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Abstract

In common practices, heteroscedasticity and non-normality are

frequently encountered when fitting linear regression models. Several methods have

been proposed to handle these problems. In this research, we compared four differ-

ent estimation methods: ordinary least squares (OLS), transform both sides (TBS),

power of the mean function (POM) and exponential variance function (VEXP), deal-

ing with three different forms of the non-constant variances under four symmetric

distributions. In order to study the performance of the four methods in estimating

the studied model parameters, a simulation study with various sample sizes of 20,

50, 100, and 200 was conducted. To determine the models with the best fit, rela-

tive bias, mean squared error (MSE) and coverage probability of the nominal 95%

confidence interval were applied. The simulation results and application to real life

data suggest that each estimation method performed differently on different variance

structures and different distributions whereas the sample size did not give much ef-

fect on each estimation method except in the case of extreme heteroscedasticity. In

overall, the TBS method performed best in terms of smallest bias and MSE, espe-

cially under extreme heteroscedasticity. On the other hand, the OLS method was very

accurate in maintaining the nominal coverage probabilities although it had relatively

poor performance in terms of bias.
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Chapter 1

Introduction

1.1 Background and Motivation

In statistical analysis, linear regression is applied for modeling the

relationship between the response variable and one or more predictor variables. This

model is implemented by assuming that the response variable is a linear function of

the predictor variables and an unknown term or error. In common practice, the error

is strongly assumed to be an independent random variable having normal distribution

with the mean of zero and constant variance. The measure of predictor variables can

be either qualitative or quantitative. Thus the response variable is a random variable

having normal distribution with constant variance and its mean is the linear combina-

tion of predictor variables. If there is only one predictor variable, it is called simple

linear regression, while the regression with more than one predictors is known as

multiple linear regression. The linear regression model is commonly used in many

applied research fields. For example, in Finland, the linear regression model was

used to predict berry yields, cowberry yields, potential yields in ‘Golden Delicious’

and ‘Royal Gala’ apple before bloom, potential yields in peach before bloom, poten-

tial yields of pear cultivar ‘Blanquilla’ and ‘Conference’ before bloom (Ihalainen &

Pukkala, 2001; Jiménez & Dı́az, 2004, 2003b,a), respectively. As well as, in eastern

Canada, linear regression model of low-bush blueberry was conducted by using cli-
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mate to be an explanatory variables to predict the yields (Hall et al., 1982). In Chile,

the model for high bush blueberry was developed to estimate the potential yield by

using linear regression which included number of flower buds and climate variables

(Salvo et al., 2012; Ávila et al., 2013). Moreover, to observe the relationship be-

tween cardiovascular risk factors and atherosclerotic disease, Nicholls et al. (2006)

used linear regression of rank-transform for univariate predictors and used two selec-

tion procedures to select the most significant variables and removed least significant

variables for multiple linear regression model. The linear regression was also used to

investigate the predictor of plaque burden; and used to establish explanatory factors

for Decayed Missing Filled Teeth (DMFT) score and unstimulated salivary flow rate

(Gebhard et al., 2018; Äyräväinen et al., 2018), respectively.

In reality, however, the assumptions of homogeneity and normal-

ity are always violated. For example, when the numbers of predictor increase, the

prediction error seem to increase as well which indicates that the variance in the pre-

diction error is non-constant and this effect is known as heteroscedasticity (Ávila et

al., 2013). Ketelaere et al. (2006) claimed that heteroscedasticity often occurred in

many storage experiments due to the earlier harvest, one should consider the amount

of variance in quality of the products. For the data with the heteroscedastic response,

it has been noted that the point estimates of the model parameters are inefficient

and may lead to inaccurate inference for the model parameters (Sidik & Jonkman,

2016). Covering to these problems, the previous studies have proposed several meth-

ods which are possible to deal up with this situation. There is one common method

claimed by Giltinan et al. (1986); Carroll & Ruppert (1988); Kutner (2005); Ávila et

al. (2013) namely data transformation using logarithm transform both sides (TBS).

This method had been commonly used in modeling blueberry fruits and flower buds,

red raspberry growth and yield, Pharmacokenetics data, and fish length-weight rela-

tionship (Ávila et al., 2013; Clark et al., 2012; Giltinan & Ruppert, 1989; Le Cren,

1951), respectively. Moreover, it was considered as the best transformation among

others attempted transforms, claimed in berry yield prediction, bilberry and cow-
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berry yield prediction, log(yi + 1) was applied to avoid logarithm of zero in both

Ihalainen & Pukkala (2001) and Ihalainen et al. (2003). The transformation is as-

suredly reasonable in many applied situations. Nevertheless, one might be uncertain

of the transformation because it can be difficult to make inference about the original

scale (Giltinan et al., 1986). Meanwhile, Giltinan & Ruppert (1989); Ávila et al.

(2013); Hao et al. (2015); Sidik & Jonkman (2016) also used two kinds of so-called

residual variance functions: power of the mean function (POM) and exponential

function (VEXP) (see also Pinheiro & Bates (2000)) to reduce heteroscedasticity.

However, based on the previous studies, we observed that the results

were commonly questioned on occurring of non-constant variance. That is they only

focused on heteroscedasticity where normality assumption was assumed to verify

(Giltinan et al., 1986; Beal & Sheiner, 1988; Giltinan & Ruppert, 1989; Ávila et al.,

2013; Sidik & Jonkman, 2016). This leads to the aim of this thesis, i.e., to explore the

difference of linear regression parameters using different estimation methods under

heteroscedasticity and non-normality of data.

1.2 Objectives

To compare and discuss the performance of four different estimation

methods: OLS, TBS, POM, and VEXP methods in simulation study and real life

data.

1.3 Scope and Methodology

This research focuses on comparing and discussing four different

estimation methods namely OLS, TBS, POM, and VEXP under three different forms

of heteroscedastic response and four symmetric distributions through the simulation

study with the sample sizes of 20, 50, 100, and 200.
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The application to real life dataset will also be conducted to compare

the performance of the four estimation methods.

1.4 Advantages

1. Fulfill the knowledge of linear regression model and their proper-

ties;

2. Understand and be able to apply a linear regression model to real

life situations;

3. Be able to find out a better way in fitting linear regression under

the problems of heteroscedastic and non-normal data.

1.5 Thesis Overview

We have described the motivation, objectives, scope, and advantages

of the study. We now organize and summarize the remaining parts of this thesis

where the exploration of reviews, the assessment of results and discussion, and the

conclusion are as follows.

In Chapter 2, we explore the basic concepts of linear regression

model including model assumptions, estimation methods, models comparison and

confidence intervals. We will deeply review on four estimation methods namely

OLS, TBS, POM, and VEXP followed by three criteria namely: bias, mean square

error (MSE), and coverage probability which are used to evaluate and assess each

estimation method. This thesis will mainly concentrate on the performance of the

four estimation methods with three studied different heteroscedastic patterns under

four studied symmetric distributions.
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Chapter 3 consists of two parts. In the first, we explain the procedure

of simulation study to assess and compare the performance of the four estimation

methods. It will bring up with the idea of getting the independent variable X and

dependent variable Y and how to incorporate random error with the studied four

distributions and three studied non-constant variances. Second, we show how to

request and retrieve a real life data. The detail about the data set will be described, the

assumption test to confirm homogeneity and normality of data will also performed.

Chapter 4 presents and explains the results and discussion of each

estimation method in the simulation study and real life data set.

Finally, a summary of the thesis and some suggestions for further

research will be presented in Chapter 5.



Chapter 2

Reviews of Literature

2.1 Basic concepts of regression analysis

Statistical modeling is an important aspect to reflect the objective of

study with some level of realism. The statistical relationship give a starting point

for further research. A linear regression model is used to discuss and explain the

relationship between variables. The simplest way is when there are only two vari-

ables (xi, yi) with n observations and a linear regression model is assumed. Such

model is used to study how just one variable called response variable (Y ) relies on

the other, called predictor variable (X). Once there exists a linear relationship, then

try to model the relationship mathematically and use the model for prediction (Seber

& Lee, 2012).

Let Yi and Xi, i = 1, 2, · · · , n be respectively response and predictor

variables. A simple linear regression model (Kutner, 2005) can be defined as

Yi = β0 + β1xi + εi, (2.1)

where

β0 is the y-intercept of regression line,

β1 is the slope of regression line,
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εi is a random error and assumed to be independent and identically distributed (i.i.d).

For a special case of normality assumption, we have εi ∼ N(0, σ2). This gives

Yi ∼ N(µi, σ
2), where µi = E(Yi) = β0 + β1xi.

In general, to model the relationship between two or more predictor

variables and a response variable, a multiple linear regression is applied. Given a

p predictor variables of n observations, the multiple linear regression model can be

expressed as follows

Yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi. (2.2)

where εi ∼ N(0, σ2). Again, this provides Y ∼ N(µi, σ
2), where µi = E(Yi) =

β0 + β1x1i + β2x2i + · · ·+ βpxpi.

In this thesis, however, we will focus on the simple linear regression

model. In order to use this approach sufficiently, there are four fundamental assump-

tions: linearity and independence, homoscedasticity, and normality of the error term

that must be verified. Moreover, the parameter estimation and related statistical in-

ferences of a linear regression model are usually based on the assumption that the

error term is homoscedastic and normally distributed (Moore et al., 2009; Ander-

son et al., 2017). The results of the linear relationship, parameter estimation and

statistics inferences may be unreliable, if the assumptions of the error term εi appear

questionable.

2.1.1 Linearity assumption

In many situations, such a prior to performing linear regression anal-

ysis, researchers want to test their data for linearity. Linearity means that two vari-

ables, “y” and “x”, are related based on a mathematical equation “y = cx, ” where

c is any constant number. In order to detect linearity of the variables in our data, the

scatter plot of the independent variable and dependent variable must be performed.
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2.1.2 Independence assumption

The independence of the error term is one of the assumptions. To

verify whether the data meet this assumption Durbin-Watson statistics is used. The

corresponding hypothesized statement is as follows.

H0 : ρ = 0

H1 : ρ 6= 0,

where ρ is the population correlation coefficient between values of εi and εi+1, i =

1, · · · , n.

The Durbin-Watson test is used to confirm whether ρ = 0. To be

simply, the ith residual, the estimated value of εi, denoted by εi = yi − ŷi, where y

and ŷ are observed and predicted value of the response variables for individual i re-

spectively, is used for calculating the Durbin-Watson test statistic. The test statistics

given in Weiers (2010) is expressed as

D =

n∑
i=1

(εi+1 − εi)2

n∑
i=1

ε2i

, (2.3)

The smaller values of D compared to DU and DL, suggest the strong

correlation. Upper and lower critical values, DU and DL have been listed in table

shown in (Weiers, 2010). The decision making related to the hypothesis is that if D

< DL, H0 is rejected. If D > DU , H0 is not rejected. If DL < D < DU test, it is

inconclusive.

2.1.3 Homoscedasticity assumption

To see whether the variance of the error term are equal, Levene’s Test

and Bartlett’s Test are used to test if k samples have equal variances. If we assume
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that our data are normally distributed then Bartlett’s Test is more appropriate than

Levene’s Test (Layard, 1973; Brown & Forsythe, 1974).

Levene’s test

Levene’s test statistic, Levene (1960) is used to test whether k sam-

ples have equal variances. The hypothesis for Levene’s test according to Brown &

Forsythe (1974) is given as follows

H0 : σ2
1 = σ2

2 = σ2
3 = · · · = σ2

k

H1 : σ2
j 6= σ2

l for at least one pair, (j 6= l).

Given an N =
k∑
j=1

nj observations of y random variable contains k

subgroups and denoted nj is sample size of jth subgroup.

W =

k∑
j=1

nj(z̄j − z̄..)/(k − 1)

k∑
j=1

nj∑
l=1

(zjl − z̄j)2/
k∑
j=1

(nj − 1)

, (2.4)

where

zjl = |yjl − ȳj|,

z̄j =
k∑
j=1

zjl/nj is the mean of the zjl for group j,

z̄.. =
k∑
j=1

nj∑
l=1

zjl/
k∑
j=1

nj is the overall mean of the zjl.

The critical region of rejecting the null hypothesis is when W >

Fα,k−1,n−k, where Fα,k−1,n−k is the upper critical value of the F distribution with

k − 1 and n− k degrees of freedom at a significant level of α.

Bartlett’s test

Bartlett’s test is used to test for homogeneity of variance. Assume

we have k independent samples with sizes nj of jth subgroup then the hypotheses
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are given by

H0 : σ2
1 = σ2

2 = σ2
3 = · · · = σ2

k

H1 : σ2
j 6= σ2

l for at least one pair, (j 6= l).

The Bartlett’s test statistic is as follows

χ2 =
q

c
, (2.5)

where

q = (N− k)log(s2p)−
k∑
j=1

(
nj − 1

)
log(s2j),

N =
k∑
j=1

nj ,

s2p = 1
N−k

k∑
j=1

(nj − 1)s2j ,

s2j = 1
N−1

k∑
j=1

(yj − ȳ)2, and

c = 1 + 1
3(k−1)

( k∑
j=1

( 1

nj − 1

)
− 1

N− k

)
.

Bartlett’s test has been shown in Layard (1973) that it is approxi-

mately distributed as χ2 with k − 1 degrees of freedom. Therefore, the critical value

is χ2
α,k−1. If χ2 is greater than the critical value, we reject the null hypothesis. Then

there exist at least one pair of population variance different from the others.

2.1.4 Normality assumption

Normally distributed assumption is quite important to provide the

statistical inference about the εi. When the normality are not verified, then the in-

terpretation about the inference may not valid or reliable (Razali & Wah, 2011).

Kolmogorov-Smirnov test and Shapiro-Wilk test are commonly used to confirm

whether the normality of the residuals are met. However, Mendes & Pala (2003)
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and Razali & Wah (2011) have suggested that Shapiro-Wilk test is the most appro-

priate normality test for all types of sample sizes while Kolmogorov-Smirnov test is

least powerful test.

The hypothesis for testing normality is given by

H0 : The sample was drawn from a normal distribution

H1 : The sample was not drawn from a normal distribution

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov statistic gives a mean of testing a set of

data points that are from continuous distribution (Lilliefors, 1967). Mendes & Pala

(2003) and Razali & Wah (2011) used the statistic test proposed by Kolmogorov

(1933) then developed by Smirnov (1939) as follows. Given an n order of observa-

tions, y1 < y2 < · · · < yn,

T = maxy|F ∗(y)− Fn(y)| (2.6)

where

Fn(y) is the sample cumulative distribution function,

F ∗(y) is the cumulative normal distribution function with ȳ : the sample mean, and

s2 : the sample variance.

If the value of T exceeds the critical value, one rejects H0 at level of

significance α that the observations are from normal distribution.

Shapiro-Wilk test

The Shapiro-Wilk test is used to detect the violation of normality

(Razali & Wah, 2011). Shapiro-wilk test statistic (Shaphiro & Wilk, 1965) was firstly

suitable for the sample size of less than 50. It has become an appealing choice since

it had good power properties, see the detail for example in Mendes & Pala (2003)
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and Razali & Wah (2011). Given an order of n random sample, y1 < y2 < · · · < yn,

Shapiro-Wilk test statistics referencing is defined as follows.

W =

( n∑
i=1

aiyi

)2

n∑
i=1

(yi − ȳ)2
. (2.7)

where

yi is the ith order statistic,

ȳ is the sample mean,

ai = (a1, · · · , an) = mTV −1

(mTV −1V −1m)1/2
, and

m = (m1,m2, · · · ,mn)T are the expected values of the order statistics of indepen-

dent and identically distributed random variables sampled from the standard normal

distribution and V is the covariance matrix of those order statistics.

The value of W lies between zero and one. Small values of W lead

to the rejection of normality (Mendes & Pala, 2003; Razali & Wah, 2011).

2.2 Estimation methods

2.2.1 Ordinary least squares estimation (OLS)

Under model (2.1), the OLS estimators of β = (β0, β1)
T can be

obtained by minimizing the sum of squared error; Q =
n∑
i=1

ε2i , where

Q =
n∑
i=1

ε2i =
n∑
i=1

(
yi − β0 − β1xi

)2

. (2.8)

For a sample of n observations (xi, yi), the score functions can be

derived by differentiating (2.8) with respect to β0 and β1.

∂Q

∂β0
= −2

n∑
i=1

(
yi − β0 − β1xi

)
∂Q

∂β1
= −2

n∑
i=1

xi
(
yi − β0 − β1xi

)
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Then set the partial derivatives equal to zero, using β̂0 and β̂1 to

denote the particular estimate values of β0 and β1 that minimize Q.

n∑
i=1

yi − nβ̂0 − β̂1
n∑
i=1

xi = 0

n∑
i=1

xiyi − β̂0
n∑
i=1

xi − β̂1
n∑
i=1

x2 = 0

Simplifying and solving the above equations, β̂0 and β̂1 are obtained

as follows.

β̂0 =
1

n

( n∑
i=1

yi − β̂1
n∑
i=1

xi

)
= ȳ − β̂1x̄, (2.9)

β̂1 =

n∑
i=1

(
xi − x̄

)(
yi − ȳ

)
n∑
i=1

(
xi − x̄

)2 . (2.10)

where
n∑
i=1

(
xi − x̄

)2 6= 0.

Gauss-Markov theorem in (Kutner, 2005) stated that the least squares

estimators β̂0 and β̂1 are more efficient among all unbiased linear estimators.

2.2.2 The transform-both-sides estimation (TBS)

One way to remedy heteroscedasticity and non-normality is to ap-

ply transform both sides model (Ávila et al., 2013; Carroll & Ruppert, 1984, 1988;

Miller, 1984; Newman, 1993). The transformation allows the parameters to be esti-

mated efficiently. In common practice, the model of the logarithmic transformation

on response and explanatory variables has been used and a TBS model is defined as

log(Yi) = β0 + β1log(xi) + εi. (2.11)

The parameters estimates β = (β0, β1)
T is obtained by using OLS

methods, where the sum of square error of (2.11) is given by.
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S =
n∑
i=1

ε2i =
n∑
i=1

(
log(yi)− β0 − β1log(xi)

)2

. (2.12)

The score functions can be derived by differentiating (2.12) with re-

spect to β0 and β1.

∂S

∂β0
= −2

n∑
i=1

(
log(yi)− β0 − β1log(xi)

)
∂S

∂β1
= −2

n∑
i=1

log(xi)

(
log(yi)− β0 − β1log(xi)

)
Then set both partial derivatives to zero, using β̂0 and β̂1 to denote

the particular estimate values of β0 and β1 that minimize S.

n∑
i=1

log(yi)− nβ̂0 − β̂1
n∑
i=0

log(xi) = 0

n∑
i=1

log(xi)log(yi)− β̂0
n∑
i=1

log(xi)− β̂1
n∑
i=1

[log(xi)]
2 = 0

After simplifying and solving the above equations the estimates β̂0

and β̂1 for β0 and β1, respectively are

β̂0 =
1

n

( n∑
i=1

log(yi)− β̂1
n∑
i=1

log(xi)

)
= log(y)− β̂1log(x), (2.13)

β̂1 =

n∑
i=1

log(xi)log(yi)− log(y)
n∑
i−1

log(xi)

n∑
i=1

log2(xi)− log(x)
n∑
i=1

log(xi)

, (2.14)

where,

log(x) = 1
n

n∑
i=1

log(xi), and

log(y) = 1
n

n∑
i=1

log(yi).
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2.2.3 Variance functions estimation

Another way to control heteroscedasticity is by modifying the con-

stant error variance assumption (Ávila et al., 2013). A commonly applicable assump-

tion about the model error variance is the power of the mean variance function model

(POM) as given in Pinheiro & Bates (2000) and Sidik & Jonkman (2016). That is

Var(yi) = σ2ŷθi , (2.15)

where σ and θ are the unknown parameters of the variance function model. This

variance function is useful to represent the situation that the observations increase

with ŷi. In general, when θ = 0 it refers to homoscedasticity or constant variance

model. θ = 1 represents the variance proportional to the mean or the data come

from a Poisson distribution and when θ = 2 it corresponds to constant coefficient of

variation (CV) model (Pinheiro & Bates, 2000).

Another extended variance function model is an exponential variance

function (VEXP)

Var(yi) = σ2exp(2θŷi). (2.16)

In practice, one may have prior knowledge about the value of θ in

certain cases. Therefore, the parameter β may be estimated by the weighted least

squares method with weights 1/ŷθ or 1/exp(2θŷi) for models (2.15) and (2.16) re-

spectively (Sidik & Jonkman, 2016). Nevertheless, Giltinan & Ruppert (1989) stated

that one must be clear about the true value of θ, thus the right weight scheme can be

incorporated in fitting linear models.

To estimate the parameters of model (2.15) and (2.16), several meth-

ods have been proposed in Beal & Sheiner (1988). However, it has been proved that

the generalized least square (GLS) is better and simpler than that produced by an-

other in certain situation, for more detail, see Carroll & Ruppert (1982), Davidian &

Carroll (1987) and Beal & Sheiner (1988). Consequently, the most common method

to estimate parameters β is GLS method. The GLS procedure has been previously
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described in Carroll & Ruppert (1982), Giltinan et al. (1986), Davidian & Carroll

(1987), Giltinan & Ruppert (1989), and Sidik & Jonkman (2016).

Assume that the responses are normally distributed, the parameter

estimates can be obtained based on the three following steps:

1. Obtain a preliminary unweighted least squares to estimate β̂p of β,

2. Estimate parameters (σ, θ) from maximum likelihood function, letting that

β = β̂p and form estimated standard deviations σ̂i = σ2ŷθi and σ̂i = σ2exp(2θŷi) for

model (2.15) and (2.16) respectively,

3. Repeat step 1 with the transformed y variables y∗i = yi/σ̂i, x∗i = xi/σ̂i to obtain

the final parameter estimates of θ̂, σ̂2, and β̂.

2.3 Model comparisons and confidence intervals

2.3.1 Bias

Let θ̂ be a point estimator for parameter θ. If the difference between

the expected value of point estimates and the parameter equals to zero (i.e E[θ̂]−θ =

0), then θ̂ is said to be an unbiased estimator. If E[θ̂] − θ 6= 0, the bias of the point

estimator is given by (Wackerly et al., 2014)

Biasθ(θ̂) = Eθ[θ̂ − θ] = Eθ(θ̂)− θ. (2.17)

2.3.2 Mean squared error (MSE)

Mean squared error (MSE) is used to describe average model per-

formance error. MSE of an estimator measures the average of the square difference

between estimated values and underlying parameter estimated. Thus, in addition to

preferring unbiasedness, we want the error of an estimator and its target parameter to

be as small as possible. The MSE of an estimator is given by (Wackerly et al., 2014)
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MSE(θ̂) = E[(θ̂ − θ)2]. (2.18)

2.3.3 Confidence intervals

To observe data that might contain the true value of unknown popu-

lation parameter, one may wish to obtain interval predictors for θ of linear regression

coefficients. We assume that the data are approximately normally distributed. As a

result, we can produce an approximate 100(1− α)% confidence interval for param-

eters θ as the form

Lower(θ̂) = θ̂ − tα/2,n−2SEθ̂, (2.19)

Upper(θ̂) = θ̂ + tα/2,n−2SEθ̂. (2.20)

where tα/2,n−2 is the upper quantile of the t-distribution with n−2 degrees of freedom

and SEθ̂ is the standard error of each parameter estimates θ̂ (Davidian & Carroll,

1987; Moore et al., 2009).

In this thesis, there are two quantities associated with confidence

intervals:

Coverage probability refers to a procedure for constructing a ran-

dom probability region that produce an interval covering or containing the true value

of the parameters of interest θ divided by the number of replications.

N
#
r=1

(
Lower(θ̂r) ≤ θ ≤ Upper(θ̂r)

)
N

. (2.21)

where

Lower(θ̂r) is the lower bound of parameter θ at rth replication,

Upper(θ̂r) is the upper bound of parameter θ at rth replication,

N is the number of replications of parameter θ.
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Average length is simply the mean of the difference in two end-

points. We are most interested in obtaining confidence intervals that are narrow as

possible. That is, it gives more specific range of realism of the population θ.

Average lenght(θ̂) =

N∑
r=1

(
Upper(θ̂r)− Lower(θ̂r)

)
N

(2.22)

where

Upper(θ̂r) is the upper bound of parameter θ at rth replication,

Lower(θ̂r) is the lower bound of parameter θ at rth replication,

N is the number of replications of parameter θ.



Chapter 3

Methodology

In this chapter, we will describe about the methods applied to carry

out the study. We will begin with the simulation process incorporate with differ-

ent distributions and variance patterns. Then we will demonstrate how to apply the

studied methods to the real life data.

3.1 The simulation study

This section contains a process of simulation study to assess and com-

pare the performance of the four studied estimation methods discussed in the previ-

ous chapter. The assessment of the estimates is based on bias, MSE and coverage

probability of the nominal 95% confidence interval.

In the simulation study, random sample sizes n (= 20, 50, 100, and

200) were generated and values of X were drawn independently from the uniform

distribution over [0,1] with corresponding values of Y given by

Yi = 3 + xi + εi, (3.1)

where

β0 = 3 and β1 = 1,

εi are independently drawn from the following four studied symmetric distributions.
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1. Standard normal distribution,

2. Laplace distribution,

3. Location scale of t-distribution, and

4. Logistic distribution.

All distributions were set with the mean of 0,
(
E(εi) = 0

)
and three

different variance structures in order to form heteroscedasticity.

The three variance structures consist of power of the predictor Var(εi) =

√
xi, exponential function of the predictor Var(εi) = exi , and a constant plus fitted

values Var(εi) = 0.5 + ŷi. The simulation process was replicated N = 1, 000 times.

The parameters estimates, biases, MSEs and coverage probabilities were then calcu-

lated.

Under model (3.1), we want to make a random variable (Yi) to form

heteroscedasticity and to avoid producing negative values of Yi. We observed that,

when β1 is large model (3.1) does not generate heteroscedasticity. Moreover, we also

suggest to choose any appropriate values of β1 which is not much greater than β0, to

avoid the negative values of Yi. In this thesis, however, we choose the values 3 and

1 for β0 and β1, respectively.

Moreover, in order to visualize the simulated data, we plot the scatter

plot of original data of (Xi, Yi) and estimated line using OLS method for each case

of distributions and sample sizes. The non-constant variance structure of
√
xi are

shown in Figure 3.1-3.4 under standard normal, laplace, location scale of t , and lo-

gistic distribution, respectively. The non-constant variance of exi are shown in Figure

3.5-3.8 under standard normal, laplace, location scale of t, and logistic distribution,

respectively. The non-constant variance structure of 0.5 + ŷi are shown in Figure

3.9-3.12 under standard normal, laplace, location scale of t, and logistic distribution,

respectively.
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Figure 3.1: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) =
√
xi under standard normal distribution.
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Figure 3.2: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) =
√
xi under laplace distribution.
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Figure 3.3: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) =
√
xi under location scale of t distribution.
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Figure 3.4: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) =
√
xi under logistic distribution.
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Figure 3.5: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = exi under standard normal distribution.
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Figure 3.6: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = exi under laplace distribution.
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Figure 3.7: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = exi under location scale of t distribution.



28

Figure 3.8: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = exi under logistic distribution.
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Figure 3.9: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = 0.5 + ŷi under standard normal distribution.
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Figure 3.10: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = 0.5 + ŷi under laplace distribution.
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Figure 3.11: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = 0.5 + ŷi under location scale of t distribution.
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Figure 3.12: The scatter plot of original data as well as the estimated solid line of the

linear variance function Var(εi) = 0.5 + ŷi under logistic distribution.
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3.2 Practical applications

In this section, we apply all the studied methods to real dataset,

named here is bike sharing data. The data was extracted from Fanaee T & Gama

(2013). The data retrieved from https://archive.ics.uci.edu/ml/datasets/Bike+ Shar-

ing+Dataset: March 14th 2018, 6:40PM. To form the relationship between the count

of rental bikes (cnt) and count of registered users (registered) collected from the

period 1 January 2011 to 31 December 2012 for Washington, D.C., USA, the re-

gression analysis was used. The results will be shown in Figures 4.1 and 4.2. The

models validation of the errors assumptions by using Shapiro-Wilk test for normal-

ity and Bartlett’s test for homoscedasticity (Salvo et al., 2012) were conducted. The

residual plots and prediction intervals were achieved to evaluate the performance of

each studied method.

The results, reported in Table 3.1 and 3.2, have shown that this dataset

is heteroscedastic with non-normal distribution.

To calculate the Bartlett’s test, the quartiles of response variable are

used in order to manage our data into four distinct subgroups as follows: the random

numbers of response variable that less than the first quartile are recorded as group

1, the numbers in the range between the first quartile and the second quartile are

recorded as group 2, as well as the numbers that greater than the second quartile and

less than or equal the third quartile are recorded as group 3, and for the rests are

recorded as group 4.

Table 3.1: Bartlett test for homogeneity of variance

Bartlett’s Test Chi-squared Degrees of freedom p-value

140.47 3 < 2.2e-16

The p-value, reported in Table 3.1 is less than 0.05 which indicates

strong evidence of heterogeneous variance.
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Table 3.2: Shapiro-Wilk normality test

Shapiro-Wilk W-test statistics p-value

0.98 2.081e-08

The p-value, reported in Table 3.2 is less than 0.05 indicating that the

data are not normally distributed.



Chapter 4

Results and Discussion

This chapter comes up with the result interpretation and comparison

of each model’s performance in the simulation study and real life data. All results

were achieved by using R software (R Core Team, 2017).

4.1 Results and discussion of simulation study

For each sample size and variance, the tables show the relative biases,

MSEs, as well as the 95% empirical coverage probabilities and average lengths of

confidence intervals (in parentheses). Tables 4.1-4.4 show the results of the non-

constant variance Var(εi) =
√
xi for sample sizes 20, 50, 100, and 200, respectively.

Tables 4.5-4.8 is about the non-constant variance Var(εi) = exi for the sample sizes

20, 50, 100, and 200, respectively. Consequently, Tables 4.9-4.12 obtained the results

of non-constant variance Var(εi) = 0.5 + ŷi for sample sizes 20, 50, 100, and 200,

respectively.
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Table 4.1: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) =
√
xi with the sample

size 20.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS 0.00 0.06 0.00 0.33 0.99(1.38) 0.94(2.37)

TBS -0.10 0.08 -0.20 0.03 0.92(0.99) 0.99(0.78)

POM 0.00 0.03 0.00 0.23 0.88(0.59) 0.94(0.59)

VEXP 0.00 0.04 0.10 0.25 0.97(0.87) 0.95(0.87)

Laplace OLS -0.40 0.11 3.10 0.63 0.99(1.88) 0.95(3.27)

TBS 0.30 0.14 0.70 0.04 0.92(1.36) 0.99(1.07)

POM -0.10 0.06 0.80 0.42 0.86(0.81) 0.94(2.49)

VEXP -0.40 0.08 2.20 0.48 0.97(1.21) 0.96(2.91)

Location scale OLS -0.10 0.07 0.60 0.37 0.99(1.42) 0.94(2.46)

of t TBS 0.10 0.08 0.60 0.03 0.93(1.03) 0.98(0.81)

POM -0.30 0.04 1.90 0.25 0.86(0.81) 0.94(2.49)

VEXP -0.30 0.04 2.40 0.28 0.97(1.21) 0.96(2.91)

Logistic OLS -0.50 0.19 3.60 1.09 0.99(2.43) 0.95(4.23)

TBS 0.30 0.24 0.70 0.08 0.93(1.78) 0.99(1.40)

POM -0.40 0.10 3.30 0.75 0.86(1.05) 0.94(3.25)

VEXP -0.30 0.13 1.10 0.87 0.97(1.54) 0.95(3.79)

The results presented in Table 4.1 show that when the sample size is

small with normal distribution, all of the estimation methods produce reasonably ac-

curate estimates. However, under non-normal distributions namely laplace, location

scale of t, and logistic distributions, TBS tends to have smaller bias and MSE for β1

compared to the other methods and POM has the smallest bias and MSE for β0. On
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the other hand, the OLS estimation obviously overestimates the slope parameter, es-

pecially under laplace and logistic distributions. In terms of coverage probabilities,

the OLS and VEXP methods seem to be better than the others whereas the POM and

TBS give the shortest average length for β0 and β1, respectively.

Table 4.2: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) =
√
xi with the sample

size 50.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS 0.20 0.02 -1.90 0.13 0.99(0.82) 0.95(1.41)

TBS -0.20 0.03 -0.30 0.01 0.92(0.58) 0.99(0.43)

POM 0.00 0.01 -0.70 0.07 0.89(0.30) 0.95(1.02)

VEXP 0.10 0.01 -1.00 0.09 0.97(0.50) 0.97(1.28)

Laplace OLS 0.00 0.04 -0.70 0.24 0.99(1.14) 0.96(1.98)

TBS -0.20 0.06 -0.20 0.01 0.91(0.82) 0.99(0.60)

POM 0.00 0.01 -1.10 0.14 0.88(0.42) 0.94(1.43)

VEXP 0.10 0.02 -1.70 0.18 0.98(0.71) 0.97(1.77)

Location scale OLS 0.00 0.02 0.90 0.14 0.99(0.83) 0.94(1.43)

of t TBS 0.20 0.03 0.30 0.01 0.92(0.59) 0.99(0.44)

POM -0.10 0.01 1.30 0.07 0.89(0.30) 0.94(1.03)

VEXP -0.10 0.01 1.50 0.09 0.98(0.51) 0.97(1.29)

Logistic OLS -0.30 0.06 0.90 0.38 0.99(1.47) 0.95(2.54)

TBS 0.00 0.09 0.40 0.02 0.91(1.05) 0.99(0.77)

POM -0.20 0.03 0.30 0.23 0.89(0.53) 0.94(1.83)

VEXP -0.20 0.04 0.20 0.28 0.99(0.89) 0.96(2.28)
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Likewise, when the sample size is 50 as shown in Table 4.2, the

results are similar to those in small sample size. However, it is quite obvious in

almost all distributions that POM has the smallest bias and MSE for β0 and TBS has

the smallest bias and MSE for β1.

Table 4.3: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) =
√
xi with the sample

size 100.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS -0.10 0.01 1.00 0.07 0.99(0.57) 0.94(0.98)

TBS 0.10 0.01 0.10 0.00 0.92(0.40) 0.99(0.29)

POM -0.10 0.00 0.60 0.03 0.91(0.19) 0.94(0.69)

VEXP -0.10 0.01 0.50 0.04 0.98(0.35) 0.96(0.89)

Laplace OLS 0.20 0.02 -2.10 0.11 0.99(0.79) 0.97(1.37)

TBS -0.30 0.02 -0.60 0.01 0.93(0.56) 0.99(0.41)

POM 0.10 0.00 -1.70 0.06 0.93(0.26) 0.97(0.96)

VEXP 0.10 0.01 -1.70 0.07 0.98(0.49) 0.98(1.24)

Location scale OLS 0.10 0.01 0.30 0.06 0.99(1.02) 0.96(1.77)

of t TBS 0.00 0.01 -0.10 0.00 0.92(0.73) 0.99(0.53)

POM 0.00 0.00 0.20 0.03 0.92(0.19) 0.94(0.70)

VEXP 0.00 0.00 -0.10 0.04 0.99(0.35) 0.98(0.90)

Logistic OLS -0.10 0.03 0.30 0.20 0.99(0.57) 0.94(0.99)

TBS 0.00 0.04 0.10 0.01 0.92(0.41) 0.99(0.29)

POM -0.10 0.01 0.30 0.10 0.92(0.34) 0.95(1.24)

VEXP -0.10 0.02 0.70 0.13 0.98(0.63) 0.96(1.60)
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Table 4.4: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) =
√
xi with sample size

200.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS 0.00 0.01 0.10 0.03 0.99(0.40) 0.96(0.68)

TBS 0.00 0.01 0.00 0.00 0.92(0.28) 0.99(0.20)

POM 0.00 0.00 -0.10 0.02 0.92(0.12) 0.95(0.47)

VEXP 0.00 0.00 0.10 0.02 0.99(0.24) 0.97(0.62)

Laplace OLS -0.10 0.01 0.70 0.06 0.99(0.56) 0.95(0.96)

TBS 0.00 0.01 0.10 0.00 0.92(0.40) 0.99(0.28)

POM 0.00 0.00 0.20 0.03 0.93(0.17) 0.96(0.66)

VEXP -0.10 0.01 0.80 0.04 0.99(0.34) 0.97(0.87)

Location scale OLS 0.10 0.00 -1.00 0.03 0.99(0.40) 0.96(0.68)

of t TBS -0.10 0.01 -0.20 0.00 0.92(0.28) 0.99(0.20)

POM 0.10 0.00 -0.50 0.01 0.92(0.12) 0.93(0.47)

VEXP 0.10 0.00 -0.40 0.02 0.98(0.24) 0.97(0.63)

Logistic OLS 0.10 4.10 -0.10 0.10 0.99(0.71) 0.95(1.24)

TBS 0.10 0.02 0.00 0.00 0.93(0.51) 0.99(0.36)

POM 0.00 0.00 0.40 0.05 0.92(0.21) 0.95(0.84)

VEXP 0.10 0.01 -0.30 0.06 0.98(0.44) 0.98(1.12)

Moreover, when the sample size is large, the results of all distribu-

tions carried out in Table 4.3 and Table 4.4 are in agreement with those in Table 4.1.

In almost all distributions, POM and VEXP perform best in terms bias and MSE for

β0 and TBS has the smallest bias and MSE for β1. Again, OLS performs best in

terms of coverage probability in maintaining an accuracy of the nominal confidence
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level 95%. The bias and MSE of the OLS, POM, and VEXP estimation methods

decrease as the sample size increase, though there is a small change of bias and MSE

of TBS method.

Table 4.5: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = exi with the sample

size 20.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS 1.00 0.49 -8.30 2.53 0.98(3.45) 0.93(6.00)

TBS -1.20 0.50 -2.50 0.20 0.91(2.50) 0.97(1.95)

POM 1.20 0.45 -9.70 2.33 0.80(2.00) 0.88(4.90)

VEXP 0.90 0.42 -7.50 2.23 0.92(6.05) 0.92(5.48)

Laplace OLS -1.00 0.86 6.90 4.64 0.98(4.72) 0.94(8.20)

TBS 0.60 0.95 1.60 0.38 0.93(3.45) 0.97(2.72)

POM -1.00 0.78 7.60 4.09 0.82(2.66) 0.91(6.67)

VEXP -0.80 0.73 4.30 4.00 0.92(3.26) 0.93(7.40)

Location scale OLS -0.40 0.51 0.40 2.54 0.98(3.60) 0.94(6.24)

of t TBS -0.10 0.52 0.90 0.22 0.92(2.62) 0.97(2.07)

POM 0.00 0.47 -2.10 2.32 0.80(2.09) 0.89(5.14)

VEXP 0.00 0.43 -2.80 2.23 0.92(2.51) 0.92(5.72)

Logistic OLS 0.00 1.46 -0.80 7.48 0.98(6.22) 0.95(10.80)

TBS -0.50 1.55 -0.80 0.60 0.93(4.50) 0.98(3.53)

POM -0.70 1.38 2.60 6.77 0.82(3.58) 0.90(8.79)

VEXP 0.10 1.27 -2.50 6.58 0.92(4.32) 0.94(9.80)

The results displayed in Table 4.5, where the variance is in exponen-

tial form, show that when the sample size is small in all distributions, VEXP provides
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the smallest bias and MSE for β0 whereas TBS provides the smallest bias and MSE

for β1. However, the 95% CIs based on OLS are quite accurate in maintaining the

nominal confidence level although it gains the accuracy with wider intervals. Under

normal distribution, TBS clearly underestimates for both β0 and β1, whereas other

estimation methods severely underestimate only for β1.

Table 4.6: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = exi with the sample

size 50.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS 0.20 0.17 0.30 0.97 0.99(2.06) 0.92(3.57)

TBS 0.30 0.18 0.30 0.06 0.92(1.48) 0.97(1.08)

POM -0.20 0.17 2.20 0.85 0.85(1.25) 0.88(2.94)

VEXP 0.00 0.14 1.80 0.77 0.93(1.43) 0.94(3.31)

Laplace OLS -0.70 0.31 2.90 1.69 0.98(2.88) 0.94(4.98)

TBS 0.10 0.35 1.10 0.12 0.91(2.06) 0.97(1.52)

POM -0.60 0.29 2.10 1.47 0.87(1.68) 0.89(4.04)

VEXP -0.60 0.27 1.70 1.40 0.94(1.97) 0.94(4.55)

Location scale OLS 0.50 0.15 -2.40 0.80 0.99(2.10) 0.96(3.64)

of t TBS 0.00 0.17 -0.30 0.05 0.92(1.50) 0.99(1.11)

POM 0.30 0.15 -1.30 0.74 0.87(1.28) 0.92(2.99)

VEXP 0.20 0.12 -0.40 0.66 0.95(1.47) 0.96(3.38)

Logistic OLS 0.00 0.53 -2.30 2.74 0.99(3.70) 0.95(6.42)

TBS -0.60 0.59 -0.80 0.18 0.91(2.65) 0.98(1.94)

POM 0.60 0.51 -5.60 2.46 0.85(2.22) 0.90(5.25)

VEXP 0.40 0.45 -5.40 2.34 0.95(2.58) 0.95(5.93)
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The sample size is 50, the results reported in Table 4.6 is in agreement

with those in Table 4.5. However, under non-normal distribution, TBS performs

best in terms of bias and MSE for both β0 and β1 while OLS, POM, and VEXP

underestimate both parameters.

Table 4.7: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = exi with the sample

size 100.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS -0.30 0.08 2.40 0.44 0.99(1.42) 0.93(2.47)

TBS 0.30 0.09 0.70 0.03 0.91(1.01) 0.98(0.73)

POM -0.20 0.08 2.10 0.41 0.86(0.90) 0.89(2.05)

VEXP -0.30 0.07 2.40 0.37 0.94(0.99) 0.95(2.30)

Laplace OLS -0.20 0.17 0.60 0.89 0.99(2.01) 0.93(3.48)

TBS -0.10 0.17 0.10 0.05 0.91(1.43) 0.97(1.03)

POM -0.20 0.15 0.70 0.75 0.86(1.23) 0.89(2.85)

VEXP -0.30 0.14 1.50 0.69 0.93(1.40) 0.94(3.22)

Location scale OLS 0.10 0.44 -0.80 0.08 0.99(1.44) 0.94(2.50)

of t TBS -0.10 0.09 -0.30 0.03 0.91(1.02) 0.98(0.75)

POM -0.10 0.08 0.40 0.40 0.89(0.93) 0.89(2.08)

VEXP 0.00 0.06 0.10 0.35 0.95(1.02) 0.94(2.33)

Logistic OLS 0.00 0.28 0.50 1.45 0.99(2.60) 0.94(4.51)

TBS 0.00 0.26 -0.20 0.08 0.93(1.85) 0.98(1.34)

POM 0.10 0.28 -0.10 1.28 0.86(1.63) 0.91(3.73)

VEXP 0.00 0.22 0.80 1.18 0.94(1.81) 0.95(4.19)
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Table 4.8: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = exi with sample size

200.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS -0.10 0.04 0.60 0.23 0.99(1.00) 0.92(1.74)

TBS 0.00 0.04 0.00 0.01 0.92(0.71) 0.98(0.51)

POM 0.00 0.04 0.10 0.20 0.87(0.65) 0.88(1.45)

VEXP 0.00 0.03 0.30 0.17 0.94(0.70) 0.95(1.62)

Laplace OLS 0.20 0.08 -0.20 0.43 0.99(1.42) 0.94(2.45)

TBS 0.20 0.08 0.00 0.02 0.93(1.00) 0.98(0.72)

POM 0.00 0.08 0.90 0.37 0.89(0.89) 0.90(2.03)

VEXP 0.20 0.06 -0.30 0.33 0.95(0.98) 0.96(2.28)

Location scale OLS 0.30 0.04 -1.40 0.22 0.99(1.00) 0.94(1.73)

of t TBS 0.00 0.05 -0.20 0.01 0.92(0.71) 0.98(0.51)

POM 0.20 0.04 -1.10 0.21 0.88(0.65) 0.88(1.45)

VEXP 0.20 0.03 -0.90 0.18 0.94(0.69) 0.94(1.62)

Logistic OLS -0.40 0.13 2.60 0.73 0.91(1.81) 0.98(3.13)

TBS 0.20 0.14 0.50 0.04 0.99(1.28) 0.94(0.92)

POM -0.10 0.13 1.40 0.63 0.88(1.17) 0.90(2.61)

VEXP -0.30 0.10 2.60 0.55 0.95(1.27) 0.95(2.92)

When the sample size increases to the sizes 100 and 200, the results

displayed in Table 4.7 and Table 4.8 reveal that the results are similar to those in

Table 4.5. The VEXP still provides the smallest bias and MSE for β0 whereas TBS

provides the smallest bias and MSE for β1. In terms of coverage probabilities, the

OLS and VEXP method gain the accuracy with wider intervals in all cases. More-
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over, the bias and MSE of each method seems to decrease as the sample size increase

to 100 and 200, especially when data is not under normal distribution.

Table 4.9: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = 0.5 + ŷi with the

sample size 20.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS -0.70 3.26 5.00 10.74 0.96(7.81) 0.95(13.57)

TBS 0.90 2.04 2.60 1.17 0.94(5.61) 0.95(4.40)

POM -2.60 3.73 15.40 12.39 0.87(6.40) 0.91(12.43)

VEXP -1.90 3.61 14.10 12.37 0.91(6.99) 0.93(13.08)

Laplace OLS -0.90 5.93 2.90 21.08 0.97(10.80) 0.95(18.91)

TBS -0.20 3.99 0.50 2.13 0.95(7.89) 0.96(6.08)

POM 0.20 6.46 -4.60 22.78 0.87(8.47) 0.92(16.97)

VEXP 0.30 6.28 -7.40 22.32 0.93(9.50) 0.93(17.89)

Location scale OLS 2.80 3.37 -10.30 11.40 0.96(8.14) 0.96(14.18)

of t TBS 0.70 2.10 -1.80 1.17 0.94(5.87) 0.96(4.62)

POM 2.40 3.83 -6.20 12.82 0.87(6.64) 0.92(13.01)

VEXP 2.80 3.75 -8.60 12.95 0.93(7.25) 0.93(13.67)

Logistic OLS -3.90 10.43 12.50 35.68 0.96(13.78) 0.94(24.11)

TBS -1.40 6.80 1.60 3.84 0.93(10.02) 0.95(7.78)

POM -4.70 11.58 16.10 38.70 0.87(11.34) 0.91(22.13)

VEXP -3.90 11.16 12.10 38.01 0.92(12.38) 0.93(23.16)
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Table 4.10: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = 0.5 + ŷi with the

sample size 50.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS -1.90 1.16 11.10 4.15 0.98(4.62) 0.95(8.04)

TBS 1.20 0.70 3.80 0.34 0.95(3.32) 0.97(2.41)

POM -2.20 1.19 12.90 4.21 0.94(4.10) 0.94(7.64)

VEXP -2.30 1.16 14.40 4.20 0.96(4.27) 0.95(7.94)

Laplace OLS -0.90 2.24 4.70 7.79 0.96(6.48) 0.95(11.22)

TBS 0.50 1.40 1.90 0.65 0.95(4.61) 0.96(3.40)

POM -0.90 2.20 4.30 7.59 0.92(5.53) 0.93(10.45)

VEXP -0.70 2.16 3.30 7.51 0.94(5.91) 0.95(10.97)

Location scale OLS 1.20 1.27 -6.20 4.20 0.96(4.68) 0.96(8.12)

of t TBS 0.20 0.73 -0.20 0.36 0.95(3.35) 0.96(2.46)

POM 1.10 1.33 -6.00 4.31 0.92(4.15) 0.89(7.71)

VEXP 1.10 1.29 -5.80 4.22 0.94(4.33) 0.95(8.00)

Logistic OLS 0.40 3.75 -15.60 13.08 0.97(8.33) 0.95(14.49)

TBS -4.00 2.40 -5.30 1.08 0.93(5.96) 0.96(4.37)

POM 1.00 3.87 -19.60 13.44 0.92(7.22) 0.94(13.62)

VEXP 0.50 3.76 -16.90 13.23 0.95(7.62) 0.95(14.24)
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Table 4.11: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = 0.5 + ŷi with the

sample size 100.

Distributions Estimators β0 β1 Coverage Probability (average length)

Bias MSE Bias MSE β0 β1

Normal OLS -1.30 0.59 4.30 1.98 0.96(3.20) 0.95(5.55)

TBS -0.20 0.35 0.90 0.16 0.94(2.28) 0.96(1.65)

POM -1.30 0.61 4.40 2.01 0.93(2.88) 0.93(5.32)

VEXP -1.40 0.58 5.00 1.97 0.95(2.96) 0.95(5.50)

Laplace OLS 1.30 1.26 -1.70 4.37 0.95(4.49) 0.94(7.80)

TBS 0.70 0.74 -1.00 0.33 0.93(3.20) 0.96(2.30)

POM 1.60 1.22 -3.50 4.27 0.92(3.95) 0.89(7.38)

VEXP 1.40 1.22 -2.90 4.22 0.93(4.13) 0.94(7.69)

Location scale OLS -0.80 0.60 5.80 2.10 0.96(3.22) 0.95(5.59)

of t TBS 0.90 0.36 2.30 0.16 0.96(2.30) 0.96(1.65)

POM -0.90 0.62 6.30 2.12 0.92(2.90) 0.52(2.68)

VEXP -0.90 0.60 6.60 2.08 0.94(2.98) 0.95(5.54)

Logistic OLS -3.10 1.96 19.40 6.52 0.95(5.77) 0.95(10.01)

TBS 1.40 1.14 4.00 0.50 0.95(4.11) 0.96(2.97)

POM -3.40 2.02 20.80 6.64 0.92(5.19) 0.94(9.58)

VEXP -3.20 1.95 20.10 6.49 0.94(5.37) 0.95(9.91)
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Table 4.12: Relative biases, MSEs, and coverage probabilities (average lengths) ob-

tained from the simulation under variance structure Var(εi) = 0.5 + ŷi with sample

size 200.

Distributions Estimators β0 β1 Coverage Probability(average length)

Bias MSE Bias MSE β0 β1

Normal OLS 0.80 0.29 -5.60 0.99 0.97(2.25) 0.95(3.89)

TBS -0.80 0.17 -2.20 0.07 0.94(1.59) 0.96(1.14)

POM 1.00 0.29 -6.90 0.99 0.95(2.06) 0.94(3.76)

VEXP 0.90 0.29 -6.60 0.99 0.95(2.09) 0.95(3.87)

Laplace OLS -0.90 0.53 6.60 1.84 0.97(3.15) 0.96(5.48)

TBS 0.90 0.33 2.10 0.13 0.95(2.24) 0.97(1.60)

POM -1.10 0.53 8.00 1.81 0.96(2.84) 0.95(5.24)

VEXP -1.00 0.52 7.80 1.80 0.96(2.91) 0.96(5.42)

Location scale OLS -0.60 0.28 5.20 0.97 0.97(2.25) 0.96(3.90)

of t TBS 0.80 0.18 1.60 0.07 0.95(1.60) 0.97(1.14)

POM -0.70 0.28 5.50 0.98 0.94(2.06) 0.95(3.77)

VEXP -0.60 0.28 5.40 0.96 0.95(2.09) 0.95(3.88)

Logistic OLS 0.80 0.96 -4.10 3.21 0.96(4.06) 0.94(7.04)

TBS -0.20 0.57 -1.20 0.24 0.93(2.88) 0.97(2.06)

POM 0.80 0.96 -4.00 3.22 0.93(3.71) 0.93(6.79)

VEXP 0.80 0.93 -3.60 3.13 0.94(3.78) 0.94(6.99)
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The results presented in Table 4.9 and Table 4.10 where the variance

is a function of the fitted values reveal that the OLS, POM, and VEXP methods

provide severe bias and MSE in all distributions. TBS, although considered to be the

best one, still gives small bias estimates. Moreover, TBS also performs well in terms

of coverage probabilities and the average lengths of the confidence intervals. When

the sample size increases as shown in Table 4.11 and Table 4.12, the results are in

agreement with those in small sample size. However, as expected, the severity of bias

and MSE of the OLS, POM, and VEXP estimates seem to decrease. This suggest

that sample size is crucial for quality of being accurate in estimating parameters,

especially under extreme heteroscedasticity.
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4.2 Results and discussion of practical applications

The graphs of prediction interval in Figure 4.1 show the performance

of each estimation method. Figure 4.2 shows the standardized residuals of each fitted

model.

Figure 4.1: Prediction intervals of the model fits on bike rental count daily and reg-

istered users with OLS, TBS, POM, and VEXP methods.
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Figure 4.1 shows the comparison of model fits with prediction inter-

vals. The OLS and VEXP model obviously overestimate the total number count with

small numbers of registered users, although, OLS acquires the accuracy of wider pre-

diction intervals. The TBS and POM method, however, are considered as the best

ones among all other fitted models in which most of the observations are within

prediction intervals.

Figure 4.2: Standardized residuals of the models with OLS, TBS, POM, and VEXP.
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Figure 4.2 shows that the OLS and VEXP method present the funnel

effect with greater error variance corresponding to larger predicted values, which

indicate that OLS and VEXP methods do not confirm the assumption of homogeneity

of variance. The POM method, although is slightly better, still presents a little funnel

effect whereas TBS method does not show the funnel effect and the assumption of

homogeneity is verified.



Chapter 5

Conclusions

In this thesis, we reviewed and compared four estimation methods

under three different forms of non-constant variances and four symmetric distribu-

tions. The assessment of the estimation methods was based on their relative bias,

MSEs, coverage probabilities and average lengths. The results given by the simula-

tions study indicate that each estimation method performed differently on different

variance structures and different distributions whereas the sample size did not give

much effect on each estimation method except in the case of extreme heteroscedas-

ticity.

As expected, under the power of the predictor variance structure with

normal distribution, there was not much difference between estimation methods. Un-

der non-normal distributions, however, the POM and TBS methods performed best

in terms of bias and MSE whereas the OLS method obviously overestimated the

slope parameter. When the variance was in the form of exponential function of the

predictor, VEXP and TBS were the best methods to estimate the intercept and slope

parameters, respectively. Moreover, the TBS method also performed obviously well

under extreme heteroscedasticity such as variance structure of fitted values function

whereas the other methods had quite poor performances under this variance struc-

ture.
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In the real studied data, all discussed estimation methods were in

agreement with the performance in the simulation study. The TBS and POM method

performed best in terms of model estimates, prediction intervals, and standardized

residuals.

In overall, the TBS method seemed to perform best in terms of small-

est bias, MSE, prediction intervals, and standardized residuals. On the other hand,

the OLS method was very accurate in maintaining the nominal coverage probabilities

although it had relatively poor performance in terms of bias. The large sample size

had slightly improved for each estimation method when the variance was extremely

heteroscedasticity, though it did not much affect on each distribution.
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Appendix

R simulation codes

7.1 Simulation process of non-constant variance of 0.5 + ŷ under Logistic distribution

with sample size n=200. We just change the sample sizes, variances, and distributions.

library(hydroGOF)

library(nlme)

set.seed(3)

tbs.yhat.rlogisb0 <- 0

tbs.yhat.rlogisb1 <- 0

yhat.ols.rlogisb0<- 0

yhat.ols.rlogisb1<- 0

yhat.pom.rlogisb0<- 0

yhat.pom.rlogisb1<- 0

yhat.exp.rlogisb0<-0

yhat.exp.rlogisb1<-0

confb0.tbsrlogis.explow<-0

confb0.tbsrlogis.expup<-0

confb1.tbsrlogis.explow<-0

confb1.tbsrlogis.expup<-0
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confb0.olsrlogis.explow<-0

confb0.olsrlogis.expup<-0

confb1.olsrlogis.explow<-0

confb1.olsrlogis.expup<-0

confb0.powrlogis.explow<-0

confb0.powrlogis.expup<-0

confb1.powrlogis.explow<-0

confb1.powrlogis.expup<-0

confb0.exprlogis.explow<-0

confb0.exprlogis.expup<-0

confb1.exprlogis.explow<-0

confb1.exprlogis.expup<-0

#Loop 1000 rounds to simulate data generate

from Logistic distribution

for(i in 1:1000)

{

x<-runif(200)

a<-3

b<-1

#########################################

epshat<- rnorm(200,0,1)

yhat= a +b*x + epshat

fit.yhat<- lm(yhat ˜ x)

exvar<- 0.5 + fit.yhat$fitted.values
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#Other non-constant variances

exeps<- rlogis(200,0,exvar) #Switch to other distribution

y<- a + b*x + exeps

#Normal, Laplace, Location scale of t-distributions

#########################################

#TBS ====================================================

lox<-log(x)

ytbs.yhat.rlogis<- exp(a + b*log(x) + exeps)

loy<- log(ytbs.yhat.rlogis)

tbs.yhat.rlogis<-lm(loy˜lox)

tbs.yhat.rlogisb0[i]<- tbs.yhat.rlogis$coefficients[1]

tbs.yhat.rlogisb1[i]<- tbs.yhat.rlogis$coefficients[2]

#CI for TBS==============================================

conf.tbsrnorm.exp<-confint(tbs.yhat.rlogis, level = 0.95)

confb0.tbsrlogis.explow[i]<-conf.tbsrnorm.exp[1,1]

confb0.tbsrlogis.expup[i]<-conf.tbsrnorm.exp[1,2]

confb1.tbsrlogis.explow[i]<-conf.tbsrnorm.exp[2,1]

confb1.tbsrlogis.expup[i]<-conf.tbsrnorm.exp[2,2]

#Fit OLS=================================================

yhat.ols.rlogis<-lm(y˜x)

yhat.ols.rlogisb0[i]<-yhat.ols.rlogis$coefficients[1]

yhat.ols.rlogisb1[i]<-yhat.ols.rlogis$coefficients[2]
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#CI for OLS==============================================

conf.olsrlogis.exp<-confint(yhat.ols.rlogis,level = 0.95)

confb0.olsrlogis.explow[i]<-conf.olsrlogis.exp[1,1]

confb0.olsrlogis.expup[i]<-conf.olsrlogis.exp[1,2]

confb1.olsrlogis.explow[i]<-conf.olsrlogis.exp[2,1]

confb1.olsrlogis.expup[i]<-conf.olsrlogis.exp[2,2]

#Fit Power===============================================

yhat.pom.rlogis<- gls(y˜x,weights = varPower(form = ˜x))

yhat.pom.rlogisb0[i]<- yhat.pom.rlogis$coefficients[1]

yhat.pom.rlogisb1[i]<- yhat.pom.rlogis$coefficients[2]

#CI for Power============================================

conf.powrlogis.exp<-intervals(yhat.pom.rlogis,level = 0.95)

confb0.powrlogis.explow[i]<-conf.powrlogis.exp$coef[1,1]

confb0.powrlogis.expup[i]<-conf.powrlogis.exp$coef[1,3]

confb1.powrlogis.explow[i]<-conf.powrlogis.exp$coef[2,1]

confb1.powrlogis.expup[i]<-conf.powrlogis.exp$coef[2,3]

#Fit VarExp==============================================

yhat.exp.rlogis<- gls(y˜x, weights = varExp(form = ˜x))

yhat.exp.rlogisb0[i]<- yhat.exp.rlogis$coefficients[1]

yhat.exp.rlogisb1[i]<- yhat.exp.rlogis$coefficients[2]

#CI for VarExp===========================================

conf.exprlogis.exp<-intervals(yhat.exp.rlogis,level = 0.95)

confb0.exprlogis.explow[i]<-conf.exprlogis.exp$coef[1,1]

confb0.exprlogis.expup[i]<-conf.exprlogis.exp$coef[1,3]

confb1.exprlogis.explow[i]<-conf.exprlogis.exp$coef[2,1]

confb1.exprlogis.expup[i]<-conf.exprlogis.exp$coef[2,3]

}
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#Coverage for OLS========================================

Coverageb0.olsrlogis.exp<-ifelse(confb0.olsrlogis.explow<=3

&confb0.olsrlogis.expup>=3,1,0)

t<-table(Coverageb0.olsrlogis.exp)

covb0.olsrlogis.exp<-1-t[1]/1000

COverageb1.olsrlogis.exp<-ifelse(confb1.olsrlogis.explow<=1

&confb1.olsrlogis.expup>=1,1,0)

t<-table(COverageb1.olsrlogis.exp)

covb1.olsrlogis.exp<-1-t[1]/1000

c("CovB0"=covb0.olsrlogis.exp,"CovB1"=covb1.olsrlogis.exp)

#Length CI of OLS========================================

lengthb0.ols= confb0.olsrlogis.expup-confb0.olsrlogis.explow

lengthb0.ols.logis=sum(lengthb0.ols)/length(lengthb0.ols)

lengthb1.ols=confb1.olsrlogis.expup-confb1.olsrlogis.explow

lengthb1.ols.logis=sum(lengthb1.ols)/length(lengthb1.ols)

c("Length b0"=lengthb0.ols.logis,"Length b1"=lengthb1.ols.logis)

#Coverage for TBS========================================

coverageb0.tbsrlogis.exp<-ifelse(confb0.tbsrlogis.explow<=3

&confb0.tbsrlogis.expup>=3,1,0)

t<-table(coverageb0.tbsrlogis.exp)

Covb0.tbsrlogis.exp<-1-t[1]/1000

coverageb1.tbsrlogis.exp<-ifelse(confb1.tbsrlogis.explow<=1

&confb1.tbsrlogis.expup>=1,1,0)

t<-table(coverageb1.tbsrlogis.exp)

covb1.tbsrlogis.exp<-1-t[1]/1000

c("CovB0"=Covb0.tbsrlogis.exp,"CovB1"=covb1.tbsrlogis.exp)
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#Length CI of TBS========================================

lengthb0.tbs=confb0.tbsrlogis.expup-confb0.tbsrlogis.explow

lengthb0.tbs.logis=sum(lengthb0.tbs)/length(lengthb0.tbs)

lengthb1.tbs= confb1.tbsrlogis.expup-confb1.tbsrlogis.explow

lengthb1.tbs.logis=sum(lengthb1.tbs)/length(lengthb1.tbs)

c("Length b0"=lengthb0.tbs.logis,"Length b1 "=lengthb1.tbs.logis)

#Coverage for VarPower===================================

Coverageb0.powrlogis.exp<-ifelse(confb0.powrlogis.explow<=3&

confb0.powrlogis.expup>=3,1,0)

t<-table(Coverageb0.powrlogis.exp)

Covb0.powrlogis.exp<-1-t[1]/1000

Coverageb1.powrlogis.exp<-ifelse(confb1.powrlogis.explow<=1&

confb1.powrlogis.expup>=1,1,0)

t<-table(Coverageb1.powrlogis.exp)

Covb1.powrlogis.exp<-1-t[1]/1000

c("CovB0"=Covb0.powrlogis.exp,"CovB1"=Covb1.powrlogis.exp)

#Length CI of VarPower===================================

lengthb0.varpower= confb0.powrlogis.expup-confb0.powrlogis.explow

lengthb0.varpower.logis=sum(lengthb0.varpower)/

length(lengthb0.varpower)

lengthb1.varpower=confb1.powrlogis.expup-confb1.powrlogis.explow

lengthb1.varpower.logis=sum(lengthb1.varpower)/

length(lengthb1.varpower)

c("Length b0"=lengthb0.varpower.logis,

"Length b1"=lengthb1.varpower.logis)
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#Coverage for VarExp=====================================

Coverageb0.exprlogis.exp<-ifelse(confb0.exprlogis.explow<=3&

confb0.exprlogis.expup>=3,1,0)

t<-table(Coverageb0.exprlogis.exp)

Covb0.exprlogis.exp<-1-t[1]/1000

Coverageb1.exprlogis.exp<-ifelse(confb1.exprlogis.explow<=1&

confb1.exprlogis.expup>=1,1,0)

t<-table(Coverageb1.exprlogis.exp)

Covb1.exprlogis.exp<-1-t[1]/1000

c("COVB0"=Covb0.exprlogis.exp,"COvB1"=Covb1.exprlogis.exp)

#Length CI of varExp=====================================

lengthb0.varexp=confb0.exprlogis.expup-confb0.exprlogis.explow

lengthb0.varexp.logis=sum(lengthb0.varexp)/length(lengthb0.varexp)

lengthb1.varexp=confb1.exprlogis.expup-confb1.exprlogis.explow

lengthb1.varexp.logis= sum(lengthb1.varexp)/

length(lengthb1.varexp)

c("Length b0"=lengthb0.varexp.logis,

"Length b1"=lengthb1.varexp.logis)

#Bias and MSE for TBS====================================

biastbs.yhat.rlogisb0<- pbias(tbs.yhat.rlogisb0,rep(a,1000))

msetbs.yhat.rlogisb0<-mse(tbs.yhat.rlogisb0,rep(a,1000))

biastbs.yhat.rlogisb1<-pbias(tbs.yhat.rlogisb1,rep(b,1000))

msetbs.yhat.rlogisb1<-mse(tbs.yhat.rlogisb1,rep(b,1000))

c("Bias B0"=biastbs.yhat.rlogisb0,"MSE B0"=msetbs.yhat.rlogisb0,

"Bias B1"=biastbs.yhat.rlogisb1,"MSE B1"=msetbs.yhat.rlogisb1)
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#Bias and MSE for OLS====================================

biasols.yhat.rlogisb0<- pbias(yhat.ols.rlogisb0,rep(a,1000))

mseols.yhat.rlogisb0<- mse(yhat.ols.rlogisb0,rep(a,1000))

biasols.yhat.rlogisb1<- pbias(yhat.ols.rlogisb1,rep(b,1000))

mseols.yhat.rlogisb1<- mse(yhat.ols.rlogisb1,rep(b,1000))

c("Bias B0"=biasols.yhat.rlogisb0,"MSE B0"=mseols.yhat.rlogisb0,

"Bias B1"=biasols.yhat.rlogisb1,"MSE B1"=mseols.yhat.rlogisb1)

#Bias and MSE for VarPower===============================

biaspom.yhat.rlogisb0<- pbias(yhat.pom.rlogisb0,rep(a,1000))

msepom.yhat.rlogisb0<- mse(yhat.pom.rlogisb0,rep(a,1000))

biaspom.yhat.rlogisb1<-pbias(yhat.pom.rlogisb1,rep(b,1000))

msepom.yhat.rlogisb1<- mse(yhat.pom.rlogisb1,rep(b,1000))

c("Bias B0"=biaspom.yhat.rlogisb0,"MSE B0"=msepom.yhat.rlogisb0,

"Bias B1"=biaspom.yhat.rlogisb1,"MSE B1"=msepom.yhat.rlogisb1)

#Bias and MSE for VarExp=================================

biasexp.yhat.rlogisb0<- pbias(yhat.exp.rlogisb0,rep(a,1000))

mseexp.yhat.rlogisb0<- mse(yhat.exp.rlogisb0,rep(a,1000))

biasexp.yhat.rlogisb1<- pbias(yhat.exp.rlogisb1,rep(b,1000))

mseexp.yhat.rlogisb1<- mse(yhat.exp.rlogisb1,rep(b,1000))

c("Bias B0"=biasexp.yhat.rlogisb0,"MSE B0"=mseexp.yhat.rlogisb0,

"Bias B1"=biasexp.yhat.rlogisb1,"MSE B1"=mseexp.yhat.rlogisb1)



67

7.2 Function for implementing a scatter plot of original data from simulations.

het.plot<-function(x,y){

lsfit<- lm(y˜x)

data.dat<- data.frame(x,y)

plot.xy<- ggplot(data.dat,aes(x,y))+

geom_point(shape=1, size= 2, color="blue")

plot.xy+geom_line(aes(y=lsfit$fitted.values),

color = "red",linetype = "solid", size = 1)

}
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7.3 Code of each fitted model in real life data set.

library(MASS)

library(olsrr)

library(nlme)

library(AICcmodavg)

library("ggplot2")

library(Rcmdr)

bikerent<- read.csv("day.csv", header=TRUE)

head(bikerent)

attach(bikerent)

#Test assumption of response data===============

shapiro.test(cnt)

#Bartlett’s test for homogeneity

cnt.check<- cnt

summary(cnt.check)

cnt.check1<-ifelse(cnt.check<=summary(cnt.check)[2],1,cnt.check)

cnt.check1<-ifelse(cnt.check>summary(cnt.check)[2]

&cnt.check<=summary(cnt.check)[3],2,cnt.check1)

cnt.check1<-ifelse(cnt.check>summary(cnt.check)[3]

&cnt.check<=summary(cnt.check)[5],3,cnt.check1)

cnt.check1<-ifelse(cnt.check>summary(cnt.check)[5],4,cnt.check1)

bartlett.test(cnt,cnt.check1)
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#==============Start modelling==================

#Fit OLS========================================

olsx<-registered

olsy<-cnt

ols.bikerent<-lm(olsy˜olsx)

new.dat<-data.frame(x=olsx)

head(ols.bikerent$fitted.values)

#Plot Confidence interval=======================

conf_interval<- predict(ols.bikerent,new.dat,+

interval="prediction",level = 0.95)

#ggplot PI for OLS==============================

windows()

ols.data<- cbind(bikerent,conf_interval)

ols.ggp<-ggplot(ols.data, aes(olsx, olsy))

+geom_point(shape=1,color="blue")

#Add prediction intervals

ols.ggp+geom_line(aes(y=ols.bikerent$fitted.values), +

color="red", linetype="solid",size=1)+

geom_line(aes(y = conf_interval[,2]), color = "green",

linetype = "solid",size=1)+

geom_line(aes(y = conf_interval[,3]), color = "green",

linetype = "solid",size=1)

#Ggplot Residual of OLS==========================

ols.bikerent.stres<-rstandard(ols.bikerent)#studres(ols.bikerent)

windows()

olsresid.ggp<-ggplot(ols.data, aes(ols.bikerent$fitted.values,+

ols.bikerent.stres))+geom_point(shape=1,color="blue")
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#Add line to residual

olsresid.ggp+geom_hline(yintercept= -1, color="green",

linetype = "solid", size=1)+

geom_hline(yintercept = 0, color="red",

linetype = "solid",size=1)+

geom_hline(yintercept = 1, color="green",

linetype = "solid",size=1)

#Lavene’s Test for Homogeneity OLS=================

sv.ols<-ols.bikerent$residuals

summary(sv.ols)

sv.ols1<-ifelse(sv.ols<=summary(sv.ols)[2],1,sv.ols)

sv.ols1<-ifelse(sv.ols>summary(sv.ols)[2]&

summary(sv.ols)[5],2,sv.ols1)

sv.ols1<-ifelse(sv.ols>summary(sv.ols)[3]&

sv.ols<=summary(sv.ols)[5],3,sv.ols1)

sv.ols1<-ifelse(sv.ols>summary(sv.ols)[5],4,sv.ols1)

sv.ols.group<-factor(sv.ols1)

leveneTest(sv.ols,sv.ols.group)

bartlett.test(sv.ols,sv.ols.group)

leveneTest(sv.ols,season)

#Lavene’s Test for Homogeneity OLS==================

sv.ols.fi<-ols.bikerent$fitted.values

summary(sv.ols.fi)

sv.ols.fi1<-ifelse(sv.ols.fi<=summary(sv.ols.fi)[2],1,sv.ols.fi)

sv.ols.fi1<-ifelse(sv.ols.fi>summary(sv.ols.fi)[2]&

summary(sv.ols.fi)[5],2,sv.ols.fi1)
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sv.ols.fi1<-ifelse(sv.ols.fi>summary(sv.ols.fi)[3]&

sv.ols.fi<=summary(sv.ols.fi)[5],3,sv.ols.fi1)

sv.ols.fi1<-ifelse(sv.ols.fi>summary(sv.ols.fi)[5],4,sv.ols.fi1)

sv.fi.ols.group<-factor(sv.ols.fi1)

leveneTest(sv.ols.fi,sv.fi.ols.group)

bartlett.test(sv.ols.fi,sv.fi.ols.group)

leveneTest(sv.ols,season)

#Shapiro’s Test for Normality OLS==================

shapiro.test(sv.ols)

#Fit TBS===========================================

tbsx<-log(registered)

tbsy<-log(cnt)

new.tbs<- data.frame(x=tbsx)

tbs.bikerent<-lm(tbsy˜tbsx)

#Plot TBS==========================================

conf_tbs <- predict(tbs.bikerent,new.tbs,interval="prediction",

level=0.95)

#ggplot PI for TBS=================================

windows()

tbs.data<- cbind(bikerent,conf_tbs)

tbs.ggp<-ggplot(tbs.data, aes(olsx, olsy))+geom_point(shape=1,

color="blue")
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#Add prediction intervals

tbs.ggp +geom_line(aes(y = exp(conf_tbs[,1])), color= "red",

linetype = "solid",size=1)+

geom_line(aes(y = exp(conf_tbs[,2])), color= "green",

linetype = "solid",size=1)+

geom_line(aes(y = exp(conf_tbs[,3])), color= "green",

linetype = "solid",size=1)

#Ggplot Residual of TBS============================

windows()

tbs.bikerent.stres<-rstandard(tbs.bikerent)#studres(tbs.bikerent)

tbsresid.ggp<-ggplot(tbs.data, aes(exp(tbs.bikerent$fitted.values),

tbs.bikerent.stres))+geom_point(shape=1,color="blue")

#Add line to residual

tbsresid.ggp+ geom_hline(yintercept = -1, color="green",

linetype="solid", size=1)+

geom_hline(yintercept = 0 , color="red",linetype="solid",size=1)+

geom_hline(yintercept = 1 , color="green",linetype="solid", size=1)

#Bartlett’s test for Homogeneity TBS===================

sv.tbs<-tbs.bikerent$residuals

summary(sv.tbs)

sv.tbs1<-ifelse(sv.tbs<=summary(sv.tbs)[2],1,sv.tbs)

sv.tbs1<-ifelse(sv.tbs>summary(sv.tbs)[2]&

summary(sv.tbs)[5],2,sv.tbs1)
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sv.tbs1<-ifelse(sv.tbs>summary(sv.tbs)[3]&

sv.tbs<=summary(sv.tbs)[5],3,sv.tbs1)

sv.tbs1<-ifelse(sv.tbs>summary(sv.tbs)[5],4,sv.tbs1)

sv.tbs.group<-factor(sv.tbs1)

bartlett.test(sv.tbs,sv.tbs.group)

#Shapiro’s Test for Normality TBS=====================

shapiro.test(sv.tbs)

qqnorm(tbs.bikerent.stres)

qqline(tbs.bikerent.stres)

#Fit POM==============================================

pomx<-registered

pomy<-cnt

pomframx<-data.frame(pomx)

n<-length(pomy)

new.pom.dat<-data.frame(pomx)

pom.bikerent<-gls(pomy˜pomx,weights=varPower(form = ˜pomx))

#Plot PI Davidian and Carroll:========================

y.hat<- pom.bikerent$fitted

t<- abs(qt(1-0.05/2,n-2))

sigma<- pom.bikerent$sigma

sigma.yhat<-sigma*y.hatˆ0.6094444

yhat.pom.lower<- y.hat-t*sigma.yhat

yhat.pom.upper<- y.hat+t*sigma.yhat

data.new.fram <- data.frame(y.hat,yhat.pom.lower,yhat.pom.upper)

head(data.new.fram)
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#ggplot For POM========================================

windows()

pom.mydata<-cbind(bikerent,data.new.fram)

pom.ggp<- ggplot(pom.mydata, aes(pomx,pomy))+

geom_point(shape=1,color="blue")

pom.ggp+ geom_line(aes(y =y.hat), color="red",

linetype= "solid",size=1)+

geom_line(aes(y =yhat.pom.lower), color = "green",

linetype = "solid",size=1)+

geom_line(aes(y =yhat.pom.upper), color = "green",

linetype = "solid",size=1)

#Ggplot Residual of POM=================================

windows()

pomresid.ggp<-ggplot(pom.mydata,

aes(y.hat, residuals(pom.bikerent,type="pearson")))+

geom_point(shape=1,color="blue")

#Add line to residual

pomresid.ggp+ geom_hline(yintercept = -1, color="green",

linetype="solid",size=1)+

geom_hline(yintercept = 0, color="red",

linetype="solid",size=1)+

geom_hline(yintercept = 1, color="green",

linetype="solid",size=1)
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#Lavene’s Test for Homogeneity POM========================

sv.pom<-pom.bikerent$residuals

summary(sv.pom)

sv.pom1<-ifelse(sv.pom<=summary(sv.pom)[2],1,sv.pom)

sv.pom1<-ifelse(sv.pom>summary(sv.pom)[2]&summary(sv.pom)[5],

2,sv.pom1)

sv.pom1<-ifelse(sv.pom>summary(sv.pom)[3]&

sv.pom<=summary(sv.pom)[5],3,sv.pom1)

sv.pom1<-ifelse(sv.pom>summary(sv.pom)[5],4,sv.pom1)

sv.pom.group<-factor(sv.pom1)

leveneTest(sv.ols,sv.pom.group)

bartlett.test(sv.pom,sv.pom.group)

#Shapiro’s Test for Normality POM========================

shapiro.test(sv.pom)

qqnorm(pom.bikerent$residuals)

qqline(pom.bikerent$residuals)

#Fit VEXP================================================

vexpx<-registered

vexpy<-cnt

new.vexp.dat<- data.frame(vexpx)

vexp.bikerent<-gls(vexpy˜vexpx,weights=varExp(form = ˜vexpx))
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#Plot prediction interval================================

y.hat.vexp<-vexp.bikerent$fitted

sigmavexp<- vexp.bikerent$sigma

sigmavexp.yhat<- sigmavexp*(y.hat.vexpˆ0.000122235)

yhat.vexp.lower<- y.hat.vexp- t*sigmavexp.yhat

yhat.vexp.upper<- y.hat.vexp+ t*sigmavexp.yhat

data.new.vexp<- data.frame(y.hat.vexp,yhat.vexp.lower,

yhat.vexp.upper)

head(data.new.vexp)

#ggplot For VEXP=========================================

windows()

vexp.mydata<-cbind(bikerent,data.new.vexp)

vexp.ggp<- ggplot(vexp.mydata, aes(vexpx,vexpy))

+geom_point(shape=1,color="blue")

pom.ggp+ geom_line(aes(y =y.hat.vexp), color="red",

linetype= "solid",size=1)+

geom_line(aes(y =yhat.vexp.lower), color = "green",

linetype = "solid",size=1)+

geom_line(aes(y =yhat.vexp.upper), color = "green",

linetype = "solid",size=1)

#Ggplot Residual of VEXP==================================

windows()

vexpresid.ggp<-ggplot(vexp.mydata,

aes(y.hat.vexp, residuals(vexp.bikerent,type="pearson")))+

geom_point(shape=1,color="blue")
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#Add line to residual

vexpresid.ggp+ geom_hline(yintercept = -1, color="green",

linetype="solid",size=1)+

geom_hline(yintercept = 0, color="red",

linetype="solid",size=1)+

geom_hline(yintercept = 1, color="green",

linetype="solid",size=1)

#Lavene’s Test for Homogeneity VEXP=========================

sv.vexp<-vexp.bikerent$residuals

summary(sv.vexp)

sv.vexp1<-ifelse(sv.vexp<=summary(sv.vexp)[2],1,sv.vexp)

sv.vexp1<-ifelse(sv.vexp>summary(sv.vexp)[2]&

summary(sv.vexp)[5],2,sv.vexp1)

sv.vexp1<-ifelse(sv.vexp>summary(sv.vexp)[3]&

sv.vexp<=summary(sv.vexp)[5],3,sv.vexp1)

sv.vexp1<-ifelse(sv.vexp>summary(sv.vexp)[5],4,sv.vexp1)

sv.vexp.group<-factor(sv.vexp1)

leveneTest(sv.vexp,sv.vexp.group)

bartlett.test(sv.vexp,sv.vexp.group)

#Shapiro’s Test for Normality VEXP==========================

shapiro.test(sv.vexp)
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