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Author Miss Mallika Kliangkhlao 

Major Program Computer Engineering 

Academic Year 2022 

 
Abstract 

 

 

Agricultural supply chain management depends upon the decision-making to stabilize 

the market situation. Uncertainties in demand and supply in the market dynamics are 

the main thread to the management. It then requires product flow and activities to be 

understood thoroughly and immediately. This task requires comprehensive 

information, expertise, and processing ability, which are time-consuming and labor-

intensive. This research proposes an automatic system framework alongside a Causal 

Bayesian Networks model for market detection and explanation using streaming data. 

This research contributes to designing and developing the model by encoding expert 

knowledge using cause-and-effect assumptions integrating with supply chain ground 

through. This model can detect the market situation rationally, likewise human logic. 

The results proved that the proposed model could accurately detect and reasonably 

explain the event. It illustrates that the model is suitable and ready for application to 

real-world applications for supporting decision-making in agricultural supply chain 

management.  
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Chapter 1 

Introduction 

 

 

 

1.1 Motivation 

The agricultural sector plays an essential part in many countries, especially Thailand. 

There are 12.6 million farmers across the country, the largest occupation, who earn an 

annual income below the poverty line with a lot of debt [1]. Climate change, education, 

and lack of modern technology are limitations that cause high risks in the productivity 

of Thai farming. Even though Thai farmers face problems in their job, the Thai 

government claims they are “the kitchen of the world”, and their food industries and 

businesses play the most significant part of the country’s GDP [2]. While farmers—

suppliers receive a minor income, the food industries—demand earns an enormous 

profit. This paradox undeniably reflects that the nature of agricultural supply chain 

management is changed and dynamic, which is too far needed to reform the policy to 

strengthen farmers’ productivity, income, and security. It depends upon the decision-

making that requires understanding the supply chain situation thoroughly. 

Management of the Agricultural Supply Chains (ASCs) then needs to adapt to 

understand the current situation and the upcoming event for deciding policies to support 

and stabilize ASCs. Significantly the world-class market is transformed into a modern 

supply chain [3]. This modern style creates shortcuts in the product flows from farmers 

to consumers by transferring the trading process to the commodity market that runs on 

a digital platform. Then, the relationship between suppliers and consumers is more 

dynamic because there is no market monopoly, which strengthens suppliers' bargaining 

power. The demand and supply data emerged continuously in various digital platforms 

called Big Data. The decision-making performance depends upon Big Data analysis to 

gain intensive knowledge, including the product flows, climate impacts, business 
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strategies, and factors that affect price movement. This work covers data sensing, 

preprocessing, analyzing, understanding, and decision-making, which is time-

consuming and labor-intensive for the respondent. 

In the era of automatic systems, many studies share contributions in supply 

chain management using Machine Learning (ML) and data-driven approaches for 

dealing with human limitations. Crop yield prediction with deep learning was studied 

by focusing on supply information from farm sensing data to help increase productivity 

in ASCs [4]–[6]. Punia et al. [7] proposed a deep learning-based approach for demand 

prediction. They contributed that demand prediction from point-of-sale data helps 

decision-makers make strategic, tactical, and operational decisions for ASCs. Chen et 

al. [8] focused on automatic agricultural commodity price prediction to help the 

government detect the market balance and plan ASCs management policy. These 

studies performed good results in demand and supply prediction. Although prediction, 

an absolute data-dependency approach, is perfectly fine for estimating a situation in a 

regular supply chain, the nature of the modern ASCs is too dynamic and beyond the 

power of prediction. Not only the situation prediction, but the modern ASCs 

management also requires an explanation that provides details for supporting decision-

making.  

An ASCs explanation means the details of each ASCs operation in the whole 

process, covering pre-production to retail [9]. It should answer basic questions likes 

'How about the crop yield production and why is it?' and 'Why does demand drop?'. 

These questions depend on an expert's intensive knowledge to monitor information for 

deep understanding. 

 This research aims to employ Causal Bayesian Networks (CBNs) to encode 

human-like knowledge into the ML model towards improved automatic ASCs 

explanation. The research question is 'How to analyze streaming data incorporating 

with CBNs model to detect and explain the ASCs situation?'. The approach for ASCs 

explanation is then a challenge to deal with the dynamics of ASCs and the data sources. 
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1.2 Original Contributions 

1. An automatic framework for analyzing an ASCs situation from real-time big data. 

2. The CBNs model incorporated with prior knowledge for explaining ASCs 

situations based on expertise manners. 

 

1.3 Research Objectives 

1. To explore an intuitive approach for sensing ASCs information from digital 

platforms for supporting ASCs explanation. 

2. To design and develop a CBNs model encoded from human-like intelligence to 

generate ASCs knowledge from big data. 

 

1.5 Research Scopes 

1. The ASCs background knowledge is declared based on Thailand’s rubber market. 

2. The dataset used in this thesis was collected from multiple open sources between 

2017-2019. 

3. The ASCs knowledge covers the demand, supply, and market situation required 

for agricultural market management. 

 

1.6 Thesis Structure 

Even though some of these research contributions have already been published, they 

are some subjects that may include contribute to a clearer understanding of this thesis. 

The rest of this thesis is concerned with Causal Bayesian Models (CBNs) 

representation. Using CBNs makes the ability to represent knowledge of Agricultural 

Supply Chains (ASCs) into a model. This thesis is represented as follows. 

In Chapter 2, the background knowledge of the ASCs and the reviews of the 

current limitation of machine learning models for ASCs management will be examined. 

Chapter 3 introduces the methodology of design and development for the CBNs model. 
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In particular, the framework for supporting the CBNs model with big data illustrates 

how to apply the model in an automatic system. The results and discussion of the CBNs 

model for explanation of an ASCs situation to prove the research question are detailed 

in Chapter 4. Furthermore, the conclusions, research trends, and future directions will 

be recommended in Chapter 5. In appendices contain the publications that previously 

contributed. The appendices contain a list of previously published materials that are the 

ground through this thesis. Appendix 1 presents an overview of the agricultural market 

understanding. Appendix 2 proposes a concept, development, and experiments of big 

data digitization for supporting machine learning modeling. And Appendix C presents 

a vital knowledge of the contributed CBNs modeling. It contains an original idea, 

background, design and development, and experiment of the CBNs model for the 

agricultural supply chains explanation.   
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Chapter 2 

Background Knowledge and Literature Review 

 

 

 

In this chapter, the characteristics of big data are developed based on the agricultural 

supply chain. Section 2.1 and Section 2.2 show recent studies on market situation 

detection with big data and machine learning technologies. The perspective of Causal 

Bayesian Networks is introduced to deal with the complexity of agricultural big data 

and the market explanation in Section 2.3. In Section 2.4, the research challenges are 

discussed. 

2.1 Agricultural Supply Chain and Big Data 

The agricultural supply chain concerns activities that transport crop yield from suppliers 

to process and dispatch to final consumers that have impacts on each other in the chain 

manners, as shown in Figure 2.1. 

Crop Yield 
Production

Supplier’s 
Stock 

Weather 
Factors

Context
Harvesting 

Cycle

Context
Set of 

Contexts

Context

Product 
Processing

Set of 
Contexts

Context

Farmers Manufacturers Retailers ConsumersSuppliers

Product 
Trading

Set of 
Contexts

Context

Product Sales

Set of 
Contexts

Context

Meteorological 
Data Service

Agricultural 
Calendar

 
Figure 0.1 Conceptual of causation relationship. 
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Figure 2.1 shows the diagram of the concept of the supply chain for the 

agricultural market. This supply chain shows the dependencies between activities that 

reflect demand and supply in the short-term or long run. The processes in the supply 

chain start with crop yield production by farmers—a supplier. The product flow runs 

along the chain to the supplier’s stock, product processing, and product trading until 

ends with the product sales activity which depended upon consumers. Therefore, 

decision makers need diversely supportive information to understand the supply chain. 

Focused on the first activity—crop yield production, the production quantity may 

be naively considered from the plantation area using on-farm sensors. However, it is 

not easy as its looks, the crop yield production is vulnerably depended upon numerous 

factors, such as the harvesting cycle, weather, or even crop infectious diseases. Then, 

decision makers always manage supply chain situations using competency questions, 

such as “Will supply quantity drop if it is going to be monsoon season?”. These factors 

are called contexts which are causes for inferencing the result of activities. The context 

is contributed to discover the contextual information of supply chain activities. It shows 

that the effect of ‘monsoon season’ is long-run with hidden time-dependent 

information. 

According to Figure 2.1, crop yield production can be estimated using its contexts; 

harvesting cycle, which is seasonality according to agricultural calendar, and weather 

information from meteorological data service. It shows the requirement for contextual 

information and knowledge to detect and explain the supply chain situation. 

In the era of big data, it is related and well-timed data that can be found in 

multisource sensors whether the smart devices, crowdsourcing, open data, and internal 

data warehouse. The details of applying big data in the agricultural field have been 

discussed and published, detailed in Appendix 1. 

Although big data is full of contextual information, it inherits the complex 

characteristics of big data: volume, velocity, variety, veracity, and valorization [10]. 

Particularly, I focus more on the variety and uncertainty that requires human 

intelligence to fuse, infer, and transform data into information. However, manual 
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agricultural big data processing is time-consuming and labor-intensive. Machine 

learning then comes across to perform an automatic concept. 

2.2 Agricultural Supply Chain Management 

In the agricultural domain, Machine Learning (ML) has been proposed as a solution to 

deal with gigantic experiences from big data [11], [12]. It is because it is an approach 

to achieving an automatic model to deal with complex problems. It has three main 

components; task as a goal of it to perform analysis, experience as a source for learning, 

and performance measurement to prove the ability of task performing. ML has been 

adopted in the agricultural domain related to demand and supply exploration using 

multimedia data. Koirala et al. [13], Haghverdi et al. [14], Zhang et al. [15], and Akbar 

et al. [16] proposed a deep learning model for crop yield production prediction as a 

supply exploration. Simple regression was proposed to deal with large and multi 

datasets of statistical data for rubber demand and supply prediction [17]. Furthermore, 

the hybrid model of deep learning and regression was proposed as a novel approach for 

supply prediction [18]. These studies have been perfectly proved for demand and/or 

supply prediction. However, that predictions still lack the contexts required in supply 

chain explanation management. 

 

Table 0.1 Previous works related to the agricultural supply chain. 
Author Supply Demand Price 

Short-term Long-term Short-
term 

Long-term  

Bocca, F. and Rodrigues, L. (2016)  × × × × 
Arunwarakorn et al. (2017)  ×  × × 
Shynkevich et al. (2017) × × × ×  
Stein and Steinmann (2018) ×  × × × 
Zhang et al. (2018) × × × ×  
Chen et al. (2018) × × × ×  
Zhu et al. (2019) × × × ×  

 

 The relationship between demand and supply is standard law in economics 

which encodes a supply chain prior knowledge to reveal market price movement [19], 

[20]. The interrelationships between activities affect each other as short-long-term 
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impacts according to the production cycle and time lag. Short-term impacts directly 

affect activities, while long-term impacts are indirect. This thesis reviews related works 

that focus on contexts of supply chain based on short-term and long-term impacts, as 

shown in Table 2.1. 

Table 2.1 summarizes relevant studies focusing on the impacts of short-and-

long-term demand and supply. In addition, the reviewed papers show the lack of short-

and-long-term demand and supply recognition that has a goal for supply chain 

management. Bocca and Rodrigues [21] and Arunwarakorn et al. [17] proposed short-

term supply prediction using several factors, such as weather data, stock, and crop 

prices. While Stein, S. and Steinmann, H. [22] proposed long-term supply using annual 

weather data. Shynkevich et al. [23], Chen et al. [24], Zhu et al. [25], and Zhang et al. 

[26] proposed price behavior detection without mentioned on market demand and 

supply. Moreover, this ignores discovering the relationship among factors in the supply 

chain, which is an invaluable opportunity to discover contexts. 

As a result, causation is a vision to explore contextual information based on a 

cause-and-effect relationship. It is a prerequisite adopted to select and explore the 

valuable data from the multi-data source, which can be used to recognize short-and-

long-term of demand and supply. 

Bayesian Networks (BNs) transparently model knowledge of supply chain 

relationships to produce such information, which decision-makers employ to create 

policies. BNs are probabilistic graphical models that capture the uncertainty and 

relationships among relevant factors in the supply chain decision-making process. 

Random variables represent these factors, and their relationships are encoded by 

conditional probabilities using Bayes' theorem. Sharma and Sharma [27], Chhimwal et 

al. [28], Lawrence et al. [29], and Ojha et al. [30] proposed for BNs-based risk 

assessment approach for supply chain management using historical data. They 

summarized that the approach could help the supply chain managers identify the risk 

factors early. El Amrani et al. [31] studied the sustainability of the supply chain 

network. These methods were successful because they focused on predicted outcomes 

and contextual explanations. However, they still did not consider explaining the context 
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of demand and supply. It means that the model cannot answer ASCs management 

questions such as 'What is the situation of demand and supply? Furthermore, why were 

these outcomes produced?'. The burden of causal interpretation and rational 

explanation is left to humans. 

 

2.3 Causal Bayesian Networks 

Causal Bayesian Networks (CBNs) are originally contributed by applying causality 

with Bayesian Networks [32]. CBNs represent directed acyclic graphs that encode the 

causal assumption among variables, as shown in Figure 2.2.  

 

Figure 0.2 CBNs represent a hypothetical crop yield production. 

 

CBNs model consists of a set of variables (nodes) connected by a set of 

functions (f), where X: a set of input (cause), Y: a set of output (effect), Z: a set of 

mediators, and c: set of uncertainty. CBNs model determines interdependency among 

variables using prior knowledge and big data. It represents a relationship between a pair 

of nodes which is a causal assumption that shows the impact of the parent on the child. 

The causal assumption, graphical representation, and meaning of the causal structures 

are concluded in Table 2.3. 

The causal structure inherits the conditional dependencies concept to connect 

the nodes in networks with causal relationships and block the paths between nodes with 

independencies, called "d-separation" [55]. Causal relationships benefit the ASCs to 

model knowledge and help decision-makers discover the reasons behind the complex 

environment. 

X
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Table 0.2 Causal Structure Conclusion 

Causal 

Assumption 

Representation Axiom 

Chain X → Z → Y X indirectly causes Y through Z 

Fork X ← Z → Y X and Y are correlated caused by Z 

Collider X → Z ← Y There is no relationship between X and Y, but 

they connect somehow through Z 

 

CBNs help encodes causality in supply chain knowledge and formalizes 

probabilism in an underlying dataset into mathematic forms using the Bayes theorem. 

 

W H

C
 

Figure 0.3 CBNs represent a hypothetical crop yield production. 

 

Figure 2.3 shows a simple CBNs that is encoded from a hypothetical crop yield 

production. This consists of three random variables: weather (W), harvesting cycle (H), 

and crop yield production (C). They are connected using a causal assumption that W 

and H are parents or causes affecting the event of C. This graph visuals a qualitative 

model while a quantitative model is a mathematical form applying with Bayesian 

Networks shown in (2.1). 

𝑃𝑃(𝑋𝑋|𝑃𝑃𝑃𝑃(𝑋𝑋))  =  ∏ 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖))𝑁𝑁
𝑖𝑖=1   (2.1) 

(2.1) shows a Bayesian Network’s chain rule concept which consists of a 

component of X, and a parent of X (Pa(X)). The relationship between variables has an 

associated conditional probability distribution (CPD). This approach is applied with the 

assumption in Figure 2.2, and formalized as follows:  
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𝑃𝑃(𝐶𝐶|𝑊𝑊, 𝐻𝐻)  =  ∏ 𝑃𝑃(𝐶𝐶|𝑊𝑊𝑡𝑡1, 𝐻𝐻𝑡𝑡2)  (2.2) 

(2.2) shows a quantitative model of the causal assumption. As mentioned, the 

parents can affect the child in either the short-term or long-term. Then, an event of W 

and H can be either the same time slice or the variously different periods (t1, t2). 

The causal structure uses conditional dependencies to connect nodes with causal 

relationships and block the paths between nodes with independencies; a process known 

as d-separation [33]. Causal discovery algorithms have been studied to structure a 

CBNs model using statistical properties from the observational data [34]. The 

algorithms are widely studied, including constraint-based and score-based methods. 

The constraint-based methods apply conditional independence constraints (e.g., Fast 

Causal Inference or FCI, and PC), while the score-based methods are based on the 

posterior probability of the candidate model (e.g. Greedy Equivalence Search or GES, 

and Greedy FCI). However, the resulted model’ performance is hard to be tested 

without a gold standard [35]. Then, expert-based modeling is the answer for discovering 

causal relationships in a domain that lacks a baseline. 

 Therefore, the CBNs model relies on two perspectives: (1) the causal 

assumptions that show both causalities among the variables, and (2) the impact velocity 

that shows the time-dependent among the causal assumptions. The effectiveness of 

CBNs is not just focused on the event prediction, it covers an ability to explain the event 

in a human sense. The explanation gives both prediction results and its contexts that 

support decision makers deciding a policy in ASCs management. 

2.4 Research Challenges 

This thesis is contributed CBNs to encode knowledge of human intelligence by 

focusing on ASCs management. The challenges are how to construct CBNs and how to 

apply them in a real-world application.  
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Chapter 3 

Methodology 

 

 

 

The goals of this chapter are 1) to propose a framework for supporting ASCs 

explanation, 2) to present a data processing approach for exploring ASCs data from 

digital platforms, and 3) to detail a CBNs model design and development methodology. 

3.1 Automatic Approach for Agricultural Supply Chains Explanation 

The key to ASCs management is to make a thoughtful decision for defining response 

and review for proactive planning that require humanlike intelligence to explain the 

situation rationally. It is a real-time and continuous process that is a cause of time-

consuming and labor-intensive tasks for decision-makers. This thesis contributed a 

conceptual automatic framework to sense and respond through the descriptive ASCs 

management framework, shown in Figure 3.1. 

Data Sensing Observation 
Identification

raw data

ASCs information

ASCs
situation

Decision Making 
Process

Situation 
Explanationresponse 

and review
X Y

Z B

A

ASCs
knowledge

ASCs Environment

 

 
Figure 0.1 The ASCs explanation conceptual framework. 

 

The proposed framework consists of four components: data sensing, observation 

identification, and decision-making process. Data sensing acts as an agent to gather 
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real-time data from data sources. It can be applied with open data Application 

Programming Interfaces (APIs), widely available on digital platforms and in-house 

Internet of Things (IoT). This component's output is raw data sent to observation 

identification. Observation identification performs the task of identifying and digitizing 

the raw data into market factors as ASCs information. Then, the information will be 

sent to the situation explanation component, an advanced component for making the 

framework descriptive. This component needs ASCs knowledge from the CBNs model 

for situation detection and explanation. Effective and high-quality knowledge of the 

CBNs model is the most important because it provides a situation detail for decision-

making. Then, the decision depends upon that ASCs knowledge, which provides 

responses to relieve the ineffective ASCs and reviews for proactive planning. The 

impacts of the response and review will affect the ASCs environment to produce the 

new observation for this continuous framework. Then, the CBNs model needs to be 

designed and developed as a pre-process to encode the ASCs knowledge into machine-

interpretable form. The model will be added to the situation explanation component as 

a machine intelligence in the descriptive framework. 

The proposed framework’s initial requirements are observation identification and 

the CBNs model. Then, data processing and CBNs design and development are 

contributed. 

 

3.2 Streaming Data Digitization for Agricultural Supply Chains 

Data preprocessing is the contributed approach for observation identification to 

automatically digitize the streaming data from multiple sources into ASCs information. 

The ASCs information is required for ASCs explanation since it is based on the contexts 

of short-term and long-term impacts of ASCs management. Therefore, the data 

preprocessing is applied with time-series decomposition to decompose time-related 

information hidden in the streaming data. 

Time-series decomposition technique concerns data change according to time 

movement by identifying the features based on frequency. Dimensionality reduction 
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transforms high-dimensional data into low-dimensional with essential information [36]. 

Moreover, it helps the framework decomposing ASCs information that is structured 

into the time-series components: level, movement, trend, and seasonality 

The marketer and decision maker define the interval. The level represents a 

single point value (e.g. hourly, daily, or monthly), movement is the distance between 

one level and another, and the trend is a fixed interval made up of a set of movements 

that represent semantic meaning of the direction of the change. Lastly, seasonality is a 

long-term scale representing the repeated pattern of trends impacting decision-maker 

plans for future directions. These time-series components are time-dependent 

information and can also be applied to short-long term impacts in ASCs information. 

The data preprocessing approach based on time-series decomposition, shown in Figure 

3.2. 

Raw Data 
Collection

Time-series 
Decomposition

data series

Supply 
Chain 

Contexts

component
heuristics

time
interval

Raw Data ASCs
Information

 
Figure 0.2 The data preprocessing approach based on time-series decomposition. 

 

 The data preprocessing approach’s main requirement is supply chain contexts, 

which detailed time intervals and component heuristics for the time-series 

decomposition component. This contribution has already been published [37]; see 

Appendix 2 for more detail. The output of this component is ASCs information that 

detected the event of the activities in ASCs, such as a trend of the rainfall, a movement 

of market prices, a trend in crop yield production, and processed food price. This bunch 

of events is just a piece of information that still needs humanlike intelligence to analyze, 

understand, and infer critical knowledge—demand, supply, and the ASCs situation. 

Then, the next requirement for the framework is the CBNs model that performs as a 
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humanlike brain to transform ASCs information into knowledge for supporting the 

decision-making process. 

 

3.3 CBNs Model Design and Development 

A fundamental task in CBNs design and development is to find causal relationships in 

disciplines of knowledge. Causal discovery methods can conduct causal relationships 

through observational data. These methods generate statistical correlations among 

observations from well-structured, comprehensive, and complete data covering all 

possible events. However, the supply chain introduces uncertainty and change into the 

ASCs environment dependent on expertise to analyze the situation rationally. It means 

that an absolute data-driven approach cannot produce accurate causal-and-effect 

explanations [35]. 

Expert-based modeling is an answer for initialing a CBNs model as a gold 

standard. The gold standard is a concept to model prior knowledge from everyday 

situations that covers regular events, rare events, and theoretical events that may never 

have happened practically. This idea can deal with rapid adaptation in the supply chain. 

However, the CBNs model is based on probability theory that quite impossible for 

humans to measure concrete statistics for tuning the model’s parameter. This research 

then applied it with the data-driven approach for parameter learning. 

CBNs model is constructed with two foundations: qualitative and quantitative 

models. The qualitative model represents an assumption of knowledge that experts use 

for reasoning in the domain. The quantitative model represents a mathematical form 

encoded using the qualitative model. 

 

3.3.1 Qualitative CBNs Model 

The qualitative CBNs model is encoded from prior knowledge into a graphical model 

with random variables as a node of interesting and causal assumptions as an edge 

among them. 
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In terms of Thailand’s natural rubber supply chain, the futures market controls 

the demand for the natural rubber products consumed by the automotive and tire 

industries [17], [38]. The products in that market are rubber sheets locally produced 

which depend on climatic conditions [39]. Indeed, climatic problems are the leading 

cause of decreased source production, while the future market influences consumers’ 

preferences and impacts the market demand. 

This research employs this information to model the causal assumptions between 

the random variables. Causal assumptions are constructed from familiar questions in 

ASCs management, such as:  

- Will crop yield be undersupplied if prolonged rainfall in the monsoon 

season? 

- Will demanded quantity in bidding activity drop if there is a downtrend in 

the future market? 

- If the market price rises with a low crop yield production, will consumer 

preference increase? 

- What are the factors that cause market equilibrium? 

The answer is discovered using an ASCs prior knowledge that depends upon the 

experts. It consisted of: (1) interviews with three experts and two practitioners from the 

Central Rubber Market (CRM) in Hat Yai, Songkhla, Thailand; (2) reviews of a CRM 

database of 5 years provided by the Thai government. 

Figure 3.3 shows the full mode of graphical causal assumptions between the 

random variables, with cause(s) pointing directly to effect(s) (cause(s) → effect(s)). 

After consulting with experts, some causal assumptions (grey nodes with dash lines) 

were cut off because lack of data sources, out-of-date information, and inaccurate data 

problems. 
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Figure 0.3 Causal assumption of natural rubber SCs using CBNs. 

 

Then, the assumptions are causally structured for explaining the ASCs Situation 

in terms of Manufacturing Capacity, Consumer Preference, and Market Price, and 

most of them are encoded as collides. For example, Trading Volume, Open Interest, 

and Future Market Price explain the liquidity and activity of Future Market 

Movement. Trading Volume reflects the short-term demanded quantity throughout the 

trading day, while Open Interest shows the number of futures contracts that are still 

open. Trading Volume and Open Interest are independent unless Future Market 

Movement is questioned, and then they become causally dependent. In other words, the 

causes are causally independent of each other, but conditioning on Crop Yield 

Production makes them dependent. Moreover, Crop Yield Production affects the 

behavior of Raw Material Cost, which passes its information to Manufacturing 

Capacity. This graphical model can be interpreted into quantitative CBNs model. 
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3.3.2 Quantitative CBNs Model 

The quantitative CBNs model uses a dataset as training data for tuning model 

parameters. Natural rubber supply chain data for tuning prior and likelihood functions 

were collected between 2015 and 2019 from the CRM in Hat Yai, Songkhla, Thailand. 

The data obtained from the training data are summarized in Table 3.1. 

 

Table 0.1 Summarization of natural rubber supply chains data. 

Data Sources Random 
Variables States 

Climatological 
Center [40] 

Climatic Problem normal (48%), drought (8%), monsoon 
(13%), flood (31%) 

Agricultural 
Production Data [41] 

Labor Resources down (10%), stable (81%), up (9%) 
Raw Material Cost downtrend (36%), sideway (7%), uptrend 

(47%), fluctuation (9%) 
Thailand Daily 
Rubber Price [42] 

Market Price down (19%), stable (69%), up (19%) 

Bank of Thailand 
[43] 

Currency 
Exchanges 

strengthening (53%), stable (4%), weakening 
(43%) 

Markets Insider [44] Exporting Costs down (7%), stable (75%), up (19%) 
Tokyo Commodity 
Exchange (TOCOM) 
[45] 

Trading Volume downtrend (47%), sideway (6%), uptrend 
(47%), fluctuation (0%) 

Future Market 
Price 

downtrend (24%), sideway (11%), uptrend 
(34%), fluctuation (31%) 

Open Interest downtrend (47%), sideway (1%), uptrend 
(51%), fluctuation (12%) 

 

Table 3.1 summarizes data in the form of observed random variables. At the 

same time, contextual variables were retrieved from the CRM database. They are 

labeled using experts, as shown in Table 3.2. 

 

Table 0.2 Summarization of natural rubber supply chains’ contextual variables. 

Random Variables States 
Crop Yield Producing down (39%), stable (14%), up (48%) 
Manufacturing Capacity low (17%), normal (31%), high (52%) 
Consumer Preference low (9%), normal (52%), high (39%) 
Future Market Movement down (33%), stable (51%), up (15%) 
ASCs Situation equilibrium (7%), abnormal-equilibrium (29%), 

shortage (13%), abnormal-shortage (8%), surplus 
(24%), abnormal-surplus (20%) 
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The significant proportion of Crop Yield Producing is up (48%), which causes 

Manufacturing Capacity to be high (52%), which accounts for over half of the dataset. 

The summarization shows an imbalanced market that reflects the inefficient supply 

chain. 

These data become the priors of the random variables. For example, let cp be a 

set of m-possible outcomes of Climatic Problem (CP), and P(CP) be the prior for 

Climatic Problem, defined as: 

 

𝑃𝑃(𝐂𝐂𝐂𝐂) =  � 𝑃𝑃(𝐂𝐂𝐂𝐂 = 𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖

 
(3.1) 

 
The cpm is the set of the m-possible outcomes of Climatic Problem. The 

probabilities distribution of CP is P(cpnormal) = 0.48, P(cpdrought) = 0.08, P(cpmonsoon) = 

0.13, and P(cpflood) = 0.31. 

This research also uses these data to tune the likelihood parameters by using 

Maximum Likelihood Estimation [46] that functioned using Conditional Probability 

Distribution (CPD). For example, the causal assumption shows that Crop Yield 

Producing (CYP) is affected by Climatic Problem (CP), defined as: 

 

𝑃𝑃(𝐂𝐂𝐂𝐂𝐂𝐂, 𝐂𝐂𝐂𝐂) =  � 𝑃𝑃(𝐂𝐂𝐂𝐂𝐂𝐂 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖:𝑚𝑚|𝐂𝐂𝐂𝐂 = 𝑐𝑐𝑐𝑐𝑗𝑗:𝑛𝑛)
𝑚𝑚,𝑛𝑛

𝑖𝑖,𝑗𝑗

 
(3.2) 

 

 The cypm is the set of the m-possible outcomes of Crop Yield Producing, and 

cpn is the set of n-possible outcomes of Climatic Problem that passes their information 

to Crop Yield Producing. 

The causal structure represents the scientific assumption that a prior-based 

process integrates with a data-driven process to produce a gold standard of the CBNs 

model. 

This research employs 10-fold cross-validation to estimate model performance. 

The validation shows that the proposed possesses good model performance and can be 
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applied to this case study. The design, development, and validation of the proposed 

CBNs model have been contributed, as explained in [47], according to Appendix 3. 

The validation shows that the overall performance is high of 94%. The 

accuracies of equilibrium and abnormal-shortage are lower than the others because 

they are rare events, occurring at around 7% and 8% in the sample proportion, 

respectively. The equilibrium market is ideal and rarely occurs because the market 

context changes dynamically. Similarly, abnormal-shortage means a shortage of 

supply with decreasing price, which is an extraordinary situation that contradicts the 

laws of demand and supply. It is also a rare event with a small sample for training the 

model. In conclusion, our proposed possesses good model performance and can be 

applied to this case study. 

Although k-fold cross-validation shows model performance, it does not yet 

convince a satisfying performance in explanation ability. A significant advantage of the 

proposed CBNs model is that it can detect market events using dynamic streaming data 

and explain the market situation correctly and reasonably to support agricultural market 

management. 
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Chapter 4 

Results and Discussion 

 

 

 

This section aims to show the effectiveness of the research contributions by proving the 

research question, 'How to analyze streaming data incorporating with CBNs model to 

detect and explain the ASCs situation?'. This research divides effectiveness into three 

perspectives: correctness of real-time data processing, the correctness of the CBNs 

model in ASCs situation detection, and reasonableness of the CBNs model in ASCs 

situation explanation. 

4.1 Experiments 

This research arranged three experiments to answer the research question. Firstly, the 

streaming data digitization experiment is set to prove an intuitive approach for sensing 

the streaming ASCs information from digital platforms. Secondly, the predictive 

performance measurement is proposed to test the CBNs model correctness in ASCs 

situation detection. Lastly, the sensitivity analysis is adopted to analyze that the CBNs 

model can encode reasonableness from human-like intelligence for supporting ASCs 

explanation. 

First, data are collected from rubber auction events between 2015 and 2019 from 

the Central Rubber Market (CRM) in Hat Yai, Songkla, Thailand. This data collection 

was employed for experiments. It consisted of 111,250 transactions from seven primary 

sources: (1) the Thai calendar is a holiday and shedding season data, (2) Thai rainfall 

data [48], (3) fresh latex and reserved auction prices from the Rubber Authority of 

Thailand [49], (4) supplied the commodity prices, open interests, and trading volumes 

from the Tokyo Commodity Exchange (TOCOM) [45], (5) currency exchange rates for 

the Thai Baht/US Dollar (THB) and Japan Yen/US Dollar (JPY) from Bank of Thailand 
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[43], and (6) crude oil prices, included West Texas Intermediate (WTI) and Brent, from 

Markets Insider [44], and CRM database of 5 years provided by the Thai government. 

The data was preprocessed and divided into two subsets. This experiment randomly 

split the dataset into two subsets. The first subset is for model training and validation, 

and the second is for testing. The data splitting method was performed using the scikit-

learn Python library [50]. 

 

4.1.1 Streaming Data Digitization 

Experiment Objective 

The objective of this experiment was to examine the performance of the streaming data 

digitization based on time-series decomposition. This method's performance is proven 

by data significance testing and predictive analytics. 

Experiment Setting 

The most common form of statistical significance is the correlation coefficient which 

measures the relationships between independent and dependent variables. This 

experiment set supply (Manufacturing Capacity) and demand (Consumer 

Preference) as dependent variables because these two variables conclude an ASCs 

situation. At the same time, the rest variables are considered independent variables. 

The hypothesis (H1) and the null hypothesis (H0) were defined as follows: H1: 

the digitized data had a significant correlation for recognizing demand and supply in 

the market. Furthermore, H0: there is no significant correlation between the digitized 

data for recognizing demand and supply in the market. 

The H1 is proved if (1) the digitized data shows a significant correlation, and 

(2) it provides good classification results. Four well-known classification algorithms 

were utilized: Decision Trees (DT), Neural Networks (NN), Support Vector Machines 

(SVM), and Naïve Bayes (NB) [12]. These algorithms employ correlations and relative 

odds for the dependent variable outcomes given independent variables. These models' 

classification results can reflect the digitized data's significance. 
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Metrics 

For significant testing, the multinomial logit model [51], [52]was employed to evaluate 

the dependent variables against the reference group. This method measures the 

correlation coefficient in the dataset based on p-values with a significant-alpha and odds 

ratio (OR) to determine whether the digitized data is significantly different from the 

null hypothesis. The significance-alpha level for all the statistical tests was set to 0.05, 

which gives a 5% chance of error rates. If the p-value was less than or equal to this 

alpha, this experiment rejected the H0. Furthermore, if the OR is 1, then the association 

between independent variables is deemed insignificant. Otherwise, the association of 

the independent variables significantly influences the dependent variables. The 

calculations used the Statsmodels Python library [53] for multinomial logit modeling. 

For predictive analytics, The F-measure (F1) was used to evaluate classification 

in terms of overall outcome accuracy. The metric is 𝐹𝐹1 =  𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡+1

2(𝑓𝑓𝑓𝑓+𝑓𝑓𝑓𝑓)
. The true positive 

(tp) is a correct outcome from the prediction results, the false positive (fp) is an incorrect 

result, and false negative (fn) is an unclassified outcome. The scikit-learn Python library 

[50] was employed to tune the model’s hyperparameters, with training data.  

Results 

The complete result of this experiment has been attached in Appendix 2, page 57. The 

overall p-values for supply are mostly highly significant (computed the average of 

0.037), and the OR result is acceptable and highly significant (computed the average 

<0.001). While overall p-values for demand are insignificant (computed at the average 

of 0.504), OR result shows acceptable significance (computed at the average of 0.223). 

For predictive analytics, the highest average scores are with the DT algorithm 

(0.98 and 0.95 for supply and demand). It appears to be the most compatible with the 

proposed approach because it uses a logical model that can very successfully handle 

category-based data. In contrast, NB, a probabilistic model based on Bayes’ theorem to 

compute posterior probabilities, gives the lowest average scores. It may cause by the 

training data imbalance that generates many false positives. At the same time, NN and 

SVM algorithms are geometric models employing optimization methods that need to 
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tune the best hyperparameters. The overall accuracy of NN and SVM with default 

parameter settings are acceptable for this research, but there might be some benefit in 

adjusting NN’s complex layers’ parameters for deep learning or SVM’s margin to 

improve accuracy. 

The best contribution from this finding is to provide an automatic approach for 

sensing and digitizing ASCs information from digital platforms for supporting ASCs 

explanation. 

 

4.1.2 Predictive Performance Measurement 

Experiment Objective 

The objective of this experiment was to examine the predictive performance of the 

proposed CBNs model to detect the ASCs situation. 

Experiment Setting 

The target class is the states of the ASCs Situation random variable since it helps to 

provide an overview of the market and help decision makers manage the supply chain. 

This experiment used standard classification algorithms, including Decision 

Trees (DT), Neural Networks (NN), Support Vector Machines (SVM), and Naïve 

Bayes (NB) [12] for predictive performance comparison. It was arranged to highlight 

the CBNs model's predictive ability. 

Metrics 

The states of ASCs Situation were measured based on Precision, Recall, and F-

Measure. Precision (PS) is a proportion of the correction of the positive prediction, 

which is computed as 𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

. Recall (RC) is a proportion of the correction of the 

prediction, which is computed as 𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

. Lastly, F-Measure (FM) is a balance 

between Precision and Recall, which is computed as 𝐹𝐹𝐹𝐹 =  2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

. TP is a true 

positive prediction, FP is a false positive prediction, and FN is a false negative 

prediction. 
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The scikit-learn Python library [50] was employed to tune the model’s 

hyperparameters, with training data.  

Results 

The complete result of this experiment has been attached in Appendix 3, on page 84. 

The average results are acceptable for prediction by reaching over 80%. The lowest is 

84%  from the NB model since the NB has a " naïve"  assumption that its features are 

independent and only dependent on the outcomes that are the paradox assumption to 

the supply chain since independent features rely on each other. The rest are 93%, 94%, 

94%, 93%, and 95% for NN, SVM, DT, BS, and CBNs, respectively. These results are 

high performances since all models have been trained and validated using well-prepared 

data.  In this way, the models are ready to apply to decision support systems to help 

decision-makers understand the ASCs Situation. 

Even though the CBNs model's results are acceptable, it does not show the 

explanation ability to support decision-making. This research conducted the sensitivity 

analysis to show how the model will explain the rationale. It is set to highlight this 

work's best knowledge. 

 

4.1.3 Explanation Measurement 

Experiment Objective 

The objective of this experiment was to examine whether the causal relationships from 

the CBNs model express a rational explanation. 

Experiment Setting 

This experiment selected scenario-based testing for the explanation. It was selected 

from the ASCs management questions: 

1) Will crop yield be undersupplied if prolonged rainfall in the monsoon season? 

2) Will demanded quantity in bidding activity drop if there is a downtrend in the 

future market? 
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3) If the market price rises with a low crop yield production, will consumer 

preference increase? 

4) What are the factors that cause market equilibrium? 

It is because these questions asking for the final event that provides high impact 

on decision-making. Decision-makers need to understand the factors that support their 

decisions and wish to keep the market stable as long as possible. As a base case, this 

work used the most sensitive scenario, "ASCs Situation is equilibrium". 

According to the hypothesis, the posterior probabilities of the questioned 

variable should be affected by its cause(s) according to the causal assumptions from 

qualitative model and corresponding with the evidence(s). Then, the assumption is that 

the base case is sensitive to variations of the states from its relevant cause random 

variable(s). 

The Bayesian Search-based model (BS) was compared with the CBNs model 

because of its use of conditional dependency of a Bayesian Network [54], which 

produces relationships based on a score-based structural learning. 

Metrics 

Sensitivity analysis calculates the posterior probability distributions over the 

questioned variable parameters (each causes random variables’ states). It can be 

calculated as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝒙𝒙) = 𝜕𝜕𝜕𝜕(𝒙𝒙𝑡𝑡|𝑒𝑒)
𝜕𝜕𝒙𝒙

, x is a target variable, with interest in 𝒙𝒙 = 𝒙𝒙𝑡𝑡 

as a base case, and 𝑝𝑝(𝒙𝒙𝑡𝑡|𝑒𝑒) posterior distribution of the base case given evidence. The 

average sensitivity conditioned from all parameters is between zero and one. The zero 

means that the changes of the questioned variable’s causes reduce the chance of a base 

case, while the one influences the questioned variable to occur. Sensitivity analysis can 

measure a miner change of cause parameters sensitive to questioned variable 's 

posteriors (e.g., cause of non-equilibrium). This analysis computes sensitivity between 

cause and effect in the manner of human-like intelligence based on the uncertainty of 

the questioned variable. 
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Results 

Firstly, the CBNs model and BS model were constructed and tuned parameters with the 

training data, as shown in Figure 4.1. 

 

 
Figure 4.1 The tuned CBNs model. 

 

 
Figure 4.2 The tuned BS model. 
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Figure 4.1 and 4.2 showed some similarity between the tuned CBNs model and 

BS model. This is because even the BS’s structure learning is score-based method that 

discovered causal relationship among the data, the data fed for model learning were 

well collected and prepared. Their differences are showed in Table 4.1. 

 

Table 4.1 The different causal relationship between CBNs model and BS model. 

No Proposed CBNs Model BS Model 

1 Market
Price

Consumer
Preference

ASCs
Situation

Manufacturing
Capacity  

Market
Price

Consumer
Preference

ASCs
Situation

Manufacturing
Capacity  

2 RawMaterial
Cost

Manufacturing
Capacity

Labour
Resources

 
RawMaterial

Cost
Manufacturing

Capacity

Labour
Resources

 
 

Each of the questions was extracted into (1) the final event—questioned random 

variable, and (2) the evidence —observed random variable(s). These random variables 

were inferenced by our proposed CBNs model and the BS model. The outputs consist 

of the posterior distribution of the final event and its causal as the explanation. The 

comparison of the models’ explanation are as follows: 

 

Q1: Will crop yield be undersupplied if prolonged rainfall in the monsoon season? 

Final event: CropYieldProducing = low 

Evidence: ClimaticProblems = monsoon 

 

  
(a) Proposed CBNs Model (b) BS Model 

Figure 4.3 The results of the first question. 
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Figure 4.3 showed that both models answer that there is a 0.45% chance of low 

CropYieldProducing given monsoon ClimaticProblems. This is because they share 

the same causal assumption that ClimaticProblems is an only cause of 

CropYieldProducing. 

 

Q2: Will demanded quantity in bidding activity drop if there is a downtrend in the future 

market? 

Final event: ConsumerPreference = low 

Evidence: FutureMarketVolatility = down 

 

  
(a) Proposed CBNs Model (b) BS Model 

Figure 4.4 The results of the second question. 

 

Figure 4.4 showed that both models also answer that there is a 25.71% chance of 

low ConsumerPreference given down FutureMarketVolatility. This is because they 

also share the same causal assumption that low FutureMarketVolatility causes to a 

53.66% chance of up ExportingCosts that passes an effect to low 

ConsumerPreference. 

 

Q3: If the market price rises with a low in crop yield production, will consumer 

preference increase? 

Final event: ConsumerPreference = high 

Evidence: MarketPrice = up, CropYieldProducing = low 
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(a) Proposed CBNs Model 

 

 
(b) BS Model 

 

Figure 4.5 The results of the third question. 

 

Figure 4.5(a) showed the CBNs model answer that there is a 98.92% chance of 

high ConsumerPreference given up MarketPrice and low CropYieldProducing. It 

also explained the low CropYieldProducing gives a 59.09% chance of 

RawMaterialCost that affects a 50.54% chance of ManufacturingCapacity. These 
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information leads to either a 49.41% chance of abnormal_equilibrium ASCsSituation 

or a 47.95% chance of shortage ASCsSituation. 

Figure 4.5(b) showed the BS model answer that there is an 88.07% chance of high 

ConsumerPreference given up MarketPrice and low CropYieldProducing. Despite 

the CBNs model, BS model has no causal assumption between CropYieldProducing 

and RawMaterialCost. Then, these evidence leads to either a 41.97% chance of 

surplus ASCsSituation or a 36.49% chance of abnormal_equilibrium ASCsSituation 

or an 18.99% chance of shortage ASCsSituation. 

These results show that the models can both explained the situation, but the fact 

that BS model did not consider causal assumption between CropYieldProducing and 

RawMaterialCost makes it performed less reasonably than the CBNs model. 

  

Q4: What are the factors that cause market equilibrium? 

Final event: ASCsSituation = equilibrium 

Evidence: - 

Despite the previous questions, the fourth question has no evidence. Then, the 

sensitivity analysis was employed to find the parameter that has influence on this base 

case. The result of this test has been attached in Appendix 3, page 85. The sensitive 

degrees for CBNs and BS are 0.069 and 0.071, respectively. One difference between 

CBNs and BS is the number of random variables affecting the sensitivity of the base 

case. CBNs and CBNs share the top three sensitive factors, which are Market Price, 

Manufacturing Capacity, and Consumer Preference. 

The first three parameters from the models show that equilibrium has converged 

to zero. It means that changes to Manufacturing Capacity, Consumer Preference, 

and Market Price cause ASCs Situation to become unbalanced (¬equilibrium, 

shortage, or surplus). The posterior distributions of ASCs Situation for both CBNs and 

BS are highly sensitive to Market Price. Experts understand that consumer and 

supplier behaviors are principal factors affecting ASCs Situation, so BS and CBNs can 

help people interpret events using something close to expert reasoning. 

While BS has more sensitive factors, Trading Volume, and ASCs Situation, 

because the training data may provide high correlations, this difference shows that the 
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number of variables reflects upon resources and processing time. Moreover, this 

relationship is considered irrational because Trading Volume is never used to explain 

ASCs Situation directly. Experts understand that Trading Volume is the root cause of 

ASCs Situation that transfers its effect through Future Market, Exporting Costs, and 

Consumer Preference. 

The sensitivity represents how domain experts view environment changes and 

what they should consider adjusting. 

 

4.2 Discussion 

The experiments show that CBNs provide predicted outcomes and relevant parameters 

to help decision-makers understand the ASCs situation. 

The first experiment proved that the proposed streaming data pre-processing 

could transform sequential data into discretized data. Whether reducing an overloaded 

data dimension in processing cost, the discretized data also explore important 

information required for machine learning-based algorithms. Primarily, the proposed 

time-series decomposition method is based on prior knowledge of the supply chain. It 

brings vital ASCs information for CBNs modeling since the data representation works 

consistently with human interpretation. 

The second experiment confirms that the CBNs model performs satisfactorily 

for market situation detection. CBNs can reach an accuracy of around 95%, which 

works well within traditional supply chain management, where many companies 

employ experts to examine the probabilities of shortage or surplus. However, small 

companies lack this expertise, which makes their analysis much more labor-intensive 

and time-consuming. 

The third experiment shows that CBNs offer a new dimension of decision 

support for the supply chain management. It provides market interpretable explanations 

based on cause-and-effect, which companies need. 

This research can conclude that the CBNs model incorporates prior knowledge 

for analyzing ASCs situations based on expertise.  
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Chapter 5 

Conclusion 

 

 

 

5.1 Research Summary 

An imbalance between demand and supply causes an abnormal situation in an 

agricultural market, especially for the modern market, which goes far beyond changes 

from traditional ones. Agricultural supply chains (ASCs) management is a foundation 

for detecting a market situation and supporting policy planning. This duty depends upon 

the decision-making that requires understanding the supply chain situation thoroughly 

and rationally. It still depends upon expert people to explore new data and analyze new 

information for making decisions, which is time-consuming and labor-intensive. This 

research proposed a machine learning-based ASCs explanation model to discover the 

supply chain process details. The proposed model is designed and developed using the 

cause-and-effect assumption represented using Causal Bayesian Networks (CBNs). 

The CBNs model automatically encodes human-like knowledge to detect the market 

situation with the ASCs explanation. 

Finally, this study arranged experiments to prove the research performance from 

three perspectives: the streaming data processing correctness, the model predictive 

correctness, and the model's sensitivity. The results showed that the proposed streaming 

data processing performs acceptable results that can digitize sequential data into 

meaningful categorical. The CBNs model has an excellent predictive ability to detect 

the market situation with a rational and supportive context as an explanation. It shows 

that the CBNs model offers a new dimension of decision support for the supply chain 

management. These results proved that this study could answer the research question. 
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5.2 Claim of Originality 

This study answers the research question, 'How to analyze streaming data 

incorporating with CBNs model to detect and explain the ASCs situation?'. Therefore, 

the originality is the approach for ASCs explanation which proposed using the 

conceptual framework for utilizing big streaming data and applying with the original 

CBNs model in an automatic system. 

5.2.1 The Conceptual Framework 

This study proposes the original concept of the ASCs explanation framework for an 

automatic system which is a tool for guiding fellow researchers in solving their system 

design. This conceptual framework covers the vision to sense ASCs-related streaming 

data from various sources for detecting and explaining the market situation. The 

conceptual framework can be applied to various agricultural markets by adjusting the 

factors affecting suppliers, consumers, and product lines according to the market 

characteristic. The adjusted factors reflect the data source and market situation required 

from this framework. For example, the data sensing component can be applied with 

data sources that provide ASCs contexts, e.g., sensing technologies such as sensors, 

open access satellite data, point-of-sale data warehouse, and web API. While the 

decision-making process can be applied with a decision support system. This 

component enables farmers, agricultural experts, research workers, or market analyzers 

to drive real-time operational decisions and reinvent for modern business models. This 

study contributes the framework for an automatic ASCs explanation, which aims to 

deal with the time-consuming and labor-intensive work problem. 

5.2.2 The Original Model 

This study proposes the original CBNs model that was constructed using cause-and-

effect vision. It encodes prior knowledge of supply chains into the qualitative model 

using the causal assumption concept. The qualitative model is a graphical model 

constructed using random variables as a node of interesting and causal assumptions as 

an edge among them. Furthermore, this study transforms it into mathematical form as 
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a quantitative model based on the Bayes theorem. It uses a data-driven approach to tune 

prior and likelihood distribution functions according to probabilistic modeling. The 

functions support the CBNs model adaptively calculate a posterior for ASCs 

management question. The CBNs model is the golden standard model ready to be 

applied to the ASCs management system. 

5.3 Future Directions 

This thesis has been mainly focused on how to encode human knowledge to construct 

a gold standard model to answer the research question, which was tested and discussed 

methodologically. However, the more focused and deeper consideration in the research 

leaves some ideas outside the scope of the thesis, but they are research gaps and 

challenges to improve and drive the future ASCs market management. The following 

ideas could be performed: 

The ongoing agricultural market and supply chains glow continuously, 

modernly, globally, and digitally. The farmers likely develop a marketing strategy to a 

digital platform that generates enormous data with various new data sources, such as 

an online market that generates product quantity trends, supplier competition 

promotions, consumer preferences, and demand trends. It helps data sensing expand 

opportunities for examining new and exciting market factors to discover new causal 

assumptions for ASCs management. 

Digital marketing creates a significant change in supply chains. It cuts off some 

activity and makes some shortcuts. For example, it directly connects farmers to 

consumers, which generates short-term impacts between crop yield processing and 

consumer preference, while it eliminates impacts on the middle market and traders. 

These phenomena may create a flaw in the streaming data digitization in Chapter 3.2. 

This is because the current time-series decomposition approach considers transforming 

nonstationary time-series data into categorical data according to prior knowledge. Even 

the categorical distribution represents states of random variables in human-friendly 

form, ultimately binding to prior knowledge that may abandon some new meaningful 

information. The alternative approach is a challenge in dealing with nonstationary 

events. 
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The causal discovery algorithms are challenging to determine causal 

relationships in the CBNs model. Besides it reduces labor-intensive and time-

consuming tasks in CBNs model learning, it might produce some hidden knowledge 

beyond the golden standard that might help generate modern, rich, and exciting events 

for better ASCs management. Furthermore, it could be interesting to consider an 

automatic causal discovery to learn more inclusive and new knowledge from the 

enormous data from digital marketing. 
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ABSTRACT 
Agricultural Market (AM) understanding has the main 
goal to discover knowledge of market situation for 
decision making in agricultural management. 
Agricultural Big Data (agri-big data) is the valuable 
data for that process. With the uncertainty of agri-big 
data, it needs expert knowledge to understand AM-
related effect from the observation to infer the most 
complete situation. This manual process causes the cost 
of time-consuming. It is important to consume the well-
timed data and generate knowledge for supporting 
decision maker to make policy in agribusiness. 
Therefore, the concept of automatic agri-big data 
processing using Machine Learning for AM 
understanding is more focused. This paper shows the 
application of that idea with agricultural market event 
detection in case study of Natural Rubber (NR) Market 
in Thailand. The automatic AM understanding and its 
challenge are discussed. 

CCS Concepts 
• Mathematics of computing~Probabilistic 
inference problems • Information 
systems~Information integration 

Keywords 
Agri-Big Data; Agribusiness; Automatic Agricultural 
Management System; Agricultural Market Event 
Detection; Machine Learning. 

1. INTRODUCTION 
Agribusiness is concerned to understand the effects of 
agricultural operation and movement in the 
Agricultural Market (AM) [1]. AM understanding is 
critical assessment for improving potential of policies 
and operation in agriculture management [2]. It can 
provide knowledge of real-time market phenomena and 

support decision makers. Many studies are focused on 
demand recognition [3] and supply recognition [4]. 
However, they were manually conducted from the 
history data which may outdated and not support the 
dynamic of the real-world situation. It hardly informs 
knowledge to support decision making in real-time 
which is the significant point in agricultural marketing. 
Hence, this approach requires collection of well-timed 
data and model to reveal the behavior of agriculture 
situation. 

In the era of Big Data, it is a related and well-timed data 
which can be found in multisource sensors whether the 
smart devices, crowdsourcing, open data, and internal 
data warehouse. This paper focuses on Agricultural Big 
Data (agri-big data), which relates to geospatial 
technology, machinery data, production information, 
weather, and marketplace. Decision maker can use such 
information for agricultural management. Therefore, it 
is the beneficial data to provide knowledge for 
estimating the real-time AM. However, agri-big data 
inherits the complex characteristics of Big Data which 
are high in volume, velocity, variety, veracity, and 
valorization [5]. Particularly, this paper focuses on the 
uncertainty of data emerging. It needs the expertise of 
human to infer by fusing and transforming agri-big data 
into knowledge. However, the manual of agri-big data 
processing is time-consuming. Therefore, the automatic 
concept for agri-big data processing is the first 
prerequisite. 

Machine learning is the idea that improves machines’ 
learning ability and turns them to be learners. In this 
case, machine learning can possibly support the 
automatic AM understanding goal by learning the 
behavior of agri-big data. There are studies apply 
Machine Learning for agricultural field [4], [6]. 
However, related studies considered analysis model 
only for recognizing output as a deterministic 
information. This recognized output still needs experts 
to infer with their knowledge for understanding the 
broader AM. 

To deal with that limitation, the objective of this study 
is to propose idea of the agri-big data processing in 
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agricultural management. This has main benefit to 
design the overview architecture of the automatic agri-
big data processing. This paper is proposed to extend 
the concept of agri-big data fusion by combining an 
ability of Machine Learning with expertise knowledge 
for supporting AM understanding. This is for 
supporting the decision makers in agribusiness to 
understand the broader picture of real-world AM 
situation to support their real-time decision and policy 
making.  

In the remainder, this paper explains the background of 
AM understanding and agribusiness in Section 2. In 
Section 3, we show the literature review of agri-big data 
processing in agricultural management using Machine 
Learning. The overview architecture of AM 
understanding with the automatic agri-big data analysis 
is presented in Section 4. The case study of AM 
understanding for NR Market Event Detection is 
detailed in Section 5. Finally, the conclusion of the 
proposed idea and the direction of future work are 
detailed in Section 6. 
 

2. BACKGROUND OF 
AGRICULTURAL MARKET 
UNDERSTANDING 
2.1 Force Analysis with Agri-Big Data 
AM understanding is the concept to reveal the 
conclusion from real-world AM environment using 
observations from agri-big data. This concept is 
important for supporting decision-making in 
agribusiness management. In this paper, it is more 
focused on the broader AM situation, especially the 
market stability during the phenomena of anomaly 
market situation. 
In agribusiness, five-force analysis is the agribusiness 
framework to understand the market factors that shape 
and drive the AM [7], [8]. This paper adopts this 
framework to fuse the agri-big data and discover 
knowledge to summarize each of five factors, 
including: 
(F1) The situation of the agricultural products from sale 

transaction, and environmental data. This can be 
the cause of the supply situation in the 
agribusiness. 

(F2) The power of buyers from the buyer behavior, 
warehouse stocks, and economic status. This 
shows the demand behavior which can be 
increasing, decreasing or stable. 

(F3) The threat from the price situation of substitute 
products. This force can infer the shifting in 
demand (F2) and pricing in both short-term and 
long-term effects. 

(F4) The product distribution cost, such as currency 
exchange, logistic cost, effect of government 
policy and regulations. This affects to shift supply 
(F1) which leads to the dynamic pricing in the 
AM. 

(F5) The external drivers, such as future market price, 
and holiday. This has the relationship with (F2) by 
altering the buyer’s decision-making. Moreover, it 
has effect on (F1) for supplier’s decision in 
production rate.  

In AM understanding, the AM situation depends on the 
relationship between those five factors. When decision 
makers observed the AM-related data, they will use 
them to recognize the five forces information for 
support AM understanding. Examples of the five-force 
recognition is detailed in Table 1. 
 

Table 1. Five-force Recognition from  
Agri-big Data Example 

Five 
Forces 

Agri-Big Data 
Sources 

Observed 
Data 

Recognized 
Information 

(F1) Environmental 
Data Service 

Flooding in 
crop 
production 
area 

Negative effect 
to the crop 
production 

(F2) Product Trading 
Data Warehouse 

Increasing of 
product 
consuming 

Demand is 
increasing 

(F3) Commodity 
Exchange 
Market 

Substitute 
products price 
is rising 

Positive effect 
to demand in 
main 
production 

(F4) Crude Oil 
Market, and 
Petroleum Price 
Service in 
Thailand 

Petroleum 
price in 
Thailand keep 
rising for a 
month 

Negative to the 
logistic in 
product 
distribution 
cost 

(F5) Crop Exporting 
Trading Prices 

Rising of crop 
prices 

Negative effect 
to demand 

 
From Table 1, the agri-big data is observed in form of 
raw observation according to the data generation from 
multiple sources. It will be recognized and transformed 
into the recognized five forces information. 
Furthermore, the interrelationship between the force 
information are the significance that needed to be 
understood using expertise knowledge to reveal the AM 
situation. In this case, decision makers can infer the 
anomaly AM event which is the surplus of demand. 
This is caused from supply decreasing from (F1) and 
consumption rising in (F2). Although, (F4) and (F5) 
shows the causes in price rising that can shift demand, 
(F3) shows the limit choice of buyers. Then, they can 
decide the AM management policy which may increase 
the supply power to balance the AM again, such as 
expanding the central price ceiling. 

2.2 Agri-Big Data Process for 
Agricultural Management 
From the concept of five-force recognition, it is the 
requirement to understand AM for the decision-making 
in agricultural management. This study separates the 
agri-big data process into four stages, including agri-
big data discovering, agri-big data fusion, AM 
understanding, and agricultural decision-making, as 
shown in Figure 1. 
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Figure 1. Agri-big Data Process for Agricultural 

Management 
 
From Figure 1, agri-big data processing is for AM 
monitoring in agricultural management. Agri-big data 
discovering is used to request and consume the AM-
related data which is generated in that time from multi-
sources. Secondly, data fusion is the process that 
decision-makers need to transform data, remove 
irrelevant data, recognize the five forces using the 
relationship between observed data. Third, AM 
understanding is the process to discover knowledge 
about AM situation by inferring the relationship 
between recognized five forces using expertise 
knowledge. The output of the AM understanding can be 
used to support agricultural decision-making in the last 
process. 
In addition, decision makers need to keep in touch with 
the real-world situation to monitor and understand AM 
situation for agribusiness management effectively. 
However, it is time-consuming and hard-working 
behind the agri-big data processing for human. In 
addition, it needs the concept of automatic approach to 
reach the requirement about automatic agricultural 
management system. Especially, an automatic 
approach to fuse the agri-big data and recognize it into 
factors for supporting AM understanding process is 
needed. 

3. AGRI-BIG DATA PROCESSING 
WITH MACHINE LEARNING 

3.1 Machine Learning in Agricultural 
Management 
Innovation technology is required to deal with the 
complex and variety of agri-big data analytics in 
agricultural management. Machine Learning is the 
well-established method for learning the behavior of 
data which has main ability for pattern recognition [9]. 
In the point of agri-big data processing, the related 
studies of agri-big data using machine learning is 
showed in Table 2. 
 

 
 
 
 

Table 2. Agricultural-related Data Analysis Studies  
based on Machine Learning 

Five 
Forces Objective Agri-big Data 

Characteristic 
Data 

Sources 
Techniques 

Analysis 

(F1) Planting 
Analysis 

Static and 
Multivariate 

Multiple 
Sources 

U (ARIMA 
and SVM) 

(F2) Product 
Positioning,  
Consumer 
Satisfaction 
Analysis 

Static and 
Multivariate 

Single 
Source 

U (K-means) 
and S (What-if 
Analysis, 
SVM) 

(F3) Equilibrium 
Quantity and 
Price 
Forecasting 

Time-series, 
and 
Multivariate  

Multiple 
Sources 

S 
(Simultaneous 
Equations) 

(F4) Tactical 
Supply 
Planning 

Static and 
Multivariate 

Single 
Source 

S (MINLP) 

(F5) Dynamic 
Dependence 
Analysis  

Time-series, 
and 
Multivariate 

Multiple 
Sources 

S (Wavelet 
and Copula) 

* ‘U’ means unsupervised learning, ‘S’ means supervised 
learning. 
 
From Table 2, the related studies are detailed in the dimensions 
of five forces consideration, objective, data characteristic, data 
sources, and techniques. Wen et al. proposed the (F1) analysis 
using the combination of ARIMA and SVM to describe the 
linear relationship between time-series history data which 
fused from environmental sensors [10]. For (F2) 
consideration, clustering and what-if analysis is proposed to 
recognize the pattern of consumer’s demand from multiple 
sources [11]. On the other hand, consumer satisfaction 
analysis was proposed using social data for demand factor 
recognition that also related to (F2) [6], [12]. Moreover, there 
are studies proposed to recognize (F3) and (F4) for supporting 
supply planning using supervised learning [13], [14]. For (F5), 
there is study focused on the dynamic interdependence among 
the financial and agricultural markets over time [15]. 
Therefore, Machine Learning is the important approach to 
apply with agri-big data processing for supporting in 
agricultural management field. 

3.2 Interdependence between Five 

Forces for Data Fusion 
From the related papers in previous section, those 
studies showed the agri-big data utilization for 
supporting agribusiness using Machine Learning. 
However, they focused only one factor in their works 
which not support to understand broader AM situation. 
From this paper’s goal, the AM understanding is 
depended on the interdependence between five-force 
factors. This is because the knowledge of 
interdependence between factors can be used to infer 
the AM situation when any factor is lost according to 
the uncertainty of agi-big data emerging. Tai et al. 
proposed the idea of big data fusion and inference using 
Probability Distribution to understand the multi-data 
[16]. However, they represented the interdependence in 
association rules which is static and not support the 
dynamic in real-world situation. Causal Inference is a 
significant fundamental in Machine Learning to 
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identify the causalities of multivariate data [17]. In 
addition, this paper can extend that ideas to understand 
the causal and dependent relationship among that five-
force factors. This idea can be supported by the casual 
inference model which calculated from Probability 
Distribution among the factors from agri-big data. 
Therefore, this paper needs to focus on the agri-big data 
analyzing from multiple data sources for supporting 
AM understanding. 
 
4. AM UNDERSTANDING FOR AM 
EVENT DETECTION 
ARCHITECTURE 
In this section, this paper presents the overview 
architecture of AM understanding for AM event 
detection. This overview architecture is based on the 
concept of manual agri-big data processing for 
agricultural management which shown in Figure 1. 
This idea is focused on the automatic process for 
handling with agri-big data that originated from 
multiple sources simultaneously. Especially, Data 
Fusion and AM Understanding are focused because 
these two processes can be applied with the expertise 
knowledge of human as an initial model for supporting 
the whole model learning and adapting to the 
uncertainty of agri-big data. From that idea, the 
proposed overview is separated into two main parts 
which are environment part and agent part, as shown in 
Figure 2. 

Agent

Product Trading 
Transactions

AM Situation 
Visualization

Data Fusion
for Five-Force 

Recognition

AM 
Understanding

Streaming 
Ingestion

...

Environment

Environmental 
Data Service

Multiple
Agri-big Data Sources

Agricultural 
Decision-making 

Currency Exchange

Agri-Company 
Policy

observed data

recognized five forces

AM situation

detected AM 
event

AM-related 
question

AM Management 
Policy

streamed data

Figure 2. The Overview of AM understanding for 
AM Event Detection Architecture 

 
From Figure 2, agent is the actor of the automatic 
system that observe the agri-big data from multiple data 
sources from environment to process and act 
reasonably. The multiple agri-big data sources were 
chosen based on their generated data that important for 
five-force recognition, such as the environmental data 
service, and product trading transaction from data 
warehouse. Therefore, agent has the first job to perceive 
the streamed agri-big data from multi-sources, which 
called streaming ingestion. The observed data will be 
sent to the data fusion for five-force recognition. In 

addition, this process needs the approach to fuse the 
observed data and transform it into the significant five 
forces which is the requirement for AM Understanding. 
AM Understanding will act like an expert to discover 
knowledge from fused data to rationally summarize the 
current AM situation. Therefore, this process will use 
that knowledge to predict the possibly forward event 
according to AM-related question from decision 
makers in agricultural decision-making process. Then, 
agent will give the feedback via AM situation 
visualization application. The decision makers, which 
is the part of environment, can adopt the detected AM 
event to support their decision and create policy to 
manage their company policy. This overview 
architecture can be applied to the AM event detection 
system for AM management. 

From literature review in section 3.1, Machine 
Learning can take the role in Data Fusion using 
supervised and/or unsupervised techniques to recognize 
the pattern of data from past observation. The specific 
technique will be discovered by the pre-modeling or 
training process according to the characteristics of each 
data. Then, AM event detection system will understand 
AM and detect the AM situation perfectly by 
recognizing complete five forces from the 
comprehensive observation. However, this case is 
rarely happened according to the uncertain 
characteristic of agri-big data. Each data source is 
independent from each other. It generates data in 
different time, format and frequency. Therefore, when 
decision-maker questions to the AM event detection 
system, the observation may be incomplete and cannot 
be recognized to all five forces. For example according 
to the observation from Table 1, if the observations are 
consisting of (F1) and (F2), then decision makers can 
recognize only two factors out of five. They still can 
use their expertise knowledge to reveal the AM 
situation. 

AM Understanding needs the ability of Machine 
Learning to teach it the background knowledge of 
inference. Causal Inference and Probability 
Distribution is proposed to learn the dependency 
between the five forces from past observation and 
represented into causal model. That probability 
dependency can be used to design the causal model to 
select the relevant data and eliminate the irrelevant one. 
This can represent the background knowledge to make 
AM understanding process deal with the lack of five 
forces information. Therefore, it is the base of data 
fusion to integrate required agri-big data to answer the 
question as an AM understanding. 
 
5. AM UNDERSTANDING IN 
NATURAL RUBBER MARKET 
EVENT DETECTION 
In this section, we apply the idea of AM Understanding 
to detect the market situation of Natural Rubber (NR) 
Market in Thailand. 
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Event in NR market is the occurrences of rubber 
situation that have abnormal behaviors and possibly 
affect the future situation, such as the suddenly falling 
of rubber trading prices in Tokyo market that has high 
probability effect to the local trading prices, or the event 
of monsoon season with heavy raining in the south of 
Thailand that may lead to the event of shortage supply. 
That event mainly reflects the uncertainty of demand 
and supply which experts use to timely estimate the 
next state of the situation for planning the strategy. 
Consequently, the NR market event detection is the 
needed to monitor and analyze the related factors for 
predicting the next state of the rubber event.  

For AM Understanding application, we firstly model 
the causal knowledge to represent the causation 
between variables according to five-force analysis for 
NR market. This model is the background knowledge 
for Data Fusion to give the relation to the observed data 
from agri-big data. In this section, we example the 
simplest case of NR market event understanding. The 
process of data analysis is based on the overview of AM 
event detection architecture which showed in Figure 2. 
In addition, the AM understanding process is divided 
into two parts which are recognition and prediction 
processes. Therefore, we briefly show the AM 
Understanding example, which detailed in Figure 3. 

Predicted
Event

Recognized
Event

Observed
Data

Previous event (t-1) Current event (t) Upcoming event 
(t+1)

Recognized 
Five-Force

Southern 
Weather Event

Flooding

Bidders

Increasing

Crop Production 
Consuming (F2)

High
Crop 

Production (F1)

Low

Demand in 
Crop Trading 

Increasing
Supply in Crop 

Trading 

Decreasing

Natural Rubber 
Market

Supply 
Decreasing

Natural Rubber 
Market

Demand 
Increasing

Natural Rubber 
Market

Shortage 
Supply   

Figure 3. AM Event Understanding in case of  
NR Market in Thailand 

 
According to Figure 3, the detail diagram of AM event 
understanding for NR market is separated into four 
rows and three columns. In recognition process, rows 
have three layers, which are ‘Observed data’ that is the 
raw data from data ingestions, ‘Recognized Five-Force’ 
is the output of Data Fusion for five-force recognition. 
‘Recognized Event’ is the current AM event that 
recognized from observations. The prediction process 
is represented in row ‘Predicted Event’ which is the 
predicted output by inferencing from previous event 
and recognized event in current time. Columns are the 
considered times, which are ‘previous event (t-1)’ is the 
previous event detection, ‘current event (t)’ is the 
processing in current time, and ‘upcoming event (t+1)’ 
is the event that possibly emerge from the sequence 
event. 

In example, we observed ‘Flooding in the southern of 
Thailand’ as an observation in the time (t-1) from 

Thailand Meteorological Service. In Data Fusion, 
model can recognize that (F1)-related information to 
‘Low rate of Crop Production’. This is because from the 
background of causal knowledge the flooding in 
southern of Thailand, which is the main NR producing, 
can decrease the ability of rubber harvesting. This 
model will recognize event of ‘Decreasing of Supply in 
Crop Trading’ which used to predict ‘Supply 
Decreasing event in NR Market’. After that, we observe 
the ‘Increasing of Bidders in the Central Rubber Market 
Bidding’ from market data warehouse in the current 
time (t). Model can recognize that it will affect to (F2)-
related information as 'High rate of Crop Production 
Consuming'. With the causal knowledge, that 
recognized event has relation to the ‘Increasing of 
Demand in Crop Trading’ which used to predict 
‘Demand Increasing event in NR Market’.  

In AM understanding, the current event also has effect 
from previous event. The model will find that previous 
predicted event and current predicted event are leaded 
to the sequence of events. The event understanding 
model will analyze the chain of ‘Supply Decreasing 
event’ and ‘Demand Increasing event’ to the ‘Shortage 
Supply event’ as a summarization. From that output, 
rubber market manager can use that summarization for 
making decision or planning the strategy to deal with 
that event. 

From that idea, we can see that the chain of event is 
varying and dynamic to the changing behaviors of data-
especially, the random variables that observed from 
streaming and multiple data sources. This is totally 
challenging in present study to make model understand 
AM and discover the forward event that can answer 
question dynamically and rationally. In this paper, the 
challenge is the approach on the data fusion to support 
AM understanding for dealing with the uncertainty of 
AM.  

In consequent, causal inference model can be structured 
the sequence of events that shows the dynamic 
behaviors of time-series events which can be used to 
summarize the predicted event by discover the possible 
transition among sequentially recognized events. 
Therefore, it needs the causal model with probability 
distribution to fuse the incoming data by understanding 
the relationship between them. This concept is the main 
challenge in this research to study and apply for AM 
event understanding to dealing with the uncertainty of 
event from real-time data. 
 

6. CONCLUSIONS 
AM understanding is the basic and required process in 
agricultural management, especially for the decision-
making in industry level. With the data-driven 
industrial, decision makers can discover the knowledge 
from agri-big data which up-to-date with real-world 
situation. This paper presents the idea for AM 
understanding using agri-big data with machine 
learning. The literature review shows the related work 
focused only on the AM factor recognition which not 
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support to summarize the AM situation. Therefore, this 
paper proposes the idea of automatic AM 
understanding using agri-big data for agricultural 
management. 

Although, machine learning is proposed to fulfill the 
goal of automation, the exact technique for data fusion 
process is out of our scope. This is because from the 
literature review, technique is chosen depending on the 
character and behavior of data. In addition, we more 
focus on how to infer the relationship between five-
force which have uncertainty behavior according to 
AM environment. Therefore, the challenge from this 
idea is AM understanding which needs the intuitive 
experience from the expertise knowledge including the 
ability of machine learning to calculate the dependent 
and independent relationship between knowledge. 
From that idea, it needs the inferencing model to learn 
the dependency between the observation. The causal 
model can be construct by the concept of Probability 
Distribution to prove the dependence and independence 
between the data nodes. In addition, the entire structure 
of the causal knowledge model may be needed to 
estimate, which is still the big challenge in this work. 

The limitation of causal model is it is the knowledge-
based model that need the expertise knowledge and 
training set for measuring the conditional dependency 
in the initial model. Therefore, it still needs the vision 
that lead model for adapting and learning the 
knowledge according to the dynamic and changeable 
behavior of agri-big data in model environment. In 
addition, causal is the initial stage for supporting the 
idea of extensible and reusable knowledge. This is 
because causal model is represented in graph-based 
structure which can be extended by connecting to 
another graph. Hence, causal knowledge model will be 
the next generation of knowledge modeling which 
support knowledge sharing including the dynamic 
knowledge according to the new discovery. Finally, the 
challenge from this paper is how to define and model 
the AM understanding which can be used to summarize 
the AM situations. In future work, we will more focus 
on the dynamic learning model to deal with the 
uncertainly of agri-big data.  
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Abstract 
An increasing complication due to the rise of dynamic trades and global industry causes a burden in 
decision-making. There is a need for multi-level perspective factors in supply chain management, such 
as short-long terms of demand and supply, and their impact on agricultural market dynamics. In this 
study, Big data is proposed as supply chain open data sensors for data digitization to deal with the 
problem. Although Big data supports comprehensive, real-time sources, and provides information about 
market functions, traditional machine learning technologies have proved insufficient for dealing with Big 
data characteristics. We then propose a time-series decomposition approach for extracting contexts about 
short-long term impacts to provide insights into Big data for determining market demand and supply. 
Our agri-big data digitization reveals the significant information about Big data with the better predictive 
ability and can support agri-big data analysis using any kind of machine learning model. 

Keywords Time-series Decomposition . Demand and supply . Open Data Sensors . Machine learning . 
Statistical significance . Big Data Analysis 

 

1 Introduction 

New technologies in the agri-food supply chain, such as the Internet of Things, farming robots, and the 
agricultural commodity markets, have modified its behavior, by emphasizing dynamic trades and global 
marketing [41, 44]. These phenomena generate agricultural big data (agri-big data) which offer key 
information for manufacturing the supply chain’s balance in agri-market management as it expands to 
cover worldwide agricultural industries [21, 48]. 

The agri-food supply chain can become uncertain because the collaboration along the supply chain 
involves complex factors such as an uncontrolled environment [47]. This can unbalance demand and 
supply, and when it becomes critical (e.g., by causing under or oversupply and demand), then the 
damage can be severe. Agri-market management is needed for planning effective strategies for supply 
chain performance [12, 26]. 

The decision-making process requires comprehensive and real-time information based on supply chain 
integrated knowledge synthesized from multiple and heterogeneous sources, to determine the demand 
and supply for good agri-market management while handling data analytics [20, 24]. The utilization of 
agri-big data for market management depends upon experts to integrate the data and extract contextual 
information to offer insights into the agri-market [4, 12], which is both time-consuming and labor-intensive. 
Our research challenge is the extraction of contextual information from agri-big data to support a machine 
learning model. 

The contextual computing approach for extracting contextual information (e.g., the acquisition, 
transformation, visualization, and representation of data) from agri-big data is an essential ingredient 
in decision-making system. Golmohammadi and Hassini captured contex- tual information about farm 
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preferences in the almond industry by using climatic sensors and internal data [14]. Their approach 
dealt with uncertainty by interpreting the contextual information which enhanced the production 
quantity predictions. Arunwarakorn et al. [2] and Chen and Wang [8] applied contextual analysis to 
open data sensors which focused on imbalances in the world natural rubber market for auction investment. 
The resulting contextual information learnt to understand demand and supply gradually. 

Although previous studies have shown the utility of demand and supply recognition based on context 
activity in the supply chain, decision-makers must still combine that information with the supply chain 
flow. This introduces time-dependent information about the short-long term impacts in the market which 
has not been previously considered. Time-dependent information is fundamental to dynamic market 
business decisions in agri-market management [6, 12], and requires a novel digitization approach for the 
contextual information based on short-long term impacts from supply chain integration. 

Our research utilizes information extraction based on contextual computing, which recognizes the 
short-long term impacts of demand and supply. The digitization employs time-series decomposition 
aligned with supply chain flow, with the domestic natural rubber market as a case study. The objectives 
of our work can be summarized as follow: first, to propose a new framework for agri-market decision 
making by integrating agri-big data using time-series decomposition for demand and supply. The second 
is to compare our information extraction with outcomes from a traditional approach using a Natural 
Rubber market management case study. 

Our experiments show the significance of agri-big data decomposition, including significant test and 
more accurate predictive analytics compared to the traditional approach. 

The rest of this paper is organized as follows. In Section 2, we present background on the agri supply 
chain, big data exploration, and time-series data digitization. Section 3 gives details on our agri-big data 
digitization based on the supply chain. In Section 4, we describe a natural rubber (NR) market management 
case study, which digitizes its agri-big data into NR-market contextual information. The experiments 
presented in Section 5 measure the significance and prediction ability of extracted information 
determined using well-known machine learning algorithms. Section 6 concludes, along with a discussion 
of some future directions. 

 

2 Background 

Agri-big data can provide valuable insights into how contextual information affects supply chain factors 
[19, 39]. The supply chain is a series of sequential activities. Each of the activities has a factors context that 
must be understood by the processing method in its present state. For example, crop yield production can 
be determined from plantation and harvesting information as direct farming factors. This means that agri-
market management requires information from each activity, and knowledge of the supply chain, to 
discover the consequential effects in both the short and long terms. 

Fortunately, a collaboration of big data, open data, and sensor networks provide the necessary 
sensors to support information discovery in the agricultural domain [41], such as meteorological sensors 
and the agricultural calendar for farming factors [13, 14, 22, 25], trading commodity data service for 
crop price, warehousing, and logistics costs [2, 15]. The contextual information must utilize current 
activity states using observations from data sensors in order to ascertain demand and supply. 

Although contextual information for the supply chain has been studied previously [12], it lacks 
integration between the activities’ contexts. This makes the information incomplete, and marketers are left 
to determine demand and supply. We hope to contribute a short-long term concept that considers time-
dependent effects on demand and supply. Time is a key factor affecting the ripeness and deterioration 
of an agricultural product. 
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2.1 Short-long term impacts 

The relationship between demand and supply is standard law in economics which encodes a supply chain 
prior knowledge to reveal market price movement [14, 45]. The interrelationships between activities affect 
each other as short-long-term impacts according to the production cycle and time-lag. Short-term 
impacts directly affect activities, while long-term impacts are indirect. For example, procurement factors 
illustrate short-term impacts that are explicit in the auction process. However, hidden contextual 
information depends upon long-term impacts from farming factors that affect supply in the long-term. 

This knowledge can be only discovered only the contextual variables are extracted, and short-long 
term impacts are the key to revealing such time-dependent information since they cause the demand and 
supply in the activity, such as in material price movement. In addition, indirect causes are long-term 
impacts, such as when the harvesting season brings products to market. Time-series in big data produce 
time-dependent information for demand and supply determination. 
 

2.2 Time-series decomposition 

Big data streams coming from multiple sources are hard for software agents to consume [41, 44]. It 
needs dimensionality reduction to transform high-dimensional data into low-dimensional with 
essential information [27]. Briefly, dimensionality reduction can be categorized into three techniques: 
subspace, feature selection, and time-series decomposition. Table 1 details the summary of feature 
between subspace, feature selection, and time-series decomposition. 

Table 1 summarizes the method, objective, and target of subspace, feature selection and time-series 
decomposition technique. Subspace techniques are suitable for data represented by complex dimensions. 
This technique has main contribution to lower the multidimensional feature space of input data, such 
as PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). Feature selection 
techniques are statistical filter and wrapper methods to order and select the best features that are tradeoff 
between accuracy and complexity. It uses accuracy-based method to evaluate the features that can provide 
highest correlation according to predicted outcomes. Time-series decomposition techniques concern with 
a change of data according to time movement by identifying the features based on frequency. 

 
Table 1 Summary of the dimensionality reduction techniques 

Technique Method Objective Target Refs 

Subspace Matrix factorization Redundant variable removal  Multidimensional data [16, 23] 

Feature selection Filter and wrapper  Irrelevant variable removal Structured data [25, 46] 

Time-series 
   decomposition 

Frequency based    
   interpolation 
   function 

Sampling interval    
   discretization 

Time-series data [29, 35, 43] 

 
Data characteristic in supply chain management often represent in time-series and decision- makers 

employ time-dependent information to understand short-long term impacts. 
Typically, the decomposed information is structured into the time-series components: level, movement, 

trend, and seasonality, as shown in Fig. 1. 
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Fig. 1  Time-series components 

 
Level represents a single point value (e.g. hourly, daily, or monthly), movement is the distance 

between one level and another, and trend is a fixed interval made up of a set of movements that 
represent semantic meaning and the time interval. The interval is defined by the marketer and decision-
maker who control the market movement direction. Lastly, seasonality a long-term scale that represents the 
repeated pattern of trends that impact decision-maker plans for future directions. These time-series 
components are essentially time-dependent information for decision-makers, and can also be applied 
to our short-long term impacts to discover knowledge. 

In the last decade, many contributors have used time-series components to extract knowledge from big 
data. Bocca and Rodrigues [5] and Arunwarakorn et al. [2] propose short-term supply-based approaches 
using weather, stock, and crop price data. Stein and Steinmann [37] employ annual weather data to analyze 
long-term supply, but interpret the contexts differently depending on the stakeholders problems. They 
utilized a simple moving average (SMA) to compute the most likely value, but do not consider agri-
market trends required by marketers. Zhang et al. [46] propose a trend-based approach using the random 
forests technique to recognize the short-term impact on price behavior with the features of up, down, 
and stable. Zhu et al. [49] integrate variational mode decomposition (VMD) for long-medium-short term 
price extraction. 

Although these studies reveal time-dependent information for decision making, none of them 
consider contexts obtained from supply chain integration. Instead, they focus on a single activity, 
overlooking the indirect information from other activities, which will cause the decision-makers to 
have insufficient information about the supply chain. 

 

3 Overview of agri-big data digitization 

Supply chain context information is currently implicit and is hided in agri-big data. It needs prior 
knowledge to convert that data into the short-long term impacts. Knowledge engineering can be employed 
to make implicit knowledge explicit [28, 42], and is applied in this study with time-series decomposition 
to transform agri-big data into time-dependent information. The following sections describe the 
conceptual framework for supply chain-based agri-big data with the extraction of time-dependent 
information. 
 

3.1 Supply chain-based agri-big data framework 
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Fig. 2  Supply chain-based agri-big data framework 

 

Figure 2 shows how the framework is made up of four main components: (1) data sensing, (2) information 
extraction, (3) analysis and implementation, and (4) agri-food marketing application. 

Data sensing gets raw data from sensors that is transformed into supply chain information using data 
collection and time-series decomposition. The aim is to extract time-dependent information based on 
supply chain contexts, short-long term contexts, by referring to time- series component heuristics and 
time intervals. The time interval encodes the number of data points used to construct the series during data 
collection, while the heuristics convert the series into information via time-series decomposition. In this 
way, the time-dependent information becomes a fundamental ingredient for the machine learning model 
for supporting agri-food marketing applications such as market monitoring, market analysis, and 
decision support systems. 

Gardas et al. [12] and Schniederjans [33] employed knowledge management with the agricultural 
supply chain. Their processes used both data and expert knowledge to encode the short-long term 
knowledge used by supply chain contexts. We use information extraction to transforming tacit knowledge 
into explicit knowledge as detailed in the next section. 

 

3.2 Time-series decomposition for short-long term impact extraction 

Agri-big time-series data is defined as: 

Definition 1 Time-series data, D 

𝐷𝐷 =  {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛} 

Time-series data in a time interval (n) consists of n sequential-data point (d). For example, time-series 
components in Fig 1 are representative of this kind of time-dependent information. Our information 
extraction approach uses time-series decompositions to extract information according to the principal 
time-series components.  

The level component is defined as follows: 

Definition 2 The level, L 

𝑳𝑳𝑖𝑖 = 𝑓𝑓(𝑑𝑑𝑖𝑖−𝑛𝑛, … , 𝑑𝑑𝑖𝑖−1, 𝑑𝑑𝑖𝑖) 

L represents time-series data during a time interval (n). The time interval will vary depending on the 
agri-food market’s supply chain fields, such as hourly climatic data for harvesting [1], or monthly product 
consumption [2]. 
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The level detection function typically employs the simple moving average technique [5, 35, 37], and is 
used to support short-term impact decisions (e.g., current raining forces harvesting activities to stop). This 
affects routine operations in agri-market management and is simple enough that administrators might 
already be using it. 

However, when data levels are detected continuously, they pose a more complex problem, and impact 
tactical planning. This requires more contextual information to observe changes to activities in the supply 
chain. This is defined as follows: 

Definition 3 The movement, M 

 𝑴𝑴 ∈ {𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑖𝑖}  

Movement detection explores the meaning of pairs of levels, representing them using states (𝑚𝑚𝑖𝑖). 
This is indirect information, obtained from the level sequence. A heuristic to discover the movement is 
defined as: 

Heuristic 1 Movement is the difference between data levels in the time-series data.  

Movement (M) differentiates between the current level (Lt) and its previous value (Lt-1), and is 
discretized by considering short-term behavior (e.g. increasing, decreasing, and stable). For example, the 
current level might compare the second day of rain to the previous day, and be used by decision-makers 
considering the shortage of agricultural products since infrequent rain may lead to a shortage. 

Situations do not recover immediately which requires long-term tactical planning that can explore the 
behavior of the data over the long term. It is defined as: 

Definition 4 The trend, T 

𝑻𝑻 ∈ {𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2, . . , 𝑡𝑡𝑡𝑡𝑖𝑖} 

T determines the activity direction uses states (𝑡𝑡𝑡𝑡𝑖𝑖) that can be linear or non-linear. Linear trend (a 
straight-line pattern) appears for up-trend, down-trend, and side-ways. Non-linearity represents unstable 
market phenomena. A heuristic to discover the trend is defined as: 

Heuristic 2 Trend is the most frequent movement during a specific period. 

For example, the activity movement for a daily rainfall series might look like Fig. 3. 

Rainfall 
(mm.)

L86.65, 1   L82.94, 2     L18.19, 3    L22.43, 4     L2.75, 5    L22.75, 6    L2.75, 7   L14.60, 8   L59.00, 9   L114.33, 10

Time 
(day)

Mdecreasing, 2

Mdecreasing, 3

Mincreasing, 4

Mdecreasing, 5

Mincreasing, 6

Mdecreasing, 7
Mincreasing, 8

Mincreasing, 9

Mincreasing, 10

Tdown-trend, 7

Tfluctuation, 8

 
Fig. 3  Trend detection in a rainfall sequence 
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Figure 3 shows the sequence of daily rainfall (Lstate, i), movement (Mstate, i), and trend (Tstate, i), where 
state is a subset of value, and i is a timestamp. The set of levels (L86.65, 1 and L114.33, 10) are decomposed 
into the set of movements (Mdecreasing, 2 and Mincreasing, 10), while the rainfall trend during a week can be 
detected using movements.  

In Fig. 3, Mdecreasing, 2 and Mdecreasing, 7 show a decreasing rainfall most often so the trend at Tdown-trend, 7 

is labeled as “down-trend”. However, Mdecreasing, 3 and Mincreasing, 8 shows a decreasing rainfall and an 

increasing rainfall are equally likely, then the trend at Tfluctuation, 8 can be understood as a fluctuation. 

A linear trend helps long-term tactical decision-making, while a non-linear trend detects an unstable 
situation.  

Although a trend provides long-term information for agri-market management, top-level supply chain 
policy decisions requires different conditions. To this end, we propose a seasonal factor (S), which is 
defined as: 

Definition 5 The seasonality, S 

 𝑺𝑺 ∈ {𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑖𝑖}  

S is the period affecting the administrative decision-makers, and employs trends to determine 
seasonality states (𝑠𝑠𝑠𝑠𝑖𝑖) such as shedding or the monsoon season. We propose the heuristic: 

Heuristic 3 A seasonality state is determined by a trend observed during the given period. 

For example, if a set of trends contains repeated down-trends for rainfall and up-trends for 
temperature, then S is implied to be a shedding season, which will help decision-makers deal with 
upcoming supply issues. 

In the next section, natural rubber market management is employed as a case study to show how time-
series decomposition is used for supply chain-based agri-big data digitization. 
 

4 Case study: Natural rubber market management 

Natural rubber market (NR-market) systems combine activities in the domestic and commodity markets, 
and the resulting supply chain contexts are utilized by the Thailand Rubber Authority [32] during 
auctions. 

 

4.1 The supply chain of Thailand’s domestic NR-market 

Balance between demand and supply reflects an ideal supply chain. We can interpret the 
balance through product releasing and bidding favor during the Auction activity [7]. However, 
such activity depends upon another context in supply chain behavior that fills with the short- long 
term impacts affecting the demand and supply. Then, the contextual factors are the prior 
knowledge of supply chain as first prerequisite to aware the auction mechanism [11, 34]. The 
contextual factors in supply chain activities can be presented in sequence-order process, and each 
one employs both direct and indirect factors that have short-long term impacts. We depict the 
Thailand’s domestic NR-market supply chain activities in Fig. 4. 
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Fig. 4  Thai NR-market supply chain contexts 

 
Each activity in Fig. 4 has associated contexts and time lags. For example, Rubber Processing is 

defined by two to seven days of Rubber Sheet Processing, and its output feeds into Rubber Trading. on 
the short-term factors for a Rubber Auction are product release, bidding favor, and the traded product, 
and the long-term factors: rubber sheet production, supplier stock, and the finished product. These direct 
and indirect factors influence the design of the contexts for the time-series decomposition. 

Prior knowledge in supply chain is prerequisite for the proposed framework. It helps decision 
makers understand market dynamics and respond with situation property. In other words, the Auction 
activity represents demand and supply that can be employed to model dependent variables while the 
prior knowledge represents its contextual factors that can be employed to model independent variable. 
 

4.2 Time-series decomposition for NR-market 

Supply chain activities utilize a time-lag to decompose time-series data for information extraction. 
First, we collected rubber auction events data between 2015 and 2019 from the Central Rubber Market 
(CRM) in Hat Yai, Songkla, Thailand. It consisted of 111,250- transactions from six main sources: (1) 
the Thai calendar is holiday and shedding season data, (2) Thai rainfall data [9], (3) fresh latex and reserved 
auction prices from the Rubber Authority of Thailand [32], (4) supplied the commodity prices, open 
interests, and trading volumes from the Tokyo Commodity Exchange (TOCOM) [40] (5) currency 
exchange rates for the Thai Baht/US Dollar (THB) and Japan Yen/US Dollar (JPY) from Bank of 
Thailand [3], and (6) crude oil prices, included West Texas Intermediate (WTI) and Brent, from Markets 
Insider [17]. We did not consider plantation area factors since they were almost stable for a long-live plant 
such as the natural rubber tree. The data was decomposed according to short-long term impacts using the 
time-series components, according to Table 2. 
 

Table 2  Thai NR-market agri-big data decomposition 

Supply Chain Activity’s Factor level movement trend seasonality 

Rainfall     
Shedding Season     
Holiday Boundary     
Fresh Latex Price     
Reserved Price     
Commodity Price     
THB Currency Exchange     
JPY Currency Exchange     
Commodity Open Interests     
Commodity Trading Volume     
WTI Crude Oil Price     
Brent Crude Oil Price     
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The time-lags employed in Fig. 4 were used to determine suitable time intervals for decomposing 
the time-series components. For example, Rainfall is considered to have a long-term impact on rubber 
auction spending of around 7–14 days. Also, the Shedding Season factor is seasonal variables lasting 
around 7 days and 6 months. 

Movement and trend detection, as outlined in Section 3.2, employs a time-series decom- position based 
on heuristics implemented in Algorithm 1 and Algorithm 2. 
 

Algorithm 1 Movement Detection 
Input: the level series 𝐿𝐿 = {𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑛𝑛} 
Output: a movement label (mLabel), where mLabel ∈ {up, stable, down} 

set 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [ ]; 
for 𝐿𝐿𝑖𝑖 in 𝐿𝐿 do 

set 𝑚𝑚 = 0; 
 𝑚𝑚 = 𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑖𝑖−1; 
if (𝑚𝑚 > 0) then add "𝑢𝑢𝑢𝑢" to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; 
else if (𝑚𝑚 < 0) then add "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑" to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; 
else add "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠" to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; 
end if 

end for 
return 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; 

 
Algorithm 2 Trend Detection 
Input: the movement series 𝑀𝑀 = {𝑀𝑀1, 𝑀𝑀2, … , 𝑀𝑀𝑛𝑛}, and the time interval (𝑡𝑡) 
Output: a trend label (tLabel), where Label ∈ {up-trend, side-ways, down-trend, fluctuation} 

set 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [ ], 𝑡𝑡 = 7, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [ ]; 
for 𝑀𝑀𝑖𝑖 in 𝑀𝑀 do 

add 𝑀𝑀𝑖𝑖 to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 
if (𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡 == 0) then set 𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡); 

case 𝑚𝑚 of 
"𝑢𝑢𝑢𝑢": add "𝑢𝑢𝑢𝑢 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡" to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 
"𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑": add "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡" to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 
"𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠": add "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤" to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 

otherwise add "𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓" to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 
set 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [ ]; 
end case 

end if 
end for 
return 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 

 

Algorithm 1 and Algorithm 2 exemplify how to encode the detection concepts, and the other processes 
are modeled similarly. The outputs are time-dependent information which highlight supply chain 
contexts, which are fundamental requirements for demand and supply. The collected data was then divided 
into demand and supply data, in order to understand the data collection behavior from the multiple sources. 

Demand and Supply were classified into four-levels: ‘low’, ‘moderate’, ‘high’, and ‘very high’, by an 
expert who is the chief of a CRM market analyzer. Sampled test sets of 25% of the data were utilized by the 
expert which had been selected by a normality test. 

The independent variables were structured according to the time-series decompositions for the 
contextual information. They were divided into numeric variables (e.g. Level of Reserved Price and 
Commodity Price), and categorical variable (e.g. Trend of Rainfall and Shedding Season). 
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4.3 Summary of variables based on demand and supply 

A summary of the variables affecting Supply is given in Table 3 and details of the Demand variable are 
given in Table 4. 

 
Table 3  Summary of variables based on Supply 

Variable Range %value Mean S.D. 

Dependent Variable    
  

Supply low 7.54   
 moderate 24.12   

 
high 57.28 

  
 

very high 11.06 
  Independence Variables 

7-day Trend of Rainfall (mm./day) 
 
light 

 
22.48 

 
1.94 

 
2.67 

 
moderate 18.48 21.13 7.24 

 
heavy 16.97 58.37 16.71 

 
very heavy 42.07 241.74 153.87 

14-day Trend of Rainfall (mm./day) light 11.94 3.07 3.04 

 
moderate 20.22 21.61 6.97 

 
heavy 19.52 63.18 16.70 

 
very heavy 48.31 206.79 97.72 

Shedding Season true 79.87 
  

 
false 20.13 

  Holiday Boundary true 19.00 
  

 
false 81.00 

  Fresh Latex Price Movement (THB/k.g.) down 35.45 -1.99 1.79 

 
stable 17.61 0.00 0.00 

 
up 46.95 1.53 1.50 

7-day Trend of Fresh Latex Price down-trend 33.88 
  

 
side-ways 8.00 

  
 

up-trend 45.65 
  

 
fluctuation 12.47 

  Reserved Price Level (THB/k.g.) 40.81–77.25 
 

55.49 6.88 
Reserved Price Movement (THB/k.g.) down 21.11 -1.05 0.59 

 
stable 52.26 0.04 0.28 

 
up 26.53 1.28 0.80 

7-day Trend of Reserved Price down-trend 8.20 
  

 
side-ways 50.77 

  
 

up-trend 20.00 
  

 
fluctuation 21.03 

  

 

Table 3 shows that a ‘high’ Supply level is the most common which suggests an oversupply 
situation for the NR-market. Also, Supply is affected by the weather and reserved price. For instance, the 
7-day Trend and 14-day Trend of Rainfall variables are mostly ‘very heavy’ (42.07% and 48.31%, 
respectively) which could impact harvesting, and cause a shortage in the long term. The Reserved 
Price Level average of 55.49 with a wide range (40.81–77.25) and standard deviation (6.88) can be 
interpreted as meaning that the NR-market price is normally uncertain. These might have a negative impact 
supply but are inconsistent with the Supply information. In contrast, the decomposed Reserved Price 
Movement and Trend show that ‘stable’ movement, and a ‘side-ways’ trend occur more than 50% of the 
time. This means that they can be employs as patterns to identify a price to support the suppliers’ decision 
to release their stock and therefore trigger an oversupply. 
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Table 4  Summary of Variables based on Demand 

Variable Range %value Mean S.D. 

Dependent Variable   
  Demand low 52.26 
   

moderate 13.07 
  

 
high 18.59 

  
 

very high 16.08 
  Independence Variables 

Shedding Season 
 
true 

 
79.87   

 
false 20.13 

  Holiday Boundary true 19.00 
   

Reserved Price Level (THB/k.g.) 
false 
40.81–77.25 

81.00  
55.49 

 
6.88 

Reserved Price Movement (THB/k.g.) down 21.11 -1.05 0.59 

 
stable 52.26 0.04 0.28 

 
up 26.53 1.28 0.80 

7-day Trend of Reserved Price down-trend 8.20 
  

 
side-ways 50.77 

  
 

up-trend 20.00 
  

 
fluctuation 21.03 

  Commodity Price Level (JPY/k.g.) 148.58–283.22 
 

179.79 30.44 
Commodity Price Movement (JPY/k.g.) down 33.17 -3.79 2.34 

 
stable 23.12 -0.05 0.56 

 
up 43.72 4.07 3.01 

7-day Trend of Commodity Price down-trend 16.41 
  

 
side-ways 9.23 

  
 

up-trend 37.95 
  

 
fluctuation 36.41 

  THB Currency Exchange Rate Movement (THB/US Dollar) weaken 47.74 0.08 0.07 

 
stable 1.51 0.00 0.00 

 
strengthen 50.75 -0.08 0.05 

JPY Currency Exchange Rate Movement (JPY/ US Dollar) weaken 50.25 0.65 0.53 

 
stable 1.01 0.00 0.00 

 
strengthen 48.74 -0.63 0.72 

7-day Trend of Commodity Open Interests down-trend 10.77 
  

 
side-ways 9.23 

  
 

up-trend 12.30 
  

 
fluctuation 52.30 

  7-day Trend of Commodity Trading Volume down-trend 22.05 
  

 
side-ways 8.72 

  
 

up-trend 27.69 
  

 
fluctuation 41.54 

  7-day Trend of WTI Crude Oil Price down-trend 18.46 
  

 
side-ways 26.15 

  
 

up-trend 25.64 
  

 
fluctuation 29.74 

  7-day Trend of Brent Crude Oil Price down-trend 17.44 
  

 
side-ways 25.13 

  
 

up-trend 26.67 
  

 
fluctuation 25.64 

  
 

Table 4 shows that a ‘low’ Demand level is reached 52.26% of the time, which directly affected by 
external factors such as the unstable Commodity Price Level (range = 148.58– 283.22, mean = 179.79, 
and S.D. = 30.44). The instability is confirmed how many of the independent variables are usually set to 
‘fluctuation’ (e.g. 7-day Trend of Commodity Open Interests and Commodity Trading Volume). This 
situation shows how the ‘low’ level of Demand is affected by an unstable commodity market that 
suppresses purchasing power. 

In summary, the demand and supply behaviors in the NR-market are out of balance, with a ‘high’ level 
of Supply and a ‘low’ level of Demand; this has long been seen as a major problem for NR-market 
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management. This situation has also been observed in NR-market data obtained from traditional databases 
[2], but our approach uses real-time multiple heterogeneous sources. 
 

5 Experiment setup 

Our objective was to examine the correlations between independent and dependent variables derived from 
multiple sources in terms of their short-long term impacts on demand and supply. This was done using agri-
big data significance testing and predictive analytics. 

 
5.1 Significance testing 

The most common form of statistical significance is the correlation coefficient which measures the 
relationships between independent and dependent variables. The test data from Section 4.2 was divided into 
two groups: (1) data which had the Supply variable as its dependent variable, and (2) data which had the 
Demand variable as its dependent variable. 
 
5.1.1 Experiment setting 

The hypothesis (H1) and null hypothesis (H0) were defined as follows:  

H1 the extracted information had a significant correlation for recognizing demand and supply in the NR-
market. 

H0 there is no significant correlation between the extracted information for recognizing demand and 
supply in the NR-market. 

The multinomial logit model [31, 36] was employed to evaluate the dependent variables against the 
reference group. This method measures the correlation coefficient in the dataset as an association between 
independent and dependent variables based on p-values with a significant-alpha to determine whether 
the observed data is significantly different from the null hypothesis. The significance-alpha level for all 
the statistical tests was set to 0.05, which gives a 5% chance of error rates. If the p-value was less than or 
equal to this alpha, then we rejected the null hypothesis that the result was statistically significant. 

An Odds Ratio (OR) [38] was also employed to describe the association between the independent 
variable levels that affected the dependent variables. If the OR is 1, then the association between 
independent variables is deemed insignificant, otherwise the association of the independent variables is a 
significant influence on the dependent variables. 

The calculations used the Python Statsmodels library [30] for multinomial logit modeling. 

5.1.2 Results and discussions 

The classification correlation results for Supply are shown in Table 5, and Demand values appear in 
Table 6. 

Table 5 presents supply as described by the multinomial logit model with Supply’s ‘low’ level set as 
the reference group. Many levels in the independent variables have p-values over 0.05 (e.g., 14-day Trend 
of Rainfall for the ‘moderate’ Supply) which labels them as insignificant to supply management. 
However, the overall p-values for ‘moderate’ and ‘very high’ Supply are mostly highly significant (i.e. 
0.033 and 0.016). This suggests that a single independent variable cannot capture significance to the 
dependent variable. 
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Table 5  Summary of the Association between Agri-big Data Variable and Supply 

low Supply  
(Reference Group) 

moderate Supply high Supply very high Supply 
Coef. P OR Coef. P OR Coef. P OR 

7-day Trend of Rainfall  0.893 0.151 2.441 0.766 0.224 2.150 0.750 0.249 2.118 
14-day Trend of Rainfall  0.240 0.750 1.271 0.006 0.994 1.006 -0.598 0.442 0.550 
Shedding Season 1.282 0.413 3.604 0.461 0.780 1.586 -0.559 0.734 0.572 
Holiday Boundary -6.128 0.004 0.002 -30.11 0.999 0.000 -6.357 0.004 0.002 
Fresh Latex Price Movement 1.994 0.034 7.342 2.510 0.009 12.301 2.426 0.011 11.317 
7-day Trend of Fresh Latex 
Price 

-0.355 0.273 0.701 -0.334 0.329 0.716 -0.669 0.078 0.512 

Reserved Price Level 0.230 0.044 1.258 0.229 0.053 1.257 0.300 0.012 1.350 
Reserved Price Movement 2.333 0.062 10.304 2.796 0.026 16.381 1.952 0.126 7.041 
7-day Trend of Reserved Price  -0.05 0.887 0.951 -0.114 0.755 0.893 -0.139 0.711 0.870 
constant -12.34 0.033 <0.001 -11.21 0.062 <0.001 -14.56 0.016 <0.001 
The bold entries represent random variables in the manuscript 

Table 6  Summary of the Association between Agri-big Data Variable and Demand 

low Demand 
(Reference Group) 

moderate Demand high Demand very high Demand 
Coef. P OR Coef. P OR Coef. P OR 

Shedding Season -0.213 0.814 0.808 -0.262 0.734 0.770 0.998 0.228 2.713 
Holiday Boundary -0.929 0.202 0.395 -1.303 0.037 0.272 -0.706 0.287 0.494 
Reserved Price Movement -0.128 0.171 0.880 -0.111 0.175 0.895 -0.116 0.225 0.891 
7-day Trend of Reserved Price  0.132 0.749 1.141 1.562 0.000 4.770 1.720 0.001 5.586 
Commodity Price Level -0.248 0.284 0.781 0.174 0.342 1.190 0.134 0.542 1.143 
Commodity Price Movement 0.032 0.097 1.033 0.028 0.107 1.028 0.024 0.246 1.024 
7-day Trend of Commodity 
Price  

0.566 0.067 1.761 -0.159 0.594 0.853 0.545 0.123 1.724 

THB Currency Rate Movement  0.072 0.777 1.075 -0.331 0.151 0.718 -0.764 0.005 0.466 
JPY Currency Rate Movement  -0.217 0.383 0.805 0.120 0.601 1.127 -0.412 0.126 0.662 
7-day Trend of Open Interests 0.031 0.868 1.031 0.041 0.812 1.042 0.159 0.396 1.172 
7-day Trend of Trading Volume -0.051 0.740 0.950 0.309 0.041 1.361 0.112 0.514 1.119 
7-day Trend of WTI Price 0.215 0.296 1.239 0.187 0.369 1.206 0.297 0.190 1.346 
7-day Trend of Brent Price 0.035 0.868 1.035 -0.376 0.089 0.687 -0.183 0.434 0.833 
constant -0.770 0.769 0.463 -2.347 0.328 0.096 -2.206 0.416 0.110 
The bold entries represent random variables in the manuscript 

Each OR result according to the reference group is acceptable and highly significant (≠ 1) for supply 
management. However, some features are insignificant, such as the OR result for the 14-day Trend of 
Rainfall for the ‘high’ Supply, which is 1.006. Nevertheless, the constant OR results for ‘moderate’, 
‘high’ and ‘very high’ Supply and ‘low’ Supply are less than 0.001. This indicates that these independent 
variables are unique, and clearly describe the supply behavior. Such correlations show the insights that 
our time-series decomposition approach can offer to agri-big data. 

Table 6 shows results for the demand data with ‘low’ Demand set as the reference group. Most of the 
independent variables have p-values over 0.05, indicating that H0 cannot be rejected. Since the 
independent variables are only significant to the dependent variables. Even though the p-values of the 
demand independent variables are insignificant separately, the OR values show a significant correlation 
among them, compared to the reference group (i.e. 0.463, 0.328, and 0.110 for ‘moderate’, ‘high’, and 
‘very high’ Demand). This suggests that ‘moderate’, ‘high’, and ‘very high’ Demand are negatively 
correlated to ‘low’ Demand which represents buying power in the NR-market. 

These results show that our approach to agri-big data can provide statistical significance indicators for 
demand and supply. However, demand’s p-value and its OR provide contradict information, which may 
suggest that evaluating our approach using significance tests might not offer a complete picture. Therefore, 
we also evaluated our work using predictive analysis. 
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5.2 Predictive analytics 

The objective of our predictive ability measurements is to provide additional classification results based 
on significant associations between the independent variables. 
 

5.2.1 Experiment setting 

Four well-known classification algorithms were utilized: Decision Trees (DT), Neural Networks (NN), Support 
Vector Machines (SVM), and Naïve Bayes (NB) [18]. All of these algorithms employ correlations and relative odds 
for the dependent variable outcomes given independent variables. 

The scikit-learn Python library for machine learning [10] was employed to tune the model’s 
hyperparameters, with training data from Section 4.2, and a 10-fold cross-validation used during testing 
to avoid overfitting. The metric is 𝐹𝐹1 =  𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡+1
2(𝑓𝑓𝑓𝑓+𝑓𝑓𝑓𝑓)

. The true positive (tp) is a correct outcome from the 

prediction results, the false positive (fp) is an incorrect result, and false negative (fn) is an unclassified 
outcome. 

 

5.2.2 Results and discussions 
Table 7 shows the F-measure results for the four Supply and Demand classes according to the dependent 
variables. 
 
Table 7    F-measure results for Demand and Supply classifications 

 Dependent 
Variables 

Supply Demand 
 low moderate high very 

high avg. low moderate high very 
high avg. 

Algorithms DT 1.00 0.96 0.98 1.00 0.98 0.98 0.92 0.92 0.98 0.95 
NN 0.36 0.44 0.77 0.21 0.45 0.84 0.78 0.59 0.76 0.74 
SVM 0.57 0.66 0.85 0.54 0.66 0.83 0.68 0.62 0.74 0.72 
NB 0.19 0.33 0.67 0.17 0.34 0.70 0.48 0.40 0.59 0.54 
Average 0.53 0.60 0.82 0.48 0.61 0.84 0.72 0.63 0.77 0.74 

Bold entries highlight the average values of each states of demand and supply that we mentioned in text, while bold-underlined 
entries signify the overall average values 

 

The F-measure for each algorithm in Table 6 varied depending on the compatibility of the data and 
algorithms. The highest average scores are with the DT algorithm (0.98 and 0.95 for Supply and Demand). 
The lowest is for the NB algorithm (0.34 and 0.54 for Supply and Demand). 

The DT algorithm appears to be the most compatible with the extracted information. Perhaps 
because it uses a logical model that can be very successfully handle category-based data and our time-
dependent approach transforms raw data into a categorical format. 

In contrast, NB is a probabilistic model that uses Bayes’ theorem to compute posterior probabilities 
for the dependent variables given independent random variables. As a result, the F-measures for the ‘very 
high’ Supply and the ‘high’ Demand are low cause the probabilistic model depends on the prior 
probabilities obtained from the training data. The NR-market training data imbalance will produce high 
number of false positive that affect the overall F- measure. However, this suggests that the probabilistic 
model would be good for balanced data classification. 

NN and SVM algorithms are geometric models that compute the distances and weights between key 
features to classify the outcomes. They employ optimization methods that need to determine the best 
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hyperparameters based on the highest performance with complex patterns. The overall accuracy of NN and 
SVM with default parameter setting are acceptable for our work but there might be some benefit in 
adjusting NN’s complex layers’ parameters for deep learning or SVM’s margin to improve accuracy. 

The significant improvements using our proposed approach can be seen in Fig. 5 which compares it 
with the predictive accuracies using the traditional SMA [2, 37] approach. 

 

    

Fig. 5  Comparison of the Predictor’s Abilities when applied to Agri-big Data 

 

The overall result of Fig. 5(b) shows F-measures using our approach are higher than with SMA. However, 
Fig. 5(a) has quite similar results for the NB algorithm using SMA and our approach because the supply data 
is completely imbalanced, and so limits the performance of the NB. 

SMA pre-processes sequential data into a single representation which works well when the decision-
makers only need to know a recent situation for the short-term decision without the long-term considered 
by our proposed. This suggests that SMA is suitable for a short-term report which does not consider 
data behavior, leaving that task to the decision-makers. However, if the decision-makers need to plan 
long-term strategies, our approach is more suitable since it deals with time-series data by pre-
processing it based on supply chain integration. This situation is much more common in highly uncertain 
environments. 

 
6 Conclusions 

To support decision-making, agri-market management requires contextual information about short-long 
term impacts based on demand and supply based on agri-big data. However, big data is unstructured, 
employs heterogeneous data representation, and arrives from multiple sources, all of which suggests the 
need for agri-big data digitization. 

This paper has proposed big data digitization framework for supply chain management with a focus on an 
information extraction approach based on time-series decomposition. The approach has the main goal to pre-
processes sequential data from multiple sources based on supply chain perspectives, with demand and supply 
acting as contextual information to support decision-making. The case study for our demand and supply 
awareness was Thailand’s domestic natural rubber market. The experiments focused on significance tests 
using a multinomial logit model and predictive analytics using machine learning. The results show that our 
proposed approach enhances the agri-big data utilization by extracting its insights for supporting predictive 
models with higher accuracy than the traditional method. 

This proposed framework can be applied in any field that related to market factors awareness in 
supply chain management, especially with short-long term impacts. The main contribution is the encoding 
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of supply chain knowledge as a prior for model-based analysis. It is based on time-series decomposition 
that can help decision makers understand market situation using prior knowledge and big data. The 
future application can directly employ our framework by redefining or determining relevant prior 
knowledge since it is important scheme in the modern supply chain management in the era of dynamic 
trades and global marketing. 

Our time-series decomposition approach can easily process data from multiple sources, and this will 
become even more important in areas such as social media for analyzing consumer behavior and satellite 
imaging of farming production. New sensor types will require new additional solutions to deal with 
them effectively and accurately. 
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ABSTRACT The balancing of demand and supply in the market is complex because of 
the dynamic supply chain and environment. It causes uncertain situations and is a 
limitation in decisions making systems that cannot produce reasonable descriptions to 
help decision makers eliminate uncertainties. This study proposes the design and 
development of a Causal Bayesian Networks (CBNs) model for market understanding, 
which encodes a human-like approach to explain demand and supply events for 
decision makers. A framework for generating reasonable descriptions in Agricultural 
Supply Chains (ASCs) management is proposed. The qualitative and quantitative 
design of the CBNs model is developed and proved that the CBNs model can 
reasonably explain events using predictive performance measurement and sensitivity 
analysis for producing reasonable descriptions. The results illustrate that the CBNs 
model is suitable for ASCs situation explanation involving uncertain situations and is 
ready to apply to real-world applications to support decision-making systems. 
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I. INTRODUCTION 
One of the problems in Agricultural Supply Chains 
(ASCs) is how to deal with the imbalance between 
demand and supply. For example, agricultural 
production and consumption may suffer from 
unexpected seasonal changes, such as an untimely 
harvest that causes shortages or even surplus 
market supply [1]. Decision making in this 
situation is a problem because there is a lack of 
comprehensive, real-time information. 

The expansion of sensors-based-smart 
farming generates even more extensive data as a 
source of real-time information. It should allow 
decision makers to be more aware of demand and 
supply changes, and apply these variations to the 
benefit of supply chains. Unfortunately, big data 
suffer from the problems of enormous volume and 
complex dimensionality [2], [3]. Machine 
learning (ML) plays a vital role in a data-driven 
approach for supporting decision making [4]. It is 
widely used in agriculture decision-making 
systems because it can uncover the information 
needed in ASCs [5]. For example, Punia et al. [6] 
has proposed a retail forecasting approach using 
extensive point-of-sales data, while Bu and Wang 
[7] utilized a water consumption approach for 
crop growth based on IoT sensors. They both 
employed deep learning to handle identification 
and classification, but it was less useful when 
decision makers wanted to ask how and why such 
outcomes were produced. Deep learning 
techniques produce black-box models which few 
people understand, and this lack of reasonable 
descriptions can cause decision makers to not 
fully understand the demand-supply situation, 
which may lead to poor decisions. 

Reasonable descriptions utilize technologies 
that produce contextual information based on 
supply chain knowledge. The descriptions should 
be both testable and understandable by both 
human and agent-based systems by interpreting 
supply chain knowledge using observational data. 
Fortunately, Bayesian Networks (BNs) for supply 
chain knowledge can produce reasonable 
descriptions since they determine transparent 
relationships using cause-and-effect as rational 
contextual information [8]. For example, Qazi et 
al. [1] and Ji et al. [9] employed BNs for 
managing a supply chain, by capturing 
relationships between supply chain factors from 
data based on correlation. However, they did not 
consider the causal assumptions based on rational 
human knowledge, which allows the model to 
detect irrational, unexpected ASCs events [10]. 
Our study addresses this drawback by proposing 

the use of Causal Bayesian Networks (CBNs) for 
knowledge in ASCs management.  

CBNs determine the consequences and 
interdependencies among supply chain activities 
as a context synthesized from prior knowledge 
and big data. It models expert reasoning to explain 
demand and supply by producing reasonable 
descriptions.  

The significant contributions of this study are: 
• A new framework for knowledge 

description in ASCs management which 
addresses unexpected changes in supply 
chains. 

• The development of a CBNs model for 
suppling descriptions in the natural rubber 
commodity market. 

• Proof that the proposed model converges 
to expert reasoning by an analysis using 
predictive performance measurements and 
sensitivity analysis. 

The rest of this paper is organized as follows: 
background knowledge and related work is 
presented in section II, and the descriptive supply 
chain management framework is introduced in 
section III. Section IV details the design and 
development of the CBNs model for supply chain 
management, and section V evaluates the CBN 
using quantitative experiments. Conclusions and 
future directions appear in section VI. 

II. BACKGROUND KNOWLEDGE AND 
RELATED WORKS 
ASCs management balances demand and supply 
in the presence of rapidly changing 
environmental conditions, and so is essential for 
efficient planning [11]. It utilizes real-time 
analysis and reaction, which depends upon 
contextual information in the supply chain [12]. 
In this section, we give some background on 
ASCs management, its common tasks, and 
various analysis approaches. 
 
A. ASCS BACKGROUND 
The futures market is an auction-based exchange 
where buyers and sellers trade contracts for 
deliveries set for a specified future date based on 
the quantity, quality, and price of commodities. 
The futures market help ASCs protect their 
activities from price fluctuations, which 
highlighting how ASCs effectiveness depends on 
adapting to supply network constraints and 
shifting [13]. 

The supply chain manages production, 
processing, wholesale operations, logistics, and 
retailer operations that depend upon suppliers, 
customers, and firms [14]. A supplier is the 
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source for material, while a customer shows 
interest and demand for the product by 
considering the supply’s trend. A firm’s 
productivity is based on the source, order, and 
price, determining the supply’s trend for the 
whole chain. In this way, the situation can be 
elaborated into micro-level and macro-level 
decisions that let stakeholders monitor these 
processes and determine the demand and supply 
at both levels [15]. Relationships between the 
supplier, customer, and firm explains the market 
situation that can be in equilibrium or exhibit 
abnormality as shortages and surplus. The 
relationship’s explanation helps decision makers 
to decide policies to deal with the supply chain 
abnormality, which shows how an ASCs 
explanation so important for management. 

B. ASCS MANAGEMENT APPROACH 
Big data and ML have been employed for 
discovering demand and supply situations [16]. 
ASCs management uses the descriptive ability of 
ML to adjust operations and troubleshoot 
situations quickly and efficiently [17].  

Kappelman and Sinha [18] proposed an 
approach based on stochastic optimization 
methods for dealing with uncertainty in supply 
chain systems. They claimed that their approach 
could effectively minimize uncertain problems 
and optimize time and complexity. Oh and Jeong 
[19] proposed a tactical supply planning model to 
overcome the short product life cycle and 
demand uncertainty. They concluded that their 
approach could provide the solution based on the 
optimal trade-off between profit and lead time. 
Gardas et al. [20] proposed systematic 
hierarchical structures using cause-and-effect-
based relationships supporting decision-making. 
They discussed that their proposal could help 
decision-makers improve their understanding. 
The studies focused on maximizing profits in 
decision-making but did not consider explaining 
a situation of unbalancing between demand and 
supply. 

BNs transparently model knowledge of 
supply chain relationships to produce such 
information [8], which decision-makers employ 
to create policies. BNs are probabilistic graphical 
models that can capture the uncertainty and 
relationships among relevant factors in the 
supply chain decision-making process. Random 
variables represent these factors, and their 
relationships are encoded by conditional 
probabilities using Bayes' theorem. 

Sharma [21], Chhimwal et al. [22], 
Lawrence et al. [23], and Ojha et al. [24] 
proposed for BNs-based risk assessment 

approach for supply chain management using 
historical data. They summarized that the 
approach could help the supply chain managers 
identify the risk factors early. El Amrani et al. 
[25] studied the sustainability of the supply chain 
network. These methods were successful because 
they focus on predicted outcomes and contextual 
explanations. However, they still did not consider 
explaining the context of demand and supply. 
This means that the model cannot answer ASCs 
management questions such as 'What is the 
situation of demand and supply, and why were 
these outcomes produced?'. The burden of causal 
interpretation and rational explanation is left to 
humans. 

Causal Bayesian Networks (CBNs) have 
been proposed to address this problem [26], by 
modeling both emerging and rare events (e.g. 
climatic problems) that affect the management of 
ASCs. This means that CBNs will play an 
essential role for ASC explanations, even though 
the learning method for CBNs in ASCs is still far 
from decided. 
C. CAUSAL BAYESIAN NETWORKS 
CBNs are a human-like intelligent framework 
that encodes experience and knowledge based on 
cause-and-effect assumptions [27], [28]. In this 
way, CBNs extend traditional BNs by adding an 
interpretable ability in the manner of human-like 
understanding to produce explanations [26]. This 
lets CBNs explain demand and supply behavior 
to support ASC management. 

A cause-and-effect assumption goes beyond 
correlation because it shows not only a statistical 
dependency between X and Y, but encodes 
knowledge that Y happens because of X. A 
CBNs assumption, X → Y, is a cause-and-effect 
relationship that states that "Only X can change 
Y". For example, Weather → Crop Yield 
captures the idea that Weather generally 
influences Crop Yield which means Weather is a 
cause of Crop Yield. A decision makers may ask 
"How will crop yield be undersupplied if 
prolonged rainfall is observed?". This means that 
a Crop Yield (C) is denoted by undersupplied 
(us) given Weather (W) by prolonged rainfall 
(pr), then the query can be written using Bayes' 
Theorem: 
 
P(C= us | W = pr ) = P(W = pr  , C= us ) × P(C= us ) 

P(W = pr)
 (1) 

 
There are four probabilities in (1): the 

posterior P(C = us | W = pr); the likelihood P(W 
= pr , C = us), the prior P(C = us), and the 
observation P(W = pr). Their definitions are: 



83 

 

P(C = us | W = pr): the probability that an 
under supply is conditioned on prolonged 
rainfall; 

P(W = pr , C = us): the likelihood that an 
under supply co-occur with prolonged rainfall; 

P(C = us): the marginal likelihood of an 
under supply regardless of prolonged rainfall; 

P(W = pr): the marginal likelihood of 
prolonged rainfall in the past. 

This cause-and-effect assumption helps 
decision makers deal with market supply when 
influenced by the weather. 

Although such observations are vital 
ingredients of CBNs for ACSs management, 
ACSs are a complex domain, which means that 
many causal assumptions cannot be expressed as 
direct X → Y relations, and may involve hidden 
factors between the X and Y. Pearl et al. [29]’s 
causal model encodes such hidden factors—Z 
based around three types of causal structures 
called chains, forks, and colliders. A chain 
encodes a cause-and-effect relationship in which 
the factor is involved sequentially. A fork encodes 
assumptions when a cause-and-effect relationship 
has a common cause. A collider encodes a cause-
and-effect relationship which has a common 
effect. The structures are summarized in Table 1. 
TABLE 1. Causal structures. 

 
Causal 
Structure Representation Axiom 

Chain X → Z → Y X indirectly causes Y 
through Z 

Fork X ← Z → Y X and Y are caused by Z 
Collider X → Z ← Y X and Y are connected 

through Z 
 

The causal structure uses conditional 
dependencies to connect nodes with causal 
relationships and block the paths between nodes 
with independencies; a process known as d-
separation [30]. Causal discovery algorithms 
have been studies to structure a CBNs model 
from the observational data [31]. The algorithms 
are widely separated into two types: constraint-
based and score-based. The constraint-based 
algorithms apply conditional independence 
constraints (e.g., Fast Causal Inference or FCI, 
and PC), while the score-based algorithms 
construct model using posterior probability of the 
candidate model (e.g. Greedy Equivalence 
Search or GES, and Greedy FCI). However, the 
resulted model’ performance is hard to be tested 
without a gold standard [32]. Then, expert-based 
modelling is the answer for discovering causal 
relationships in domain that lacks a baseline. 

Causal relationships help ASCs model 
knowledge and help decision makers discover the 
reasons behind complex behaviors. The 
challenge is determining the semantics of the 
problem domains, verifying the dependencies 
among the random variables, and deciding 
whether they should connect or separate each 
other. This is the backbone of a descriptive 
supply chain management framework that can 
model micro-level and macro-level ASCs 
situations for decision-making. 
 
III.  DESCRIPTIVE SUPPLY CHAIN 
MANAGEMENT FRAMEWORK 
Useful supply chain management must produce 
proactive planning aligned with evidence, but this 
is not feasible with traditional technologies.  This 
section proposes a new management framework 
that can generate explanations based on demand 
and supply evidence.  The framework is 
summarized in Figure 1. 

The framework consists of four components: 
data sensing, observation identification, situation 
explanation, and inference for making decisions; 
it follows the subdivisions employed by Belaud et 
al. [33]. 

Data sensing retrieves ASCs related data 
from sources such as global positioning systems 
( GPS) , geographic information systems ( GIS) , 
remote sensing technologies, and web- based 
applications.  The raw data is transformed into 
ASCs observations by the observation 
identification component.  Although these 
observations detail ASCs information, they do not 
elaborate the relationships among the ASCs, 
which need deeper knowledge of the ASCs 
situation.  The situation explanation produces 
rational explanations based on cause and effect in 
the manner of human- like reasoning.  Lastly, 
inference supports a decision-making component 
for proactive planning.  It receives a hypothesis 
from a decision maker, and infers possible 
outcomes using the current ASCs situation.  The 
resulting response and review help the decision 
maker to decide upon solutions and plan policy. 

The intelligence of this framework depends 
upon the CBNs model developed as an initial 
requirement. This is the topic of the next section. 



84 

 

Data Sensing Observation 
Identification

raw data

ASCs observations

ASCs
situation

Inference for 
Making Decision

Situation 
Explanation

response 
and review

X Y

Z B

A

ASCs
knowledge

ASCs Environment CBNs Model

hypothesis

 

FIGURE 1. The descriptive ASCs management framework. 

 
IV.  DESIGN AND DEVELOPMENT OF CBNS 
MODEL FOR ASCS 
CBNs are developed using causal discovery 
algorithms based on data dependencies that can 
structure the relations between random variables. 
Even the automatic algorithms, including Tree 
Augmented Naïve Bayes (TAN), Bayesian 
Network augmented Bayesian (BAN), and FCI, 
are widely studies [34], these algorithms generate 
statistical correlations among observations 
derived from well-structured and complete 
historical data that covers all possible events even 
it is the rarest. However, the unpredictability of 
the modern supply chain introduces uncertainty 
and change into the ASCs environment which 
generates rare events that do not exist in historical 
data. This means that a purely data-driven 
approach cannot produce accurate causal-and-
effect explanations [35]. Moreover, the related 
data is still lacking in the context of the natural 
rubber ASCs. It lacks in both comprehensive and 
historical terms that is why the traditional ASCs 
runs with human. 

To deal with that, using expert-based 
modeling as a gold standard. The prior knowledge 
depends upon the experts. It consisted of: (1) 
interviews with three experts, and two 
practitioners from the Central Rubber Market 
(CRM) in Hat Yai, Songkhla, Thailand; (2) 
reviews of a CRM database of 5 years provided 
by the Thai government. A prior-based process is 
required to integrate with data-driven process to 
produce a gold standard of CBNs model, as 
explained in the rest of this section. 

 
A. RANDOM VARIABLES IN ASCS 
EXPLANATION 
We employ random variables to model possible 
events, and quantify them based on observational 
data. Events are fixed as states but can occur 
randomly, according with natural change. We 

apply a traditional understanding of demand-
supply price based on the structural representation 
employed in Pearl and Mackenzie [36]. Our case 
study models the futures market auction system as 
five ASCs explanation processes: source, supply, 
demand, market price, and futures market 
volatility. The random variables’ states are 
designed and built using prior knowledge from 
ASCs operations [5], and market price considers 
possible futures market conditions that contribute 
to our model. 

We divide the random variables into three 
categories: observed, micro-level, and macro-
level. Observed random variables model direct 
environmental observations, micro-level random 
variables represent supply chain activities, and 
macro-level random variables model market 
situations. The three categories of random 
variables and their states are detailed in Tables 2, 
3, and 4. 
 
TABLE 2. Observed random variables. 
 

Context Random 
Variables 

States 

Source Climatic 

Problem 
normal, drought, 
monsoon, flood 

Plantation 

Area 
downtrend, sideways, 
uptrend, fluctuation 

Supply Raw Material 

Cost 
downtrend, sideways, 
uptrend, fluctuation 

Labor 
Resources 

down, stable, up 

Demand Exporting 
Costs 

down, stable, up 

Currency 
Exchanges 

strengthening, stable, 
weakening 

Future 
Market 
Volatility 

Open Interest downtrend, sideways, 
uptrend, fluctuation 

Trading 
Volume 

downtrend, sideways, 
uptrend, fluctuation 

Market 
Price 

Future 
Market Prices 

downtrend, sideways, 
uptrend, fluctuation 

Market Price down, stable, up 
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1)  OBSERVED RANDOM VARIABLES 

The observed random variables are based on five 
ASCs explanations, which are summarized in 
Table 2. 

Climatic Problem affects crop growth and 
harvesting, and can be obtained from weather 
station observations or open data services. 
Plantation Area estimates the crop yield 
quantity, which can be done manually or be 
automated using sensors. Climatic Problem and 
Plantation Area provide information about the 
source and imply raw materials processing.  

Raw Material Cost, such as crop price can 
be observed from open data services, and shows 
baseline information that harms secondary 
production. Labor Resources reflects production 
capacity, obtained through registered labor and 
official holiday figures. Raw Material Cost and 
Labor Resources are essential for estimating the 
supply context in the supply chain. 

For demand, the required information relates 
to product consumption and logistics. Exporting 
Costs and Currency Exchanges movement are 
the critical factors. Exporting Costs information 
can be obtained from the petroleum prices index 
and Currency Exchanges from web services. In 
addition, production consumption is varied 
according to the agricultural product and the 
nature of the market. Some products may be 
traded through an agent, while many products are 
traded by auction, while the commodity product 
depends upon the futures market. This means that 
future market volatility is explained using Open 
Interest, Trading Volume, and Futures Market 
Prices, which can be observed from business data 
services. The Market Price is the index price for 
a commodity product reserved by a governmental 
office or agent, and is directly observable. 

Although all the observed random variables 
in Table 2 are observable through open data, 
information systems, and services, we need to 
clarify the state of the variables for the specific 
market context. For example, in the case of the 
Climatic Problem, we focus on events such as 
drought, monsoon, and flood based on the 
vulnerability of the crop yield. The other variables 
are categorized based on movements (down, 
stable, up) and trends (downtrend, sideways, 
uptrend, fluctuation) derived from the ASCs non-
stationary characteristics. The criteria for 
choosing a state is based on how its short long 
term impact affects the trading process. For 
instance, Raw Material Cost shows the impact 
on manufacturing, while Open Interest, Trading 
Volume, and Future Market Prices reflect 
demand in the futures market. They are indirectly 

affected by trading processes in the long-term, 
and so their states are categorized based on trends. 

2)  MICRO-LEVEL RANDOM VARIABLES  

The micro-level random variables are elaborated 
from prior knowledge of ASCs, which are 
summarized in Table 3. 
 

TABLE 3. Micro-level random variables. 
 

Context Random Variables States 
Source Crop Yield 

Producing 
low, normal, 
high 

Supply Manufacturing 

Capacity 
low, normal, 
high 

Demand Consumer 
Preference 

low, normal, 
high 

Future 
Market 
Volatility 

Future Market 
Movement 

down, stable, 
up 

Source Crop Yield 
Producing 

low, normal, 
high 

 
Crop Yield Producing represents the level of 

market source. Manufacturing Capacity is the 
intermediate step of market supply production. 
Consumer Preference summarizes the product 
requirement, which reflects market demand. 
Future Market Movement is the external factor 
that influences market demand. 

These micro-level random variables utilize 
low, normal, and high states which reflect their 
market context. However, Future Market 
Movement is defined using down, stable, and up 
values since it monitors the futures market 
situation. 
 
3)  MACRO-LEVEL RANDOM VARIABLES  

Macro-level random variables summarize supply 
chain dynamics, which are represented using 
ASCs Situation. It consists of three possible 
states: equilibrium (the quantity demanded and 
supplied are the same), shortage (there is an 
excess of demand), and surplus (there is an excess 
of supply), but the relationships between demand, 
supply, and price are complex. For example, if 
demand is up and supply is down, then the ASCs 
Situation is a shortage that increases price 
according to market theory. In contrast, if the 
supply and demand relationship trigger a 
decreasing price, the ASCs Situation is still a 
shortage but with abnormal behavior. This latter 
scenario reflects a dysfunctional market policy, 
and market managers must implement corrections 
(i.e., by controlling the reference price or 
imposing a price ceiling). The states for the 
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macro-level random variable are detailed in Table 
4 
 

TABLE 4. The states of macro-level random variables. 
 

States Definition 
equilibrium The market is equilibrium, and the 

price is stable. 
abnormal-

equilibrium 
The market is equilibrium, but the 
price is rising or dropping. 

shortage Excess demand and price is stable or 
rising. 

abnormal-

shortage 
Excess demand, but the price is 
dropping. 

surplus Excess supply and price is stable or 
dropping. 

abnormal-surplus Excess supply, but the price is 
rising. 

 
Table 4 lists the possible states for ASCs 

Situation in the context of demand, supply, and 
price. They are intended to help managers explain 
situations involving causal assumptions that 
interpret market behavior. 
 
B. ASSUMPTIONS IN CBNS MODELING 
The futures market controls the demand of the 
natural rubber productions consumed by the 
automotive and tire industries [37], [38]. The 
products in that market are rubber sheets 
produced locally which depend on climatic 
conditions [39]. Indeed, climatic problems are the 
leading cause of decreased source production. We 
employ this information to model the causal 
assumptions between the random variables, and 
the resulting model is shown in Figure 2. 

Figure 2 shows the graphical causal 
assumptions between the random variables, with 
a random variable for a cause pointing directly to 
effect random variable(s) (cause(s) → effect(s)). 
This graphical model can be interpreted into 
mathematical form using Structural Causal Model 
[29]. The assumptions are causally structured for 
explaining the ASCs Situation in terms of 
Manufacturing Capacity, Consumer 
Preference, and Market Price, and most of them 
are encoded as collides. For example, Trading 
Volume, Open Interest, and Future Market 
Price explain the liquidity and activity of Future 
Market Movement. Trading Volume reflects 
the short-term demanded quantity throughout the 
trading day, while Open Interest shows the 
number of futures contracts that are still open. 
Trading Volume and Open Interest are 
independent unless Future Market Movement is 
questioned, and then they become causally 
dependent. Crop Yield Production is also a 
collider, affected by Plantation Area and 
Climatic Problems. In other words, the causes 

are causally independent of each other, but 
conditioning on Crop Yield Production makes 
them dependent. Moreover, Crop Yield 
Production affects the behavior of Raw 
Material Cost, which passes its information to 
Manufacturing Capacity. 

Open 
interestTrading

Volume
Climatic 
Problems

Plantation
Area

Crop Yield 
ProducingFuture 

Market 
Movement

Raw
Material

Cost
Manufacturing
Capacity

Labour 
ResourcesExporting 
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Currency
Exchanges
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ASCs 
Situation

Future
Market
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Market
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FIGURE 2.  Causal assumption of natural rubber SCs using 
CBNs. 

 
The CBNs model is initially constructed by 

casual assumptions as a rule-based prior 
knowledge. It is a qualitative knowledge that 
machine learning-based applications cannot 
reasonably interpret it. The data-driven approach 
is then employed to encode the causal 
assumptions to quantitative knowledge. 
 
C. DATA PREPROCESSING 
The character of ASCs-related data is multiple 
sources that become problematic because they are 
unstructured, redundant, and streaming. 
However, the real-world system must analyze and 
explain the event simultaneously and 
automatically for decision-making. For example, 
decision-makers may ask, “What does the trend of 
future market price look like given current 
evidence?”. The system must transform the input 
data from multiple sources into information 
represented with states of random variables to 
interpret and answer the question. 

Section IV.A shows that states of random 
variables are discrete. For the observed random 
variable from the data source [40], Climatic 
Problem is categorized as normal, drought, 
monsoon, and flood. The rest are categorized by 
movement (down, stable, up) and trend 
(downtrend, sideways, uptrend, and fluctuation). 
Movement is the distance between points, and the 
trend is the semantic meaning of the direction of 
movements. 

Time-series decomposition approach [41] is 
applied to produce the states that can extract 
information from multiple sources. This approach 
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is dimensionality reduction that decomposes 
using a frequency-based interpolation function. 
Experts define the heuristics rules according to 
the short-long term impacts of each random 
variable on ASCs.  

Natural rubber supply chains (SCs) data for 
tuning prior and likelihood functions were 
collected between 2015 and 2019 from the CRM 
in Hat Yai, Songkhla, Thailand. We randomly 
split the data collection into two subsets. The first 
subset is utilized for model training and 
validation, and the second is for model evaluation. 
The data-splitting method was performed using 
the scikit-learn Python library [43]. 
 
D. MODELING CAUSAL ASSUMPTIONS 
CBNs are a qualitative model based on causal 
assumptions extracted from background 
knowledge, which are quantified using 
observational evidence by training their 
parameters. 

The natural rubber SCs obtained from the 
training data are summarized in Table 5. 
TABLE 5. Summarization of natural rubber SCs. 

 
Data Sources Random 

Variables 
States 

Climatological 
Center [42] 

Climatic 
Problem 

normal (48%), drought 
(8%), monsoon (13%), 
flood (31%) 

Agricultural 
Production 
Data [43] 

Labor 
Resources 

down (10%), stable 
(81%), up (9%) 

Plantation 
Area 

down (10%), stable 
(81%), up (9%) 

Raw 
Material 
Cost 

downtrend (36%), 
sideway (7%), uptrend 
(47%), fluctuation (9%) 

Thailand 
Daily Rubber 
Price [44] 

Market 
Price 

down (19%), stable 
(69%), up (19%) 

Bank of 
Thailand [45] 

Currency 
Exchanges 

strengthening (53%), 
stable (4%), weakening 
(43%) 

Markets 
Insider [46] 

Exporting 
Costs 

down (7%), stable (75%), 
up (19%) 

Tokyo 
Commodity 
Exchange 
(TOCOM) 
[47] 

Trading 
Volume 

downtrend (47%), 
sideway (6%), uptrend 
(47%), fluctuation (0%) 

Future 
Market 
Price 

downtrend (24%), 
sideway (11%), uptrend 
(34%), fluctuation (31%) 

Open 
Interest 

downtrend (47%), 
sideway (1%), uptrend 
(51%), fluctuation (12%) 

 
Table 5 summarizes random variables whose 

states are distributed and chose to show the 
movements that affect the market. However, we 
did not consider Plantation Area factors since 
rubber trees must grow for seven years before 
their first harvest and live for two decades. This 

means that they remain stable and less significant 
during the 5-year data collection period used here. 

While, micro and macro-level random 
variables are contextual variables, retrieved from 
CRM database. They are labelled using experts, 
shown in Table 6. 
Table 6 shows micro-level and macro-level 
random variables’ prior distribution. The major 
proportion of Crop Yield Producing is up (48%), 
which causes Manufacturing Capacity to be 
high (52%), which accounts for over half of the 
dataset. This suggests that the supply situation for 
this ASCs market has always been high. In 
contrast, the Future Market Movement value up 
(15%) is the lowest event occurrence, so cannot 
boost market demand, which results in Consumer 
Preference being normal (52%). This shows that 
the supply and demand situation is unbalanced, 
causing ASCs Situation to have an equilibrium 
value of 7%. 
 
TABLE 6. Summarization of micro-level and macro-level 
random variables. 
 

Random Variables States 
Crop Yield 
Producing 

down (39%), stable (14%), up 
(48%) 

Manufacturing 
Capacity 

low (17%), normal (31%), high 
(52%) 

Consumer 
Preference 

low (9%), normal (52%), high 
(39%) 

Future Market 
Movement 

down (33%), stable (51%), up 
(15%) 

ASCs Situation equilibrium (7%), abnormal-
equilibrium (29%), shortage 
(13%), abnormal-shortage (8%), 
surplus (24%), abnormal-surplus 
(20%) 

 
The states in Table 5 and Table 6 become the 

priors of the random variables. For example, let 
cp be a set of m-possible outcomes of Climatic 
Problem (CP), and P(CP) be the prior for 
Climatic Problem, defined as: P(CP = normal) 
= 0.48, P(CP = drought) = 0.08, P(CP = 
monsoon) = 0.13, and P(CP = flood) = 0.31, 
according to the Climatic Problem entry in Table 
5. This prior informs us that between 2015 and 
2019, Thailand suffered from floods and 
monsoons almost half the time (which fits with 
typical tropical climate characteristics). Also, the 
priors of the states are not equally likely because 
of the nature of the Climatic Problem. 

This data can be utilized to tune the likelihood 
parameters, according to Bayes' Theorem. For 
example, the causal assumption shows that Crop 
Yield Producing (CYP) is affected by Climatic 
Problem (CP). The likelihood can be calculated 
using joint probability of this causal assumption, 
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represented using a Conditional Probability 
Distribution (CPD). We use Maximum 
Likelihood Estimation [48] for tuning the 
likelihood parameters. For example, the CPD of 
Crop Yield Producing given Climatic Problem 
in the natural rubber supply chain is summarized 
in Table 7. 
 
TABLE 7. Conditional probability distribution of Crop Yield 
Producing given Climatic Problem. 

 
Crop Yield 
Producing 

Climatic Problem 
normal drought monsoon flood 

high 0.997 0.008 0.005 0.002 
low 0.001 0.982 0.005 0.995 
normal 0.001 0.008 0.989 0.002 

 
The CPD of Crop Yield Producing given 

Climatic Problem shows the low production is 
affected from strange weather (i.e., probabilities 
of low in Crop Yield Producing are 0.982 and 
0.995 given drought and flood respectively). CPD 
show the likelihood between cause and effect 
random variables that is required for Bayes’ 
Theorem to explore posterior in CBNs model. 

Although the CBNs model is encoded from 
expertise knowledge that makes human sense, it 
needs model validation to measure its 
performance for machine understanding. 
 
E. CBNS MODEL VALIDATION 
The causal structure represents the scientific 
assumptions underpinning the ASCs data, and the 
CBNs-based model exhibits predictive ability 
with reasonable explanations. The purpose of 
CBNs model validation is to confirm that our 
proposed model can predict the ASCs situation. 

According to the ASCs Situation’s states in 
Table 6, the target class is distributed over 6-
possible outcomes and is imbalanced. Marcot and 
Hanea [49] proposed that 10-fold is the optimal 
value for k-fold cross-validation for a discrete 
Bayesian-based model. It resamples the data into 
ten subsets, using nine subsets in each iteration for 
training, and the rest for testing. Therefore, we 
have also employed 10-fold cross-validation to 
estimate model performance. 

The metric for interpreting validation results 
is accuracy, selected by measuring the model's 
predictive performance during the learning 
process; the results are shown in Table 8. 
 
 
 
 

TABLE 8.  ASCs situation prediction accuracy for 10-fold 
cross-validation. 

 
ASCs situation 6-possible 
outcome 

Accuracy (k = 10) 

equilibrium 0.86 
abnormal-equilibrium 0.97 
shortage 0.92 
abnormal-shortage 0.88 
surplus 0.96 
abnormal-surplus 0.95 
Average 0.94 

 
Table 8 shows that the overall performance is 

high of 94%. The accuracies of equilibrium and 
abnormal-shortage are lower than the others 
because they are rare events, occurring at around 
7% and 8% in the sample proportion, 
respectively. The equilibrium market is ideal and 
rarely occurs because the market context changes 
dynamically. Similarly, abnormal-shortage 
means a shortage of supply with decreasing price, 
which is an extraordinary situation that 
contradicts the laws of demand and supply. It is 
also a rare event with a small sample for training 
the model. 

The validation shows that our proposed 
possesses good model performance and can be 
applied to this case study. Although k-fold cross-
validation is fundamental for model testing, it 
does not provide satisfactory model performance 
in our explanation requirement. A significant 
advantage of our proposed CBNs model is that it 
explains the market situation correctly and 
reasonably. 
 
V. RESULTS 
This section evaluates how well our CBNs model 
can perform the task correctly and rationally. 
Consequently, our experiments have two parts: 1) 
tests of the predictive performance for model 
correctness, and 2) sensitivity analysis for model 
reasonableness. 
 
A. PREDICTIVE PERFORMANCE 
MEASUREMENT 
This experiment measures the CBNs model's 
predictive performance. The target class are the 
states of the ASCs Situation random variable 
since it helps to provide final decisions in the 
supply-chain system. 
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TABLE 9. Predictive performance comparison. 

 
 

Equilibrium Abnormal-equilibrium Shortage Abnormal-shortage Surplus Abnormal-surplus 
Avg. 

PS RC FM PS RC FM PS RC FM PS RC FM PS RC FM PS RC FM 
NN 0.87 0.83 0.85 0.96 0.95 0.96 0.93 0.92 0.93 0.91 0.88 0.89 0.93 0.95 0.94 0.93 0.95 0.94 0.93 

SVM 0.87 0.83 0.85 0.97 0.95 0.96 0.95 0.92 0.94 0.95 0.88 0.91 0.95 0.94 0.92 0.92 0.96 0.94 0.94 
DT 0.87 0.86 0.87 0.96 0.97 0.96 0.95 0.92 0.93 0.95 0.88 0.91 0.94 0.96 0.95 0.95 0.95 0.95 0.94 
NB 0.84 0.64 0.72 0.94 0.70 0.81 0.95 0.90 0.93 0.95 0.87 0.90 0.95 0.87 0.90 0.76 0.94 0.84 0.84 
BS 0.88 0.85 0.87 0.95 0.98 0.96 0.96 0.93 0.95 0.96 0.89 0.92 0.94 0.96 0.95 0.96 0.95 0.96 0.93 

CBNs 0.86 0.87 0.86 0.96 0.97 0.97 0.95 0.92 0.94 0.96 0.88 0.92 0.94 0.96 0.95 0.95 0.96 0.96 0.95 

The states of ASCs Situation were measured 
based on Precision, Recall, and F-Measure. 
Precision (PS) is a proportion of the correction of 
the positive prediction, which is computed as 
𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
. TP is a true positive prediction, and 

FP a false positive prediction. Recall (RC) is a 
proportion of the correction of the prediction, 
which is computed as 𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
, FN is a false 

negative prediction. F-Measure (FM) is a balance 
between Precision and Recall, which is computed 
as 𝐹𝐹𝐹𝐹 =  2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
.  

The measurements employed the dataset 
described in Section IV.E. Baselines model were 
evaluated using testing dataset. The average 
scores of each model are shown in Table 9. 

We used standard classification algorithms to 
compare the predictive performance of our 
proposed model, including geometric-based 
models (i.e., Neural Networks (NN) and Support 
Vector Machines (SVM)), logic-based models 
(i.e., Decision Trees (DT)), and probabilistic-
based models (i.e., Naïve Bayes (NB), Bayesian 
Search (BS)). As we know that the performance 
of the classifiers depends upon algorithm’s 
parameters. Then, these models are implemented 
by scikit-learn [50], a Python library, with default 
parameter setting. For example, NN was set with 
100 hidden layers, 0.001 learning rate, 200 
epochs, ReLU as the activation function, and 
adam as the optimization. The comparative 
performance of the predicted results with our 
CBNs model highlights its predictive ability. 

Table 9 shows the Precision, Recall, and F-
measure for each model based on the states for 
ASCs Situation states. The average results were 
well over 80%, which is acceptable for prediction 
systems. The lowest was 84% from the NB model, 
since it employs a "naïve" assumption that its 
features are independent and only depend on the 
outcomes. This is not true for supply chains where 
features typically do rely on each other. The other 
results for NN, SVM, DT, BS, and CBN were 
93%, 94%, 94%, 93%, and 95% respectively, 
which are high since all the models were trained 
and validated using well-prepared data. This 
suggests that these models are ready to apply to 

decision support systems to help understand the 
ASCs Situation. 

The FM scores for the Equilibrium state are the 
lowest since it is an infrequent event that is 
sensitive to the balance of demand and supply, 
which is affected in various ways. It is also an 
ideal event, with little chance of occurring, but 
decision makers need to understand all the factors 
that support their decisions. 
 
B. SENSITIVITY ANALYSIS FOR CAUSAL 
ASSUMPTION 
Even though the CBN model’s results can be 
acceptably applied to prediction systems, it does 
not give an explanation for supporting decision 
making. We addressed this by conducting a 
sensitivity analysis to show the strength and 
sensible of connections between random 
variables. This show how well the CBNs provide 
guarantees on the query results with rationale 
explanations. Crucially, this aspect of the CBNs 
model is missing from the other models. The 
CBNs model provides contexts for supporting 
decision making in term of the state parameters of 
the random variables that impact ASCs Situation. 

The BS-based model was compared with our 
model because of its use of conditional 
dependency of a Bayesian Network [51], which 
produces relationships based on a DAG of data 
dependency. We applied scenario-based 
sensitivity analysis to highlight the rational 
explanation of both models. 

As a base case, we used the most sensitive 
scenario, "ASCs Situation is equilibrium". That 
event has the lowest probability of occurring, but 
has the highest impact on decision making. 
According to our hypothesis, the posterior 
probabilities of ASCs Situation may be affected 
by Manufacturing Capacity, Consumer 
Preference, and Market Price, and we assume 
that the base case is sensitive to variations of the 
states from its random variables. 

Sensitivity analysis calculates posterior 
probability distributions based on the partial 
derivative over the unknown variables; for 
example, ASCs Situation is questioned given 
evidence ( i. e. , the evidence is a state of a cause 
random variable, e) .  It can be calculated as 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝒙𝒙) = 𝜕𝜕𝜕𝜕(𝒙𝒙𝑡𝑡|𝑒𝑒)
𝜕𝜕𝒙𝒙

, x is a target variable, 
with interest in 𝒙𝒙 = 𝒙𝒙𝑡𝑡 as a base case, and 𝑝𝑝(𝒙𝒙𝑡𝑡|𝑒𝑒) 
posterior distribution of the base case given 
evidence.  This computation is based on an 
algorithm contributed by Kjaerulff and van der 
Gaag [52]. 

The average sensitivity conditioned from all 
evidence is between zero and one. Zero means the 
changes of the ASCs Situation's causes reduce 
the absolute change in the posterior probability of 
the base case that shows robustness in posterior 
distribution calculation, while one makes ASCs 
Situation more likely to occur. Sensitivity 
analysis can measure a minor change in the 
sensitivity of the ASCs Situation's posteriors 
(i.e., the causes of non-equilibrium). In essence, 
this analysis computes the sensitivity between 
cause and effect in the manner of expert reasoning 
based on the uncertainty of the ASCs Situation. 

The degree of sensitivity between causes and 
effects are represented using tornado diagrams 
since they are easy to read and interpret [53]. The 
x-axis in Figure 3 represents the sensitive of 
"ASCs Situation = equilibrium" between zero 
and one. The y-axis-bar lists the set of parameters 
as conditions that affect equilibrium. The random 
variables states have 27 possible values, but only 
the five of the most sensitive parameters appear in 
Figure 3. 

Figure 3 shows the sensitivity levels for the 
base case from the CBNs and BS models. The 
sensitive degrees for CBNs and BS are 0.069 and 
0.071 respectively. 

One difference between CBNs and BS is the 
number of random variables affecting the 
sensitivity of the base case. CBNs is highly 
sensitive to Market Price, Manufacturing 
Capacity, and Consumer Preference, while BS 
is highly sensitive to Market Price, 
Manufacturing Capacity, Consumer 
Preference, Trading Volume, and ASCs 
Situation. The number of variables reflects upon 
resources and processing time. 

The first three parameters from the models 
show that equilibrium has converged to zero. It 
means that changes to Manufacturing Capacity, 
Consumer Preference, and Market Price cause 
ASCs Situation to become unbalanced 
(¬equilibrium, shortage, or surplus). The 
posterior distributions of ASCs Situation for both 
CBNs and BS are highly sensitive to Market 
Price. Experts understand that consumer and 
supplier behaviors are principal factors affecting 
ASCs Situation, and so BS and CBNs can help 
people interpret events using something close to 
expert reasoning. 

 
0.060 0.065 0.070 0.075

0.069
Market Price = stable

Market Price = up

Market Price = down

Consumer Preference = high, 
Manufacturing Capacity = high, 
Market Price = stable
Consumer Preference = normal, 
Manufacturing Capacity = normal, 
Market Price = stable 

a) CBNs

 
0.060 0.065 0.070 0.075

0.071
Market Price = stable

Market Price = up

Market Price = down        

ASC Situation = equilibrium, TV = up, 
CP = high, MC= high, MP = stable,  

ASC Situation = equilibrium, TV = down,
CP = high, MC= high, MP = stable

b) BS

 
** TV: Trading Volume, CP: Consumer Preference, MC: Manufacturer 

Capacity, MP: Market Price 

FIGURE 3. Tornado diagrams for CBNs and BS for the 
sensitivity of the base case. 
 

The last two parameters in the CBNs and BS 
models are different for ASCs Situation. The 
CBNs is highly sensitive to demand (Consumer 
Preference), supply (Manufacturer Capacity), 
and price (Market Price), but the BS model is 
sensitive to Trading Volume because the training 
data may provide high correlations which lets the 
BS connect it, contradicting human 
understanding. Indeed, this relationship is 
considered an irrational explanation because 
Trading Volume is never used to explain ASCs 
Situation. Experts understand that Trading 
Volume is the root cause of ASCs Situation that 
transfers its effect through Future Market, 
Exporting Costs, and Consumer Preference. 
This is the situation for the CBNs which show that 
the equilibrium state of the ASCs Situation is 
sensitive to changes in Manufacturing Capacity, 
Consumer Preference, and Market Price. The 
sensitivity represents how domain experts view 
environment changes, and what they should 
consider adjusting first. 
 
C. DISCUSSION 
The experiments show that CBNs provide 
predicted outcomes and also relevant parameters 
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to help decision makers understand the ASCs 
situation.  

The first experiment confirms that the CBNs 
model has satisfactory performance in a market 
situation. CBNs can reach an accuracy of around 
95%, which works well within traditional supply 
chain management, where many companies 
employ experts to examine the probabilities of 
shortage or surplus. However, small companies 
lack this expertise, which makes their analysis 
much more labor-intensive and time-consuming. 

Recent experiment of model performance 
employs basic models and the FM of Equilibrium 
is 0.86, which is quite low. In the future, we plan 
to use a dynamic CBNs to improve our model 
performance and may compare with advanced 
model, such as random forest, gradient boosting, 
and deep learning. 

The second experiment shows that CBNs offer 
a new dimension of decision support for supply 
chain management. It provides market 
interpretable explanations based on cause-and-
effect, which is needed by companies. 
 
VI. CONCLUSIONS 
This study has proposed a Causal Bayesian 
Networks (CBNs) model for supporting market 
understanding. It produces reasonable 
explanations to aid decision makers dealing with 
ASC demand and supply uncertainty by 
interpreting contextual information based on big 
observational data. 

We compared standard machine learning 
models (Naïve Bayes, Neural Networks, Support 
Vector Machines, Decision Trees, and Bayesian 
Search) to our CBNs model. Their performances 
for predicting unknown events were over 90%, 
but our model could reach around 95%. 
Sensitivity analysis confirmed that the CBNs 
model could produce reasonable descriptions of 
expert reasoning and that the model was sensitive 
to contexts utilized by experts. Our model can 
help decision makers better understand 
agricultural supply chain situations and 
successfully adjust supply chain mechanisms. 

However, CBNs based on expert knowledge 
have a subjective quality, which means that 
markets with different supply chain 
characteristics will need to adjust the CBNs' 
causal assumptions, and re-tune parameters with 
different historical data. In future work, we will 
examine other market elements, discover 
additional causal assumptions, and address the 
issue of exponential numbers of relevant random 
variables. The ongoing ASCs will grow 
continuously and modernly and generate many 

data covering rich and exciting events for better 
ASCs management. More data create more factors 
and opportunities to run ASCs management with 
better performance, which may be beyond the 
labor work in expert-based modeling. We then 
hope to perform studying on automatic algorithms 
to learn more inclusive knowledge from the more 
modern ASCs and compare it with our proposed 
gold standard. We plan to employ causal 
discovery algorithms to determine causal 
relationships in the CBNs model to reduce labor-
intensive and time-consuming tasks. 
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