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บทคัดย่อ 
 

การสร้างภาพภูมิทศัน์มีความส าคญัในการวางแผนส่ิงแวดลอ้ม นักวางแผนดา้น
ส่ิงแวดลอ้มตอ้งการขอ้มูลเชิงพื้นท่ีท่ีแม่นย  าเพื่อการตดัสินใจอย่างถูกตอ้งและเหมาะสม อย่างไรก็
ตาม ขอ้มูลดังกล่าวมกัไม่พร้อมใช้งาน หาได้ยากและมีราคาสูง โดยเฉพาะอย่างยิ่งข้อมูลพื้นท่ี
บริเวณภูเขาหรือบริเวณใต้ทะเลลึก นอกจากน้ี ข้อมูลส่ิงแวดล้อมท่ีรวบรวมจากการส ารวจ
ภาคสนามมกัไดม้าจากการก าหนดจุดต่าง ๆ ในบริเวณท่ีก าหนด ดงันั้น ค่าของต าแหน่งจุดท่ียงัไม่
ทราบค่าจ าเป็นตอ้งใชว้ิธีการประมาณเพื่อสร้างขอ้มูลต่อเน่ืองเชิงพื้นท่ี ในกรณีน้ีนกัวิจยัสามารถใช้
วิธีการประมาณช่วงค่าเชิงพื้นท่ีเพื่อท านายค่าความสูงของต าแหน่งจุดท่ีไม่ไดเ้ก็บตวัอย่างโดยใช้
ขอ้มูลจุดโดยรอบของต าแหน่งต่าง ๆ ท่ีส ารวจ 

ในวิทยานิพนธ์น้ี ผูว้ิจัยน าเสนออัลกอริทึมใหม่ 3 วิธี ส าหรับวิธีการประมาณ
ขอ้มูลเชิงพื้นท่ีโดยใช้แบบจ าลองคริกก้ิง เน่ืองจากการศึกษาท่ีผ่านมายงัไม่มีงานวิจยัท่ีแพร่หลาย
เก่ียวกบัการเลือกใชค้ริกก้ิงพารามิเตอร์ในแบบจ าลองเซมิแวริโอแกรมท่ีส่งผลต่อประสิทธิภาพของ
การประมาณขอ้มูลเชิงพื้นท่ีอยา่งไร ดงันั้น  แบบจ าลอง 3 แบบจ าลองของงานวิจยัจะถูกเปรียบเทียบ
กบัแบบจ าลองคริกก้ิง ท่ีมีใช้กนัอยู่ 5 แบบจ าลอง และท าการประเมินประสิทธิภาพจากค่าความ
ผิดพลาดนอ้ยท่ีสุดของทั้งแบบจ าลอง 8 แบบจ าลอง โดยจุดแข็งของแต่ละแบบจ าลองจะไดรั้บการ
วิเคราะห์โดยพิจารณาจากชุดตวัอย่างท่ีมีต าแหน่งจุดต่าง ๆ ท่ีมาจากพื้นท่ีศึกษาแตกต่างกัน จาก
การศึกษาจะเห็นว่าค่าความคลาดเคล่ือนท่ีเกิดจากวิธีการและแบบจ าลองท่ีผูว้ิจัยเสนอนั้นมีค่า
ค่อนขา้งนอ้ย โดยค่าขอบเขตล่างของช่วงความเช่ือมัน่ 95% ของแบบจ าลองของผูว้ิจยัส่วนใหญ่ต ่า
กว่าแบบจ าลองท่ีมีอยู่เดิมทั้ง 5 แบบจ าลอง อย่างไรก็ตามผลลพัธ์ไม่แสดงความแตกต่างอย่างมี
นยัส าคญัระหว่างแบบจ าลองต่าง ๆ ประโยชน์ของงานวิจยัช้ินน้ีจะช่วยให้มีวิธีการใหม่ ๆ ทีมีความ
แม่นย  ามากขึ้น ส่งผลให้ผูใ้ชง้านมีความเช่ือมัน่ในการตดัสินใจและสามารถต่อยอดงานวิจยัให้ตรง
กบัความตอ้งการส าหรับประเภทพื้นท่ีท่ีแตกต่างกนัและสามารถน ามาใช้จริงเพื่อปรับปรุงแผนผงั
พื้นผิว 3 มิติในการวางแผนส่ิงแวดลอ้ม 
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แมว้า่อลักอริทึมใหม่ 3 วิธีของผูว้ิจยัจะเป็นแนวทางท่ีถูกตอ้ง แต่ผูว้ิจยัพบวา่การน า
อัลกอริทึมมาใช้ในการประเมินภาพ 3 มิตินั้นยงัมีอุปสรรค์ในการน ามาประยุกต์ใช้งานได้จริง 
เน่ืองจากระยะเวลาในการท าแผนผงัพื้นผิวแบบจ าลองท่ีใชเ้วลานานถึง 5 วนั อีกทั้งยงัพบอุปสรรค์
ในการลดเวลาในการค านวณให้น้อยกว่า 5 นาที โดยคงไวซ่ึ้งความแม่นย  าหรือความแม่นย  าลดลง
เล็กน้อย วิทยานิพนธ์น้ีไดน้ าเสนออลักอริทึมเพิ่มเติม 2 อลักอริทึม โดยอลักอริทึมแรกใช้เทคนิค
การแบ่งพื้นท่ีเพื่อแยกการค านวณก่อน และอลักอริทึมท่ีสองมีการน าพารามิเตอร์ความชนั (ความ
แปรผนัของภูมิประเทศ) มาใช้เพื่อเลือกพื้นท่ีค านวณ ผลการทดลองคร้ังล่าสุด ผลลพัธ์สุดทา้ย
สามารถลดเวลาในการรอจนเหลือเวลาเพียง 4 นาทีเท่านั้น 

ค าส าคัญ: คริกก้ิง, การประมาณค่า, เชิงพื้นท่ี, ความสูง, การท านาย 
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ABSTRACT 

 

Landscape visualization is important in environmental planning. 

Environmental planners need accurate spatially continuous data across an area to make 

competent and confident decisions. Obtaining such information can be difficult and 

costly, particularly in mountainous or deep-sea regions. In addition, environmental data 

gathered from field surveys are frequently derived from point sources. To generate 

spatially continuous data, the values of an attribute at unsampled points must therefore 

be estimated. In such cases, spatial interpolation techniques can be employed to predict 

the height values at unsampled sites using data from point observations. 

In this thesis, we propose three novel algorithms for spatial interpolation 

methods using kriging models. Since there are not many findings of how kriging 

parameters in the semivariance model affect the performance of the spatial 

interpolators, we explore the parameters of the kriging algorithm and propose different 

semivariogram models to improve the performance of the spatial interpolation 

technique. Our three new models are compared with five contemporary kriging models. 

The performance is evaluated by error reduction that eight models can perform. The 

strengths of each model are analyzed based on a different set of sample sizes coming 

from two zones of study areas. The resulting errors of our proposed methods are 

relatively small. The lower bounds of the 95% confidence interval of our models are 

mostly lower than all five contemporary models. However, in general, the result shows 

no much significant differences among models. The benefits of this work are that it 

contributes to better accuracy resulting in more reliable decision making; supports 

different needs of algorithms for different area types, and can be practically used to 

improves the 3D surface plot in environmental planning. 
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Although our three new algorithms are accurate approaches, we found 

that applying them for landscape 3D visual assessment is not so practical as the waiting 

time to complete the model surface plot can be up to 5 days. Therefore, the second 

challenge is to reduce the computational time to be less than 5 minutes while preserving 

the accuracy or reducing it down marginally. The thesis presents two additional 

algorithms by first applying the divide and conquer technique and later improving it by 

introducing a slope (terrain variation) threshold parameter. The final result reduces the 

waiting time further down to 4 minutes. 

Keywords: Kriging, Interpolation, Spatial, Height, Prediction 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Introduction and Motivation 

 

The spatial continuous data has an important role in environmental 

sciences and engineering. Environmental planners normally require spatially 

continuous data over the region of interest to make competent and confident decisions. 

Planers also need accurate and smooth continuous data across an area to make justified 

interpretations. These data are, however, usually not always readily available and often 

difficult and expensive to obtain. Furthermore, environmental data during field surveys 

are frequently collected from single points. As a result, in order to generate spatially 

continuous data, the values of an attribute at unsampled points must be estimated. 

Spatial interpolation methods, in such cases, provide a tool for predicting the values of 

an environmental variable at unsampled sites using data from point observations. Points 

interpolation can help save tremendous time and costs of collecting samples in every 

location (Al-Mamoori et al., 2021). 

There are many methods for spatial interpolation. These include the 

Inverse Distance Weighting (IDW) (Aguilar et al., 2005; Mitas and Mitasova, 2005; 

Bello-Pineda and Hernandez-Stefanoni, 2007; Arun, 2013; Setianto and Triandini, 

2013; Bărbulescu et al., 2021), the spline interpolation (Arun, 2013; Ajvazi and 

Czimber, 2019), the trend surface estimation (Liang and Zhoub, 2010; Thanoon,  2018), 

and the kriging (Lam, 1983; Aguilar et al., 2005; Bello-Pineda and Hernandez-

Stefanoni, 2007; Li and Heap, 2011;  Setianto and Triandini, 2013; Mert and Dag, 2017; 

Hasanipanah et al., 2021; Meng, 2021; Nie et al., 2021; Shi and Wang, 2021). If 

comparing these four spatial interpolation methods, the kriging technique is the best 

spatial interpolation method (Li and Heap, 2011). The kriging operates in several steps 

by combining surveys, analyzing statistical values of data, and semivariogram 

modeling. However, there are not many findings on how kriging parameters in 
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semivariance modeling can improve the performance of spatial interpolators. In this 

thesis, we will explore and automatically compute the parameters of the semivariogram 

model in kriging algorithms and propose three new algorithms for spatial height 

prediction based on kriging interpolation models. The aim is to increase the 

performance of our kriging interpolators in comparison with the other five conventional 

kriging interpolators existing in the literature. The results will appear in Chapter 3 – 

Three Novel Kriging Algorithms. Here are important contributions will be the three 

novel kriging models based on exponential semivariograms; the high accuracy results 

of the proposed models in comparison with the previous five contemporary methods; 

and the resilience of choosing different algorithms for different area types.  

The second half of the thesis presents two more algorithms with the aim 

of reducing the computational time of our proposed algorithms. The first algorithm 

applies the divide and conquers technique, and the second improves the first one by 

introducing a slope threshold parameter. The first algorithm has six different kriging 

models to choose from. The experimental results in Chapter 4 – Two Divide and 

Conquer Algorithms will reveal that our four exponential-based models outperform the 

Gaussian and Spherical models in terms of accuracy. The two best performances of 

exponential-based models are used to enhance the second algorithm, which will reduce 

the waiting time down to 4 minutes but with a trade-off in model accuracy. The benefits 

of this research are that it contributes to substantially reducing the decision time and 

practically enhancing the speed of the calculation in generating the 3D surface plots in 

environmental management such as flood protection, transport planning, and farming 

management. 

Moreover, Chapter 5 – Application will describe the application in 

environmental management, user interface, codes, and results. We developed a program 

to help us simulate all models studied in this research and implemented a JavaScript 

user interface for entering the input data. The results from this thesis can be used for 

3D landscape visualizations in environmental management. Finally, In Chapter 

6 – Conclusion will summarize our work and contributions to the thesis and suggest 

future works. 
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1.2 Objective 

1.2.1 To design novel algorithms for spatial interpolation techniques based on 

the kriging model. 

1.2.2 To improve the accuracy of the kriging interpolation with our technique. 

1.2.3 To implement the proposed algorithm and compare the performance 

with existing methods. 

1.2.4 To improve the computational time of our proposed method. 

1.2.5 To apply the proposed algorithm to create a better 3D surface plot. 

1.3 Scope of Research  

1.3.1 This research will propose novel algorithms in the field of kriging 

interpolation models in comparison with five conventional kriging 

models. 

1.3.2 The performance will be assessed by error reduction our models can 

perform. 

1.3.3 The strength of each model will be analyzed based on a different set of 

inputs. The study area will be divided into zones. The proper algorithms 

will be selected differently for each zone to suit the elevation variance 

of the zone.  

1.3.4 The computational time will be investigated. The proposed algorithms 

should execute with a practical waiting time. 

1.3.5 The final scope aims at improving the 3D surface plot. 

1.4 Benefit   

1.4.1 There are new emerging algorithms in the fields of environmental 

sciences and management. 

1.4.2 The estimation of unknown regions can be more accurate using our 

proposed kriging interpolation techniques. 

1.4.3 The applications can be used to improve the 3D surface plot.  

1.4.4 The 3D plots can be used in various fields such as flood protection, 

transport planning, and farming management 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

This chapter describes the theory and concept used for this thesis. The 

technical background of spatial interpolation, semivariance, various semivariogram 

models, kriging interpolation, and maximum likelihood estimation will be discussed. 

The geotechnical and equipment errors, error assessment methods, related work on 

spatial interpolation, and related work on divide and conquer methods will be described. 

2.1  Spatial Interpolation 

The spatial interpolation is the process of using known point data to 

estimate other unknown point data. Data commonly used in spatial interpolation are 

elevation data, rainfall data, meteorological data, topography, and population density 
(Webster and Oliver, 2007).  The estimation method relies on the weight relationship 

of the known points where the nearby sampled points have a high weight relation and 

the distant sampled points have a low weight relation. The estimated value at an 

unknown data point can be computed as follows. 

 𝑧𝑝(𝑠) =∑𝑤𝑖

𝑛

𝑖=1

⋅ 𝑧(𝑆𝑖) (2.1) 

The 𝑧𝑝(𝑠) is a value of an unknown data point for which we would like 

to predict. The 𝑧(𝑆𝑖) are the values of the neighbouring sampled points 𝑆𝑖 where i = 1, 

2, …, n points. Each of the sampled points will have the weight 𝑤𝑖 assigned to them, 

where the total weight must be equal to 1 as per the equation below. 

 ∑𝑤𝑖

𝑛

𝑖=1

= 1 (2.2) 
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2.2 Semivariance 

The semivariance is calculated similarly to the variance estimator; 

namely, it is computed as half the variance of the differences between all sampled 

points. Semivariance measures the degree of spatial dependence and relationship 

among samples (e.g., elevation) based on the distance between 𝑆𝑖 and 𝑆𝑖+𝑑. A lower 

distance yields a lower semivariance and a higher distance leads to a higher 

semivariance. 

 𝛾(𝑑) =
1

2n
∑(𝑧(𝑆𝑖) − 𝑧(𝑆𝑖+𝑑))

2 (2.3) 

The 𝛾(𝑑) is the semivariance, and the 𝑧(𝑆𝑖) are the values of the 

neighbouring sampled points 𝑆𝑖 where i = 1, 2, …, n points. 

2.3 Semivariogram Models 

Semivariogram shows the spatial relationship of the data and must be 

chosen carefully. The rate of changing the distance between the points is described by 

the semivariance. There are several equations for computing the semivariance. Each 

equation requires the setting up of three parameters which consist of nugget, sill, and 

range. From Figure 2.1, given that the x-axis is the distance and the y-axis is the 

semivariance, the nugget is the value that intersects the y-axis, the sill is the plot y-value 

where the semivariance starts to be constant, and the range is the distance x-value where 

the semivariance starts to be constant. 

 

Figure 2.1 Semivariogram model showing nugget, sill and range. 
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Next, we will explain the common five semivariogram models that 

appeared in the literature (Webster and Oliver, 2007). 

2.3.1 Linear Model 

Linear interpolation is the method of curve fitting based on first-order 

polynomials or linear equations. The linear model takes little time to calculate and is 

effective for estimating the missing data from graphs with high linearity characteristics. 

The semivariogram model using the linear equation is shown below. 

 𝛾(𝑑) = {
𝑐0 + 𝑐1 (

𝑑
𝑟)          𝑓𝑜𝑟 𝑑 ≤  𝑟 

𝑐0 + 𝑐1              𝑓𝑜𝑟 𝑑 >  𝑟
 (2.4) 

2.3.2 Spherical Model 

Spherical model is one of the most frequently used models in 

geostatistics (Webster and Oliver, 2007). Semivariograms can be fitted for one, two, 

three, or more dimensions. The sphereical function in Equation (2.5) uses a cubic 

equation in a single dimension. The value of the semivariogram will increase rapidly 

at first, but when the distance equals the range, the semivariogram is parallel to the x-

axis and constant. 

 𝛾(𝑑) = {
𝑐0 + 𝑐1 (

3𝑑
2𝑟 −

1
2 (
𝑑
𝑟)

3

)         𝑓𝑜𝑟 𝑑 ≤  𝑟 

𝑐0 + 𝑐1                                     𝑓𝑜𝑟 𝑑 >  𝑟
 (2.5) 

2.3.3 Pentaspherical Model 

Pentaspherical function can be thought of as the five-dimensional 

analogue of the circular and spherical models (Webster and Oliver, 2007). The model 

is useful in that the function curve in Equation (2.6) is somewhat more gradual than 

that of the spherical model.  
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 𝛾(𝑑) = {
𝑐0 + 𝑐1 (

15𝑑
8𝑟 −

5
4 (
𝑑
𝑟)

3

+
3
8 (
𝑑
𝑟)

5

)      𝑓𝑜𝑟 𝑑 ≤  𝑟 

𝑐0 + 𝑐1                                                      𝑓𝑜𝑟 𝑑 >  𝑟
 (2.6) 

2.3.4 Gaussian Model 

If the variance is very smooth, the Gaussian model is normally used 

for the semivariogram. The semivariogram model using the Gaussian equation is given 

below. 

 𝛾(𝑑) = {
𝑐0 + 𝑐1 (1 − 𝑒𝑥𝑝 (−

𝑑2

𝑟2
))             𝑓𝑜𝑟 𝑑 ≤  𝑟 

𝑐0 + 𝑐1                                               𝑓𝑜𝑟 𝑑 >  𝑟
 (2.7) 

2.3.5 Exponential Model 

The exponential semivariogram model uses the exponential equation 

to fit the special data. The semivariogram model using the exponential equation is 

displayed below. 

 𝛾(𝑑) = {
𝑐0 + 𝑐1 (1 − 𝑒𝑥𝑝 (−

𝑑
𝑟))                𝑓𝑜𝑟 𝑑 ≤  𝑟 

𝑐0 + 𝑐1                                               𝑓𝑜𝑟 𝑑 >  𝑟
 (2.8) 

2.4 Kriging Interpolation 

Kriging is named after D. G. Krige, the South African engineer who 

first developed this method (Lam, 1983). Kriging uses the semivariogram, in 

calculating estimates of the surface data at the unknown point. The kriging method 

selects mathematical equations that are appropriate to the selected sampled points or 

all sampled points within the specified radius, then calculates an estimated value at an 

unsampled point of the variable 𝑧𝑝(𝑠), based on the weighted average of neighbouring 

samples within a given region. Before the estimated value is computed by Equation 

(2.1), Ordinary kriging (Li and Heap, 2011) is applied to choose the optimal weights 

that produce the minimum estimation error. The optimal weights provide unbiased 
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estimates and have a minimum estimation variance. An example of three neighbouring 

sampled points will have the three associated weights (𝑤i for i = 1, 2, 3). These weights 

can then be computed by solving a set of simultaneous equations (Webster and Oliver, 

2007), Equation (2.9) – Equation (2.11) using the inverse of a matrix as presented in 

Equation (2.13). 

 𝑤1 𝛾(𝑑11) + 𝑤2𝛾(𝑑12) + 𝑤3𝛾(𝑑13) +  𝜆 = 𝛾(𝑑1𝑝)                  (2.9) 

 𝑤1 𝛾(𝑑21) + 𝑤2𝛾(𝑑22) + 𝑤3𝛾(𝑑23) +  𝜆 = 𝛾(𝑑2𝑝)                (2.10) 

 𝑤1 𝛾(𝑑31) + 𝑤2𝛾(𝑑32) + 𝑤3𝛾(𝑑33) +  𝜆 = 𝛾(𝑑3𝑝)                (2.11) 

And 

 𝑤1 + 𝑤2 + 𝑤3 = 1                      (2.12) 

 [

𝛾(𝑑11) 𝛾(𝑑12) 𝛾(𝑑13) 1

𝛾(𝑑21) 𝛾(𝑑21) 𝛾(𝑑23) 1
𝛾(𝑑31) 𝛾(𝑑32) 𝛾(𝑑33) 1
1 1 1 0

] ⋅ [

𝑤1
𝑤2
𝑤3
𝜆

] =

[
 
 
 
𝛾(𝑑1𝑝)

𝛾(𝑑2𝑝)

𝛾(𝑑3𝑝)

1 ]
 
 
 

                      (2.13) 

Note that 𝛾(𝑑𝑖𝑗) is defined as the semivariance of the Euclidean distance 

between points i and j. A fourth variable in the weight vector of Equation (2.13) is 

called the Lagrange multiplier (𝜆) (Webster and Oliver, 2007). Once the individual 

weights are known, the estimation of the unknown value with three neighbouring 

sampled points is computed by the following equation. 

 𝑧𝑝(𝑠) = 𝑤1 ⋅ 𝑧(𝑆1) + 𝑤2 ⋅ 𝑧(𝑆2) + 𝑤3 ⋅ 𝑧(𝑆3) (2.14) 

The corresponding estimation variance of the above equation can be 

computed (O'Sullivan and Unwin, 2010) as follows. 

 𝜎𝑝
2 = 𝑤1 ⋅ 𝛾(𝑑1p) + 𝑤2 ⋅ 𝛾(𝑑2p) + 𝑤3 ⋅ 𝛾(𝑑3p) +  𝜆                (2.15) 
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2.5 Geostatistical Analysis Package (geoR) 

The geoR (Diggle and Ribeiro, 2007) package performs geostatistical 

data analysis and spatial prediction, expanding the set of spatial data analysis methods 

and tools in R. It was created at Lancaster University's Department of Mathematics and 

Statistics in the United Kingdom. Some functions can be used at various stages of 

geostatistical data analysis. In this geoR, parameter estimation can be done in various 

ways. They are four methods for estimating the covariance model parameters 

implemented in geoR. 

• Visual variogram fitting: using the function eyefit().  

• Variogram fitting: using the function variofit() basically fitting a 

non-linear model to the empirical variogram.b 

• Likelihood: using the function likfit(). The function likfit 

implements likelihood-based estimation, maximum likelihood 

(ML) and Restricted maximum likelihood (REML). 

• Bayesian inference: using the function krige.bayes(). 

2.5.1 Maximum Likelihood Estimation (MLE) 

Maximum likelihood estimation, often known as MLE, is a statistical 

method used to estimate the parameters of a presumed probability distribution based 

on specific observed data. This is performed by optimizing a likelihood function so that 

the assumed statistical model best fits the observed data, which creates the highest 

probability that the model is correct. The estimate with the highest possible likelihood 

is the maximum likelihood estimate, and it is located at the parameter space point that 

maximizes the likelihood function. Based on the presumption that most traditional 

kriging types (such as ordinary kriging, universal kriging, and others), random process 

interpolation may be viewed as an appropriate method for estimating values (David et 

al., 2008). 
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The maximum likelihood estimation (MLE) of model parameters is 

attained by optimizing the likelihood function L for the observed data 𝑌(𝑠), provided 

by Equation 2.16. (Diggle and Ribeiro, 2007). 

𝐿(𝛽, 𝜏2, 𝜎2, ∅) ∝ −
1

2
[log|∑| + (𝑌(𝑠) − 𝑋𝛽)′∑−1(𝑌(𝑠) − 𝑋𝛽)]     (2.16) 

Note that ∑  represents the covariance matrix whose elements can be 

determined entirely by a semivariogram function with parameters 𝜏2, 𝜎2, and ∅ 

(nugget, sill, range). As well as the 𝛽′𝑠 in the component 𝑋𝛽 are the model parameters. 

2.5.2 Common semivariogram model in geoR 

For calculating semivariogram models, geoR provides several 

alternatives. The semivariogram models include Matern, Exponential, Gaussian, 

Spherical, Circular, Cubic, Wave, Power, Powered Exponential, Cauchy, Gencauchy, 

and Gneiting, among others. In several of the studies in this thesis, geoR semivariogram 

models such as Matern, Exponential, Gaussian, and Spherical will be used to compare 

with our approaches. Equations (2.5), (2.7), and (2.8) illustrate the semivariogram 

model utilizing the Spherical, Gaussian, and Exponential, respectively. The Matern 

equation will be discussed in detail in the next section. 

2.5.3 Matern semivariogram model 

The Matern model is a class of semivariance models 𝛾(𝑑) that emerges 

for different values of 𝑣 (smoothing parameter). The Gaussian and Exponential 

semivariances are two frequently used members of the Matern class. In particular, the 

Exponential semivariance model is derived from the Matern class for 𝑣 = 0.5. Also, 

when 𝑣 → ∞ then the Matern semivariance gives the Gaussian model. Given 𝑇(𝑣) is 

the Gamma function, and 𝐾𝑣 is the modified Bessel function of the second kind, the 

Matern equation-based semivariogram model is shown below. 

 𝛾(𝑑) =

{
 

 𝑐0 + 𝑐1 (1 −
2

𝑇(𝑣)
(
𝑑√𝑣
𝑟 )

𝑣

𝐾𝑣(2
𝑑√𝑣
𝑟 ))                𝑓𝑜𝑟 𝑑 ≤  𝑟 

𝑐0 + 𝑐1                                                                           𝑓𝑜𝑟 𝑑 >  𝑟
 

(

(2.17) 

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Bessel_function
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2.6 Geotechnical and Equipment Errors 

In the Cartesian coordinate system, the Universal Transverse Mercator 

(UTM) coordinate system is a grid-based geographic coordinate that represents the 

location of the earth's surface. This method is different from the typical method, which 

uses latitude and longitude coordinates. Within each of the 60 zones that make up the 

UTM grid system, we need to read the values of both the vertical grid (aligned with the 

east) and the flat grid (aligned with the north) in order for the two axes to be connected 

(Snyder and John, 1987). 

The Global Positioning System, sometimes known as GPS, is a network-

based system based on satellites that send signals from satellites to destination receivers 

to determine the position of a particular area. The Global Positioning System (GPS) 

transmits measurement signals using satellites that are precisely aware of their orbits. 

The signals will be broadcasted by satellites that only transmit in one direction, and 

receivers, as well as GPS receivers, will pick them up. The signal from the satellite will 

be translated into coordinates (X, Y, and Z), as well as time and speed. The GPS 

determines the precision of the location. The horizontal inaccuracy of the GPS is 

10.305 meters, while the vertical error is 6.413 meters (Nazan and Semih, 2010). 

Differential Global Positioning Systems (DGPS) is a satellite-based 

network system that employs two GPS satellites two to three hundred kilometres apart. 

The time on the satellite, the orbit, and the surrounding environment all have a degree 

of inaccuracy. The receiver picks up both satellite signals. Real-Time DGPS (Real-

Time Differential Global Positioning System) is used to adjust position accuracy in 

real-time after the location survey, which determines precise coordinates and provides 

radio signal transmission services for the rover. The base and rover both receive 

accurate values measured in centimetres. To alter the rover, it will then use radio signals 

to connect. The DGPS error has several centimetre accuracies horizontally and 10-20 

vertically (Gao et al., 2002). 
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Figure 2.2 Differential global positioning system (DGPS). 
To improve the accuracy of satellite-based positioning system data, real-

time kinematic (RTK) positioning is a satellite navigation technique. Base Station and 

Rover Station are two types of receivers. Base Station is a stationary receiver, while 

Rover Station is a mobile one. Using a radio link, the Rover's location may be 

discovered and stored in a matter of seconds. RTK is used in applications that need a 

high degree of precision. The horizontal RTK inaccuracy is 9 millimetres, while the 

vertical RTK error is 2.2 centimetres (Ismat, 2017). However, the RTK is expensive 

and requires the installation of a base station with known coordinates. 

 

 

Figure 2.3 Real time kenematic (RTK). 

GPS satellites 

Monitoring station Stable ground 

GNNS satellites 

Rover 

Reference station 

Base Station 
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A digital elevation model, often known as a DEM, is a depiction of the 

topographic surface of the earth that does not include vegetation, buildings, or any other 

surface features. DEM stands for digital elevation model and is a digital cartography 

dataset that is three-dimensional (XYZ) in format. It is produced using contour lines or 

photogrammetric techniques (Gandhi and Sarkar, 2016). There are various possible 

resolutions of the DEM, each of which has a unique level of accuracy. For instance, a 

DEM with a 30-meter resolution inaccurately is 16 meters horizontally and 20 meters 

vertically. 

On the other hand, a 10-meter DEM error is 5 meters vertically 

(Kwanchai and Masataka, 2016). The DEM with a resolution of 1 meter is the highest-

resolution standard DEM offered by the USGS. The DEM with a resolution of 1 meter 

has a horizontal accuracy of within 1 meter and a vertical accuracy of 19.6 cm at a 

confidence level of 95% (Arundel et al., 2015). For this thesis, we use the one-meter 

digital elevation model (DEM) input data, which may be acquired from the nation map 

(TNM) website of the United States Geological Survey.  

Table 2.1 summarises six different types of equipment, along with a 

comparison of their errors. RTK has the most excellent accuracy of the six tools. But 

the RTK is costly and needs a coordinate-knowledgeable base station to function. 

Table 2.1 Summary of equipment errors. 

Equipment Horizontal Error Vertical Error Reference 

GPS 10.305 meters 6.413 meters Nazan and Semih 

(2010) 

DGPS 10-20 centimetres 10-20 centimetres Gao et al. (2002) 

RTK 9 millimetres 2.2 centimetres  Ismat (2017) 

30-meter DEM 16 meters 20 meters  Gandhi and 

Sarkar (2016) 

10-meter DEM 5 meters 5 meters  Kwanchai and 

Masataka (2016) 

1-meter DEM 1 meter 19.6 centimetres Arundel et al. 

(2015) 
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2.7 Measurement Error 

The measurement errors can be separated into two distinct categories: 

systematic and random errors (Taylor, 1999). Systematic error is an error that, 

throughout several measurements performed under the same conditions of a given 

value and quantity. Systematic error is a type of measurement error. Random error is 

generated by changes in the readings of a measuring device or the experimenter's 

interpretation of those fundamentally unpredictable results. The measurements were 

repeated to prevent random error during the experiments, and the averages were taken 

as the final values. On certain occasions, human error is negligible (Carollo et al., 2007;  

Carollo et al., 2009; Azimi et al., 2019).  

In addition, most studies in the literature review (Li and Heap, 2011) 

dismiss equipment inaccuracy and focus instead on model inaccuracy. On the other 

hand, Azimi et al. (2019) showed that the total uncertainty can be calculated by 

combining the experimental measurement error and model error. Therefore, this thesis 

will focus on model inaccuracy. For those interested in the complete uncertainty of our 

work, we recommend combining our model's inaccuracy with our measurements' 

inaccuracy. 

  



15 

 

2.8 Error Assessment Methods 

The variety of quality measures of the fit between the actual data and 

the predicted data are listed in Equation (2.18) through Equation (2.22) (Webster and 

Oliver, 2007). The error is expressed in various forms of the mean differences between 

the predicted values 𝑝𝑖 and the actual observed values 𝑜𝑖 where i = 1, 2, …, N prediction 

errors.  

Mean Error (ME) 

Mean of Percent Error (MPE) 

 MPE =
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)/𝑜𝑖

𝑁

𝑖=1

 (2.19) 

Mean Absolute Error (MAE) 

 MAE =
1

𝑁
∑|𝑝𝑖 − 𝑜𝑖|

𝑁

𝑖=1

 (2.20) 

Mean Square Error (MSE) 

 MSE =
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)

𝑁

𝑖=1

2

 (2.21) 

Root Mean Square Error (RMSE) 

 RMSE = [
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)

𝑁

𝑖=1

2

]

1/2

 (2.22) 

  

 ME =
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)

𝑁

𝑖=1

 (2.18) 
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2.9 Related Work on Spatial Interpolation 

2.9.1 Inverse Distance Weighting 

The Inverse Distance Weighting (IDW) (Mitas and Mitasova, 2005) is 

the estimation method (weighted average) that assumes the distance of surrounding 

points inversely influences the elevation of a predicted point. A closer point has more 

importance or influence in determining the height of the predicted point more than a 

point that is far away. Mitas and Mitasova (2005) claimed that IDW is one of the 

simplest methods. Although this primary method is simple to perform and is available 

in nearly any GIS, it has some weaknesses. Aguila et al. (2005) highlighted the 

weakness of the IDW method with regard to the Multiquadric radial basis function 

(MQF) method and Multilog function (MLF) method. The weakness of IDW is because 

the interpolated altitudes are weighted averages that get values between the maximum 

and minimum points which decreases its effectiveness to estimate the highest or lowest 

levels when these levels are not in sampling points. As the terrain is steeper, MQF 

works better than IDW. In the mountainous area, the RMSE of IDW was 80.04, 

whereas the RMSE of the mentioned MQF was only 48.87.  

Bello-Pineda and Hernández-Stefanoni (2007) compared the 

performances of IDW and the kriging method for generating a digital bathymetric 

model of the Yucatan submerged platform. The best RMSE of IDW was 187.25, 

whereas the best RMSE of the kriging was 153.21. Later, Setianto and Triandini 2013 

developed the Digital Elevation Model (DEM) image for the area in Yogyakarta city. 

Two different methods, which are the kriging and IDW methods, were compared in 

this thesis. Again, the kriging method consistently outperformed the IDW for all levels 

of the factors mentioned in their article. For all the mentioned reasons, therefore, our 

thesis will focus on the kriging method rather than the IDW method. 

2.9.2 Splines Method 

The spline method represents two-dimensional curves on three-

dimensional surfaces in a predictable manner. Using a mathematical function to fit a 

flexible surface over a collection of known points is comparable. From a limited 
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number of sample points, the spline may build highly precise and aesthetically pleasing 

surfaces. The output surface of the spline may have different minimum and maximum 

values than the input data set, are susceptible to outliers and lacks an error indication 

(Longley et al., 2005). 

Laslett et al. (1987) analyzed and compared the performance of several 

spatial interpolation techniques, including kriging, IDW, spline, and others. On 

average, spline and kriging outperformed IDW, despite the fact that one technique may 

outperform the others in certain instances. Voltz and Webster (1990) compared kriging 

and spline for estimating soil characteristics and found that kriging performed better. 

Robinson and Metternicht (2006) explored spline, kriging, and IDW interpolation 

algorithms based on soil characteristics. They asserted that there was no universally 

applicable approach. Simpson and Wu (2014) investigated IDW, kriging, and spline for 

interpolating lake depth and found that spline produced the most accurate results with 

fewer sampled points than the ideal amount. 

2.9.3 Trend Surface Estimation 

A trend surface analysis is based on a regression function 𝑓(𝑥𝑖 , 𝑦𝑖) that 

estimates the property value 𝑃𝑖 at 𝑥𝑖  and 𝑦𝑖 coordinates. The trend surface estimation is 

given by 𝑃𝑖 = 𝑓(𝑥𝑖, 𝑦𝑖). A trend surface estimation is a bivariate regression model with 

two independent variables, the 𝑥𝑖 and 𝑦𝑖 coordinates where a dependent variable is the 

Pi. If a linear regression function (first-order) is deployed, the modelled surface will 

correspond to a flat-oriented plane. When the spatial distribution is more complex, a 

polynomial (2nd, 3rd, …, or n-th order) can be applied, and the modelled surface will 

correspond to a curved surface with a growing number of curvatures (Mitas and 

Mitasova, 2005). 

Liang and Zhou (2010) proposed a method of controlled trend surface 

(CTS) to account for large-scale spatial trends and non-spatial local effects 

concurrently. A geospatial model of forest dynamics was elaborated. The input was the 

Alaska boreal forest based on a large dataset which covers a wide range of forests. Two 

sets of validation plots representing temporal and spatial extensions were used to test 

the model. The results revealed that the CTS was more accurate than both the non-
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spatial and traditional trend surface models. However, the limitation of this method is 

that the predictions were needed over areas of considerable sizes. 

Thanoon (2018) studied the trend surface estimation with real spatial 

data in the context of rising groundwater levels. Three methods were compared. The 

first method estimated parameters by Maximum Likelihood. The second method used 

autocovariance estimates, and the third one used autocovariance function. The best 

method was proved to be the first one.  

2.9.4 Kriging Method 

The kriging method selects mathematical equations that are appropriate 

to the sampled points within the specified radius. It has a long history as it described in 

the early literature (Lam, 1983). In this classic technical review, spatial interpolation 

was categorized as point interpolation and areal interpolation. For point interpolation, 

the various methods were classified into exact and approximate. Kriging is a type of 

exact point interpolation along with other methods such as distance-weighting methods, 

spline interpolation, interpolating polynomials, and finite-difference methods. Kriging 

was mentioned to be the most distinctive of interpolation methods. Kriging has become 

an essential tool in geostatistics since the 1960s, and its applications to other fields are 

still increasing. 

Simple kriging, ordinary kriging, universal kriging, and external trend 

kriging are all viable methods for performing kriging interpolation (Diggle and Ribeiro, 

2007). Ordinary kriging is the most fundamental and extensively used kriging 

interpolation method. It estimates a variable at an unobserved location based on the 

weighted average of surrounding sites within a particular area. Standard kriging seeks 

to identify the optimal weights that provide the least estimated error. Solving a set of 

simultaneous equations produces optimal weights that produce fair estimates with a 

minor variance (Webster and Oliver, 2007). 

As with conventional kriging, universal kriging, which is also a set of 

linear equations, is to forecast a point in an unsampled region. It separates the random 

function into a linear combination of deterministic functions, the smoothly evolving 
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and nonstationary trend, often called a drift, and a random component representing the 

residual random function (Wackernagel, 2003). 

In this thesis, we use ordinary kriging to present three unique algorithms 

for spatial interpolation approaches based on kriging models. Many researches have 

been published in the field of kriging interpolation. Bello-Pineda and Hernández-

Stefanoni (2007) showed that the exponential Kriging model produced the most 

accurate predictions, decreasing the error in 18.2% compared with IDW. This result has 

helped us to decide the type of interpolation technique and selection of the model for 

our work. Three semivariogram models were tested, namely, Spherical, Gaussian and 

Exponential models. The kriging parameters (nugget, sill and range) were fixed for 

each model. The Exponential model yielded the best output in terms of RMSE. 

Although kriging is one of the most complex interpolators, Setianto and 

Triandini (2013) mentioned that for more informative data, kriging is preferable 

because it is more reliable. Kriging considers specific sampled points to obtain a value 

for spatial autocorrelation used for forecasting around that particular point rather than 

to allocate a universal distance power value. 

The most sophisticated survey was conducted by Li and Heap (2011), 

where over 70 spatial interpolation methods were explored. The results revealed that 

ordinary co-kriging (OCK) was the most frequently used technique. The OCK was also 

listed as one of the most accurate methods in terms of RMAE. However, data variation 

is an influential impact factor and has essential effects on the accuracy of the methods. 

As the data variation rises, the efficiency reduces depending on the methods used.  

Arun (2013) showed that the kriging method performed better than 

IDW, ANUDEM, Nearest Neighbor, and Spline approaches. RMSE values for three 

different terrain variations were compared. Kriging gave the minimal RMSE values in 

all three types of terrains which are mild slope area, steep slope area, and combined 

slope area. 

In terms of software implementation, Mert and Dag (2017) developed a 

computer program (JeoStat) for Ordinary Kriging interpolation using Visual Basic. 

JeoStat can compute all main steps of basic geostatistical analysis, which are 
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semivariogram modelling, cross-validation and ordinary kriging. JeoStat offers seven 

semivariogram models, which are Spherical, Gaussian, Exponential, Linear, 

Generalized Linear, Hole Effect and Paddington Mix. Besides the software 

development, there were no new algorithms were presented. The thesis did not aim to 

increase the accuracy of the kriging interpolation, as our research does. 

All well-known spatial interpolation methods were thoroughly surveyed 

and concluded in Table 2.2. 

Table 2.2 Summary of literature survey on interpolation methods.  

Year Technique / 

Methodology 

Assessment 

method 

Value Reference 

 Inverse Distance Weighting   

2005 Interpolation on 

grid DEM accuracy 

RMSE 8.80 (flat) 

22.25 (rolling) 

80.04 (mountainous) 

Aguilar et 

al. (2005) 

2007 IDW method for 

creating a digital 

bathymetric model 

of the Yucatan 

submerged 

platform 

ME 

MAE 

RMSE 

 

-12.33 

42.56 

187.92 

 

Pineda and 

Stefanoni 

(2007) 

2013 Analysis of 

different DEM 

interpolation IDW 

methods 

RMSE 0.93 (mild slope) 

1.45 (steep slope) 

1.73 (combined slope) 

Arun (2013) 

2019 IDW analysis of 

different DEM 

interpolation in GIS 

MAE 

RMSE 

1.079 

1.476 

Ajvazi and 

Czimber 

(2019) 

2021 IDW Interpolation 

Genetic Algorithm 

MSE 

MAE 

31.51 

23.52 

Bărbulescu 

et al. (2021) 
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Table 2.2 Summary of literature survey on interpolation methods (Continue). 

 Spline    

1990 Comparison of 

kriging, cubic 

splines for 

predicting soil 

properties  

RMSE  Voltz and 

Webster 

(1990) 

2006 Spline interpolation 

techniques for 

mapping soil 

properties. 

MSE  Robinson 

and 

Metternicht 

(2006) 

2013 

 

Analysis of 

different DEM 

interpolation Spline 

methods 

RMSE 0.91 (mild slope) 

1.37 (steep slope) 

1.62 (combined slope) 

Arun (2013) 

2014 Spline interpolation 

and Accuracy 

  Simpson 

and Wu 

(2014) 

2019 Spline analysis of 

different DEM 

interpolation in GIS 

 

MAE 

RMSE 

0.592 

0.815 

Ajvazi and 

Czimber 

(2019) 

 Trend Surface Estimation   

2010 A geospatial model 

trend surface 

RMSE 1.42 (conventional 

trend surface) 

1.81(non-spatial) 

3.88 (trend surface) 

 

Liang and 

Zhoub 

(2010) 

2018 Application trend 

surface models  

MSE 1.9908 (method 1) 

1.001 (method 2) 

0.8921 (method 3) 

Thanoon 

(2018) 
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Table 2.2 Summary of literature survey on interpolation methods (Continue). 

 Kriging    

2007 Kriging method for 

creating a digital 

bathymetric model 

of the Yucatan 

submerged 

platform 

ME 

MAE 

RMSE 

RI 

-3.55 

36.68 

153.21 

0 

Pineda and 

Stefanoni 

(2007) 

2011 Ordinary kriging in 

a review of 

comparative studies 

of spatial 

interpolation 

methods in 

environmental 

sciences 

RMAE 

RRMSE 

0.10-0.30 

0.22-0.35 

Li and Heap 

(2011) 

2013 Analysis of 

different DEM 

interpolation 

kriging methods 

RMSE 0.70 (mild slope) 

1.31 (steep slope) 

1.49 (combined slope) 

Arun (2013) 

2019 Kriging analysis of 

different DEM 

interpolation in GIS 

MAE 

RMSE 

0.602 

0.838 

Ajvazi and 

Czimber 

(2019) 

2020 Kriging 

interpolation 

methods for spatial 

forest site index in 

pure beech forests: 

a case study from 

Turkey 

RMSE 6.679 (MLR) 

0.926 (MLRK) 

2.968 (MLR) 

2.326 (MLRK) 

Günlü et al. 

(2019) 
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Table 2.2 Summary of literature survey on interpolation methods (Continue). 

2020 Kriging novel 

digital elevation 

model using an 

artificial neural 

network algorithm 

RMSE 7.2 Behzadi and 

Jalilzadeh 

(2021) 

2021 Analysis 

of groundwater 

table variability 

and trend using 

ordinary kriging: 

the case study 

of Sylhet, 

Bangladesh 

RMSE 2.538 Hasan et al. 

(2021) 

2021 Kriging 

Comparison 

of spatial 

interpolation 

methods 

for estimating 

the precipitation 

distribution 

in Portugal 

RMSE 174.74 Antal et al. 

(2021) 

 

2021 Kriging combined 

HASM and 

classical 

interpolation 

methods for DEM 

construction 

RMSE 0.28-0.49 Wang et al. 

(2021) 
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Table 2.2 Summary of literature survey on interpolation methods (Continue). 

2021 Kriging assessment 

of meteorology 

data in Mongolia 

using DEM and 

GIS 

RMSE 6.16 Natsagdorj  

et al. (2021) 

2021 Kriging for spot 

height DEM in 

Nigeria 

RMSE 7.7944 Banjo et al. 

(2021) 

 

2021 Non-parametric 

machine learning 

methods for 

interpolation of 

kriging (21CPT) 

MAE 

MAPE 

0.6  

5.7  

Shi and 

Wang 

(2021) 

2021 Nonlinear models 

kriging 

interpolation   

MAE 

RMSE 

0.237 

0.262 

Hasanipanah 

el al. (2021) 

2021 Soil salinity with 

geographically 

weighted regression 

kriging 

ME 

MAE 

RMSE 

RI 

-1.462 

2.929 

3.946 

23.2 

Nie el al. 

(2021) 

2021 Spatial variation 

analysis of urban 

forest vegetation 

carbon storage 

kriging 

RMSE 3 .8392 (cs) 0.8758 

(gcs) 

Ma et al. 

(2021) 

2022 Ordinary kriging 

interpolation 

from hard soil 

depth 

RMSE 5.22-5.75 Yanto et al. 

(2022) 
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2.10 Related Work on Divide and Conquer Methods 

The divide and conquer algorithm solves a significant problem by 

dividing it into smaller sub-problems (Deng et al., 2017; Wang et al., 2020; Du and 

Deng, 2021). Figure 2.4 shows how the data is split into four sub-data. The sub-data 

are solved separately at this level before the subsolutions are merged into one complete 

answer. 

 

Figure 2.4 Divide and conquer algorithm. 
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The divide and conquer methods were thoroughly surveyed and 

concluded in Table 2.3. 

Table 2.3 Summary of literature survey on divide and conquer technique. 
Year Technique RMSE Reference 

2017 A divide-and-conquer 

method for space-time 

series prediction 

30.8 Deng et al. (2017) 

2020 SDC-depth: semantic 

divide-and-conquer 

network for monocular 

depth estimation 

6.917 Wang et al. (2020) 

2021 Unscented particle filter 

algorithm Based on divide-

and-conquer sampling for 

target tracking 

0.525 (x) 

5.63 (y) 

Du and Deng (2021) 
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CHAPTER 3 

THREE NOVEL KRIGING ALGORITHMS 

 

 

This chapter describes the three novel kriging algorithms based on the 

modified Exponential models. The methodology, study area, experimental results, 

discussion, and chapter summary will be explained inside the chapter. 

3.1 Introduction 

Spatially continuous data play a significant role in environmental 

sciences and environmental management. Environmental managers usually require 

spatially continuous data over the region of interest to make competent and confident 

decisions. Scientists also need accurate spatially continuous data across an area to make 

justified interpretations. Such data are, however, usually not always readily available 

and often difficult and expensive to acquire, especially for mountainous or deep marine 

regions. Moreover, environmental data collected from field surveys are often from 

point sources. Thus, the values of an attribute at unsampled points need to be estimated 

to generate spatially continuous data. In such instances, spatial interpolation methods 

provide a tool for predicting the values of an environmental variable at unsampled sites 

using data from point observations.  

There are many methods for spatial interpolation (Cressie, 1993; Chilès 

and Delfiner, 1999; Wackernagel, 2003; Chilès and Desassis, 2018). These include the 

Inverse Distance Weighting (IDW) (Aguilar et al., 2005; Mitas and Mitasova, 2005; 

Bello-Pineda and Hernandez-Stefanoni, 2007; Arun, 2013; Setianto and Triandini, 

2013; Bărbulescu et al., 2021), the spline interpolation (Arun, 2013; Ajvazi and 

Czimber, 2019), the trend surface estimation (Liang and Zhoub, 2010; Thanoon, 2018), 

and the kriging (Lam, 1983; Aguilar et al., 2005; Bello-Pineda and Hernandez-

Stefanoni, 2007; Li and Heap, 2011;  Setianto and Triandini, 2013; Mert and Dag, 2017; 

Hasanipanah et al., 2021; Meng, 2021; Nie et al., 2021; Shi and Wang, 2021). These 

well-known spatial interpolation methods were thoroughly surveyed in Table 2.2. If 

comparing these four spatial interpolation methods, the kriging technique is the best 



28 

 

spatial interpolation method (Li and Heap, 2011). The kriging operates in several steps 

by combining surveys, analyzing observed (point) data, and assuming a covariance-

stationary Gaussian process (GP) with covariances estimated through semivariogram 

modeling. However, there are not many findings of how kriging parameters in 

semivariance modeling can improve the performance of spatial interpolators. In this 

thesis, we will explore and automatically compute the parameters of the semivariogram 

model in kriging algorithms and propose three new algorithms for spatial height 

prediction based on kriging interpolation models. The aim is to increase the 

performance of our kriging interpolators in comparison with the other five conventional 

kriging interpolators existing in the literature. Our important contributions are the three 

novel kriging models based on exponential semivariograms; the enhancement of 

conventional methods with the maximum likelihood estimation (MLE) method with 

four different correlation functions; and the robustness of choosing different algorithms 

for different area types. Our work can be used to improve the 3D surface plot in the 

application of environmental management. 

3.2 Methodology 

We propose three new algorithms in addition to the existing algorithms, 

which are in the field of kriging interpolation methods. Our unique algorithms do not 

require guessing important kriging parameters, namely, nuggets, sill, and range. We 

designed algorithms to compute the optimal values of kriging parameters automatically. 

Three variants of calculating the kriging parameters and weight vector for a predicted 

value at the unknown location are: 

• Exponential with Parameter Optimizer (EPO) model, 

• Exponential with k-Iterations Optimizer (EKO) model, and 

• Exponential with Polynomial-Trend Line (ETL) model. 

The three proposed algorithms start with acquiring the required input 

values. The input consists of the locations with the x and y coordinates called L(xi,yi) 

and the altitudes z(L(xi,yi)) at the corresponding locations. After that, all three methods 

of the algorithms will configure the initial guess values for nuggets, sill, and range as 

the arrays of m sorted values. The algorithms create a semivariance matrix A from 
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distances between sampled points and generate a semivariance vector b from distances 

to a predicted point. All semivariances are computed based on the Exponential model 

in Equation (2.8). The exponential is chosen as the based model due to the positive 

results of previous research. (Mohd Aziz et al., 2019). They compare the performance 

of the Spherical, Gaussian, and Exponential models in their respective study areas. The 

findings indicate that the Exponential model provides the most excellent precision. In 

addition, we begin evaluating our data and find that the exponential model outperforms 

others.   

After we obtain matrix A and vector b, we solve the weight vector using 

the equation w = A-1b. Once we apply the weight vector, we will be able to find the 

predicted height 𝑧𝑝(𝑠) from the equation ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑧(𝑆𝑖). After we get the value of 

𝑧𝑝(𝑠), then we can calculate a predicted error  𝜎𝑝
2. We aim to find the smallest amount 

of 𝜎𝑝
2 because it indicates high accuracy. We vary the nugget, sill, and range values 

until the lowest error value is found within the conditions set in each algorithm. 

The above process is called the Exponential with Parameter Optimizer 

(EPO) model. From this model, we develop an additional algorithm by adding iterations 

and narrowing down the nugget, sill, and range boundary values to find the minimal 

predicted error, we call this algorithm the Exponential with k-Iterations Optimizer 

(EKO) model.  

In the third model, we improve the computational time by selecting a 

graph between distance and semivariance, which gives the least predicted error. We 

then compute the relation between the two variables in the form of the polynomial trend 

line equation: a3x
3 + a2x

2+ a1x + a0. Note that in this case, x becomes a distance that 

can give a y-value (a new semivariance). After that, we re-compute the semivariance 

matrix A, and vector b to solve the weight vector using the equation w = A-1b as before. 

We call this model, the Exponential with Polynomial-Trend Line (ETL) model.  The 

detailed steps of each algorithm are explained in Figures 3.1 – 3.3. 
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Algorithm 1 Exponential with Parameter Optimizer (EPO) 

Input: L(xi,yi) and z(Si)     /* locations and altitudes */ 

Output: zp(s)                  /* altitude of a predicted point */ 

Step 1: Build D from L(xi,yi)     /* D is a distance matrix */ 

Step 2: Set initial values for nugget, sill, and range, each with m sorted values /* m 

is the length of the array */ 

Step 3: Use D to find a semivariance matrix A 

Step 4: Build a semivariance vector b from predicted points  

Step 5: Solve a weight vector w where w = A-1b 

Step 6: Compute 𝑧𝑝(𝑠) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑧(𝑆𝑖) 

Step 7: Compute a predicted error  𝜎𝑝
2 

Step 8: Repeat Steps 3 – 7 until m3 values of 𝜎𝑝
2 are obtained 

Step 9: Select 𝑧𝑝(𝑠) with minimum 𝜎𝑝
2 

Figure 3.1 Exponential with Parameter Optimizer (EPO) algorithm. 

 

Algorithm 2 Exponential with k-Iterations Optimizer (EKO) 

Input: L(xi,yi) and z(Si)     /* locations and altitudes */ 

Output: zp(s)                  /* altitude of a predicted point */ 

Step 1-7: as per Step 1-7 of Algorithm 1 

Step 8: Repeat Step 3 – 7 until m3 values of 𝜎𝑝
2 are obtained 

Step 9: Compute 𝜎𝑗
2 = min (𝜎1

2, 𝜎2
2, … , 𝜎𝑚∗𝑚∗𝑚

2 ) 

Step 10: Select the nugget, sill, and range with 𝜎𝑗
2   

Step 11: Iteratively reduce m to m1, m2, …, mk  and repeat Step 2 – 9 of Algorithm 1 

Step 12: Select 𝑧𝑝(𝑠) with minimum 𝜎𝑗
2 

Figure 3.2 Exponential with k-Iterations Optimizer (EKO) algorithm. 
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Algorithm 3 Exponential with Polynomial Trend Line (ETL) 

Input: L(xi,yi) and z(Si)     /* locations and altitudes */ 

Output: zp(s)                  /* altitude of a predicted point */ 

Step 1-10: as per Step 1-10 of Algorithm 2 

Step 11: Construct the semivariogram model with nugget, sill, and range of 𝜎𝑗
2   

Step 12: Create a trend line equation: a3x
3 + a2x

2+ a1x + a0    

Step 13: Apply the trend line to re-compute matrix A 

Step 14: Apply the trend line to re-compute vector b 

Step 15: Solve a weight vector w where w = A-1b 

Step 16: Re-compute 𝑧𝑝(𝑠) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑧(𝑆𝑖) 

Figure 3.3 Exponential with Polynomial-Trend Line (ETL) algorithm. 

3.3 Study Areas and Experimental Results 

Prince of Songkla University (PSU), Phuket Campus is an educational 

institution located in the area of Kathu District, Phuket Province, Thailand. The campus 

is located in the East longitude of 100°25′27″ – 100°32′58″ and North latitude of 

13°42′30″ – 13°47′42″. We have chosen two study areas, as displayed in Figure 3.4. 

The aim of the experiments is to compare and validate the accuracy of the contemporary 

methods with the new interpolation algorithms that we proposed. We begin the 

experiment with the two zones, each having an input of 31 points. The input data are 

the DGPS data of the x and y coordinates in UTM coordinate systems and their altitudes 

in meters (m). The DGPS error is several centimetre accuracies horizontally and 10-20 

centimetres vertically (Gao et al., 2002). All input data are collected by the same DPGS. 

We have verified and cross-checked the data with the RTK (Real-Time Kinematic), and 

then we apply the input data to the models. The output data are the predicted altitudes, 

which is calculated by using eight models, namely, the Linear, Spherical, 

Pentaspherical, Gaussian, and (unmodified) Exponential, EPO, EKO, and ETL models. 

Note that the latter three models are our proposed models.  
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The results of the first four models (Linear, Spherical, Pentaspherical, 

and Gaussian) are based on Equation (2.4) – Equation (2.7). The three parameters 

(nugget, sill, and range) are chosen by testing values from a number of empirical 

semivariogram plots, and the values giving the minimum error are used. The results of 

the latter four models (Exponential, EPO, EKO, and ETL) are based on Equation (2.8). 

The conventional Exponential model uses the fixed parameters with nugget = 0.1, sill 

= 0.2, and range = 250. On the other hand, the EPO, EKO, and ETL do not use the pre-

computed parameters. The best parameter values are computed automatically based on 

algorithms presented earlier in Section 3.2. We understand that finding the optimal 

parameters would lead to better results than using the fixed ones. However, we include 

the conventional Exponential model with fixed parameters in the table of results only 

for a reference to see how much the three new exponential-based approaches without 

the fixed parameters have improved. 

We will divide our studies into four experiments according to two 

different study areas and two different sets of inputs; 31 points and 51 points. The first 

two experiments use the input of 31 points, and by exploiting the LOOCV technique, 

30 points will be served as a training set in each run. In the latter two experiments, we 

add 20 more input points into each zone, and 50 points will be served as a training set 

in each run. The characteristics of Zone 1 and Zone 2 are shown in Table 3.1. Notice 

that they are not the same since the sample standard deviation of Zone 1 is larger than 

the one of Zone 2. The range of Zone 1 is also wider than Zone 2. We select these areas 

because we want to see how our algorithms perform given different types of terrain 

variations. Moreover, when increasing the number of sampled points, the margin of 

error is reduced. Therefore, we will also explore how the performance of the algorithms 

is affected, given the larger sample size.  
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6.1  

Figure 3.4 Sampled 31 points for each of two zones in PSU Phuket area. 

Table 3.1 Characteristics of height-samples in zone 1 and zone 2. 

Area 

 

Zone 1 

(31 points) 

Zone 2 

(31 points) 

Zone 1 

(51 points) 

Zone 2 

(51 points) 

Sample Size 31 31 51 51 

Average 34.6519 35.0273 34.7104 34.5571 

Standard deviation 10.1745 4.0759 10.5448 3.9841 

95% Margin of error 3.5817 1.4348 2.8941 1.0935 

Upper bound 38.2336 36.4621 37.6044 35.6506 

Lower bound 31.0702 33.5925 31.8163 33.4637 

Max 65.2595 45.5822 74.8654 45.5822 

Min 25.1687 26.8065 25.1687 26.8065 

Range 40.0908 18.7757 49.6967 18.7757 

*The unit of input data (meters). 
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3.3.1 Study area of zone 1 with 31 points 

The accuracies of eight models are presented in Table 3.2 in the form of 

five error assessment methods discussed in Section 2.8. The values of RMSE for our 

methods, namely EPO, EKO, and ETL range between 3.7798 – 3.9749, the three lowest 

errors in the table. Other values of ME, MPE, MAE, and MSE yield similar results. We 

discuss these results further in the discussion section. 

Table 3.2 Error assessment for the study area of zone 1 with 31 points. 

Model ME MPE MAE MSE RMSE 

Linear -6.2581 -0.2015 7.6397 72.2372 8.4992 

Spherical -6.9418 -0.2254 8.0175 77.5022 8.8035 

Pentaspherical -6.0399 -0.1957 7.4041 73.6677 8.5830 

Gaussian -2.1666 -0.0551 5.4422 44.9070 6.7013 

Exponential -0.2770 0.0191 3.4629 34.9012 5.9077 

EPO -0.2722 0.0072 2.1451 15.7998 3.9749 

EKO -1.5773 -0.0393 2.6633 14.2872 3.7798 

ETL -0.2722 0.0072 2.1451 15.7998 3.9749 

*The unit of input data (meters). 

3.3.2 Study area of zone 2 with 31 points 

Table 3.3 shows the errors for the study area of Zone 2 with the same 

number of sampled points as the previous experiment. However, the terrain here is 

significantly flatter. RMSEs for EPO, EKO, and ETL models vary from 2.1499 – 

2.2218, the three lowest errors in the table, and also lower than Zone 1. ME and MPE 

of our models are also small (ME = -0.0965 to -0.0626 and MPE = -0.0005 to 0.0041). 

The small negative MPE indicates that our predicted values are slightly lower than the 

actual values. However, it is not conclusive just by looking at ME or MPE. The other 

three types of errors (MAE, MSE, and RMSE) should also be examined together 

because in ME and MPE positive errors may compensate for negative errors. The 

discussion section will elaborate more on this result. 
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Table 3.3 Error assessment for the study area of zone 2 with 31 points. 

Model ME MPE MAE MSE RMSE 

Linear 0.7138 0.0187 2.1991 8.4232 2.9023 

Spherical -0.2156 -0.0119 2.5141 13.6125 3.6895 

Pentaspherical -0.9810 -0.0359 3.3372 20.2478 4.4998 

Gaussian 1.1484 0.0384 2.3909 8.6129 2.9348 

Exponential -0.2719 -0.0085 1.4860 6.1048 2.4708 

EPO -0.0626 0.0041 1.5041 4.9366 2.2218 

EKO -0.0965 -0.0005 1.1003 4.6223 2.1499 

ETL -0.0626 0.0041 1.5041 4.9366 2.2218 

*The unit of input data (meters). 

3.3.3 Study area of zone 1 with 51 points 

In this experiment and the next experiment, we increase the number of 

sampled points to 51 points. Table 3.4 shows the errors for the study area of Zone 1. 

RMSEs for EPO, EKO, and ETL models are between 2.5704 – 3.1627, still the three 

lowest errors in the table. The impact of more sampled points may not be obvious in 

the table, but we will clarify this result in the discussion section. 

Table 3.4 Error assessment for the study area of zone 1 with 51 points. 

Model ME MPE MAE MSE RMSE 

Linear -7.0240 -0.2360 8.4045 89.0390 9.4360 

Spherical -7.4717 -0.2580 9.3936 100.4659 10.0233 

Pentaspherical -6.0176 -0.2133 8.8407 100.2174 10.0109 

Gaussian -2.8717 -0.0814 5.7993 49.6288 7.0448 

Exponential -0.0982 0.0150 2.4538 20.1328 4.4870 

EPO -1.8730 -0.0618 2.6063 10.0024 3.1627 

EKO -0.0937 0.0043 1.2424 6.6071 2.5704 

ETL -1.8730 -0.0618 2.6063 10.0024 3.1627 
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3.3.4 Study area of zone 2 with 51 points 

Table 3.5 shows the errors for the study area of Zone 2 with 51 points. 

The terrain in this zone is significantly flatter than in Zone 1. RMSEs for EPO, EKO, 

and ETL models are lower than in the previous three experiments ranging from 1.4353 

– 1.6889.  

Table 3.5 Error assessment for the study area of zone 2 with 51 points. 

Model ME MPE MAE MSE RMSE 

Linear 0.6881 0.0172 1.7842 5.1597 2.2715 

Spherical -0.4577 -0.0206 2.2751 10.0405 3.1687 

Pentaspherical -1.3165 -0.0480 3.3137 17.0352 4.1274 

Gaussian 1.2804 0.0422 2.2348 7.1474 2.6735 

Exponential -0.3151 -0.0110 1.1053 2.9224 1.7095 

EPO -0.0467 0.0024 1.1154 2.8525 1.6889 

EKO -0.0748 -0.0008 0.7325 2.0600 1.4353 

ETL -0.0467 0.0024 1.1154 2.8525 1.6889 

*The unit of input data (meters). 

3.3.5 Quality control of model evaluation 

In this section, we will find a 95% confidence interval (α = 0.05) for the 

previously calculated errors. However, RMSE is an estimate of the actual standard 

deviation or dispersion of . Thus, we want to estimate the confidence interval of , 

not RMSE. MSE is a square of RMSE, an estimate of 2. To get SE, we multiply MSE 

by the number of samples N. The ratio of SE and 2 theoretically follows Chi-square 

distribution with N – 1 df depicted by Equation (3.21). 

 

 
𝑆𝐸

𝜒𝛼/2,𝑁−1
2 ≤ 𝜎2 ≤

𝑆𝐸

𝜒1−𝛼/2,𝑁−1
2  (3.21) 
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The 95% confidence interval of  with already known RMSE is 

therefore given by Equation (3.22). 

 

√𝑁∙𝑅𝑀𝑆𝐸

√𝜒0.025,𝑁−1
2

≤ 𝜎 ≤
√𝑁∙𝑅𝑀𝑆𝐸

√𝜒0.975,𝑁−1
2

  
 (3.22) 

Table 3.6 shows the quality of the 95% confidence interval (CI) of our 

algorithms in comparison with the five benchmark algorithms for all study areas. We 

will interpret these results in the next section.  

Table 3.6 The 95% confidence interval (lower-bound and upper-bound) of  for all 

areas. 

Model Zone 1 

(31 points) 

Zone 2 

(31 points) 

Zone 1 

(51 points) 

Zone 2 

(51 points) 

Linear 6.9040-11.5487 2.3576-3.9436 7.9738-11.8459 1.9195-2.8516 

Spherical 7.1512-11.9622 2.9970-5.0133 8.4700-12.5832 2.6777-3.9780 

Pentaspherical 6.9721-11.6626 3.6553-6.1143 8.4596-12.5676 3.4878-5.1815 

Gaussian 5.4436-9.1057 2.3840-3.9878 5.9531-8.8440 2.2592-3.3563 

Exponential 4.7989-8.0274 2.0071-3.3573 3.7917-5.6330 1.4446-2.1461 

EPO 3.2289-5.4011 1.8048-3.0190 2.6726-3.9704 1.4272-2.1202 

EKO 3.0704-5.1360 1.7464-2.9213 2.1721-3.2269 1.2129-1.8019 

ETL 3.2289-5.4011 1.8048-3.0190 2.6726-3.9704 1.4272-2.1202 

3.3.6 Improved conventional methods with MLE 

In the results of earlier experiments, we have investigated the prediction 

caused by a different type of semivaiogram models. However, there are more 

techniques for estimating the kriging parameters, for example, using the maximum 

likelihood estimation (MLE) approach to numerically solve the likelihood function and 

estimate the best value for the parameters. In this section, we will investigate the 

performance of conventional methods that use MLE. The tools are available in package 

geoR (Diggle and Ribeiro, 2007), which offers various models for the correlation 
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function such as Matern, Exponential, Gaussian, and Spherical. Kriging can be 

performed with options for simple kriging, ordinary kriging, universal kriging, and 

external trend kriging. We will use ordinary kriging in our experiment. Table 3.7 

compares the performance of our three algorithms with the MLE method using four 

various correlation functions, namely, Matern, Exponential, Gaussian, and Spherical, 

which we call MLE_matern, MLE_exponential, MLE_gaussian, and MLE_spherical, 

respectively. The values of RMSE for all seven methods show non-significant 

differences. Other errors such as ME, MPE, MAE, and MSE are omitted here as their 

influences on the result discussion are similar to the previous four experiments.  

Table 3.7 Comparison of the RMSE values for the four different MLE methods and 

our proposed models. 

Model Zone 1 

(31 points) 

Zone 2 

(31 points) 

Zone 1 

(51 points) 

Zone 2 

(51 points) 

MLE_matern 3.8035 2.1605 2.6005 1.5161 

MLE_exponential 3.8035 2.1605 2.5946 1.4809 

MLE_gaussian 3.7302 2.3680 2.5421 1.4181 

MLE_spherical 3.7919 2.0921 3.1977 1.5268 

EPO 3.9749 2.2218 3.1627 1.6889 

EKO 3.7798 2.1499 2.5704 1.4353 

ETL 3.9749 2.2218 3.1627 1.6889 

*The unit of input data (meters). 
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3.4 Discussion 

We will divide the discussion into 3 parts. Firstly, we will discuss the 

results of the prediction errors caused by different types of semivariograms. Secondly, 

we will compare the prediction errors caused by different correlation functions based 

on MLE. Finally, we will discuss the practical application in environmental 

management. 

3.4.1 Different types of semivariograms 

We have studied two areas at Prince of Songkla University, Phuket 

Campus. We compared and verified the performance of the original five methods with 

our three new methods. For the first area (Zone 1), we concluded that the errors of the 

original methods, namely, Linear, Spherical, Pentaspherical, Gaussian, and classical 

Exponential models, are higher than our proposed EPO, EKO, and ETL methods in 

almost all cases.  

In the first experiment, the RMSE of the existing techniques were 

between 5.9077 and 8.8035, but the RMSE of our new methods were only between 

3.7798 and 3.9749. The results of MSE follow the same direction as RMSE does 

because MSE is just the square of RMSE. However, RMSE is widely used because it 

is easy to interpret as the error is in the same unit as the predicted output. In addition, 

MAE is less sensitive to outliers, and it can be used together in the interpretation. Table 

3.2 shows that our models have the lowest MAEs when compared to the other five 

conventional models. ME and MPE are one of the simplest forms but beware that 

positive errors may compensate for negative errors, and therefore a careful 

interpretation must be made. Nevertheless, they are useful in indicating whether the 

forecasts tend to be disproportionately negative or positive. In our case, they are more 

negative meaning our predicted values are mostly lower than the actual values. Note 

that our new methods are based on the Exponential model and in some cases when 

assessing with ME and MPE, the classical Exponential model exhibits a good 

performance as well (ME = -0.2770, MPE = 0.0191). 
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  (a)          (b) 

  

  (c)          (d) 

Figure 3.5 The 95% CI of errors for 31 points (a) Zone 1, (b) Zone 2 ; and 51 points 

(c) Zone 1, (d) Zone 2. 

  

0

2

4

6

8

10

12

14

L
IN

E
A

R

S
P

H
E

R
IC

A
L

P
E

N
T

A
S

P
H

E
R

IC
A

L

G
A

U
S

S
IA

N

E
X

P
O

N
E

N
T

IA
L

E
P

O

E
K

O

E
T

L

0

2

4

6

8

10

12

14

L
IN

E
A

R

S
P

H
E

R
IC

A
L

P
E

N
T

A
S

P
H

E
R

IC
A

L

G
A

U
S

S
IA

N

E
X

P
O

N
E

N
T

IA
L

E
P

O

E
K

O

E
T

L

0

2

4

6

8

10

12

14

L
IN

E
A

R

S
P

H
E

R
IC

A
L

P
E

N
T

A
S

P
H

E
R

IC
A

L

G
A

U
S

S
IA

N

E
X

P
O

N
E

N
T

IA
L

E
P

O

E
K

O

E
T

L

0

2

4

6

8

10

12

14

L
IN

E
A

R

S
P

H
E

R
IC

A
L

P
E

N
T

A
S

P
H

E
R

IC
A

L

G
A

U
S

S
IA

N

E
X

P
O

N
E

N
T

IA
L

E
P

O

E
K

O

E
T

L



41 

 

The performance of our new methods was again confirmed by the 

similar results of the study area in Zone 2, where the original methods gave the RMSE 

between 2.4708 and 4.4998, but our new methods gave the RMSE between 2.1499 and 

2.2218. Therefore, the estimation of the height of test locations with our novel 

techniques is more accurate than the original ones. These results are in line with the 

other four error assessment methods. The by-product received for this second 

experiment is the area with lower terrain variations tends to yield smaller RMSE than 

the area with higher terrain variations as Zone 1. It is interesting to note that when the 

area is quite flat, the Linear model performed with quite an acceptable error, even 

though its RMSE of 2.9023 is slightly higher than our three models. It is possible that 

the linear semivariogram model gives the best fit for the small data variance and number 

of points (Tran and Nguyen, 2008) 

When increasing the input points to 51 points, Table 3.4 and Table 3.5 

show similar performance. In particular, the RMSEs of EKO were reduced to 2.5704 

and 1.4353 for Zone 1 and Zone 2, respectively. As expected, the error of our three 

models decreases when the sample size increases.  

According to the first four experiments, the problem still lies within the 

number of sampled points and the quality of our error assessment. To be statistically 

confident that our models are superior and to what extent they can be claimed, we 

compute the 95% CI for each sample size in each zone. Table 3.6 reveals that we can 

be 95% certain that the EPO, EKO, and ETL models are more accurate than the rest of 

the models except the Exponential model. To ease the interpretation, Figure 3.5 visually 

compares the 95% CI for all models. However, in Zone 2 with 31 points, we cannot 

conclusively claim that our three models perform the best as the intervals in Figure 

3.5(b) overlap one another. We can only claim that our models perform better than the 

Pentasherical model. We hence increase the sample size to 51 points in the hope to 

better distinguishing the 95% CI when the sample size is larger. Indeed, we discover in 

Figure 3.5(d) that it is 95% certain that our three models perform better than the 

Spherical, Pentaspherical, and Gaussian models. Note that the comparison is not 

conclusive for the Linear model in the case of low terrain variations. In general, the 

result implies non-significant differences among models.  
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Overall, the Spherical and Pentaspherical models have the worst 

performance among the eight models whereas the exponential-based models perform 

very well. We recommend using our new interpolation algorithms because they offer 

higher accuracy, and most importantly, our methods do not require guessing of nugget, 

sill, and range values. However, for an area with minimal elevation variance, we do 

suggest using the Linear model because it takes little time to calculate, and the accuracy 

is still acceptable. 

3.4.2 Different correlation functions based on MLE 

The RMSE values of our proposed methods (EPO, EKO, and ETL) are 

compared with four variants of MLE methods. As shown in Table 3.7 the errors of 

MLE methods for Zone 1 were between 3.7302 and 3.8035, whereas the errors of our 

new methods were between 3.7798 and 3.9749. The result implies non-significant 

differences among models. When increasing the input points to 51 points, the errors of 

all seven methods relatively decrease as we expected. In particular, the performance of 

MLE using the Gaussian correlation function is marginally better than the rest of the 

models.  

For Zone 2, the errors of the four MLE methods were reduced to 

between 2.0921 and 2.3680. When increasing the input points to 51 points, the 

performance of all seven models uncovered little difference; the RMSEs of our methods 

were between 1.4353 and 1.6889 whereas the RMSEs of the four MLE methods were 

between 1.4181 and 1.5268. In particular, the error of MLE using the Gaussian 

correlation function is marginally lower than the other six models.  

In terms of 95% CI, Figure 3.6. reveals that we cannot be 95% certain 

that the EPO, EKO, and ETL methods are more accurate than the four MLE methods. 

The result implies non-significant differences among models. The bounds of all models 

were reduced when the input changed to 51 points (see Figures 3.6(b) and (d)). The 

errors for the four MLE methods are relatively close to our proposed methods, though 

they are marginally lower than ours in some cases. We concluded that conventional 

methods that use MLE perform better than the five conventional methods in Figure 3.6. 
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  (a)          (b) 

  

  (c)          (d) 

 

Figure 3.6 The 95% CI of errors on different estimation methods for 31 points (a) Zone 

1, (b) Zone 2 ; and 51 points (c) Zone 1, (d) Zone 2. 

0

2

4

6

8

10

12

14

M
L

E
_

M
A

T
E

R
N

M
L

E
_

E
X

P
O

N
E

N
T

IA
L

M
L

E
_

G
A

U
S

S
IA

N

M
L

E
_

S
P

H
E

R
IC

A
L

E
P

O

E
K

O

E
T

L

0

2

4

6

8

10

12

14

M
L

E
_

M
A

T
E

R
N

M
L

E
_

E
X

P
O

N
E

N
T

IA
L

M
L

E
_

G
A

U
S

S
IA

N

M
L

E
_

S
P

H
E

R
IC

A
L

E
P

O

E
K

O

E
T

L

0

2

4

6

8

10

12

14

M
L

E
_

M
A

T
E

R
N

M
L

E
_

E
X

P
O

N
E

N
T

IA
L

M
L

E
_

G
A

U
S

S
IA

N

M
L

E
_

S
P

H
E

R
IC

A
L

E
P

O

E
K

O

E
T

L

0

2

4

6

8

10

12

14

M
L

E
_

M
A

T
E

R
N

M
L

E
_

E
X

P
O

N
E

N
T

IA
L

M
L

E
_

G
A

U
S

S
IA

N

M
L

E
_

S
P

H
E

R
IC

A
L

E
P

O

E
K

O

E
T

L



44 

 

3.5 Chapter Summary 

We proposed three alternative kriging algorithms. These three variants 

compute the optimal values of kriging parameters automatically and predict the 

unknown value at the unsampled location. The proposed kriging models are 

Exponential with Parameter Optimizer (EPO) model, Exponential with k-Iterations 

Optimizer (EKO) model, and Exponential with Polynomial-Trend Line (ETL) model. 

We concluded that the errors of our three methods are exceptionally small when 

compared with the five conventional semivariogram models, namely, Linear, Spherical, 

Pentaspherical, Gaussian, and classical Exponential models. Statistically speaking, 

when the sample size is sufficiently large, it can be 95% certain that the EPO, EKO, 

and ETL models are more accurate than the Spherical, Pentaspherical, and Gaussian 

models. It is also discovered that for the region with low terrain variations, the Linear 

model is adequately usable. Hence, our work supports the different use of algorithms 

for different area types. For example, we use the exponential-based models for 

relatively large terrain variations and the linear ones for relatively flat areas. Our future 

work will deal with dynamic selections of suitable algorithms for different elevation 

variances.  

For the conventional methods presented in the thesis, we recommended 

estimating the model parameters using the MLE method with the Gaussian correlation 

function, though there are non-significant differences among the four correlation 

functions presented in Section 3.3.6. In summary, our main contributions are the 

proposal of three novel kriging algorithms based on exponential semivariograms; the 

enhancement of conventional methods with the maximum likelihood estimation; and 

the resilience of applying different algorithms for different area types. Our algorithms 

are easy to use because there is no need to specify nugget, sill, and range values. The 

practical benefit of our results is in the area of improving the 3D surface plot as the 

number of unknown points can be predicted, so the plot can be filled with more points 

resulting in a more accurate plot. 
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CHAPTER 4 

TWO DIVIDE AND CONQUER ALGORITHMS 

 

Although the presented algorithms are accurate techniques in previously 

studied areas, in this chapter, we discovered that using them for different areas (other 

than PSU) with more data points is impractical due to the five-day wait required to 

finish the model surface plot. Hence, the next problems will be focusing on decreasing 

the computing time to less than 5 minutes while maintaining or slightly diminishing the 

accuracy. This chapter will introduce two divide and conquer algorithms by first 

applying the divide and conquer technique and later improving it by introducing a slope 

(terrain variation) threshold parameter. This chapter will cover the technique used, 

wider study areas, experiment results, discussion, and chapter summary. 

4.1 Introduction 

Environmental management is described as a part of a management 

system to achieve specific environmental behaviours that can reduce the impact on the 

environment. Rapid decisions and judgments can reduce the major damage in 

environmental management. The computer programing and interpolation methods have 

opened new doors for environmental management to reduce the computational time and 

improve the accuracy of data. Many interpolation techniques were developed to predict 

the spatial values in unsampled points (Chilès and Delfiner, 1999; Chilès and Desassis, 

2018; Cressie, 1993; Wackernagel, 2003). Points interpolation helps save tremendous 

time and costs of collecting samples in every location. 

The divide and conquer technique is one of an algorithm design 

paradigm that solves complex problems by dividing them into smaller problems and 

then merging them one by one (Comen et al., 2009). The data set is split into non-

overlapping small sub-data, and the target model is estimated in each sub-data. We will 

incorporate this design paradigm into a field of spatial interpolation technique named 

kriging. There are many works in the area of kriging interpolation (Aguilar et al., 2005; 

Bello-Pineda and Hernandez-Stefanoni, 2007; Hasanipanah et al., 2021; Lam, 1983; Li 

and Heap, 2011; Meng, 2021; Mert and Dag, 2017; Hasan et al., 2021; Nie et al., 2021; 

Setianto and Triandini, 2013; Behzadi and Jalilzadeh, 2021; Antal et al., 2021; Antal et 
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al., 2021; Yanto et al., 2022; Wang et al., 2021; Natsagdorj et al., 2021; Banjo et al., 

2021; Ma et al., 2021). Moreover, there have been advanced studies of the kriging 

surrogate models to improve optimization speed over recent years (Bhattacharyya, 

2022; Hao et al., 2020; Hao et al., 2021). However, the divide and conquer strategy for 

spatial interpolation has been the subject of few investigations (Deng et al., 2017; Wang 

et al., 2020; Du and Deng, 2021). In this thesis, we focus on developing algorithms with 

the divide and conquer approach for fast handling of spatial data. The kriging models 

are used to predict heights at unknown locations. Our work can make landscape 3D 

visual assessment much more practical as the computational time to complete the model 

surface plot can be reduced from 5 days to 5 minutes with only a marginal trade-off in 

model accuracy 

4.2 Methodology 

In our previous work, we designed three new algorithms; Exponential 

with Parameter Optimizer (EPO) model, Exponential with k-Iterations Optimizer 

(EKO) model, and exponential with Polynomial-Trend Line (ETL) model. The EPO 

was designed to optimize kriging parameters for the minimal predicted error. The EKO 

iteratively calls EPO while narrowing down the kriging parameter values in each call. 

The ETL applied a rather different technique by computing the relation between 

distance and semivariance in the form of the polynomial trend line, then the line is used 

to re-compute the better version of the weight vector for point predictions. We also 

improved the existing Exponential model by incorporating a parameter estimation 

technique called MLE (Pan and Fang, 2002) in the process of optimizing the nugget, 

sill, and rage of the model. Therefore, we have four adaptations of exponential-based 

models (Exponential, EPO, EKO, and ETL). 

Although these algorithms are accurate approaches in the previous work, 

we found that applying them for landscape 3D visual assessment is not so practical as 

the waiting time to complete the model surface plot can be up to 5 days. Therefore, the 

remaining challenges are to reduce the computational time to be less than 5 minutes 

while preserving the accuracy or reducing it down marginally. This thesis presents two 

algorithms by first applying the divide and conquer technique and later improving it by 

introducing a slope (terrain variation) threshold parameter.  
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Algorithm 4:  DVC 

Input: L(xi,yi) and z(Si)  /* locations and altitudes */ 

Output: zp(s) and RMSE   /* altitude of a predicted point and error */ 

Step 1: Input L(xi,yi) and z(Si) where i = 1, 2, …, n 

Step 2: Choose the grid size of gxg where g = 1, 2, 3, 4 

Step 3: Divide data into gxg subdata based on latitude and longtitude of L(xi,yi) 

Step 4: Input the first subdata (the 1st cell) 

Step 5: Calculate zp(s) for each predicted point in the cell based on 6 kriging models; 

Gaussian, Spherical, Exponential, EPO, EKO, and ETL  

Step 6: Calculate RMSE for each algolithm 

Step 7: Repeat Steps 4 – 6 for all cells 

Step 8: Calculate total RMSE  

Figure 4.1 Divide-and-conquer algorithm based on grid sizes. 

Figure 4.1. shows DVC, which is the divide and conquer algorithm with 

4 alternative grid sizes. The input consists of the locations with the x and y coordinates 

called L(xi,yi) and the altitudes z(L(xi,yi)) at the corresponding locations. Users will 

select the size of gxg cells. After that, the point locations are divided according to 

latitude and longitude. Figure 4.4 depicts the different grid sizes. Figure 4.4(a) is the 

original grid 1x1 served as the reference when the divide and conquer concept is 

ignored. Figure 4.4(b), 4.4(c), and 4.4(d) are the divide and conquer with grid sizes of 

2x2, 3x3, and 4x4. 

The predicted points are interpolated based on six kriging models. In the 

conventional model, semivariances are computed based on Equations (2.5), (2.7), and 

(2.8), while EPO, EKO, and ETL were introduced in our previous work. The DVC 

design paradigm is meant to significantly reduce the computational time by decreasing 

the size of the distance matrix D in our proposed models. For example, 500 sampled 

points when dividing into grid size 4x4, the number of points in each cell is reduced to 

around 31 points (n/g2 points). This has led to the D of size 31x31, which is considerably 

smaller than the D of size 500x500. Although the calculation must be made for every 

point in g2 cells, the total calculation time is less than one large cell with n sampled 

points. 



48 

 

Figure 4.2 shows the improved algorithm of the divide and conquer by 

adding a new parameter called β, a slope of terrain in the given cell, which is calculated 

based on Equation (4.1). 

Slope of terrain: 

𝛽 =   ( 
𝑧(𝑆𝑚𝑎𝑥)−𝑧(𝑆𝑚𝑖𝑛)

√(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
2+(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)

2
) x100 

(4.1)            

 

SDVC requires the minimum number of cells to be four, and the divide 

and conquer paradigm is forced. The slope is used to control the accuracy of the model. 

If the β value in a cell exceeds the specified slope (α), the algorithm will select the EKO 

model that works well in areas with high terrain variations.  

Algorithm 5:  SDVC 

Input: L(xi,yi), z(Si), and α  /* locations, altitudes, and a slope threshold */ 

Output: zp(s) and RMSE        /* altitude of a predicted point and error */ 

Step 1: Input L(xi,yi) and z(Si) where i = 1, 2, …, n 

Step 2: Choose the grid size of gxg where g = 2, 3, 4 

Step 3: Divide data into gxg subdata based on latitude and longitude of L(xi,yi) 

Step 4: Input the first sub-data (the 1st cell) 

Step 5: Calculate a slope β of the cell 

Step 6: If β < α, calculate zp(s) using the Exponential model, otherwise use EKO 

Step 7-9: as per Step 6-8 of Algorithm 4: DVC 

Figure 4.2 Improved divide-and-conquer algorithm based on slope (terrain variation) 

threshold. 

 

 

 

 

     (a)                             (b)                         (c)                             (d) 

Figure 4.3 Grid sizes; (a) 1x1, (b) 2x2, (c) 3x3, (d) 4x4. 
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By applying a slope threshold α = 5 in the SDVC algorithm, examples 

in Figure 4.4(a), (b), and (c) show the sub-areas in the mountainous area where the EKO 

model indicated by the black cells are utilized relatively more often than the 

Exponential model indicated by the white cells. On the other hand, the EKO model will 

be used less when the area is relatively flat, as indicated by Figures 4.4 (d), (e), and (f). 

As a result of this design paradigm, the computational time in the flat area should be 

reduced because the SDVC algorithm splits the less complicated work for the 

Exponential model. We anticipate that the effect of increasing the slope threshold from 

5% to 8% would reduce the computational time even more and hopefully still within 

the acceptable trade-off in model accuracy. Examples in Figure 4.5(a) – (f) simulate a 

slope threshold α = 8; there are more white cells in the areas which means the 

Exponential model is used more often than the EKO model. 

 

 

 

 

 

 

 

 

(a)                                            (b)                                 (c) 

 

 

 

 

 

 

 

 

(d)                                           (e)                                 (f) 

Figure 4.4 Slope threshold of 5% for mountainous area; (a) 2x2, (b) 3x3, (c) 4x4; and 

flat area (d) 2x2, (e) 3x3, (f) 4x4. 

 

 

 



50 

 

 

 

 

 

 

 

 

 

(a)                                            (b)                                 (c) 

 

 

 

 

 

 

 

 

(d)                                           (e)                                 (f) 

Figure 4.5 Slope threshold of 8% for mountainous area; (a) 2x2, (b) 3x3, (c) 4x4; and 

flat area (d) 2x2, (e) 3x3, (f) 4x4. 

4.3 Study Areas and Experimental Results 

Mount Adams and Yakama are the native American reservation area 

located in Washington state, USA. Mount Adams is the highest point in the Yakima 

region, located at a North latitude of 46°12′9″ and a West longitude of 121°29′27″. We 

have chosen two study areas, namely, mountainous and flat areas, as displayed in Figure 

4.6 and Figure 4.7, respectively. The input of 500 points in each area is systematically 

sampled from the 1-meter DEM data of the x and y coordinates in UTM coordinate 

systems and their altitudes in meters (m). The 1-meter DEM has a horizontal accuracy 

within 1 meter, and vertical accuracy of 19.6 cm at the 95-percent confidence (Arundel 

et al., 2015). All 1-meter DEM input data are downloaded from the nation map (TNM) 

of the U.S. Geological Survey. Note that the average height and standard deviation of 

the flat area are significantly smaller than the one of the mountainous area. We chose 

these regions to examine how our algorithms perform in different types of terrain. As a 

result, we will investigate how the performances (accuracy and computational time) of 

the six models, namely, Gaussian, Spherical, Exponential, EPO, EKO, and ETL are 

affected given the two terrain types and four different grid sizes.  
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Figure 4.6 Sampled points for the mountainous area near Mount Adams. 

 

Figure 4.7 Sampled points for the flat area in Yakima, Washington. 
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The characteristics of the mountainous and flat areas are shown in Table 

4.1. Next, we will examine how the algorithms perform with more samples.  

Table 4.1 Characteristics of height-samples in mountainous and flat areas. 

Area Mountainous area Flat area 

Sample Size 500 

1307.3222 

84.1536 

7.3764 

1314.6986 

1299.9458 

1474.4000 

1155.6300 

318.7700 

500 

Average 576.7202 

Standard deviation 44.3313 

95% Margin of error 3.8858 

Upper bound 580.6060 

Lower bound 572.8344 

Max 767.0274 

Min 553.5831 

Range 213.4443 

*The unit of input data (meters). 

4.3.1 Accuracies versus grid sizes based on DVC 

4.3.1.1 Mountainous area  

In the first experiment, the DVC algorithm is used to examine the 

accuracies of six models, and the result is presented in Table 4.2.  

Table 4.2 The RMSE values for mountainous area based on DVC algorithm. 

Model Grid Size 

1x1 2x2 3x3 4x4 

Gaussian 25.3482 22.2799 24.0599 21.9945 

Spherical 36.4505 34.8079 28.12647 19.4797 

Exponential 5.0250 5.1944 5.3115 5.7556 

EPO 5.1220 5.2375 5.4276 5.9978 

EKO 5.0920 5.2163 5.3945 5.8938 

ETL 5.1220 5.2375 5.4276 5.9978 

*The unit of input data (meters). 
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We improved the Gaussian, Spherical, and Exponential model by 

incorporating a parameter estimation technique called MLE (Pan and Fang, 2002), 

shown in Tables 4.2 and 4.3. For Gaussian and Spherical models, the RMSEs of grid 

size 4x4 are lower than those of other grid sizes. For instance, the errors of Gaussian 

and Spherical models decrease by 13.23% and 46.56%, respectively. We believe that 

the accuracy increases due to the γ(d) formula which quantifies the degree of spatial 

dependence between points fits the two models better when the regions are condensed. 

On the other hand, the RMSEs of the four exponential-based models (Exponential, 

EPO, EKO, and ETL) slightly increase in the range of 0.7306 – 0.8758 which 

corresponds to about 14.54% to 17.10%. We found that the γ(d) formula for computing 

semivariance fits exponential models marginally less well in regions with fewer inter-

sample distances. Nevertheless, the EKO and Exponential models are more accurate 

than the rest of the models. 

4.3.1.2 Flat area  

In the second experiment, the errors of six models for the flat area are 

presented in Table 4.3.  

Table 4.3 The RMSE values for flat area based on DVC algorithm. 

Model Grid Size 

1x1 2x2 3x3 4x4 

Gaussian 15.4289 13.5957 14.4233 14.2205 

Spherical 28.4958 27.3271 19.5480 13.8819 

Exponential 4.0514 4.3451 4.5522 4.9203 

EPO 4.1754 4.3765 4.6604 5.0942 

EKO 4.0915 4.3093 4.5483 5.0525 

ETL 4.1754 4.3765 4.6604 5.0942 

*The unit of input data (meters). 

As we expected, the flat area yields smaller RMSE than the area with 

higher terrain variations like the mountainous area. The power of divide and conquer 

works in favour of error reduction of the first two models. On the other hand, the errors 
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of the four exponential-based models slightly increase when the grid size increases, yet 

the RMSEs are all less than 5.095. Note that the EKO slightly outperforms the 

Exponential model in some cases. Although the divide and conquer did not help our 

four exponential cases in terms of accuracy, the hidden benefit lies in the computational 

time. Hence, we chose to further investigate the EKO and the Exponential models as 

they performed very well in both the flat and mountainous areas. Later, in the SDVC 

algorithm, we will utilize both the EKO and the Exponential models in the algorithm. 

The remaining challenge is to make the EKO much more practical in terms of 

computational time. 

Table 4.4 The RMSE values and running time for two terrain types based on the EKO 

model of DVC algorithm. 

Grid 

Size 

RMSE Running Time (mins) 

Mountainous Flat Mountainous Flat 

1x1 5.0920 4.0915 7,705 7,650 

2x2 5.2163 4.3093 1,540 1,440 

3x3 5.3945 4.5483 104 109 

4x4 5.8938 5.0525 33 33 

*The unit of input data (meters). 

Table 4.5 provides a summary of six distinct models, along with a 

comparison of their advantages and disadvantages. The accuracy of Gaussian and 

Spherical models is inferior to that of Exponential, EPO, EKO, and ETL models. 

However, it is standard and available in multiple software packages. EKO and 

Exponential models have the highest accuracy among exponential-based models; 

however, in some instances, EKO outperforms Exponential. 

Therefore, we chose to further investigate the EKO and the Exponential 

models, given their accuracy is the highest among the six examined models. Later, in 

the SDVC algorithm, we will utilize both the EKO and the Exponential models in the 

algorithm. The remaining challenge is to make the EKO much more practical in terms 

of computational time.  
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Table 4.5 The pros and cons of six different models. 

Model Pros Cons 

Gaussian, 

Spherical 

Standard and accessible in 

several software programs 

Medium accuracy 

Exponential High accuracy Defeated by EKO 

in some cases 

EPO, ETL High accuracy 

(less than EKO) 

Time-consuming 

EKO High accuracy Time-consuming 

The third experiment in this section investigates the trade-off in accuracy 

and running time-based on the EKO model. Table 4.6 reveals that by increasing the 

grid size to 4x4, the computational time for the mountainous area is substantially 

reduced from 7,705 to 33 minutes (reduced by 233 times); and the computational time 

for the flat area is reduced from 7,650 to 33 minutes (reduced by 232 times). Both cases 

are in exchange for increasing errors where for some applications, these slight increases 

are acceptable. With these results, we are now ready to proceed with SDVC. 

4.3.2 Computational time versus grid sizes based on SDVC 

Except for a very large study area, keep dividing the area into grid sizes 

greater than 4x4 is not always a good idea as the errors also increase. In this experiment, 

we introduced a new way to improve the computational time. We will apply the SDVC 

algorithm presented in Section 4.3.3 with two different settings of slope threshold (α = 

5 and α = 8). The choice of 5% and 8% were inspired by the slope transition values in 

the slope classification (Elewa and Qaddah, 2011), which are typically described as 

gentle undulating (2-5%), undulating (5-8%), and rolling (8-15%). For further reading 

about the slope classification, we suggest studies on the landscape analysis of 

geographical names (Chen et al., 2014), effective identification of terrain positions from 

gridded DEM data (Jiang et al., 2018), and terrain classification divided into uniform 

slopes and basins (Iwahashi and Yamazaki, 2022). 
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Table 4.6 The RMSE values and running time for two terrain types based on SDVC 

algorithm with slope thresholds of 5% and 8% 

Grid 

size 

RMSE Running Time (mins) 

Mountainous Flat Mountainous Flat 

α = 5     

2x2 5.2262 4.3618 138 132 

3x3 5.3422 4.6567 15 14 

4x4 5.4435 4.8972 5 4 

α = 8     

2x2 5.2077 4.3618 128 125 

3x3 5.3429 4.6061 14 13 

4x4 5.3315 4.8439 4 4 

4.3.3 Slope threshold of 5%  

The result is shown in Table 4.6. By increasing the grid size from 2x2 to 

4x4, the error is increased by 0.2173 for the mountainous area and 0.5354 for the flat 

area. However, the computational time for the mountainous area is significantly 

reduced from 138 to 5 minutes (reduced by 28 times); and the computational time for 

the flat area is reduced from 132 to 4 minutes (reduced by 33 times). The computational 

time in the flat area is reduced because the SDVC algorithm splits the less complicated 

work for the Exponential model. In the next experiment, we will investigate the effect 

of increasing the slope threshold from 5% to 8%. We expect to reduce the 

computational time even more because the Exponential model will be used more in the 

sub-areas, hopefully within the acceptable trade-off in model accuracy. 

4.3.4 Slope threshold of 8% 

Table 4.6 also shows that for the slope threshold of 8% the error of grid 

size 4x4 is increased by 0.1238 for the mountainous area and 0.4821 for the flat area. 

The running time is slightly decreased. By increasing the grid size to 4x4, the 
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computational time is substantially reduced to 4 minutes. The waiting time is now much 

more practical but with the trade-off in model accuracy. However, there are non-

significant reductions in the running time. Therefore, we suggest not to go beyond the 

slope threshold of 8%. In fact, we recommend to trade-off at 8%, which we can gain 

reasonable computational time and acceptable accuracy. 

4.4 Discussion 

The discussion will be divided into 2 parts. Firstly, we will discuss the 

trade-off between accuracy and computational time. Secondly, the application in 

environmental management will be discussed in the section.  

4.4.1 Trade-off between accuracy and computational time  

Our proposed methods are designed specifically to handle both 

mountainous and flat areas. The accuracy of the proposed methods is significantly 

higher than the standard kriging models (Gaussian and Spherical). Considering the 

errors from the two areas, the RMSE values of Gaussian and Spherical models are in 

the range of 13.8819 – 36.4505, while our methods are only 4.0514 – 5.9978. In terms 

of the computational time, by increasing the grid size to 4x4 and applying the SDVC 

algorithm, the computational time is drastically reduced from 7,705 to 4 minutes for 

the mountainous area (reduced by 1,926 times); and from 7,650 to 4 minutes for the flat 

area (reduced by 1,913 times). However, it comes with a trade-off in model accuracy. 

For applications that require acceptably high accuracy and the waiting time is not an 

issue, we recommend using the DVC algorithm. For fast prediction, we suggest using 

the SDVC with a slope threshold of 8%, which we can gain relatively short 

computational time and reasonable accuracy. 

In addition, we managed to conduct a separate experiment to 

demonstrate that our exponential-based models also perform better than one of the 

previously published ones. Based on the SINENVAP algorithm (Guisande et al., 2019), 

when the optimal grid size is used, and the model is set to Exponential, the 

computational times for the mountainous and flat areas (based on the same dataset) are 

105 and 108 minutes, respectively. In terms of errors, there are non-significant 
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differences among algorithms. The RMSEs for the mountainous and flat areas are 

5.3957 and 4.4505, respectively 

For the equipment error and model error, most research (Li and Heap, 

2011) ignore equipment error and concentrate on model inaccuracy. Azimi et al. (2019) 

determined the overall uncertainty by combining experimental measurement error and 

model error. This thesis focuses on model error. For the whole uncertainty of our work, 

combine our model's and measurements' errors. 

4.5 Chapter Summary 

We presented two divide and conquer algorithms for the prediction of 

spatial heights. The first algorithm is called DVC. It contains six different kriging 

models to choose from. The evaluation revealed that the four exponential-based models 

(Exponential, EPO, EKO, and ETL) outperform the Gaussian and Spherical models in 

terms of accuracy. Among the exponential-based models, the two best performances 

are the EKO and Exponential models, which are later used in the second algorithm 

called SDVC. In terms of the computational time, the DVC algorithm substantially 

reduced the waiting time from 7,705 to 33 minutes. Moreover, the SDVC algorithm 

can reduce the waiting time further down to 4 minutes. This result is now much more 

practical (than in the previous work) but with a trade-off in model accuracy. In 

summary, we recommend using the SDVC algorithm with a slope threshold of 8% 

where we can gain fast computational time with only a marginal trade-off in model 

accuracy. In addition, we found that the divide and conquer design paradigm truly helps 

improve both the accuracy (in the case of the Gaussian and Spherical models) and the 

running time (in the case of the EKO and Exponential models), resulting in a practical 

application for landscape 3D visual assessment.  
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CHAPTER 5 

APPLICATION 

 

 

This chapter describes the application in environmental management, 

user interface, codes, and results. We developed a program to help us simulate all 

models studied in this research and implemented a JavaScript user interface for ease of 

entering the input data. 

5.1 Introduction 

Practically, the results from this thesis can be used for 3D landscape 

visualizations in environmental management. Inspecting a 3D surface plot helps reduce 

the construction risk of building infrastructures blocking flood flows in the study area. 

The 3D plots are also used in various fields such as flood protection (Ackere et al., 

2016; Bales et al., 2007; Krajewski et al., 2017; Yin et al., 2016) transport planning 

(Keler and Mazimpaka, 2016), and farming management (Reznik et al., 2017). 

However, environmental managers need accurate spatially continuous data across an 

area to make competent and confident decisions. Data collected from field surveys are 

often from sampled points. Thus, the values at unsampled points need to be interpolated 

to generate spatially continuous data. Accurately predicted points result in an accurate 

3D surface plot. Numerous previous works use available tools and programs. (Guisande 

et al., 2019; Kaya et al., 2019; Yu et al., 2021; Zerdoumi et al., 2022; Yu et al., 2022). 

However, our algorithm is not yet available anywhere. Therefore, we developed a 

program to help us simulate all models studied in this research. 

5.2 User Interface 

We choose to implement our model with Javascript as it is on the web 

application (Delcev et al., 2018; Kredpattanakul and Limpiyakorn, 2018; Ranjan et al., 

2020). For the first experiment with three novel kriging algorithms, we implemented a 

JavaScript user interface for entering the input data, as shown in Figure 5.1.  
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The program allows uploading the excel file from the Choose File 

button. Users can choose to manually guess the nugget, sill, and range values to 

compare and verify the accuracy of the original methods and our new interpolation 

methods.  

 

Figure 5.1 JavaScript user interface with three novel kriging algorithms. 

For the second experiment with two divide and conquer algorithms, we 

also developed an application for landscape 3D visual assessment which is 

implemented in JavaScript. On the top left of the program, users can select the grid 

sizes of 1x1, 2x2, 3x3, and 4x4 depending on their preferences in Figure 5.2. After 

selecting the grid sizes, users can select whether to use the DVC or SDVC algorithms 

 

Figure 5.2 JavaScript user interface with two divide and conquer algorithms.  
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5.3 Source Code 

We developed a program to help us simulate all models studied in this 

research and implemented it with JavaScript. The project creates by ReactJS. Firstly, 

users should install NodeJS on their computers. To start the project, in the project 

directory, users must run: npm install and npm start, then run the application in the 

development mode by opening the  http://localhost:3000 to view it in the browser. The 

page will reload the application if users make edits. Users will also see any list errors 

in the console.  

The first experiment of the thesis presents the three novel kriging 

algorithms. The source code of these algorithms is made accessible by following the 

link https://github.com/sukkuea/improved-kriging-algorithms. 

The second experiment of the thesis presents two more algorithms to 

reduce the computational time of our proposed algorithms. The source code of these 

algorithms is made accessible by following the link  
https://github.com/sukkuea/kriging-divide-and-conquer-algorithms 

The third experiment of the thesis presents the additional interpolated 

points algorithm. The source code of these algorithms is made accessible by following 

the link https://github.com/sukkuea/kriging-additional-interpolated-points-algorithm 

5.4 Results 

The output windows are displayed in Figure 5.3 – Figure 5.5. The bottom 

part of the output window also indicates how the polynomial trend line fits in the ETL 

model. Note that in Algorithm 3, we use this kind of line to re-compute the semivariance 

and the better version of the weight vector. Finally, the predicted heights, together with 

error assessments, semivariograms and 3D surface plots, are available for supporting 

decision-making. 

For the second experiment with two divide and conquer algorithms, the 

output window is displayed in Figure 5.6. The contour examples of Gaussian, Spherical, 

Exponential, EPO, EKO, and ETL models for the mountainous and flat areas are shown 

in Figures 5.7 and 5.8. The 3D surface plot examples of Gaussian, Spherical, 

Exponential, EPO, EKO, and ETL models for the mountainous and flat areas are shown 

https://reactjs.org/
https://nodejs.org/en/
http://localhost:3000/
https://github.com/sukkuea/improved-kriging-algorithms
https://github.com/sukkuea/kriging-divide-and-conquer-algorithms
https://github.com/sukkuea/kriging-additional-interpolated-points-algorithm
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in Figures 5.9 and 5.10. In particular, we showed the results of the 3D surface plot from 

SDVC algorithms for both areas in Figures 5.11 and 5.12. Our program supports 

different needs of algorithms for different applications. The DVC is suitable for 

applications that need high accuracy and has a variety of six kriging models to choose 

from. The SDVC is suitable for applications that require fast computation. It combined 

the strengths of the EKO, which works well on different datasets and terrain variations, 

and the Exponential model, which requires less computational time. 

 

Figure 5.3 The 3D surface plot of the study area. 

 

Figure 5.4 Different views for landscape visualization. 
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Figure 5.5 The main window for displaying outputs with three novel kriging 

algorithms. 
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Figure 5.6 The main window for displaying outputs with the divide and conquer 

algorithms. 
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Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure 5.7 The contour from DVC with grid size of 4x4 in the mountainous area. 
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Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure 5.8 The contour from DVC with grid size of 4x4 in the flat area. 
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Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure 5.9 The 3D surface plot from DVC models with grid size of 4x4 in the 

mountainous area. 
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Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure 5.10 The 3D surface plot from DVC with grid size of 4x4 in the flat area. 
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Figure 5.11 The 3D surface plot from SDVC with grid size of 4x4 in the mountainous 

area. 

 

Figure 5.12The 3D surface plot from SDVC with grid size of 4x4 in the flat area. 
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5.5 Additional Interpolated Points 

For testing the effectiveness of our two divide and conquer algorithms 

in practice, we add 500 interpolated points into the existing data points. These 

interpolated points were from iteratively running our algorithms for randomly selected 

x and y coordinates in the study areas. We expect better accuracy in our 3D surface 

point with these additional points. Figures 5.13 and 5.14 provide 3D surface plot 

examples of Gaussian, Spherical, Exponential, EPO, EKO, and ETL models for 

mountainous and flat areas by adding 500 interpolated points. Specifically, we 

presented in Figures 5.15 and 5.16 the results of the 3D surface plot generated by SDVC 

algorithms for each region. 

Our additional interpolated points have improved the accuracy of our 3D 

models. The resultant 3D surface plot has more details than the prior experiment 

because there are more points which give a better landscape visual assessment. The 

DVC with additional interpolated points is suitable for applications demanding a higher 

level of detail which supports six various kriging models. The SDVC with extra 

interpolated points is recommended for applications that require fast calculations where 

the models are fixed to EKO and Exponential.  
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Spherical EKO 

 

 

 

 

Exponential ETL 

Figure 5.13 The 3D surface plot with additional interpolated points of DVC with grid 

size of 4x4 in the mountainous area. 
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Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure 5.14 The 3D surface plot with additional interpolated points of DVC with grid 

size of 4x4 in the flat area. 



73 

 

 

Figure 5.15 The 3D surface plot with additional interpolated points of SDVC with grid 

size of 4x4 in the mountainous area. 

 

 

Figure 5.16 The 3D surface plot with additional interpolated points of SDVC with grid 

size of 4x4 in the flat area. 
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CHAPTER 6 

CONCLUSION 

 

 

This chapter describes the summary and discussion of the proposed 

algorithms studied in this research. Then, we conclude all contributions, limitations and 

future works. 

6.1 Overall Discussion 

We will discuss whether this research has met all of the objectives 

mentioned in Chapter 1. Referring to the first objective, it is to design novel algorithms 

for spatial interpolation techniques based on the kriging model. Our main contributions 

are the proposal of three novel kriging algorithms based on exponential 

semivariograms. We proposed three alternative kriging algorithms. The proposed 

kriging models are Exponential with Parameter Optimizer (EPO) model, Exponential 

with k-Iterations Optimizer (EKO) model, and Exponential with Polynomial-Trend 

Line (ETL) model. Our algorithms are easy to use because there is no need to specify 

nugget, sill, and range values. The three variants compute the optimal values of kriging 

parameters automatically and predict the unknown value at the unsampled location. 

The second objective is to improve the accuracy of the kriging 

interpolation with our technique. The performance is evaluated by error reduction that 

eight models can perform. The strengths of each model are analyzed based on a 

different set of sample sizes coming from two zones of study areas. The resulting errors 

of our proposed methods are relatively small. The lower bounds of the 95% confidence 

interval of our models are mostly lower than all five contemporary models. However, 

in general, the result shows not many significant differences among models. The best 

result of our three methods appeared in Chapter 3. 

The third objective is to implement the proposed algorithm and compare 

the performance with existing methods. Our result showed that the errors of our three 

methods are exceptionally small when comparing with the five conventional models, 

namely, Linear, Spherical, Pentaspherical, Gaussian, and classical Exponential models. 
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Statistically speaking, when the sample size is sufficiently large, it can be 95% certain 

that the EPO, EKO, and ETL models are more accurate than the Spherical, 

Pentaspherical, and Gaussian models. 

The fourth objective is to improve the computational time of our 

proposed method. We presented two divide and conquer algorithms for the prediction 

of spatial heights. The first algorithm is called DVC. It contains six different kriging 

models to choose from. The evaluation revealed that the four exponential-based models 

(Exponential, EPO, EKO, and ETL) outperform the Gaussian and Spherical models in 

terms of accuracy. Among the exponential-based models, the two best performances 

are the EKO and Exponential models which are later used in the second algorithm 

called SDVC. In terms of the computational time, the DVC algorithm substantially 

reduced the waiting time from 7,705 to 33 minutes. Moreover, the SDVC algorithm 

can reduce the waiting time further down to 4 minutes. 

The final objective is to apply the proposed algorithm to create a better 

3D surface plot. The practical benefit of our results is in the area of improving the 3D 

surface plot as the number of unknown points can be predicted, so the plot can be filled 

with more points resulting in a more accurate plot. In addition, we found that the divide 

and conquer design paradigm truly helps improve both the accuracy (in the case of the 

Gaussian and Spherical models) and the running time (in the case of the EKO and 

Exponential models), resulting in a practical application for landscape 3D visual 

assessment. 

  



76 

 

6.2 Research Contribution 

The research has proposed three novel algorithms for spatial 

interpolation methods using kriging models and presents two more algorithms with the 

aim of reducing the computational time of our proposed algorithms. All contributions 

in different aspects are summarized below. 

6.2.1 Three alternative kriging algorithms 

Three kriging algorithms were present in Chapter 3. These three variants 

compute the optimal values of kriging parameters automatically and predict the 

unknown value at the unsampled location. The proposed kriging models are 

Exponential with Parameter Optimizer (EPO) model, Exponential with k-Iterations 

Optimizer (EKO) model, and Exponential with Polynomial-Trend Line (ETL) model. 

6.2.2 Divide and conquer design paradigm 

The algorithms were present in Chapter 4. We proposed the divide and 

conquer design paradigm that can significantly reduce the computational time by 

mathematically decreasing the size of the distance matrix in our proposed models. Two 

algorithms are presented. The first algorithm divides the area into the smaller grid cell 

size and interpolates the points in each cell with our proposed methods, and the second 

algorithm improves the first one by introducing a slope parameter in the given cell. 

6.2.3 New parameter of the terrain slope 

We proposed a new parameter called β, a slope of terrain in the given 

cell which is calculated based on Equation (4.1) in Chapter 4. The slope is used to 

control the accuracy of the model in the SDVC algorithm. If the β value in a cell exceeds 

the specified slope (α), the algorithm will select the EKO model that works well in areas 

with high terrain variations.  

6.2.4 Application  

The program was presented in Chapter 5. The application is available as 

a web-based program where users can run and test their data online. It is an alternative 

choice for users who prefer a lightweight application that does not require installing 

additional packages or libraries. 
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6.3 Algorithms Limitations  

Although the proposed algorithms for spatial interpolation methods 

using kriging models have a lot of advantages.  There are some boundaries to the 

proposed algorithms. The limitations of the proposed algorithms are as follows. 

1) The study area with large-scale data required a high-performance 

computer and waiting time to finish the model surface plot. 

2) The original program is not supported or on the extension of the 

Geographic Information System (GIS) software. 

3) The program is supported the maximum grid size of 4x4; some 

problems require more grid size to reduce the computational time by 

using our proposed algorithms. 

6.4 Future Works 

Novel algorithms for spatial interpolation techniques based on the 

kriging model still provide much potential to develop our area of research. The 

proposed future works are as follows. 

1) To apply other kriging methods such as simple kriging and universal 

kriging for spatial interpolation techniques. 

2) To combine the parameter estimation such as the maximum 

likelihood estimation technique into our algorithms. 

3) To develop a system to create a better 3D surface plot for both large-

scale and small-scale data. 

4) To consider different parameter estimations for each grid cell. 
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APPENDICES A 

The 3D surface plot of 8 models for 31 and points in zone 1 and 2 
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Figure A1 The 3D surface plot of 8 models for 31 points in zone 1. 
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Figure A2 The 3D surface plot of 8 models for 31 points in zone 2. 
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Figure A3 The 3D surface plot of 8 models for 51 points in zone 1. 
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Figure A4 The 3D surface plot of 8 models for 51 points in zone 2. 
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APPENDICES B 

The contour from DVC with grid size of 1x1, 2x2, and 3x3 in the 

mountainous and flat area. 
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Figure B1 The contour from DVC with grid size of 1x1 in the mountainous area. 
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Figure B2 The contour from DVC with grid size of 2x2 in the mountainous area. 
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Figure B3 The contour from DVC with grid size of 3x3 in the mountainous area. 
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Figure B4 The contour from DVC with grid size of 1x1 in the flat area. 



96 

 

 

 

 

 

Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure B5 The contour from DVC with grid size of 2x2 in the flat area. 
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Figure B6 The contour from DVC with grid size of 3x3 in the flat area. 
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APPENDICES C 

The 3D surface plot from DVC with grid size of 1x1, 2x2, and 3x3 in 

the mountainous and flat area 
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Figure C1 The 3D surface plot from DVC with grid size of 1x1 in the mountainous 

area. 



100 

 

 

 

 

 

Gaussian EPO 

 

 

 

 

Spherical EKO 

 

 

 

 

Exponential ETL 

Figure C2 The 3D surface plot from DVC with grid size of 2x2 in the mountainous 

area. 
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Figure C3 The 3D surface plot from DVC with grid size of 3x3 in the mountainous 

area. 
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Figure C4 The 3D surface plot from DVC with grid size of 1x1 in the flat area. 
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Figure C5 The 3D surface plot from DVC with grid size of 2x2 in the flat area. 
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Figure C6 The 3D surface plot from DVC with grid size of 3x3 in the flat area. 
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