
√
k + 9

16

= 1.

Therefore, r0 ∼ r̃0 ∼ r̂0 as k →∞. Thus,∫ r0

−r0
e−2u

2

du ∼
∫ r̃0

−r̃0
e−2ũ

2

dũ ∼
∫ r̂0

−r̂0
e−2û

2

dû.

Therefore,

‖zk‖21‖zk‖2−1
‖zk‖40

∼ ef̃(r̃0)+f̂(r̂0)−2f(r0).

Consider

f(r0) = −r20 + (2k + 1) ln r0

= −
(
k +

1

2

)
+

(2k + 1)

2
ln

(
k +

1

2

)
2f(r0) = −2k − 1 + (2k + 1) ln

(
k +

1

2

)
.

Also,

f̂(r̂0) + f̃(r̃0) =
(
r̂0 − r̂20 + (2k + 1) ln r̂0

)
+
(
−r̃0 − r̃20 + (2k + 1) ln r̃0

)
= (r̂0 − r̃0)−

(
r̂20 + r̃20

)
+ (2k + 1) ln (r̂0 · r̃0)

=
2

4
−
(

8k + 5

4

)
+ (2k + 1) ln

(
k +

1

2

)
=

1

4
− 2k − 1 + (2k + 1) ln

(
k +

1

2

)
.

It is easy to see that f̂(r̂0) + f̃(r̃0) =
1

4
+ 2f(r0).

This yields

‖zk‖21‖zk‖2−1
‖zk‖40

∼ ef̂(r̂0)+f̃(r̃0)−2f(r0)

= e
1
4 .

Now, we obtain that
‖zk‖21‖zk‖2−1
‖zk‖40

is asymptotically equivalent to a constant e
1
4 .

It implies that Ck is bounded and independent of k.



31

Finally, we obtain the following theorem

Theorem 4.4. Let a weighted φ(z) = e|z| and

Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

.

Then Ck is asymptotically equivalent to a constant C = e
1
4 and henceH∗1 = H−1 under

the integral pairing

〈F, S〉0 =
1

π

∫
C
F (z)S(z)e−|z|

2

dz

where F ∈ H1 and S ∈ H−1.

4.2 φ(z) = e|z|
m
,m ≥ 2

In this section, we extend the power of |z| from 1 to m when m ≥ 2.

With a weight φ(z) = ea|z|
2 , we have the following spaces

H0 := HL2(C, α) =

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
,

H1 := HL2(C, ea|z|2α) =

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2e−(1−a)|z|2 dz <∞

}
,

H−1 := HL2(C,
1

ea|z|2
α) =

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2e−(1+a)|z|2 dz <∞

}
.

Observe that, if a ≥ 1 that is 1 − a ≤ 0, then the integral
∫
C
|f(z)|2e−(1−a)|z|2 dz is

finite if and only if f is bounded and hence f is a constant function. Thus, this integral

is an infinite integral for all f(z) 6= 0 which implies that H1 = {0}. In the same

way, if a ≤ −1 then the space H−1 contains only a zero function because the integral∫
C
|f(z)|2e−(1+a)|z|2 dz is an infinite integral for all f(z) 6= 0. Throughout this section,

let a be an element in the open interval (−1, 1).

Let us recall some useful the formula that will be used in our study.∫ ∞
0

x2k+1e−ax
2

dx =
k!

2(ak+1)
(4.13)
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where k is a nonnegative integer, and a > 0.

From equation (4.13), we obtain∫ ∞
0

r2k+1e−r
2

dr =
k!

2
,∫ ∞

0

r2k+1e−(1−a)r
2

dr =
k!

2(1− a)k+1
,∫ ∞

0

r2k+1e−(1+a)r
2

dr =
k!

2(1 + a)k+1
.

Consider

Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

=

(∫ ∞
0

r2k+1e−(1−a)r
2

dr

)(∫ ∞
0

r2k+1e−(1+a)r
2

dr

)
(∫ ∞

0

r2k+1e−r
2

dr

)2

=
1

(1− a2)k+1
.

Since a ∈ (−1, 1), we have 0 < 1− a2 < 1.

It means that Ck =
1

(1− a2)k+1
tends to infinity as k tends to infinity.

In case φ(z) = ea|z|
2 , Ck is obtained, which is unbounded and depends on k.

It should be noted that if we consider a weight φ(z) = ea|z|
m when m > 2 and a

is an arbitrary element in real number, then we obtain

H0 := HL2(C, α) =

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
,

H1 := HL2(C, ea|z|mα) =

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2ea|z|m−|z|2 dz <∞

}
,

H−1 := HL2(C,
1

ea|z|m
α) =

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2e−a|z|m−|z|2 dz <∞

}
.

We see that H1 = {0} when a > 0 and H−1 = {0} when a < 0.

Finally, Ck is unbounded when φ(z) = e|z|
m
,m ≥ 2.

4.3 φ(z) = e|z|
1+p
, 0 < p < 1

In previous section, we consider a weight φ(z) = e|z|
m where m ≥ 2. In that

case, Ck is obtained, which is unbounded and depends on k. In this section, we consider

a weight φ(z) = e|z|
1+p where 0 < p < 1. It means that we are interested in the power
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of |z| that lies between 1 and 2.

With a weight φ(z) = e|z|
1+p , we have the following Hilbert spaces

H0 := HL2(C, α) =

{
f : C→ C

∣∣∣‖f‖20 =
1

π

∫
C
|f(z)|2e−|z|2 dz <∞

}
,

H1 := HL2(C, e|z|1+pα) =

{
f : C→ C

∣∣∣‖f‖21 =
1

π

∫
C
|f(z)|2e|z|1+p−|z|2 dz <∞

}
,

H−1 := HL2(C,
1

e|z|1+p
α) =

{
f : C→ C

∣∣∣‖f‖2−1 =
1

π

∫
C
|f(z)|2e−|z|1+p−|z|2 dz <∞

}
.

In these spaces, we have

‖zk‖20 = 2

∫ ∞
0

r2k+1e−r
2

dr,

‖zk‖21 = 2

∫ ∞
0

r2k+1er
1+p−r2 dr,

‖zk‖2−1 = 2

∫ ∞
0

r2k+1e−r
1+p−r2 dr.

We set the following functions,

fk(r) = r2k+1e−r
2

Fk,1(r) = r2k+1er
1+p−r2

Fk,−1(r) = r2k+1e−r
1+p−r2

Figure 4. The graphs of fk,−1(r), fk,1(r) and fk(r).
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Figure 5. The graphs of Fk,−1(r), Fk,1(r) and fk(r).

According to the graph (Figure 5), the solid line (—–) is created by a function Fk,−1(r),

the dashed line (- - -) is created by a function fk(r), and the dotted line ( · · · ) is created

by a function Fk,1(r).

In the case of φ(z) = e|z|, we compare the graphs of fk,−1(r) = r2k+1e−r−r
2 and

fk,1(r) = r2k+1er−r
2 to that of fk(r) = r2k+1e−r

2 . We can see that they are similarly

concentrated toward their peaks and have finite widths. There peaks appear at r0, r̃0 and

r̂0. These critical points are asymtotically equal r0 ∼ r̃0 ∼ r̂0. (See Figure 4).

If we consider the graphs of Fk,−1(r) and Fk,1(r) compared with that of fk(r).

We can see that they are also concentrated near their peaks. Unlike the case φ(z) = e|z|,

their critical points r0, R̃0 and R̂0 are not asymtotically equal. They are seperated apart

as k →∞. (See Figure 5). Thus, we need to show that∫ ∞
0

r2k+1er
1+p−r2 dr ∼

∫ ∞
r0

r2k+1er
1+p−r2 dr,∫ ∞

0

r2k+1e−r
1+p−r2 dr ∼

∫ r0

0

r2k+1e−r
1+p−r2 dr.

(See Figure 6 and Figure 7).
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Figure 6. The graphs of
∫ ∞
0

Fk,1(r) dr ∼
∫ ∞
r0

Fk,1(r) dr.

Figure 7. The graphs of
∫ ∞
0

Fk,−1(r) dr ∼
∫ r0

0

Fk,−1(r) dr.

We consider the definite integral∫ ∞
0

r2k+1er
1+p−r2 dr =

∫ ∞
0

er
1+p−r2+(2k+1) ln r dr =

∫ ∞
0

eF1(r) dr

where F1(r) = r1+p − r2 + (2k + 1) ln r, and∫ ∞
0

r2k+1e−r
1+p−r2 dr =

∫ ∞
0

e−r
1+p−r2+(2k+1) ln r dr =

∫ ∞
0

eF−1(r) dr

where F−1(r) = −r1+p − r2 + (2k + 1) ln r. Then

F ′1(r) = (1 + p)rp − 2r + (2k + 1)
1

r
,

F ′−1(r) = −(1 + p)rp − 2r + (2k + 1)
1

r
.
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Recall that r0 =

√
2k + 1

2
is the critical point of fk(r) = r2k+1e−r

2 .

Assume that R̃0 is the critical point of F1(r) and R̂0 is the critical point of F−1(r).

Observe that R̂0 < r0 < R̃0.

Let ε := εk > 0. Consider

F ′1(r0 + ε) = (1 + p)(r0 + ε)p − 2(r0 + ε) + (2k + 1)
1

(r0 + ε)

=

(2p+ 2)

(
1

2

√
4k + 2 + ε

)1+p

− 4ε
(
ε+
√

4k + 2
)

√
4k + 2 + 2ε

.

Also,

F ′−1(r0 − ε) = −(1 + p)(r0 − ε)p − 2(r0 − ε) + (2k + 1)
1

(r0 − ε)

=

(2p+ 2)

(
1

2

√
4k + 2− ε

)1+p

+ 4ε
(
ε−
√

4k + 2
)

−
√

4k + 2 + 2ε
.

Choose ε = kx where x <
1

2
. Then

F ′1(r0 + ε) =

(2p+ 2)

(
1

2

√
4k + 2 + kx

)1+p

− 4kx
(
kx +

√
4k + 2

)
√

4k + 2 + 2kx
,

F ′−1(r0 − ε) =

(2p+ 2)

(
1

2

√
4k + 2− kx

)1+p

+ 4kx
(
kx −

√
4k + 2

)
−
√

4k + 2 + 2kx
.

If k →∞, then we have the following equations

(2p+ 2)

(
1

2

√
4k + 2 + kx

)1+p

− 4kx
(
kx +

√
4k + 2

)
√

4k + 2 + 2kx
∼ (2p+ 2)(

√
k)1+p − 4kx(

√
k)

2
√
k

=
(2p+ 2)(

√
k)k

p
2 − 4kx(

√
k)

2
√
k

,

(2p+ 2)

(
1

2

√
4k + 2− kx

)1+p

+ 4kx
(
kx −

√
4k + 2

)
−
√

4k + 2 + 2kx
∼ (2p+ 2)(

√
k)1+p + 4kx(−2

√
k)

−2
√
k

=
(2p+ 2)(

√
k)k

p
2 + 4kx(−2

√
k)

−2
√
k

.
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If x <
p

2
, then

(2p+ 2)(
√
k)k

p
2 − 4kx(

√
k)

2
√
k

> 0,

(2p+ 2)(
√
k)k

p
2 + 4kx(−2

√
k)

−2
√
k

< 0.

We see that F ′1(r0 + ε) > 0 and F ′−1(r0 − ε) < 0.

It implies that r0 + ε < R̃0 and r0 − ε > R̂0, respectively.

Since ε → ∞ as k → ∞, we obtain
∣∣∣r0 − R̃0

∣∣∣ → ∞ and
∣∣∣r0 − R̂0

∣∣∣ → ∞ as k → ∞.

Therefore, ∫ ∞
0

r2k+1er
1+p−r2 dr ∼

∫ ∞
r0

r2k+1er
1+p−r2 dr, (4.14)∫ ∞

0

r2k+1e−r
1+p−r2 dr ∼

∫ r0

0

r2k+1e−r
1+p−r2 dr. (4.15)

Next, we are interested in Ck. With a weight φ(z) = e|z|
1+p , we try to show that

Ck is infinite.

Since Ck =
‖zk‖21‖zk‖2−1
‖zk‖40

,

Ck =

(∫ ∞
0

r2k+1e−r
1+p−r2 dr

)(∫ ∞
0

r2k+1er
1+p−r2 dr

)
(∫ ∞

0

r2k+1e−r
2

dr

)2

=

(∫ ∞
0

Fk,−1(r) dr

)(∫ ∞
0

Fk,1(r) dr

)
(∫ ∞

0

fk(r) dr

)2 .

Now, we are ready to start our proof that Ck is infinite, we start by assuming it is not,

and then we try to come up with a contradiction.

Suppose that Ck is finite. Consider∫ ∞
0

Fk,−1(r) dr

∫ ∞
0

Fk,1(r) dr

=

(∫ r0

0

Fk,−1(r) dr +

∫ ∞
r0

Fk,−1(r) dr

)(∫ r0

0

Fk,1(r) dr +

∫ ∞
r0

Fk,1(r) dr

)
=

(∫ r0

0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr

)
+

(∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr

)
+

(∫ ∞
r0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr

)
+

(∫ ∞
r0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr

)
.
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Now, we write

Ck =
A+B + C +D

E2

where

A =

∫ r0

0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr,

B =

∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr,

C =

∫ ∞
r0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr,

D =

∫ ∞
r0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr,

and

E =

∫ ∞
0

fk(r) dr.

First, we consider

C

E2
=

∫ ∞
r0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr(∫ ∞
0

fk(r) dr

)2

Since ∫ ∞
r0

Fk,−1(r) dr∫ ∞
0

fk(r) dr

→ 0 as k → 0

and ∫ r0

0

Fk,1(r) dr∫ ∞
0

fk(r) dr

→ 0 as k → 0,
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we obtain

C

E2
=

(∫ ∞
r0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr

)
(∫ ∞

0

fk(r) dr

)2 → 0 (4.16)

as k → 0. Consider(∫ r0

0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr

) 1
2

=

(∫ r0

0

(
Fk,−1(r)

1
2

)2
dr

) 1
2
(∫ r0

0

(
Fk,1(r)

1
2

)2
dr

) 1
2

.

From Hölder’s inequality, we obtain(∫ r0

0

(
Fk,−1(r)

1
2

)2
dr

) 1
2
(∫ r0

0

(
Fk,1(r)

1
2

)2
dr

) 1
2

≥
∫ r0

0

(Fk,−1(r)Fk,1(r))
1
2 dr.

Thus, (∫ r0

0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr

) 1
2

≥
∫ r0

0

(Fk,−1(r)Fk,1(r))
1
2 dr.

It is not hard to see that Fk,−1(r)Fk,1(r) = (fk(r))
2. Therefore,(∫ r0

0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr

) 1
2

≥
∫ r0

0

(
(fk(r))

2
) 1

2 dr

and hence

A =

∫ r0

0

Fk,−1(r) dr

∫ r0

0

Fk,1(r) dr ≥
(∫ r0

0

fk(r) dr

)2

. (4.17)

Next, we consider(∫ ∞
r0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr

) 1
2

=

(∫ ∞
r0

(
Fk,−1(r)

1
2

)2
dr

) 1
2
(∫ ∞

r0

(
Fk,1(r)

1
2

)2
dr

) 1
2

.

From Hölder’s inequality, we obtain(∫ ∞
r0

(
Fk,−1(r)

1
2

)2
dr

) 1
2
(∫ ∞

r0

(
Fk,1(r)

1
2

)2
dr

) 1
2

≥
∫ ∞
r0

(Fk,−1(r)Fk,1(r))
1
2 dr.
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Thus, (∫ ∞
r0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr

) 1
2

≥
∫ ∞
r0

(Fk,−1(r)Fk,1(r))
1
2 dr

=

∫ ∞
r0

(
(fk(r))

2
) 1

2 dr.

Hence,

D =

∫ ∞
r0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr ≥
(∫ ∞

r0

fk(r) dr

)2

. (4.18)

From equations (4.16), (4.17) and (4.18), we obtain∫ ∞
0

Fk,−1(r) dr

∫ ∞
0

Fk,1(r) dr

≥
(∫ r0

0

fk(r) dr

)2

+

∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr +

(∫ ∞
r0

fk(r) dr

)2

.

Consider

Ck =

∫ ∞
0

Fk,−1(r) dr

∫ ∞
0

Fk,1(r) dr(∫ r0

0

fk(r) dr

)2

≥

(∫ r0

0

fk(r) dr

)2

(∫ r0

0

fk(r) dr

)2 +

∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr(∫ r0

0

fk(r) dr

)2 +

(∫ ∞
r0

fk(r) dr

)2

(∫ r0

0

fk(r) dr

)2

= 1 +

∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr(∫ r0

0

fk(r) dr

)2 +

(∫ ∞
r0

fk(r) dr

)2

(∫ r0

0

fk(r) dr

)2 .

From equations (4.14) and (4.15), we obtain∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr(∫ r0

0

fk(r) dr

)2 ≥ 1 +

∫ r0

0

Fk,−1(r) dr

∫ ∞
r0

Fk,1(r) dr(∫ r0

0

fk(r) dr

)2 +

(∫ ∞
r0

fk(r) dr

)2

(∫ r0

0

fk(r) dr

)2 .

Therefore,

Ck ≥ 1 + Ck +

(∫ ∞
r0

fk(r) dr

)2

(∫ r0

0

fk(r) dr

)2 .
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Since

∫ ∞
r0

fk(r) dr

2

∫ r0

0

fk(r) dr

2 is positive, the quantity Ck is infinite.

It means that Ck is unbounded when φ(z) = e|z|
1+p , 0 < p < 1.
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