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Somatic Embryogenesis จาก Thin Cell Layer และชิ้นส่วนดอก และ
ตรวจสอบความแปรปรวนทางพันธุกรรมด้วยเครื่องหมายโมเลกุล RAPD 
และ SSR 
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สาขาวิชา   พืชศาสตร์ 
ปีการศึกษา   2564 
 

บทคัดย่อ 
 

 ยางพาราเป็นพืชที่ส าคัญต่อเศรษฐกิจของประเทศไทย ในปัจจุบันการปลูกยางพาราได้
ประสบปัญหาการแพร่ระบาด  และการเข้าท าลายจากโรครากขาว ดังนั้นการใช้ต้นตอที่ทนทานต่อ
โรครากขาวจากยางพาราพันธุ์ดั้งเดิม เป็นการแก้ปัญหาดังกล่าวได้อย่างยั่งยืน จึงจ าเป็นต้องเพ่ิม
ปริมาณต้นตอยางที่ทนทานต่อโรคขาวให้เพียงพอต่อเกษตรกร งานวิจัยนี้จึงมีวัตถุประสงค์เพ่ือศึกษา
ผลของสารควบคุมการเจริญเติบโต และชนิดของชิ้นส่วนพืชเพ่ือเพ่ิมปริมาณต้นตอยางพาราที่ทนทาน
ต่อโรครากขาวในหลอดทดลอง เพื่อใช้ในการพัฒนาเป็นพืชต้นใหม่ในหลอดทดลอง โดยน ากิ่งยางอ่อน 
และดอกยางมาท าการฟอกฆ่าเชื้อด้วยโซเดียมไฮโปคลอไรท์ (NaOCl) ความเข้มข้น 0.525 เปอร์เซ็นต์ 
แล้วน ากิ่งอ่อนมาตัดเป็นชิ้นบางๆ ตามยาว (Longitudinally Thin Cell Layer; lTCL) กลีบดอก สับ 
20 ครั้งต่อดอก และกลุ่มดอก สับ 60 ครั้งต่อ 3 ดอก วางเลี้ยงบนอาหาร Murashige and Skoog 
(MS) ร่วมกับ 6-benzyladenine (BA) และ2,4-Dichlorophenoxyacetic acid (2,4-D) ความ
เข้มข้นต่างๆ เป็นเวลา 4 สัปดาห์ พบว่า อาหารสูตรที่เติม BA เข้มข้น 2 มิลลิกรัมต่อลิตร ร่วมกับ 2, 
4-D เข้มข้น 1.5 มิลลิกรัมต่อลิตร ให้อัตราการปลอดเชื้อ 100 เปอร์เซ็นต์ และอัตราการเกิดแคลลัส 
100 เปอร์เซ็นต์ แคลลัสจากชิ้นส่วนของดอกมีลักษณะเกาะกันหลวมๆ (Friable Callus; FC) และ
เกาะกันแน่น (Compact Callus; CC) ในขณะที่แคลลัสจาก lTCL มีลักษณะเป็น CC เท่านั้น แคลลัส
ที่พัฒนาจากทุกชิ้นส่วนที่เพาะเลี้ยงมีสีเหลืองอมเขียว แคลลัสที่ชักน าจากกลุ่มดอกเพ่ิมปริมาณได้ดี
ที่สุดให้น้ าหนักสดสูงสุด 392.05 มิลลิกรัม บนอาหารสูตรชักน าแคลลัสหลังจากเพาะเลี้ยงเป็นเวลา 4 
สัปดาห์ แคลลัสดังกล่าวให้อัตราการเกิดโซมาติกเอ็มบริโอ (Somatic embryo; SE) สูงสุด 39.84 
เปอร์เซ็นต์ จ านวน SE ระยะสร้างใบเลี้ยง (Cotyledonary embryo; CE)  3.25 เอ็มบริโอต่อหลอด
หลังจากเพาะเลี้ยงเป็นเวลา 12 สัปดาห์ เมื่อน า CE วางเลี้ยงบนอาหารสูตรเดิมที่เติม GA3 ความ
เข้มข้นต่างๆ พบว่า GA3 เข้มข้น 0.25 มิลลิกรัมต่อลิตร ให้อัตราการเกิดแกนต้นอ่อน 50 เปอร์เซ็นต์ 
และยอด 25 เปอร์เซ็นต์ หลังวางเลี้ยง 4 สัปดาห์ การตรวจสอบความแปรปรวนทางพันธุกรรม ของโซ
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มาติกเอ็มบริโอโดยชักน าจากชิ้นส่วนที่แตกต่างกันเปรียบเทียบกับต้นแม่ พบว่า  โซมาติกเอ็มบริโอที่
ชักน าได้มีรูปแบบของดีเอ็นเอที่เหมือนกันจากการตรวจสอบด้วยเครื่องหมาย RAPD ใช้ไพรเมอร์ 2 
ชนิด (OPAD-01 และ OPAD-10) และเครื่องหมาย SSR โดยใช้ไพรเมอร์ 3 ชนิด (hmac4  hmct1  
และ hmct5) จากผลดังกล่าวแสดงให้เห็นว่าโซมาติกเอ็มบริโอที่ได้จากกระบวนการนี้ไม่มีความ
แปรปรวนทางพันธุกรรม 
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ABSTRACT 
 

 Rubber tree is economically important rubber producing plant of Thailand. At 
present, a rubber tree plantation is susceptible to white root disease. Therefore, the 
use of rootstock from early introduce clone that proved to be resistant to white root 
disease could help sustain growing of rubber tree. Thus, the objectives of this 
research were to study the effects of plant growth regulators and different explants 
on callus and somatic embryo (SE) induction of this rubber clone. Both longitudinal 
thin cell layer (lTCL) from young branch and two different types of explants from 
young inflorescence gave 100% of sterilization and callus formation on MS medium 
supplemented with 2.0 mg/l 6-benzyladenine (BA) and 1.5mg/l 2,4-
Dichlorophenoxyacetic acid (2,4-D) after culture for 4 weeks. The characteristics of 
callus from flower explant was friable and compact. Whereas the callus from lTCL 
was compact only. The color of callus from all sources of explants was yellowish 
green. For proliferation of callus, callus from mix flower gave the highest proliferation 
rate in terms of fresh weight at 392.05 mg after culture for 4 weeks on MS medium 
supplemented with the above concentrations of BA and 2,4-D. Upon transferring the 
callus to the same culture medium and culturing for further 12 weeks somatic 
embryo (SE) formation at the highest frequency of 39.84% and number of 
cotyledonary embryos (CEs) at 3.25 embryos /callus were obtained. CEs conversed 
into embryo axis at 50% and shoot at 25% after transfer to 0.25 mg/l GA3 containing 
MS medium with the best concentrations of BA and 2,4-D for 4 weeks. The 
assessment of genetic stability of in vitro derived clones is considered to be a very 
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useful and essential step in this study. For SEs derived from different explants, 2 
primers (OPAD-01 and OPAD-10) of RAPD and 3 primers (hmac4 hmct1 and hmct5) of 
SSR marker gave the same profile of DNA pattern. It was clear that somaclones 
obtained from our protocol were uniform and successfully used to assess genetic 
stability in micropropagated plants. 
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CHAPTER 1 
INTRODUCTION  

 
Rationale and background  

An commercially significant rubber-producing plant in the world is the 
rubber tree. For a century, natural rubber businesses have contributed to Thailand's 
socioeconomic stability (Arporn et al., 2010). Numerous items, including rubber tyres, 
medical gloves, condoms, rubber bands, flexible tubing, etc., are made using rubber 
latex as a raw material (Choosong et al., 2010). Nowadays, the pandemic of corona 
virus-19 causes the demand of those products from rubber, especially medical 
gloves, increased greatly. Therefore, expanding the area of rubber plantation to be 
sufficient for the industry is necessary. Grafting buds from chosen clones onto 
unchosen seedling rootstocks produced in polybags is the usual procedure used in 
the commercial production of rubber clones (Nayanakantha et al., 2015). 75% of 
Thailand's rubber-producing land is planted with the clone RRIM 600, which has been 
around for more than 60 years. But RRIM 600 is extremely vulnerable to illnesses 
brought on by Phytophthora species (Thanseem et al., 2005). The RRIM 600 seedling, 
which is mostly farmed in Thailand, is susceptible to the white-root disease, 
according to Wattanasilakorn et al. (2012). Not only does the illness reduce 
productivity, but it also survives for a long time on dead or living root debris. In the 
absence of any woody substrate, it produces many white, flattened mycelial threads 
that spread quickly into the soil (Nandris et al., 1987; Kaewchai and Soytong, 2010; 
Wattanasilakorn et al.,2012). Therefore, choosing rootstock that is resistant to white 
root disease can solve that problem. However, the number of rootstock is not 
enough to use for the demand due to the destruction of native species of rubber.  
Currently, the amount of native rubber trees that resistant to white root disease in 
Thailand has been reduced. Hence, the propagation rubber tree through tissue 
culture technique is necessary for increasing the number of rootstocks because it has 
many advantages such as the large-scale production, true-to-type and short time 
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required for propagation. Two techniques, somatic embryogenesis and microcutting, 
can be used for rubber tree micropropagation. 

Axillary buds, cotyledonary nodes, or shoot tips are cultured to induce 
many shoots from them in the microcutting procedure. Te-chato and 
Muangkaewngam (1992) created numerous shoots from landrace rubber cultivars GT1 
and PB5/51 in vitro seedlings by cultivating nodal explants. Sirisom and Te-chato 
(2012) reported that shoot tips derived from native cloned could be induced 
multiple shoot formation. Somatic embryogenesis is an effective technique for plant 
regeneration that complements microcutting and is crucial for transgenic methods to 
mass propagation and crop enhancement. Hevea's somatic embryogenesis allowed 
for the formation of plants from numerous explants, mostly from the inner 
integument (Te-chato and Chartikul, 1993; Sushamakumari et al., 2000; Montoro et 
al., 2003; Lardet et al., 2007; Kouassi et al., 2013) anther (Te-chato and 
Muangkaewngam, 1992). Hence, the objective of this study was to investigate the 
development an efficient in vitro somatic embryogenesis protocol from different 
parts of explant, especially floral parts of rubber tree. It is expected that floral parts 
should be an alternative choice for propagation of rubber tree through tissue culture 
technique. If the hypothesis is true this experiment will be the first report on somatic 
embryo induction from the floral parts of rubber tree.    
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CHAPTER 2 
REVIEW OF LITERATURE 

 
Importance of rubber tree (Hevea brasiliensis) 

The tree Hevea brasiliensis is the most commercially significant species of the 
genus Hevea since its latex is the main source of natural rubber. It is a member of 
the Euphorbiaceae family (Anthony et al., 2018).  A tropical tree crop, the rubber 
tree is primarily produced for the commercial manufacturing of latex. Similar to oil 
palm, it needs significant annual rainfall, little to no dry season, and constant high 
temperatures; the soils don't need to be particularly rich, but they do need to be 
deep and well drained. In many situations, oil mills and rubber treatment facilities 
are part of the same industrial complex since both crops are frequently cultivated in 
the same ecological zones (Verheye, 2010). Thailand is now the world's top producer 
of rubber, followed by Malaysia, Indonesia, India, Sri Lanka, and China (Yasen and 
Koedsin, 2015). More than 95% of the world's natural rubber comes from Southeast 
Asia. The tree's latex is its main commercial output, and it is obtained by slicing a 
small layer of the bark off the trunk. The "tapping incision" reveals the newly formed 
ends of the latex vessel (Chee, 1990). The rubber tree is the source of natural 
rubber, wood products, and rubber goods like tyres, rubber gloves, and other goods 
including rubber smoke sheets, block rubber, and concentrated latex. Since the 
1990s, Thailand has maintained its position as the top producing nation of natural 
rubber. The International Rubber Study Group (IRSG) estimates that 12.9 million tons 
of natural rubber was produced worldwide in 2020, with the Asia-Pacific area 
producing 92 percent of that total. Thailand continues to be the world's top 
producer and exporter of natural rubber; in 2020, its production and exports totaled 
roughly 4.5 million tons and 38.2% of the world's total natural rubber production 
(Thailand Board of Investment, 2021). 
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White root disease 
   Rigidoporus microporus (Sw.) Overeem syn R. mocroporus (Klotzsch) 
Imazeki is the culprit behind the white root disease. The illness was originally noted 
in 1904 at Singapore's Botanical Gardens. R. microporus is a member of the 
Polyporaceae family's Basidiomycete order. Many commercially significant crops, 
including H. brasiliensis (Rubber tree), are affected by white root disease caused by 
this fungus  (Kaewchai and Saitong, 2010; Mohd et al., 2014; Wattanasilakorn et al., 
2017), Artocarpus nobilis (Ceylon breadfruit) (Madushani et al., 2013), Persea 
americana (Avocado) (Matinez et al., 2016), Camelia sinensis (Tea), Mangifera indica 
(Mango), Artocarpus heterophyllus (Jack fruit), Ancadium occidentale (Cashew nut), 
Averrhoa carambola (Carambola or star fruit), Manihot esculenta (Cassava), 
Theobroma cacoa (Cacao), Cinnamomum  verum (Cinnamon), Salix babylonica 
(Weeping willows), Mesue ferrea (Na tree) (Fernandez-Fueyo et al, 2012), Ficus 
religiosa (Bo tree), Acacia nilotica (Gum Arabic tree), Elaeis quineensis (African oil 
palm), Coffea sp. (Coffee), Ipomoea batatas (Sweet potato or Yams), Nephelium 
lappaceum (Rambutan), Solanum melongena (Eggplant) and Piper nigrum (Black 
pepper) (Suwandi, 2003). One of the primary viruses in rubber plantations is thought 
to be this one. Every country that grows rubber, including West and Central Africa, 
India, Indonesia, Malaysia, Sri Lanka and Thailand, has white root disease. It results in 
bigger losses than all other illnesses and pests combined in certain nations. White 
root rot is caused by the fungus attacking the taproot's collar and roots. In the 
absence of any woody substrate, it creates many white, flattened mycelial stands 
that spread quickly through the soil (Nandris et al., 1987; Keawchai and Saitong, 
2010). Contact with disease sources such rhizomorphs, diseased roots, dead stumps, 
or wood debris can cause the root of a healthy rubber tree to become infected 
(Nandris et al., 1987; Guyot and Flori, 2002). When that happens, a lot of trees might 
die and sometimes an entire stand is lost (Guyot and Flori, 2002). However, it only 
plays a minor part in the spread of this disease. The fruiting bodies of this fungus 
develop at the collar of the dead stem, which generates a huge number of 
basidiospores and finally kills trees at any development stage (Nandris et al., 1987). 
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  All root infections are transmitted by root contact with an inoculum 
source, such as soil-borne infected woody debris. The disease traveled both inside 
and externally down the roots, causing them to decompose as it did so. Eventually, 
it reached the collar and tap root, where it caused the tree to quickly succumb to 
the disease. Dousing the soil surrounding the tree with a fungicide is a modern 
method of controlling the white root disease. Research has shown that using the 
most effective fungicides as preventative measures for rubber tree white root disease 
resulted in 0% infection as opposed to 95% infection in the untreated plots (Tan and 
Hushim, 1992; Crop Protection Research Institute, 2011). 
  To stop the illness from spreading to nearby trees, white root disease 
must be controlled immediately. Beginning disease control as soon as feasible after 
planting—typically approximately a year later—and doing it routinely going forward 
By the time the rubber trees are ready for tapping at 5–6 years old, the incidence of 
white root disease should have been eliminated, or at the at least, reduced. 
Nowadays, it is possible to manage the white root disease by combining cultural 
practices with chemical fungicides. 
  When a rubber region is to be replanted, the methods employed to 
remove old trees from the site define the residual level of inoculum for cultural 
procedures, a significant component of control. Trees are uprooted, the field is 
plowed and raked, and full mechanical clearing is performed in order to gather and 
discard the rubber roots. In a replanting region, this approach provides the lowest 
incidence of root disease (Newsam, 1967), yet they are pricey and cannot be used by 
small farmers. According to Khonglao (2006), seedlings of earliest imported clones 
served as the majority of the rootstock for high producing rubber plants. 
Wattanasilakorn et al. (2017) suggested that EIRpsu 5 clones generally performed 
well in terms of plant development while being resistant to the white root disease. 
Because of this, the solution to this issue is to use root stock that is resistant to white 
root disease.  
  Propagation of rubber tree 
  After bud grafting, rootstocks play a significant role on how well scions 
perform. The effectiveness of water and nutrient intake from the soil will be 
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influenced by plants with strong root systems (Bastiah et al., 1996; Soong, 1976). 
Additionally, it will affect how well the budded plant produces yields (Noordin et al., 
2012). Before being suggested for large-scale planting, rubber clones should be 
tested for disease resistance. In addition to this genetic resilience, seedlings grown 
from the seeds of any earliest imported clones served as the most popular rootstock 
for planting material production in Thailand. Due to the transplanting of RRIM 600 
clones, practically all of those clones have been lost over time. According to reports, 
RRIM 600, a rootstock that is extremely vulnerable to fungi that cause illnesses 
including phytophthora leaf fall and root rot, is used as the rootstock in around 80% 
of the rubber trees planted in Thailand (Crop Protection Research Institute, 2011). 
Therefore, resistant rootstock to those diseases must be investigated for budding 
with high yielding clones.  
  Grafting buds from chosen clones onto unchosen seedling rootstocks 
produced in polybags is the usual procedure used in the commercial production of 
rubber clones (Nayanakantha et al., 2015). This method maintains intra-clonal 
heterogeneity for both vigor and productivity (Hua et al., 2010). Since they were 
created by hybridization or selection from a small number of seedlings of Wickham 
germplasm, almost all of the commercially grown clones of H. brasiliensis reflect a 
relatively small genetic base (Priyadarshan and Goncalves, 2003). Due to genetic 
sensitivity, commercial rubber agriculture is thus always in danger of being attacked 
by both indigenous and invasive diseases and insects (Narayanan and Mydin, 2011). 
Numerous preliminary research revealed that RRIM 600 is susceptible to the white 
root disease and that there is no rubber clone that is resistant to it (Holiday, 1980; 
Nakkanong et al., 2008). The primary cultivar of rubber plantations in Thailand is 
RRIM600, and it is thought that practically all of the other early-introduced clones 
have been gradually lost. This suggests that there is likely a significant amount of 
inbreeding at the moment. 

The preliminary study on this situation, which was reported by 
Khonglao (2006), showed that seedlings from early introduced clones had more 
vigorous rooting development than RRIM600 seedlings, and that it would be wise to 
find some other early introduced rubber clones to use as rootstock in the future. To 
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avoid future extinction and loss of genetic variety, it is crucial to gather and preserve 
such clones. White root disease poses a danger to rubber production everywhere, 
but is particularly severe in southern Thailand (Prasetyo et al., 2009). White root 
disease tolerance has been observed for seedlings of two rubber clones (EIRpsu1 and 
EIRpsu2) (Wattanasilakorn et al., 2012). As a result, micropropagation of rootstocks 
that tolerate or are resistant to root diseases is extremely important for ensuring 
uniform development and greatly expanding the rubber plantation. 

 
Micropropagation of rubber tree 

  Today, many plant species, including rubber trees, use the tissue 
culture process. Micropropagation of rubber trees has been the subject of several 
reports. Using very little space, resources, and time, plant tissue culture 
(micropropagation) is a technique that enables the fast synthesis of several 
genetically identical plants (Odutayo et al., 2004). For the objective of quick 
multiplication, a micropropagation technique has been created. The process of in 
vitro propagation involves a number of processes, including explant selection, aseptic 
culture setup, multiplication, rooting, and plant adaptation. Sterilization of explants is 
the crucial stage in the formation of an aseptic culture. The elimination of 
endogenous and foreign contaminating bacteria is essential for the success of tissue 
culture of all plant species. (Constantine, 1986; Buckley and Reed, 1994). Various 
techniques have been devised to remove contamination during in vitro propagation 
(Husain et al., 1994). One of the most important issues facing commercial and 
research plant tissue facilities is in vitro contamination by fungus, bacteria, and yeast. 
Plants that have been exposed to contamination may perish or multiply less quickly. 
Explants must be cleaned of external pollutants such as bacteria and fungus, and it 
is exceedingly challenging to get sterile plant material that is fully free of 
contamination. When dealing with woody plant matter, it becomes more difficult 
(Niedz and Bausher, 2002). Surface sterilization of explants in chemical solutions is a 
crucial stage in the preparation process since the surfaces of living plant materials are 
naturally contaminated with bacteria from the environment. 
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A quick method to create a lot of homogeneous, genetically faithful 
(true-to-type plants), and healthy plantlets is plant micropropagation. There are a lot 
of techniques for plant micropropagation, including organogenesis and somatic 
embryogenesis (direct or indirect organogenesis) (Rani and Raina 2000; Beruto and 
Debergh 2004; Haque and Ghosh, 2016; Tisarum et al., 2018).  

For the rubber business, microcutting is utilized to create exact 
replicas of planting materials. To produce plantlets, axillary buds or cotyledonary 
nodes are cultured (Venkatachalam et al., 2007). From nodal explants of in vitro 
seedlings GT1 and PB5/51, Te-chato and Muangkaewngam (1992) produced 
numerous shoots. According to the findings, the MS (Murashige and skoog, 1962) 
medium with BA (6-Benzyladenine) at concentrations of 4.5–5.63 mg/l produced 
100% multiple shoot induction, and the mean number of shoots/explant obtained 
from landrace cultivars PB5/51 and GT1 were 3.0, 3.0, and 3.33 shoots, respectively.  
On MS medium enriched with 5.0 mg/l BA, 1.0 mg/l AgNO3, and 0.5% activated 
charcoal, Sirisom and Te-chato (2012) cultivated shoot tips produced from native 
clones. According to their findings, those culture media produced the most shoots 
per transplant, at 5.6 shoots. Using MS media enriched with 100.0 mg/l myo-inositol, 
2.0 g/l activated charcoal, 1.0 mg/l AgNO3, 2.0 mg/l GA3 (Gibberellic acid), and 5.0 
mg/l KN, Anthony et al. (2018) generated multiple shoot from shoot tip and nodal 
explants (kinetin). The outcomes showed that nodal explant produced the best 
outcomes in terms of multiple shoot creation and quantity of shoots. 3.60 shoots 
were produced from each shoot tip explant, and the incidence of multiple shoot 
creation at the shoot tip was 84%. In the instance of nodal explants, 6.0 shoots were 
seen, with a 94% likelihood of multiple shoot production. In addition to these two 
explants, Chuaymee et al. (2015) reported using green budwood for the induction of 
numerous shoots. The maximum frequency of shoot emersion (60%) and quantity of 
shoots (1.6 shoots/cultured bud) were obtained in modified MS medium 
supplemented with 0.5 mg/l BA and 2 mg/l 2,4-D. Future rootstock propagation of 
this rubber tree clone will be done under these circumstances. 

Due to the development of many plantlets, somatic embryogenesis is 
one of the most promising methods for plant multiplication (Martin, 2004). The 
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process of regenerating whole plants from a single somatic embryo, which itself 
develops from a single cell, is known as somatic embryogenesis (Komamine et al., 
2005). Because somatic embryos are bipolar and have a lower risk of genetic 
abnormalities due to their single-cell origin, it is seen as superior to organogenesis 
(Wang and Bhalla, 2004). Somatic embryogenesis is therefore one of the effective 
tissue culture methods for the widespread multiplication of superior Hevea clones 
(Sirisom and Te-chato, 2013). By using this approach, a novel protocol for molecular 
farming through genetic formation and the mass manufacture of uniform rootstock 
will be made possible. 

Induction and maintenance of somatic embryogenesis appear to be 
influenced by a number of variables, including developmental stages, explant types, 
concentrations of plant growth regulators and other growth substances, basal 
medium composition, light intensity, wound, etc. in many plants, including Hevea. 

From immature anthers, Jayashree et al. (1999) created a callus, a 
somatic embryo, and a regenerated plant. In modified MS medium supplemented 
with 2.0 mg/l 2,4-D and 0.5 mg/l KN, the best callus induction results were attained. 
With 0.7 mg/l KN and 0.2 mg/l NAA, somatic embryo induction was shown to be 
more effective. On a hormone-free media, the embryos were successfully 
transformed into plantlets. All of the studied plantlets were shown to be diploid by 
cytological examination. Through somatic embryogenesis, Hau et al. (2010) 
attempted to regenerate plantlets from mature another culture (clone CATASn7-33-
97 and CATAS 88-13). In modified MS medium with 4.5-13.5 µM 2, 4-D added, 85% 
plantlet regeneration was at its best. Then, using modified MS medium 
supplemented with 5.0% sucrose, 1.0 mg/l 2, 4-D, 1.0 mg/l KN, and 1.0 mg/l NAA (1-
Naphthaleneacetic acid), Srichuay et al. (2014a) produced callus, somatic embryo, 
and full plantlets from anther. On modified MS medium supplemented with 3.0 
percent sucrose, 0.2 mg/l NAA, 1.0 mg/l BA, 3.0 mg/l KN, and 0.05 mg/l GA3, somatic 
embryo induction was achieved. The somatic embryo induction rate was 20.0% in 
those culture medium. Flow cytometric analysis revealed that calluses and somatic 
embryos from the culture media had the same ploidy level as the mother plant 
(Srichuay et al., 2014b). The best result for plantlet regeneration came from modified 
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MS medium supplemented with 5.0% sucrose, 0.5 mg/l KN, 0.2 mg/l BA, and 0.3 mg/l 
GA3. Another wall-derived calli contributed to the success of embryoid and plant 
development through somatic embryogenesis (Wang et al., 1984; Jayashree et al., 
1999; Srichuay et al., 2014b) the somatic tissue of which. Plantlets produced through 
this explant culture have therefore been shown to be diploid and have the same 
genetic makeup as the mother plant. The ideal procedure for callus induction, 
somatic embryogenesis, and plant root regeneration was described by Zhou et al. 
(2010). In MS medium supplemented with 1.0 mg/l KN and 0.2 mg/l BA, maximum 
callus induction was achieved. On such culture medium, somatic embryo induction 
and embryonic development into plantlets were achieved after a 12-week culture 
period. Te-chato and Chartikul (1993) used modified MS medium enriched with 5.0-
6.0 percent sucrose, 2.0 mg/l 2,4-D, 2.0 mg/l BA, and adjusted pH to 5.6-5.8 to 
successfully promote embryogenic callus and plantlets regeneration from inner 
integument culture of immature fruit (8 weeks after pollination). Excision of each 
embryoid and transfer to half strength liquid MS medium supplemented with 0.06 
mg/l NAA and 0.03 mg/l BA overlaid on activated charcoal supplemented MS agar 
media improved maturation and germination of these embryoids. A method for 
modified MS medium enriched with 0.90 µM 2, 4-D, 2.68 µM NAA, 0.93 µM KN, 3.0% 
sucrose, and 0.2% phytagel was developed by Sushamakumari et al. in 2000. On a 
modified MS medium containing 370 mg/l KH2PO4, 120 mg/l MgSO4.7H2O, 1.33 µM BA, 
1.07 µM NAA, 3.0% sucrose, and 0.2% phytagel, somatic embryo induction was 
discovered. On this medium, continued growth of the embryo into plantlets was 
accomplished as previously mentioned. On MH medium supplemented with 4.5 µM 
3, 4-D (3, 4-Dichiorophenoxyacetic acid), 4.5 µM KN, 30 µM AgNO3, 12.0 µM CaCl2, and 
234 mM sucrose, Montoro et al. (2003) and Lardet et al. (2007) also succeeded in 
inducing embryogenic callus from inner integument culture (clone PB260). 
Additionally, a number of studies attempted to produce somatic embryos from 
different Hevea explants. Kongkaew (2017) created a methodology for green bud 
callus induction and plant regeneration. The maximum callus production at 100% 
came from green buds from ex vitro produced plants that were sterilized and kept at 

40°C for 24 hours. They were subsequently cultivated on modified MS medium 
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supplemented with 2 mg/l 2,4-D and 0.5 mg/l BA for 6 months. After two months of 
culture, the medium enriched with 1.5 mg/l AgNO3 produced the highest fresh callus 
weight at 950 mg and the maximum number of somatic embryos per tube at 9.1. 
The number of globular embryos produced, at 11.61, and the number of 
cotyledonary embryos, at 18.4, were all maximum during the second round of 
culturing (81.33 percent). The maximum plant regeneration was achieved at 40% 
following subculture of cotyledonary embryo to PGR-free MS medium and one 
month of culture. the typical number of whole plantlets per tube (0.24 plants). Using 
MS media enriched with 2 mg/L 2,4-D and 0.5 mg/L BA, Kongkaew et al. (2016) 
created a callus from a longitudinally thin cell layer (lTCL) in the distal region of the 
culture. After 17 days of culture, the results showed that the culture media had the 
greatest callus induction rate, at 67.5%. But no effective method for mass 
micropropagation of superior Hevea clones has yet been created (Nayanakantha and 
Seneviratne, 2007). 

 
Assessment of genetic stability 

  In nature, recombination processes produce the genetic variety and 
variability within a population. Genetic diversity is influenced in many ways by factors 
including natural selection, mutation, migration, and population size. Plants grown 
from any type of cell culture were referred to as "somaclones," and the genetic 
variation seen in such plants was referred to as "somaclonal variation." Asexual 
processes, which solely include mitotic division of the cells, are used to develop 
plant cells in vitro and regenerate them into whole plants. When cultivating plant 
tissue, the incidence of unplanned and random spontaneous variation is less of a 
concern (Skirvin et al., 1994). The primary goal of tissue culture is to produce true-to-
type plants in order to preserve the germplasm, although there is a possibility of 
genetic aberration, also known as "somaclonal variants," during tissue culture (Arvind 
et al., 2015).  Regenerated plants formed from organ cultures, calli, protoplasts, and 
somatic embryos can occasionally display phenotypic and genotypic diversity due to 
the potentially mutagenic nature of in vitro growing conditions (Leva et al., 2012). 
However, it has been noted that the tissue culture environment and the effects of 
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culture conditions, such as culture media, types of explants, successive transfers of 
culture, temperature, pH, plant growth regulators, etc., cause changes in cellular 
controls and lead to genomic changes in the in vitro raised plantlets (Rani and Raina 
2000; Jain, 2001; Manoj et al., 2012). A typical method of producing somaclonal 
diversity is the callus induction and subsequent plant regeneration from callus 
culture (Skirvin et al., 1994; Anandan et al., 2018).  Somaclonal variation in 
regenerants will prevent more widespread economic exploitation of crop species. 
Therefore, it is essential to maintain the in vitro grown plantlets' true-to-type 
characteristics with regard to the mother plant (Ananda et al., 2018). In order to 
prevent these changes, it is always important to evaluate the genetic integrity of in 
vitro produced plants. Molecular markers, which are DNA-based markers important 
for detecting genetic similarities in micropropagated tree species, are the technique 
that is most frequently utilized in diverse laboratories. Environmental and biological 
elements have no impact on this method (Manisha et al., 2020). 

Recent research has shown that polyploidy, aneuploidy, chromosomal 
breakage, deletion, translocation, gene amplification, and mutations are prevalent 
genetic alterations in cell or tissue cultures. These changes are also manifested at 
the biochemical or molecular levels (Teixeira et al., 2007). In plant tissue culture and 
regenerants of various plants, somaclonal variation has been highlighted using various 
molecular analytical approaches. RAPD (randomly amplified polymorphic DNA) and 
SSR (simple sequence repeat) are frequently utilized in studies of genetic diversity in 
regenerated plants from tissue culture, such as sesame (Anandan et al., 2018), chili 
pepper (Tilahun et al., 2020), plum (Manisha et al., 2020) stevia (Veronica et al., 
2021) and rubber tree (Feng et al., 2014; Sirisom and Te-chato, 2014).  

   Following biochemical markers such as isozymes (Chevallier, 1998), 
molecular markers have been developed and used since the middle of 1990‖s for 
diversity studies (Besse et al., 1994; Le Guen et al., 2011), genetic mapping 
(Lespinasse et al., 2000) and the identification of genetic loci implicated in the 
expression of agronomic traits in H. brasiliensis (Lespinasse et al., 2000; Le Guen et 
al., 2011). In the recent past, the molecular markers have been helpful tools for 
studying the genetics of H. brasiliensis (Sirisom and Te-chato, 2014). Hevea breeding 
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has used molecular tools and markers over the past 20 years (Venkatachalam et al., 
2007; Sirisom and Te-chato, 2014). With H. brasiliensis, many molecular marker 
techniques have been employed. For instance, Besse et al. (1994) used RFLP analysis 
to examine the genetic diversity of 92 Amazonian and 73 Wickham clones. For the 
purpose of identifying offspring with two common parents, Low et al. (1996) also 
employed RFLPs. Sirisom and Te-chato (2014) used SSR markers to evaluate the 
genetic integrity of the nodal culture in vitro of early imported clones of rubber 
plants. By analyzing the genetic connections between the early-introduced clone 
populations and RRIM 600, Wattanasilakorn et al. (2015) were able to estimate the 
polymorphism of DNA fragment patterns from those populations. When these several 
marker systems are used together, a more accurate analysis is produced than when 
they are used alone (Pethin et al., 2015).    

The most popular method of genetic mapping is now SSRs based on 
straightforward PCR tests due to its benefits of high polymorphism, co-dominance, 
specificity, wide dispersion, low cost (Lan et al., 2012), germplasm identity (Ye et al., 
2009; Jia et al., 2014), gene localization, molecular marker–assisted selection 
breeding and genetic diversity analysis (Bonierbale et al., 1988; Powell et al., 1996; 
Jones et al., 1997; Song et all., 2016). 53 early imported rubber tree clones were 
gathered from various southern Thailand regions and examined by Nakkanong et al. 
in 2008. Microsatellite markers were used to operate the assessment. In all, 44 
amplified fragments were generated by four microsatellite primer pairs (hmac4, 
hmct1, hmct5, and hmac5), with an average of 14.67 fragments per primer, according 
to the data. Only hmac5 yielded monomorphic fragments, whereas 37 of those 
primers were polymorphic (84.09%). Through SSR analysis, Sirisom and Te-chato 
(2014) evaluated the genetic integrity of in vitro numerous shoots produced from the 
nodal cultures of early imported rubber tree clones. The three SSR marker primers 
(hmac4, hmct1, and hmct5) used to create in vitro plantlets displayed identical DNA 
pattern profiles. 

The RAPD methodology was recommended by Varghese et al. (1997) 
as a useful tool for identifying rubber trees. By using the RAPD approach, Sirisom and 
Te-chato (2013) evaluated the genetic integrity of in vitro rubber tree plantlets. Five 
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primers (OPAD-01, OPAD-10, OPAD-12, OPAB-17, and OPR-02) were found to be able 
to amplify and provide monomorphic DNA patterns among in vitro rubber plantlets, 
according to the results. Using seven RAPD primers, Srichuay and Te-chato (2014) 
examined the somaclonal variation of an in vitro rubber tree produced from callus 
and somatic embryo (OPAB-01, OPAD-01, OPAD-10, OPB-17, OPN-16, OPR-02 and 
OPZ-04). According to the findings, OPZ-04, one of the seven primers, produced 
polymorphism in the DNA profiles of the materials examined. Using 10 primers for 
RAPD markers, Wattanasilakorn et al. (2015) compared genetic analysis of EIRpsu 1 
and EIRpsu 2 to RRIM 600 (the main Hevea rubber cultivar in Thailand) (OPR-02, OPR-
11, OPAD-01, OPAD-10, OPAD-12, OPB-12, OPB-17, OPR-02, OPZ-04, OPN-08 and OPC-
05). According to the results of the cluster analysis, EIRpsu 2 was more similar to 
RRIM 600 than EIRpsu 1. In order to demonstrate the intimate relationship between 
rootstock and scion, it is crucial to analyze the genetic fidelity of rubber tree 
rootstock generated from tissue culture. 

  
Objectives 

1. To study the factors affecting induction of callus from different types of 
explants of Hevea 

2. To factors affecting induction of callus of SE from different explants 
2. To regenerate SE from callus induced from different types of explants of 

Hevea 
3. To evaluate the genetic stability of SE of Hevea using RAPD and SSR 

markers 
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CHAPTER 3 
MATERIALS AND METHODS 

 
1. Materials and equipments 

 
1.1 Plant materials 

 Young branches and Young inflorescences of early introduced 
clone of rubber tree (EIRpsuI) grow naturally at Prince of 
Songkla University, Hatyai campus, Songkhla province, 
Thailand, were use in this experiment. The early introduced 
rubber clone were assessed resistant to white root disease 
(Wattanasilakorn et al., 2017). 

1.2 Chemicals  

 Chemicals used for MS medium formulas (appendices) 

 Chemicals for adjusting pH 

- HCl 

- KOH 

 Plant growth regulators 

- 2, 4-D 

- BA  

- GA3 

 Surfactant  

- NaOCl (Sodium hypoclorite) 
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- Ethanol 

- Tween-20 

 Chemicals for DNA extraction 

- CTAB (Hexadecyl trimethyl-ammonium bromide) 

- β-mercaptoethanol 

- PVP-40 (Polyvinyl pyrrolidone) 

- NaCl (Sodium chloride) 

- Na2EDTA (Ethylenediaminetetraacetic acid disodium salt 
dihydrate) 

- Chloroform 

- Isopropanol 

- TE buffer 

- Ethanol 

 Chemicals for electrophoresis  

- Agarose 

- H3BO3 (Boric acid) 

- Tris-base 

- Ethidium bromide 

- Lamda DNA (λ DNA) 
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- 100 bp and 500 bp DNA Ladder (Operon, U.S.A.) 

 Chemicals for PCR 

- dNTP (dATP, dTTP, dCTP and dGTP) (Promega, USA) 

- ISSR primers 

- RAPD primers 

- MgCl2 

- Taq DNA Polymerase B (Promega, USA) 

- 10X Taq buffer 
 
 

1.3 Equipments 

 For culture medium preparation  

- 2 and 4 decimal balances 

- pH meter 

- Autoclave 

- Drying and sterilizing cabinet 

- Refrigerator and freezer 

- Glassware such as tubes, pipettes, volumetric flask 

 For culturing explant 

-  Forceps, , blade, blade holder 
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- Laminar air flow 

 For DNA extraction, electrophoresis and PCR technique 

- Vortex mixer 

- Microcentrifuge 

- Micro centrifuge tube 

- Micro pipette 

- Stirrer 

- Electrophoretic equipments 

- DNA amplifier machine 

- Microwave oven 

- Gel documentation system 

- Nanodrop spectrophotometer 
 

 

2. Methods 
2.1 Effects of types of explants and concentrations of sodium 

hypochlorite on sterilization and callus induction 

  Explants used in this experiment divided into two different sources, 
young branch (Figure 1a) and young inflorescence (Figure 1b). Those explants were 
taken from rubber tree clone EIRpsu I, resistant to white root disease (according to 
Wattanasilakorn et al., 2017) at the Faculty of Natural Resources, Prince of Songkla 



 
 
 

19  

          
 

University, Songkhla, Thailand. Both explants were washed with running tap water for 
20-30 min, surface sterilized in 70% ethanol for 30 second and soaked in different 
concentrations of NaOCl; 0, 0.2625, 0.5250, 0.7875 and 1.0500% for 20 min, followed 
by rinsing three times with sterilized distilled water. For young branch sterilized 
explants longitudinal thin cell layer (lTCL) at length of 5 mm were excised from its 
internode (Figure 2a). In case of inflorescence, petals from individual male flower 
were excised under stereo microscope (Figure 2b). The petals, single flower and mix 
flowers were chopped with sharp lazor blade for 20 times (Figure 2c) and mix flowers 
(3 flowers) were chopped for 60 times (Figure 2d). The explants were cultured on MS 
medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D. The pH of the culture 
medium was adjusted to 5.7 with 1.0 N KOH before adding 0.7% agar and autoclaving 
at 1.05 kg/cm2at 121°C for 15 min. The cultures were maintained at 28 ± 2°C under 
fluorescent bulbs at 15.0 µmol/m2/s for 14 hour photoperiod. After one month of 
culture the percentage of contamination and callus induction were recorded.  
 

    
Figure 1 Young branch (a) and young inflorescence (b) of rubber tree clone EIRpsuI 

used for sterilization as initial explants for callus induction  

a b 
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Figure 2 Preparation of each explant types of rubber tree for culturing on MS 

medium with MS medium supplemented with 2 mg/l BA and 1.5 mg/l 2,4-D 
for callus induction 
a: lTCL (bar=0.5 cm) 
b: Petal ( bar=0.2 cm) 
c: Chopped single flower ( bar=0.2 cm) 
d: Chopped mix flowers ( bar=0.2 cm) 
 
 

 
 
 
 
 
 

a b 

c d 



 
 
 

21  

          
 

2.2 Effects of types of explants and plant growth regulators on callus 

induction  

The sterilized explants from experiment 1 consisted of lTCL from 

internode of young branch, chopped petal, single flower and mix flowers were 

cultured on MS medium supplemented with BA at different concentrations (0, 0.5, 

1.0, 1.5 and 2.0 mg/l) in combination with 2, 4-D at different concentrations (0, 0.5, 

1.0, 1.5 and 2.0 mg/l). The pH of the culture medium was adjusted to 5.7 with 1.0 N 

KOH before adding 0.7% agar and autoclaving at 1.05 kg/cm2and 121°C for 15 min. 

The cultures were maintained at 28 ± 2°C under fluorescent bulbs at 15.0 µmol/m2/s 

for 14 hour photoperiod. After one month of culture the percentage of callus 

induction and characteristics of callus were recorded. Factorial in completely 

randomized design (CRD) was performed. Callus obtained from each types of 

explants and concentrations of plant growth regulators was statistically analyzed 

using ANOVA and means among treatments and treatment combinations were 

separated by Dancan‖s multiple range test (DMRT). 

 

2.3 Effects of types of explants and number of chopping on callus fresh 

weigh  

Callus derived from lTCL, petal, single flower and mix flower from 

experiment 2.2 at 100 mg was wounded by different numbers of chopping at 0, 50, 

100, 150 and 200 times and cultured on MS medium supplemented with the best 

concentration of BA and 2, 4-D from experiment 2.2. The pH of the medium was 

adjusted to 5.7 with 1.0 N KOH before adding 0.7% agar and autoclaving at 1.05 

kg/cm2and 121°C for 15 min. The cultures were maintained at 28 ± 2°C under 

fluorescent bulbs at 15.0 µmol/m2/s for 14 hours photoperiod. After one month of 

culture the callus fresh weigh was recorded and compared using factorial in CRD., 
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The data were statistically analyzed using ANOVA and means among the treatments 

and treatment combinations were separated by DMRT. 

 

2.4 Effect of types of explants on somatic embryo (SE) formation  

The callus derived from different types of explants (lTCL, petal, single 

flower and mix flower) from the best number of chopping in experiment 2.3 were 

cultured on MS medium supplemented with the best concentration of BA and 2, 4-D. 

The pH of the medium was adjusted to 5.7 with 1.0 N KOH before adding 0.7% agar 

and autoclaving at 1.05 kg/cm2and 121°C for 15 min. The cultures were maintained at 

28 ± 2°C under fluorescent bulbs at 15.0 µmol/m2/s for 14 hours photoperiod. The 

cultures were sub-cultured every 4 weeks for 12 weeks. After 3 months of culture 

the percentage of SE formation and number of SEs/explant were recorded. The data 

were statistically analyzed using ANOVA and the means among the treatments were 

separated by DMRT. 

 

2.5 Effects of types of explants and GA3 on development of SE  
SEs at cotyledonary stage derived from experiment 2.4 were cultured 

on MS medium supplemented with GA3 at different concentrations (0, 0.25, 0.50, 0.75 
and 1.00 mg/l) and the best concentration of BA and 2, 4-D from experiment 2.4. The 
pH of the medium was adjusted to 5.7 with 1.0 N KOH before adding 0.7% agar and 
autoclaving at 1.05 kg/cm2 and 121°C for 15 min. The cultures were maintained at 28 
± 2°C under fluorescent bulbs at 15.0 µmol/m2/s for 14 hours photoperiod. After one 
month of cultured the percentage of plant regeneration was recorded. Factorial in 
completely randomized design (CRD) was performed. Compared in each type of 
explants and concentrations of GA3, the data were statistically analyzed using ANOVA 
and the means among the treatments and treatment combinations were separated 
by DMRT. 
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2.6 Assessment genetic stability  
  2.6.1 DNA extraction 
   Young fully expanded leaves from mother plant (MP) of rubber 

tree (EIRpsuI) and SE from in vitro plantlet derived from different explant (S1-3 = 
petal, S4-6 = single flower and S7-9 = mix flowers) at 100 mg were used for DNA 
extraction according to the procedure modified from Doyle and Doyle (1990). Briefly 
stated, DNA was extracted from the explants using CTAB extraction buffer, which 
contains 2 percent hexadecyltrimethyl-ammonium bromide (CTAB), 20 mM EDTA, 
100 mM Tris-HCL pH 8.0, and 1.4 M NaCl. The plant extract mixtures were transferred 
to the microcentrifuge tube, incubated for 45 minutes at 60°C in a water bath, and 
then centrifuged for 45 minutes at 10,000 rpm. Onto a fresh new microcentrifuge 
tube, the supernatant was transferred. 500 ml of chloroform was added to each 
tube, the solution was mixed by inverting the tube, it was centrifuged at 12,000 rpm 
for 10 minutes, and the top aqueous phase alone (which contains the DNA) was 
transferred to a clean microcentrifuge tube. To precipitate the DNA, 750 µl of 
isopropanol was added to the solution, and the tube was slowly inverted multiple 
times. Following precipitation, the DNA pellet was thrice rinsed with 70% ethanol 
before being allowed to air dry. The quantity of isolated DNA were determined by 

nanodrop spectrophotometer   before dissolving in TE buffer [20 mM Tris-HCL (pH 
8.0) and 0.1 M EDTA (pH 8.0)] and stored at 4°C for further use in polymerase chain 

reaction (PCR) analysis.  
  2.6.2 RAPD analysis 
   RAPD analysis was operated according to the methodology of 
Nakkanong et al. (2008); Sirisom and Te-chato (2013b). 25 mM MgCl2, 10x Taq buffer, 
100 M of each dNTP, 0.3 mM of each primer (OPAD01 and OPAD10), 1.5 units of Taq 
polymerase, and 60 ng of template DNA were all included in each 25 µl amplification 
mixture. For RAPD-PCR, the heat profile was 95°C for 30 seconds, then 41 cycles of 
37°C for 1 minute, 72°C for 2 minutes, and lastly 72°C for 5 minutes. Following 
electrophoresis on 1.7 percent (w/v) agarose gel in 0.5x Tris-borate-EDTA (TBE) buffer 
at constant 100 V for 35 minutes, amplification products were separated. The gels 
were exposed to ultraviolet light with gel documentation after 15 minutes of 
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ethidium bromide staining, 5 minutes of immersion in distilled water. Photographs of 
the DNA amplification products from various sample sources and mother plants were 
compared. 
  2.6.3 SSR analysis 
   A PCR procedure reported by Thawaro and Te-chato (2009) 
was utilized to amplify DNA using three SRR primer pairs (hmct5, hmac4, and hmtc1). 
2.5 mM MgCl2, 10x Taq buffer, 100 M of each dNTP, 0.3 mM of primer, 1.5 units of 
Taq polymerase, and 20 ng of template DNA were all included in each 10 µl 
amplification mixture. The PCR amplifications were carried out using a thermocycler 
(TC-XP-G, Japan). A 30-second denaturation phase was followed by 34 cycles of 95°C 
for 30 seconds, 52°C for 60 seconds, and 62°C for 120 seconds. The last 5-minute 
elongation step was performed at 72°C. On a 3% (w/v) agarose gel, in 0.5x TBE buffer, 
at constant 100 V for 55 minutes, DNA products were separated. The gels were 
exposed to ultraviolet light with gel documentation after 15 minutes of ethidium 
bromide staining, 5 minutes of immersion in distilled water. Between samples and 
mother plants, the DNA amplification products were compared. 
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CHAPTER 4 
RESULTS AND DISCUSSIONS 

 
1. Effects of types of explants and concentrations of sodium hypochlorite on 

sterilization  
All of explants gave percentage of clean culture at 100 when treated with 

NaOCl at concentrations 0.5250, 0.7875 and 1.05% (Figure 3). These results are in 
accordance with the experiments of Badoni and Chauhan (2010) who reported that 
NaOCl at 1.05% was the best concentration for controlling the infection of potato cv. 
―Kufri Himalini‖in tissue culture processes. However, Altaf (2006) reported that slightly 
high concentration of NaOCl at 1.3125% were effective in making clean explants of 
kinnow tree. It has been shown that sodium hypochlorite is highly efficient against a 
variety of bacteria; even micromolar doses are sufficient to dramatically lower 
bacterial populations (Nakagawara et al., 1998). For callus induction in this present 
study, NaOCl at only concentration of 0.2625 and 0.5250% gave the highest result at 
100% in all explants (petal, single flower, mix flower and lTCL). However, increase in 
concentrations of NaOCl from 0.7875 to 1.05% in all explants caused the decrease in 
percentage callus induction from 68 to 60%, (Figure 4). Additionally, it has been 
noted that the hypochlorite salts [NaOCl, Ca(OCl)2, LiOCl, and KOCl] diluted with 
water produced HClO, which had a negative correlation with bactericidal activity, 
perhaps because it caused fatal DNA damage. (Wlodkowski and Rosenkranz, 1975; 
Dukan et al., 1999).  According to Ines et al. (2013), human error-related damages 
sustained during the sterilizing procedure and meristem isolation caused some of the 
experiment's explants to not survive. This can be explained by the fact that various 
tissue types and the characteristics of the explant utilized for micropropagation have 
varying needs for sterilizing. 
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Figure 3 Influence of types of explants and concentrations of NaOCl on sterilization 

of Hevea cultured on MS medium with 2.0 mg/l BA and 1.5 mg/l 2,4-D for 4 
weeks  
lTCL: Longitude thin cell layer, P: Petal S: Single flower and I: Mix flower  
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Figure 4 Influence of kinds of explants and concentrations of NaOCl on callus 

induction of Hevea cultured on MS medium with 2.0 mg/l BA and 1.5 mg/l 
2,4-D for 4 weeks  

 lTCL: Longitude thin cell layer, P: Petal S: Single flower and I: Mix flower 
 

2. Effects of types of explants and plant growth regulators on callus induction
  

Explants, PGRs, and culture conditions are only a few of the variables 
that determine how callus is induced in plants. PGRs are one of those that are 
important for both the induction and proliferation of callus. Additionally, several 
researches have noted that varying PGR doses and combinations significantly affect 
the formation of callus (Poeaim et al., 2005; Sun et al., 2006). It was clearly showed 
that plant growth regulators both kind and concentrations play different roles in 
callus induction from different types of explants (lTCL, petal, single flower and mix 
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flower). Therefore, both factors (PGRs and explant types) are important in induction 
of callus.  The result showed that the highest percentage of callus induction at 100 
was obtained from lTCL, petal and mix flowers when those explants were cultured 
on MS medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D, significantly 
different with another treatments (Table 1).  Low concentration of 2,4-D containing 
MS medium in the present study enhanced the ability of induction of callus. Several 
writers have claimed that a low concentration of this PGR was beneficial for the 
development of embryogenic callus from Panax ginseng roots (Chang and Hsing, 
1980) and Lycium barbarum (Hu et al., 2008). Whereas Wang et al. (2006) found that 
high concentrations of 2,4-D promoted callus induction in Areca catechu. Moreover, 
the use of 2,4-D in combination with BA could promote callus induction from lTCL of 
Hevea brasiliensis (Kongkaew et al., 2016). In case of types of the explants, only lTCL 
provided compact yellow callus (Figure 5a) whereas the callus derived from single 
flower, petal and mix flowers was compact green, friable and compact yellow, 
respectively (Figure 5b, c, and d). Farhadi et al. (2017) reported the culture of 
different explants of Allium hirtifolium that the explants of basal plate showed up to 
60.06% callus formation after 12 weeks and leaves exhibited a significantly lower 
callus induction up to 43.68%. Thus, basal plate was better explant for callus 
production. Therefore, the explant type, concentrations and combinations of plant 
growth regulators are the most important factors affecting callus induction (Scotton 
et al., 2013). 
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Table 1 Effects of types of explants and PGRs containing MS medium on callus 
induction after 4 weeks of culture 

2,4-D BA 
  Callus induction (%)   

Characteristic of callus 

 
from different types of explants 

 mg/l   lTCl P S M   lTCl P S M 

0 0 
 

- - - - 
 

- - - - 

0.5 

0.5 
 

0 12.54i 15.60hi 20.50h 

 
0 FC CC, FC CC, FC 

1.0 
 

0 12.75i 17.33h 20.68h 

 
0  FC CC, FC CC, FC 

1.5 
 

10.33h 18.45h 24.21g 30.65g 

 
CC CC, FC CC, FC CC, FC 

2.0 
 

27.84gh 20.33h 14.78i 52.82f 

 
CC CC, FC CC, FC CC, FC 

1.0 

0.5 
 

34.6g 40.62g 39.17f 53.40f 

 
CC FC CC, FC CC, FC 

1.0 
 

25.34gh 45.63fg 55.67de 60.33e 

 
CC CC, FC CC, FC CC, FC 

1.5 
 

31.28g 50.24f 60.33d 71.84d 

 
CC CC, FC CC, FC CC, FC 

2.0 
 

40.63f 42.78fg 62.45d 70.62d 

 
CC FC CC, FC CC, FC 

1.5 

0.5 
 

40.69f 70.33d 63.90d 80.43c 

 
CC CC, FC CC, FC CC, FC 

1.0 
 

54.87d 80.15c 79.46bc 89.40bc 

 
CC CC, FC CC, FC CC, FC 

1.5 
 

70.59c 98.18b 84.84b 96.56b 

 
CC CC, FC CC, FC CC, FC 

2.0 
 

100.00a 100.00a 100.00a 100.00a 

 
CC CC, FC CC, FC CC, FC 

2.0 

0.5 
 

85.33b 64.50de 84.67b 85.43bc 

 
CC CC, FC CC, FC CC, FC 

1.0 
 

54.52d 62.83de 74.22c 80.45c 

 
CC CC, FC CC, FC CC, FC 

1.5 
 

52.44de 54.72f 52.74e 60.84e 

 
CC CC, FC CC, FC CC, FC 

2.0   40.64f 60.18de 40.15f 50.62f   CC CC, FC CC, FC CC, FC 

F-test   **           

C.V. (%)   54.62           

lTCL; Longitude thin cell layer, P; Petal, S; Single flower, M; mix flower, CC; Compact 
callus, FC; Friable callus ** = significant different at P ≤ 0.01  
Means followed by the same letter within column are not significantly different 
according to DMRT 
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Figure 5 Morphological characteristics of callus induced from different explant types 

on MS medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D after 4 
weeks of culture (bars= 0.5 cm). 

a: lTCL   b: petal   c: single flower    d: mix flowers  
 
 
3. Effects of types of explants and number of chopping on callus fresh weight 
  In the present study, the callus derived from different types of 
explants (lTCL, petal, single flower and mix flower) was wounded through chopping 
for 0, 50, 100, 150 and 200 times cultured on MS medium supplemented with the 
best concentration of BA and 2, 4-D from previous experiment for 4 weeks. The 
results revealed that callus derived from petal, single flower and mix flower chopped 
at 100 times gave the best result in proliferation. Callus fresh weight obtained from 
those explants were 385, 387 and 392 mg, respectively (Figure 6), significantly 
different with another treatments. For the characteristic of callus from those explants 
was friable and yellow color (Figure 7). However, the callus derived from lTCL could 
not increase fresh weight in all numbers of chopping. This result was similar to the 

d c 

b a 
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study of Kongkeaw (2017) who reported that chopping the callus of Hevea for 100 
times gave the best result in proliferation of callus in term of increase in fresh weight 
after 4 weeks of culture.  Tongtape and Te-chato (2010) observed that chopping of 
oil palm callus affected both proliferation and initiation of embryogenic callus. Djibril 
et al. (2012) reported that the secondary friable calli of date palm obtained from 
chopped granular calli could initiate embryogenic cell suspension. Chopping is a 
method to produce the wound and encourage callus to increase drastically. In 
accordance with Sidky and Gadalla (2013), they reported that chopped friable callus 
of Phoenix dactylifera could increase the number of calli. Moreover, the formation of 
wounds is another way to increase the efficiency in absorbing water and minerals. 
However, the callus from lTCL had less effective through this method due to the 
callus was compact and green color. When it was chopped browning occurred due 
to the production of phenolic compounds leading to dead of callus tissues finally.  
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Figure 6 Effects of number of chopping and kinds of explants on callus fresh weight 

on MS medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D after 4 
weeks of culture 

    ** = significantly different (P ≤ 0.01) 
Means followed by the same letter within histogram are not significantly 
different according to DMRT 
lTCL: Longitude thin cell layer, P: Petal S: Single flower and I: Mix flower 
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Figure 7 characteristic of callus chopping on characteristic of callus from mix flowers 

on MS medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D  after 4 
weeks of culture (bars=0.5 cm) 
a: 50 times b: 100 times c: 150 times d: 200 times  

 
4. Effect of types of explants on somatic embryo (SE) formation 

  In this study, petal, single flower and mix flowers- derived calli were 

achieved on MS medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D. The 

callus grew very fast on this culture medium. After culture for 12 weeks with 

subculture 4-week intervals, SE was developed from peripheral cells of callus in all 
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explants. The frequency of somatic embryogenesis and average number of SEs per 

callus increased when time of subculture increased. The callus derived from mix 

flower gave the highest percentage of SE formation at 39.84 and number of globular 

(Figure 8a), heart shaped (Figure 8b) and cotyledonary staged SEs (Figure 8c) per 

callus at 7.43, 4.52 and 3.25 SEs, respectively (Table 2), significantly different with 

another explants.  

 The induction of somatic embryogenesis in many plants, including Hevea, 

appears to be influenced by a number of variables, including developmental stages, 

explant types, plant growth regulators, basal media composition, light intensity, etc. 

In this work, BA and 2,4-D supplemented MS medium might generate SEs and 

encourage their development into the mature stage (cotyledonary SEs). Kongkeaw 

(2017) also observed that MS-based plant regeneration medium with BA and 2,4-D 

could promote plant regeneration through SEs from green budwood culture of 

Hevea but different concentrations were obtained. In case of green budwood 

culture, low concentration of BA at 0.5 mg/l and high concentration of 2,4-D at 2.0 

mg/l required. However, plantlet regeneration in this study gave the lower rate of of 

Hevea which was similar to our result. The results gave higher rate than that 

obtained by Kongeaw (2017). This might be due to higher meristematic activity. Mix 

flowers explant contains many meristem cells which has higher meristematic activity 

than green budwood due to meristem cells were a group of cells that reside at the 

shoot and root tips or young explants. As undifferentiated (or slightly differentiated 

cells) they were considered as stem cells given that they were the origin of many of 

the cells that go on to rapidly differentiate/specialize and form (Doerner, 1999). Thus, 

it gave the best result in SE induction and plantlet regeneration. Additionally, a 

number of researches found that adding 0.06 mg/l NAA and 0.03 mg/l BA to MS 

medium improved SE induction and plant conversion rates in a variety of plant 

species, including mangosteen and pawa (Garcinia speciosa Wall) and somkhag (G. 
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atroviridis Griff.) (Te-chato, 1997). The development of SE directly from the explants 

was occasionally caused by the low amount of auxin and cytokinin in the SE 

induction media, suggesting that they did not develop through callus formation 

(Kouassi et al., 2008). But as a result of callus formation, our findings indicated that 

SEs were indirectly produced. 

Table 2 Effect of types of explants on SE formation on MS medium supplemented 
with 2.0 mg/l BA and 1.5 mg/l 2,4-D subculture every 4 weeks for 12 weeks 

Kinds of 
explants 

SE formation 
(%) 

No. of SEs/callus 

Globular 
embryo 

Heart 
shaped 
embryo 

Cotyledonary 
embryo 

lTCL 0 

 
0 

 
0 

 
0 

Petal 28.46c 3.24b 2.18b 1.46b 

Single flower 34.66b 3.48b 1.86b 1.25b 

Mix flowers 39.84a 7.43a 4.52a 3.25a 

F-test  ** ** ** ** 

C.V. (%) 14.25 
 

12.64 
 

10.18 
 

18.74 
** = significantly different (P ≤ 0.01)  
Means followed by the same letter within column are not significantly different 

according to DMRT 
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Figure 8 Different stages of SE formation (red arrows) from callus of mixed flowers on 
MS medium supplemented with 2 mg/l BA and 1.5 mg/l 2,4-D after 12 
weeks of culture (subculture every 4 weeks) (bars= 0.2 cm) 

 a: Globular embryo (green arrow) 
b: Heart-shaped embryo (black arrow) 

 c: Cotyledonary embryo (red arrows) 
 
 
 
5. Effects of types of explants and GA3 on development of SE 

 In this study, SEs at cotyledonary stage were obtained on MS medium 

supplemented with 2.0 mg/l BA, 1.5 mg/l 2,4-D and 0.25 mg/l GA3 after culture for 4 

weeks. The results revealed that SEs from mix flowers cultured on those PGRs 

containing medium gave the highest plant regeneration at 50% (Figure 9a), 

significantly different with other SEs from another explants. Plant regeneration 

obtained from single flower and petal was 37.5% and 12.5%, respectively (Table 3). 

Similar result was reported by Shamima et al. (2014) who observed that somatic 

embryos of Wedelia calendulacea Less. germinated into plantlets upon transfer to 

GA3 containing MS medium. However, concentration of GA3 used in the present study 

was two times lower than that used in Wedelia calendulacea Less. The reason might 

be due to different plant species cause the different response to the concentration 
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of GA3. It is possible that high concentration of BA used in the present study might 

have synergistic effect to low concentration of GA3. Like the report from Vengadesan 

and Paula (2009).  For Quercus rubra L. somatic embryos, they discovered that the 

combination of BA and GA3 favored simultaneous development of the shoot and 

root and produced a higher germination frequency. In the study, about 61% of the 

embryos germinated and developed normal shoots and roots on MS containing BA 

and GA3. Kim et al. (2007) also achieved similar results when employed GA3 in 

germination of somatic embryo Podophyllum peltatum L. However, some authors 

reported the reverse concentrations or proportions of both PGRs in germination of 

SEs. Palomo-Ríos et al. (2012) reported a significant improvement in the germination 

rate of genetically transformed avocado SEs when they were cultured in MS liquid 

medium with 0.1 mg/l BA and 10.0 mg/l GA3 for 3 days. Xiao and Branchard (1993) 

applied high concentrations GA3 (34.6 mg/l) for the initiation of embryogenic callus of 

Spinacia oleracea. Different plant species respond to different concentrations of GA3 

for elongation due to different concentrations of endogenous PGRs in those plants 

and explants. GA3 have also been used for elongation of regenerated shoots 

(Lakshmi et al., 2013). The ability of GA3 to complete embryo development may 

result from the activation of genes or the creation of novel gene products (Shamima 

et al., 2014). However, in this study, some SEs induced only shoot (Figure 9b). When 

effective roots fail to form, it may be due to meristem dysfunction or asynchronous 

development and a second rooting process is necessary to restore the entire 

plantlet, as has been observed in certain other species (Martin, 2004; Karami et al., 

2006; Pacheco et al., 2007).  
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Table 3 Effects of types of explants and GA3 on development of SEs on MS medium 
supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D after 4 weeks of culture 

Types of explants GA3 
(mg/l) 

Complete plantlet 
(%) 

Only shoot (%) 

Petal 0 0 0 
 0.25 12.5d 12.5b 

 0.50 12.5d 12.5b 

 0.75 0 0 
 1.00 0 0 

Single flower 0 0 0 
 0.25 37.5b 12.5b 

 0.50 25.0c 0 
 0.75 25.0c 0 
 1.00 12.5 0 

Mix flower 0 0 0 
 0.25 50.0a 25.0a 

 0.50 25.0c 0 
 0.75 12.5d 12.5b 

 1.00 12.5d 0 
F-test  ** ** 

C. V. (%)  17.58 34.90 
 
** = significantly different (P ≤ 0.01)  
Means followed by the same letter within column are not significantly different 

according to DMRT 
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Figure 9 Plant regeneration from SE derived from mix flowers on MS medium 

supplemented with 2.0 mg/l BA, 1.5 mg/l 2,4-D and  0.25 mg/l GA3 after 4 
weeks of culture 

 a: Cotyledon with root (bar= 0.5 cm)  
 b: Shoot (bar= 0.2 cm) 

 
 
 
 
6. Assessment genetic fidelity 
 The most important factor in plant propagation by tissue culture is to 
maintain genetic integrity with regard to the mother plants (MP). But it's well known 
that in vitro cultivation methods may bring about genetic variety, namely somaclonal 
variation (Jin et al., 2008). Somaclonal variation in tissue culture is a complex 
problem that needs several approaches to detect correctly (Leva et al., 2012). This is 
a concern in commercial micropropagation because it might have a detrimental 
impact on output and diminish the consistency of elite genotypes (Palombi et al., 
2002). Recent research has shown that polyploidy, aneuploidy, chromosomal 
breakage, deletion, translocation, gene amplification, and mutations are prevalent 
genetic alterations in cell or tissue cultures. These changes are also manifested at 
the biochemical or molecular levels (Teixeira et al., 2007). In plant tissue culture and 
regenerants of various plants, somaclonal variation has been highlighted using various 
molecular analytical approaches. In order to explore genetic diversity in tissue 
culture-regenerated plants, RAPD and SSR are frequently utilized. 
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 In the current work, POAD-01 and OPAD-10, two of the three RAPD-primers 
evaluated, were able to amplify and give monomorphic DNA patterns among in vitro 
rubber plantlets. Each primer had somewhere between 6 and 7 bands, with an 
average of 6.5 pieces per primer. Products that were amplified ranged in size from 
300 to 1350 base pairs (Figure 10 and 11). 53 EIR clones of the rubber tree were 
subjected to genetic investigation by Nakkanong et al. (2008) using 8 RAPD primers 
(OPB-17, OPN-16, OPR-02, OPR-11, OPZ-04, OPAD-01, OPAD-10 and OPAD-12). One 
RAPD primer (OPAD-01) produced a 700-bp fragment that was exclusively found in 
the EIRpsuI clone, according to the data. According to Wattanasilakorn et al. (2015), 
the genetic linkages between the early-introduced clones were assessed using OPAD-
01 and OPAD-10 primers, as well as RRIM 600, and DNA fragment polymorphism using 
RAPD primers. Base on the finding of Nakkanong et al. (2008) and Wattanasilakorn et 
al. (2015) RAPD primer OPAD-01 and OPAD-10 could be used to verify uniformity of 
rubber tree plantlets obtained from tissue culture technique.  In previous study, 
Sirisom and Te-chato (2013b) used eight RAPD-primers including OPAD-01 and OPAD-
10 to verify genetic stability of microcutting rubber tree. They also found that these 
two primers provided monomorphic patterns of DNA among in vitro rubber plantlets. 
The outcomes of this study's RAPD analysis were comparable to those of the SSR 
analysis. Each of the three SSR primers—hmac4, hmct1, and hmct5—could amplify 
and produce monomorphic DNA patterns. 1 to 10 pieces per primer produced a 
different amount of bands. Products that had been amplified varied in size from 200 
to 300 bases pairs. The three primer pairings yielded a total of three SSR fragments 
(Figure 12-14). In vitro rubber plantlets produced from several explants did not 
exhibit any somaclonal variation, according to the results of the aforementioned two 
procedures. These SSR primers were reported to produce polymorphic DNA patterns 
among early induce clones of rubber tree collected from different areas in southern 
Thailand by Nakkanong et al. (2008) and used to screen rubber rootstock and genetic 
background by Wattanasilakorn et al. (2015).  However, these three primers provided 
monomorphic DNA pattern in this present study. Hence, these primers could be used 
to verify genetic uniformity of in vitro rubber plantlets obtained from this 



 
 
 

41  

          
 

propagation like the assessment of somaclonal variation from in vitro plantlets 
derived from shoot tips or nodal by Sirisom and Te-chato (2013b).  

An earlier work by Hua et al. (2010) demonstrated that in vitro cultivation of 
an anther from a rubber tree resulted in malformed embryos (CATAS 7-33-97 and 
CATAS 88-13 clones). Many factors involve in the freqeuency of somaclonal variation 
(Kaeppler et al., 2000). Among those, types of explants play an important role in the 
genetic stability of in vitro cultures (Jin et al., 2008). When regeneration is 
accomplished from various tissue sources, there may be differences in the frequency 
and character of somaclonal variation (Sahijram et al., 2003). In this study, plantlets 
obtained from different explants (petal, single flower and mix flower) had the same 
genetic constituents as assessed by RAPD and SSR analysis. The results revealed that 
the analyzed of DNA from both protocols showed monomorphic patterns between 
mother plant and in vitro plantlets. Axillary buds and shoot tips are two examples of 
explants with preexisting meristems, but certain cases of differentiated tissues, such 
as roots, leaves, and stems, typically yield more variants (Duncan, 1997). Auxins, 
namely 2,4-D, are known to be necessary for somatic embryogenesis induction and 
embryo multiplication, both of which may be created through indirect somatic 
embryogenesis (Lloyd et al. 1980; Pasternak, 2002; Raghavan, 2004; Vondráková et 
al., 2011). For development and maturation steps it is necessary to decrease the 
concentration or remove this PGR from culture medium (Pasternak, 2002; Zavattieri 
et al., 2010; Garcia et al., 2019). According to the abnormality index, several 
researches claimed that BA was the most harmful cytokinin and that it might cause 
somaclonal variation in bananas (Bairu et al., 2008). It seems incredibly complicated 
how cytokinin affects embryo induction and development (Siragusa et al., 2007). 
However, in this present study, the concentration of auxin and cytokinin (1.5 mg/l 
2,4-D and 2 mg/l BA) did not have an effect on somaclonal variation. 
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Table 4 DNA quantification analysis from leaf sample of mothenal se-derived 
plantlets from various explants (petal, single and mix flowers) 
 Treatments Optical density at 

260/280 
Total DNA (ng/μl) 

 MP 1.92 2,248.3 
 S1 1.5 281.2 
 S2 2.0 284.4 
 S3 1.98 2,073.8 
 S4 2.04 289.1 
 S5 2.07 441.8 
 S6 2.05 461.6 
 S7 1.93 295.5 
 S8 2.11 263.9 
 S9 1.96 584.4 
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Figure 10 RAPD patterns of micropropagated plantlets compared to mother plant as 

amplified by primer OPAD-01  
  Lane M = 100 bp ladder, MP = mother plant, S1-S9 = DNA of in vitro young 

leaves samples 
    (S1-3 = petal, S4-6 = single flower and S7-9 = mix flower) 
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Figure 11 RAPD patterns of micropropagated plantlets compared to mother plant as 

amplified by primer OPAD10 
  Lane M = 100 bp ladder, MP = mother plant, S1-S9 = DNA of in vitro SE 

leaves samples 
  (S1-3 = petal, S4-6 = single flower and S7-9 = mix flower) 
 
  

 
Figure 12 SSRs patterns of micropropagated plantlets compared to mother plant as 

amplified by primer hmac4 
  Lane M = 100 bp ladder, MP = mother plant, S1-S9 = DNA of in vitro young 

leaves samples. 
 (S1-3 = petal, S4-6 = single flower and S7-9 = mix flower 
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Figure 13 SSRs patterns of micropropagated plantlets compared to mother plant as 

amplified by primer hmct1  
  Lane M = 100 bp ladder, MP = mother plant, S1-S9 = DNA of in vitro young 

leaves samples. 
 (S1-3 = petal, S4-6 = single flower and S7-9 = mix flower) 
 
 
 
 
 
 
 

 
Figure 14 SSRs patterns of micropropagated plantlets compared to mother plant as 

amplified by primer hmct5  
  Lane M = 100 bp ladder, MP = mother plant, S1-S9 = DNA of in vitro young 

leaves samples. 
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CHAPTER 5 
SUMMARY 

 
 NaOCl at 0.525% gave the best result in sterilization of all the explants (lTCl, 
petal, single flower and mix flowers) at 100%. All of explants cultured on MS 
medium supplemented with 2.0 mg/l BA and 1.5 mg/l 2,4-D gave the highest 
percentage of callus formation at 100% after culture for 4 weeks. Callus derived from 
mix flower chopped at number of 100 times gave the highest callus proliferation as 
determined by fresh weight at 392.05 mg after culture for 4 weeks. After 12 weeks of 
sub-cultured the callus derived from mix flowers gave the highest SE formation at 
39.84% and number of cotyledonary embryo (CE) at 3.25 embryos /explant. GA3 at 
0.25 mg/l with the best concentration of BA and 2,4-D gave the best result in plant 
regeneration at 50% after culture for 4 weeks.  
 Assessment of somaclonal variation was carried out by RAPD and SSR 
markers. Plantlets obtained by this procedure had the same profiles of DNA among 
each other and mother plant as revealed by 2 RAPD primers; OPAD01 and OPAD10 
and 3 SSR primers; hmac4, hmct1 and hmct5 It is concluded that somaclones 
obtained from this protocol is uniform and have the same genetic constituents as 
mother plant. 
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Appendix A 
 
Table 1 Composition of nutrition of Murashige and Skoog (MS) 
Component  Concentrations (mg/L) 
Macro elements  

NH4NO3  1,650 

KNO3  1,900 

KH2PO4  170.000 

CaCl2.2H2O  440.000 

MgSO4.7H2O  370.000 

Micro elements 
 

KI  0.830 

H3BO3  6.200 

MnSO4.H2O  16.900 

ZnSO4.7H2O  10.600 

CuSO4.5H2O  0.025 

Na2MoO4.2H2O  0.250 

CoCl2.6H2O  0.025 

FeSO4.7H2O  27.800 

Na2EDTA  37.300 

Organic compounds  

Myo-inositol  100.000 

Nicotinic acid  0.500 

Pyridoxine HCl  0.500 

Thaiamine HCl  0.100 

Glycine 2.000 

pH 5.7  
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