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ABSTRACT

In this thesis, we use the invariant subspace method to find the solu-

tions of three classes of fractional telegraph equations, i.e., space-, time-, and space

and time-fractional telegraph equations, in which fractional derivatives are consid-

ered in the Caputo sense. In this method, we first classify all possible invariant

subspaces with respect to the differential operator. By assuming the solution to be a

linear combination of functions in the appropriate invariant subspace, the fractional

telegraph equation is reduced to a system of fractional ordinary differential equa-

tions. Finally, solving the system of fractional ordinary differential equations yields

the solution of fractional telegraph equation.
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Chapter 1

Introduction

1.1 Background and significance

Diffusion is one of the most ubiquitous phenomena that has been

observed in many branches of science and engineering. In general, most diffusion

processes are studied under the assumption that the diffusion is normal-the mean

square displacement of a randomly walking particle grows linearly with time. In

addition, in the process, the particle can wait between successive jumps and the

jump size distribution must have finite moments. However, in some cases, these

conditions are not met, for example, anomalous diffusion, which is characterized

by power laws with exponents not equal to one [1, 2]. Mathematically, anomalous

diffusion is usually described by fractional partial differential equations, in which

the integer order derivatives are replaced by fractional order derivatives in time.

The telegraph equation is a simple example of a diffusion-like pro-

cess, which has characteristics of both wave motion and diffusion. For this reason, it

has been used to describe in various fields of applied science and engineering, for in-

stance, the diffusion of light in turbid [3, 4], distribution of organisms [5], population

dynamics [6] and hyperbolic heat transfer [7, 8].

In the previous works, Momani [9] used the Adomian decomposition

method to derive the analytical and approximate solutions of the space- and time-

fractional telegraph equations. By using the separation of variables method, Chen et

al. [10] solved the time-fractional telegraph equation with certain non-homogeneous

boundary conditions. Srivastava et al. [11] used the reduced differential transfor-

mation method to find the approximate solutions of the time-fractional telegraph

equations. Kumar [12] derived the analytical and approximate solutions of the space-
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fractional telegraph equation by using the homotopy analysis and Laplace transform

methods. Das et al. [13] obtained the approximate solutions of time-fractional tele-

graph equation by applying the homotopy analysis method.

The invariant subspace method was initially proposed by Galaktinov

and Svirshchevskii [14] for solving non-linear partial differential equations. Later

on, it was extended by many authors [15, 16, 17, 18] to construct exact solutions for

fractional partial differential equations.

In this thesis, we apply the invariant subspace method to find exact

solutions of three classes of fractional telegraph equations as follows

1. The space-fractional telegraph equation of the form

∂2αu

∂x2α
=
∂2u

∂t2
+ a

∂u

∂t
+ bu+ f(x, t), x > 0, t > 0,

where a, b are constants, f is a function of x and t, and 0 < α ≤ 1 is the order

of the space-fractional derivative.

2. The time-fractional telegraph equation of the form

∂2u

∂x2
=
∂2βu

∂t2β
+ a

∂βu

∂tβ
+ bu+ f(x, t),

where 0 < β ≤ 1 is the order of the time-fractional derivative.

3. The space and time-fractional telegraph equation of the form

∂2αu

∂x2α
=
∂2βu

∂t2β
+ a

∂βu

∂tβ
+ bu+ f(x, t),

where 0 < α ≤ 1, 0 < β ≤ 1 are the order of the space- and the time-

fractional derivatives, respectively.

In order to solve these problems by using the invariant subspace

method, first, we choose the differential operator and classify all possible invari-

ant subspaces. By choosing an appropriate invariant subspace, the solution can be

assumed as a linear combination of the elements in it. Then the fractional telegraph

equation can be reduced to a system of fractional ordinary differential equations.

Finally, solving this system by using the Laplace transform method, we obtain the

solution of fractional telegraph equation.
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1.2 Objective of study

The objective of this thesis is to show how the invariant subspace

method provides exact solutions for space-, time-, and space and time-fractional

telegraph equations.

1.3 Expected advantage of this study

We will apply the invariant subspace method to find exact solutions

of three classes of fractional telegraph equations, i.e., space-, time-, and space and

time-fractional telegraph equations.



Chapter 2

Preliminaries

In this chapter, we introduce some basic definitions of fractional in-

tegrals and derivatives and some useful properties.

2.1 Definitions and Properties

Definition 2.1.1. Suppose that α and t are positive real numbers. The Riemann-

Liouville fractional integral is defined by

Jαf(t) =
1

Γ(α)

∫ t

0

f(x)

(t− x)1−α
dx,

where

Γ(α) =

∫ +∞

0

tα−1e−tdt,

is the Gamma function.

Definition 2.1.2. Riemann-Liouville fractional derivative of order α > 0 of the func-

tion f is defined by

Dαf(t) =

 dn

dtn
Jn−αf(t), n− 1 < α < n, n ∈ N,

dn

dtn
f(t), α = n.

Definition 2.1.3. Caputo fractional derivative of order α > 0 of the function f is

defined by

Dα
∗ f(t) =

Jn−α dn

dtn
f(t), n− 1 < α < n, n ∈ N,

dn

dtn
f(t), α = n.
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Example 2.1.4. Let n = 1, 0 < α < 1, c ∈ R.

(1) The Caputo fractional derivative of constant is

Dα
∗ c =

1

Γ(1− α)

∫ t

0

dc

dx
(t− x)α+1−1dx = 0.

(2) The Riemann-Liouville fractional derivative of constant is

Dαc =
1

Γ(1− α)

d

dt

∫ t

0

c

(t− x)α
dx

= − c

Γ(1− α)

d

dt

[
− t1−α

1− α

]
=

c

Γ(1− α)
t−α.

Example 2.1.5. Let n = 1, 0 < α < 1, f(t) = t.

(1) The Caputo fractional derivative of the function f(t) = t is

Dα
∗ t =

1

Γ(1− α)

∫ t

0

dx

dx
(t− x)α

dx

=
1

Γ(1− α)

∫ t

0

1

(t− x)α
dx

=
1

(1− α)Γ(1− α)
t1−α

=
1

Γ(2− α)
t1−α.

(2) The Riemann-Liouville fractional derivative of the function f(t) = t is

Dαt =
1

Γ(1− α)

d

dt

∫ t

0

x

(t− x)α
dx︸ ︷︷ ︸

A

Let u = x⇒ du = dx, dv =
1

(t− x)α
dx⇒ v = − 1

1− α
(t− x)1−α

A = − x

1− α
(t− x)1−α

∣∣∣∣t
0

+
1

1− α

∫ t

0

(t− x)1−αdx =
t2−α

(1− α)(2− α)
.

We obtain

Dαt =
1

Γ(1− α)

d

dt

[
t2−α

(1− α)(2− α)

]
=

1

Γ(2− α)
t1−α.
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In general case, the Riemann-Liouville and Caputo fractional derivative of the

power function can be shown as follows:

Proposition 2.1.6. The Riemann-Liouville fractional derivative of power function

satisfies

Dαtβ =
Γ(β + 1)

Γ(β − α + 1)
tβ−α, n− 1 < α < n, β > −1, β ∈ R.

Proposition 2.1.7. The Caputo fractional derivative of the power function satisfies

Dα
∗ t
β =


Γ(β + 1)

Γ(β − α + 1)
tβ−α, n− 1 < α < n, β > n− 1, β ∈ R

0, n− 1 < α < n, β ≤ n− 1, β ∈ N.

Definition 2.1.8. [18, 19] Two-parameter function of Mittag-Leffler type is defined

as

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
, α, β, z ∈ C, Re(α) > 0, Re(β) > 0, (2.1)

e.g.

• E1,1(z) = ez

• E2,1(z
2) = cosh(z)

• E2,1(−z2) = cos(z)

• z2E2,3(z
2) = E2,1(z

2)− 1

• E1,2(z) =
ez − 1

z

• E2,2(z
2) =

sinh(z)

z

• E2,2(−z2) =
sin z

z

• (−2z)E1,2(−2z) = E1,1(−2z)− 1.

The n-th order derivative of Eα,β(z) is given by

E
(n)
α,β(z) =

dn

dzn
Eα,β(z) =

∞∑
k=0

(k + n)!zk

k!Γ(αk + αn+ β)
, n = 0, 1, 2, · · · . (2.2)

Derivative of Mittag-Leffler function is given by

dα

dzα

[
Eα,1(az

α)

]
= aEα,1(az

α), Re(α) > 0, a ∈ R.

Proposition 2.1.9. Let n− 1 < α ≤ n, n ∈ N. The Laplace transform of the Caputo

derivative of order α is defined as

L
{
dαf

dxα
; s

}
= sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), (2.3)
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where F (s) is the Laplace transform of f.

Let α, β, λ ∈ R, α, β > 0, n ∈ N. Then the Laplace transform of the two-

parameter function of Mittag-Leffler type (2.2) is given by

L{zαn+β−1E(n)
α,β(±λzα); s} =

n!sα−β

(sα ∓ λ)n+1
, Re(s) > |λ|1/α, (2.4)

when n = 0, we have

L{zβ−1Eα,β(±λzα); s} =
sα−β

sα ∓ λ
. (2.5)

Example 2.1.10. Let n = 1. Find the solution of this problem
dαy

dxα
= y(x),

y(0) = 1.
(2.6)

Applying the Laplace transform yields

sαY (s)− sα−1y(0) = Y (s)

Y (s) =
sα−1

sα − 1

By using (2.5), we have

Y (s) = L
{
Eα,1(x

α)}.

Taking inverse Laplace transform, we get

y(x) = Eα,1(x
α),

which is the solution of this problem.

If α = 1, then the solution of ordinary differential equation is

y(x) = E1,1(x) = ex.

2.2 Invariant Subspace Method

Consider evolution partial differential equation of the form

ut = F [u], (2.7)

where F is non-linear differential operator of order k, that is,

F [u] = F (x, u, ux, ..., ∂
k
xu), ∂kxu =

∂ku

∂xk
.
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Let Wn be a finite dimensional linear space spanned by linearly independent func-

tions f1(x), f2(x), ..., fn(x), that is,

Wn = L
{
f1(x), f2(x), ..., fn(x)

}
=

{ n∑
i=1

cifi(x)| ci ∈ R, i = 1, 2, ..., n

}
.

Definition 2.2.1. A finite dimensional linear space Wn is said to be invariant with

respect to a differential operator F if F [Wn] ⊆ Wn, that is, F [u] ∈ Wn for all

u ∈ Wn.

As a means to solve the equation (2.7), we suppose that Wn is an invariant sub-

space with respect to a given operator F if F [Wn] ⊆ Wn and then the operator F is

said to preserve or admit Wn which means:

F [u] = F

[ n∑
i=1

ci(t)fi(x)

]
=

n∑
i=1

Ψi

(
c1(t), c2(t), ..., cn(t)

)
fi(x), (2.8)

where {Ψi} are the expansion coefficients of F [u] ∈ Wn on the basis {fi}.
We assume the solution of equation (2.7) to be a combination of functions in Wn,

that is,

u(x, t) =
n∑
i=1

ci(t)fi(x), (2.9)

where fi(x) ∈ Wn, i = 1, 2, ..., n.

Since Wn is invariant subspace under the operator F, we obtain equation (2.8).

By substituting equation (2.8) and (2.9) into (2.7), we get

n∑
i=1

c′i(t)fi(x) =
n∑
i=1

Ψi

(
c1(t), c2(t), ..., cn(t)

)
fi(x)

n∑
i=1

[
c′i(t)−Ψi

(
c1(t), c2(t), ..., cn(t)

)]
fi(x) = 0.

Since f1(x), f2(x), ..., fn(x) are linearly independent functions, we obtain a system

of ordinary differential equations

c′i(t) = Ψi(c1(t), c2(t), ..., cn(t)), i = 1, 2, ..., n.

Finally, by solving this system, we obtain the desired solution (2.9).
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Example 2.2.2. (Galaktionov and Svirshchevskii [14]) Consider a non-linear diffu-

sion equation

vt =
(
vσvx

)
x
− v1−σ, σ > 0. (2.10)

By using the transformation u = vσ ⇒ v = u
1
σ and vt = 1

σ
u

1
σ
−1ut, we get

(
vσvx

)
x
− v1−σ =

(
1

σ
uu

1
σ
−1ux

)
x

− u
1
σ
−1

=
1

σ

[
1

σ
u

1
σ
−1u2x + uxxu

1
σ

]
− u

1
σ
−1.

Substituting these terms into (2.10), the equation (2.10) turns to be

ut = uuxx +
1

σ
(ux)

2 − σ. (2.11)

We choose the operator

F [u] = uuxx +
1

σ
(ux)

2 − σ.

The subspace W2 = L{1, x2} is invariant under F because

F [c1 + c2x
2] = (c1 + c2x

2)
d2

dx2

[
c1 + c2x

2

]
+

1

σ

[
d

dx

(
c1 + c2x

2
)]2
− σ

=
(
2c1c2 − σ

)
+ 2

(
1 +

2

σ

)
c22x

2 ∈ W2.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W2, that is,

u(x, t) = c1(t) + c2(t)x
2.

Substituting u(x, t) into the equation (2.11) , we obtain

c′1(t) + c′2(t)x
2 = 2c1(t)c2(t)− σ + 2

(
1 +

2

σ

)
c22(t)x

2[
c′1(t)− 2c1(t)c2(t) + σ

]
+

[
c′2(t)− 2

(
1 +

2

σ

)
c22(t)

]
x2 = 0.

Since 1 and x2 are linearly independent functions, we obtain a system of ordinary

differential equations

c′1(t) = 2c1(t)c2(t)− σ, (2.12)

c′2(t) = 2

(
1 +

2

σ

)
c22(t). (2.13)
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Taking integral to both sides of equation (2.13) yields∫
1

c22(t)
c′2(t)dt =

∫
2

(
1 +

2

σ

)
dt

− 1

c2(t)
= 2

(
1 +

2

σ

)
t

c2(t) = − σ

2(σ + 2)t
.

Substituting c2(t) into equation (2.12), we get

c′1(t) +
σ

(σ + 2)t
c1(t) = −σ, (2.14)

which is the first order linear differential equation of the form

y′ + p(t)y = q(t),

where p(t) =
σ

(σ + 2)t
and q(t) = −σ.

Then the general solution is

c1(t) = y(t) = e−P (t)

∫
q(t)eP (t)dt,

where

P (t) =

∫
p(t)dt =

∫
σ

(σ + 2)t
dt =

σ

(σ + 2)
ln t.

So, we obtain

c1(t) = e
−

σ

(σ + 2)
ln t
[
− σ

∫
e

σ

(σ + 2)
ln t

dt

]

= t
−

σ

σ + 2
[
− σ

∫
t

σ

σ + 2dt

]

= t
−

σ

σ + 2
[
− σ(σ + 2)

2σ + 2
t

2σ + 2

σ + 2 +B

]

= Bt
−

σ

σ + 2 − σ(σ + 2)

2(σ + 1)
t,

where B is an arbitrary constant.

Hence, the solution of the equation (2.11) is

u(x, t) = Bt
−

σ

σ + 2 − σ(σ + 2)

2(σ + 1)
t− σ

2(σ + 2)t
x2.

Therefore, the solution of the equation (2.10) is

v(x, t) =

[
Bt
−

σ

σ + 2 − σ(σ + 2)

2(σ + 1)
t− σ

2(σ + 2)t
x2
] 1

σ
.



Chapter 3

Explicit solution of fractional
telegraph equations

In this chapter, we show how the invariant subspace can be extended

to three classes of fractional telegraph equations, i.e., space-, time-, and space- and

time telegraph equations.

3.1 The space-fractional telegraph equations

Consider the space-fractional telegraph equation with 0 < α ≤ 1

∂2αu

∂x2α
=
∂2u

∂t2
+
∂u

∂t
+ u, x > 0, t > 0, (3.1)

where
∂2α

∂x2α
is a space-fractional derivative in the Caputo sense. Now, we denote the

left side of equation (3.1) by

F [u] =
∂2u

∂t2
+
∂u

∂t
+ u. (3.2)

The following theorem shows an exact solution to the space-fractional telegraph

equation (3.1) by using the invariant subspace method.

Theorem 3.1.1. The space-fractional telegraph equation (3.1) admits a solution of

the form

u(x, t) = c1(x) + c2(x)t+ · · ·+ cn+1(x)tn,

where ci(x), i = 1, ..., n + 1 are solutions of the following system of fractional
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ordinary differential equations

d2αc1(x)

dxα
= 2c3(x) + c2(x) + c1(x),

d2αc2(x)

dxα
= 6c4(x) + 2c3(x) + c2(x),

...
d2αcn+1(x)

dxα
= cn+1(x).

(3.3)

Proof. The operator F [.] defined by (3.2) is invariant under Wn = L{1, t, · · · , tn}
because

F (c1 + c2t+ · · ·+ cn+1t
n) = (2c3 + c2 + c1) + (6c4 + 2c3 + c2)t

+ · · ·+ cn+1t
n ∈ Wn.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace Wn, that is,

u(x, t) = c1(x) + c2(x)t+ · · ·+ cn+1(x)tn. (3.4)

Then we have

F [u(x, t)] =
[
2c3(x) + c2(x) + c1(x)

]
+
[
6c4(x) + 2c3(x) + c2(x)

]
t

+ · · ·+ cn+1(x)tn. (3.5)

Taking the fractional derivative of order 2αwith respect to x in both sides of equation

(3.4), we obtain

d2αu(x, t)

dx2α
=
d2αc1(x)

dx2α
+
d2αc2(x)

dx2α
t+ · · ·+ d2αcn+1(x)

dx2α
tn. (3.6)

Substituting equation (3.6) and (3.5) into the equation (3.1), we get[
d2αc1(x)

dx2α
− 2c3(x)− c2(x)− c1(x)

]
+ t

[
d2αc2(x)

dx2α
− 6c4(x)− 2c3(x)− c2(x)

]
+ · · ·+ tn

[
d2αcn+1(x)

dx2α
− cn+1(x)

]
= 0.

Since 1, t, · · · , tn are linearly independent functions, we obtain a system of fractional

ordinary differential equations (3.3).
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Remark 3.1.2. Under the operator (3.2), there are several invariant subspaces which

can be proved in a similar way. In below, we classify some invariant subspaces with

respect to the operator (3.2).

1. The subspace W2 = L{1, eat}, a 6= 0 is invariant under F because

F (c1 + c2e
at) = c1 + (a2c2 + ac2 + c2)e

at ∈ W2.

2. The subspace W 1
3 = L{1, sin(at), cos(at)}, a 6= 0 is invariant under F be-

cause

F [c1 + c2 sin(at) + c3 cos(at)] = c1 + [c2 − ac3 − a2c2] sin(at)

+ [c3 + ac2 − a2c3] cos(at) ∈ W 1
3 .

3. The subspace W 2
3 = L{1, sinh(at), cosh(at)}, a 6= 0 is invariant under F

because

F [c1 + c2 sinh(at) + c3 cosh(at)] = c1 + [c2 + ac3 + a2c2] sinh(at)

+ [c3 + ac2 + a2c3] cosh(at) ∈ W 2
3 .

4. The subspace W 3
3 = L{1, eat, teat}, a 6= 0 is invariant under F because

F [c1 + c2e
at + c3te

at] = c1 + [(1 + a+ a2)c2 + (1 + 2a)c3]e
at

+ c3(1 + a+ a2)teat ∈ W 3
3 .

5. The subspace W 4
3 = L{1, eat cos bt, eat sin bt}, a, b 6= 0 is invariant under F

because

F [c1 + c2e
at cos bt+ c3e

at sin bt]

= c1 + [c2 + (ac2 + bc3) + (a2c2 + b2c2)]e
at cos bt

+ [c3 + (ac3 − bc2)− (abc2 + b2c3)

+ (a2c3 − abc2)]eat sin bt ∈ W 4
3 .

The advantage of these different invariant subspaces is that, by choosing an ap-

propriate invariant subspace, we can solve the space-fractional telegraph equation

subject to different boundary conditions.



14

Next, we will apply the invariant subspace method to solve some examples as

follows:

Example 3.1.3. (Momani [9]) Consider the space-fractional telegraph equation with

0 < α ≤ 1

∂2αu

∂x2α
=
∂2u

∂t2
+
∂u

∂t
+ u, x > 0, t > 0, (3.7)

subject to the boundary conditions

u(0, t) = e−t,
∂u(0, t)

∂x
= e−t.

Under the operator

F [u] =
∂2u

∂t2
+
∂u

∂t
+ u,

we choose the invariant subspace

W2 = L{1, e−t}.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W2, that is,

u(x, t) = a(x) + b(x)e−t.

By using the boundary conditions

• u(0, t) = e−t, that

a(0) + b(0)e−t = e−t ⇒ a(0) = 0, b(0) = 1,

• ∂

∂x
u(0, t) = e−t, that

a′(0) + b′(0)e−t = e−t ⇒ a′(0) = 0, b′(0) = 1.

Substituting u(x, t) into the equation (3.7), we get

d2α

dx2α
a(x) + e−t

d2α

dx2α
b(x) = a(x) + b(x)e−t[

d2α

dx2α
a(x)− a(x)

]
+ e−t

[
d2α

dx2α
b(x)− b(x)

]
= 0.

Since 1 and e−t are linearly independent functions, we obtain a system of space-

fractional ordinary differential equations

d2α

dx2α
a(x) = a(x), a(0) = a′(0) = 0, (3.8)

d2α

dx2α
b(x) = b(x), b(0) = b′(0) = 1. (3.9)
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Applying the Laplace transform to both sides of equation (3.8), we obtain

L
{
d2αa(x)

dx2α
; s

}
= L

{
a(x); s

}
s2αA(s)− s2α−1a(0)− s2α−2a′(0) = A(s)

A(s) = 0,

where A(s) is the Laplace transform of a(x).

Taking inverse Laplace transform yields

a(x) = 0.

Applying the Laplace transform to both sides of equation (3.9), we obtain

L
{
d2αb(x)

dx2α
; s

}
= L

{
b(x); s

}
s2αB(s)− s2α−1b(0)− s2α−2b′(0) = B(s)

B(s) =
s2α−1

s2α − 1
+

s2α−2

s2α − 1
,

where B(s) is the Laplace transform of b(x).

By using (2.5), we have

B(s) = L{E2α,1(x
2α); s}+ L{xE2α,2(x

2α); s}.

Taking inverse Laplace transform, we get

b(x) = E2α,1(x
2α) + xE2α,2(x

2α).

Therefore, the exact solution of equation (3.7) is

u(x, t) = e−t
[
E2α,1(x

2α) + xE2α,2(x
2α)
]
,

which is the same solution obtained by the Adomian decomposition method by Mo-

mani [9].

In particular, if α = 1, then the exact solution of classical telegraph equation is

u(x, t) = e−t
[
E2,1(x

2) + xE2,2(x
2)
]

= e−t
[

coshx+ sinhx
]

= ex−t.
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Example 3.1.4. (Momani [9]) Consider the non-homogeneous space-fractional tele-

graph equation with 0 < α ≤ 1

∂2αu

∂x2α
=
∂2u

∂t2
+
∂u

∂t
+ u− x2 − t+ 1, x > 0, t > 0, (3.10)

subject to the boundary conditions

u(0, t) = t,
∂u(0, t)

∂x
= 0.

Under the operator

F [u] =
∂2u

∂t2
+
∂u

∂t
+ u,

we choose the invariant subspace

W 1
2 = L{1, t}.

Now, we assume the solution u(x, t) as a linear combination of functions in the

invariant subspace W 1
2 , that is,

u(x, t) = a(x) + b(x)t.

Using the boundary conditions

• u(0, t) = t⇒ a(0) + b(0)t = t⇒ a(0) = 0, b(0) = 1,

• ∂u(0, t)

∂x
= 0⇒ a′(0) + b′(0)t = 0⇒ a′(0) = 0, b′(0) = 0.

Substituting u(x, t) into the equation (3.10), we get

d2α

dx2α
a(x) + t

d2α

dx2α
b(x) + x2 + t− 1 = b(x) + a(x) + b(x)t[

d2α

dx2α
a(x)− a(x)− b(x) + x2 − 1

]
+ t

[
d2α

dx2α
b(x)− b(x) + 1

]
= 0.

Since 1 and t are linearly independent functions, we obtain a system of space-

fractional ordinary differential equations

d2αa(x)

dx2α
= a(x) + b(x)− x2 + 1, a(0) = a′(0) = 0, (3.11)

d2αb(x)

dx2α
= b(x)− 1, b(0) = 1, b′(0) = 0. (3.12)
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Applying the Laplace transform to both sides of equation (3.12), we get

L
{
d2αb(x)

dx2α
; s

}
= L

{
b(x); s

}
− L{1}

s2αB(s)− s2α−1b(0)− s2α−2b′(0) = B(s)− 1

s

B(s) =
s2α−1

s2α − 1
− 1

s(s2α − 1)

=
s2α−1

s2α − 1
−
[
s2α−1

s2α − 1
− 1

s

]
=

1

s
= L{1}.

Taking inverse Laplace transform yields

b(x) = 1.

Substituting b(x) into the equation (3.11) and applying the Laplace transform to both

sides, we obtain

L
{
d2αa(x)

dx2α
; s

}
= L

{
a(x); s

}
− L{x2; s}+ L{2}

s2αA(s)− s2α−1a(0)− s2α−2a′(0) = A(s)− 2

s3
+

2

s

A(s) =
2

s(s2α − 1)
− 2

s3(s2α − 1)

= 2

[
s2α−1

s2α − 1
− 1

s
− s2α−3

s2α − 1
+

1

s3

]
By using (2.5), we have

A(s) = 2L{E2α,1(x
2α); s} − 2L{1} − 2L{x2E2α,3(x

2α); s}+ L{x2}.

Taking inverse Laplace transform yields

a(x) = 2E2α,1(x
2α)− 2− 2x2E2α,3(x

2α) + x2.

Therefore, the exact solution of equation (3.10) is

u(x, t) = 2E2α,1(x
2α)− 2− 2x2E2α,3(x

2α) + x2 + t,

which is the same solution obtained by the Adomian decomposition method by Mo-

mani [9].

In particular, if α = 1, then the exact solution of classical telegraph equation is

u(x, t) = 2E2,1(x
2)− 2− 2

[
E2,1(x

2)− 1
]

+ x2 + t = x2 + t.
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Example 3.1.5. Consider the space-fractional telegraph equation with 0 < α ≤ 1

∂2αu

∂x2α
=
∂2u

∂t2
+
∂u

∂t
+ u, x > 0, t > 0, (3.13)

subject to the boundary conditions

u(0, t) = sin t, ux(0, t) = cos t.

Under the operator

F [u] =
∂2u

∂t2
+
∂u

∂t
+ u,

we choose the invariant subspace

W3 = L{1, sin t, cos t}.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W3, that is,

u(x, t) = a(x) + b(x) sin t+ c(x) cos t.

By using the boundary conditions u(0, t) = sin t, that

a(0) + b(0) sin t+ c(0) cos t = sin t⇒ a(0) = 0, b(0) = 1, c(0) = 0,

and ux(0, t) = cos t, that

a′(0) + b′(0) sin t+ c′(0) cos t = cos t⇒ a′(0) = b′(0) = 0, c′(0) = 1.

Substituting u(x, t) into the equation (3.13), we get

d2α

dx2α
a(x) + sin t

d2α

dx2α
b(x) + cos t

d2α

dx2α
c(x) = a(x)− c(x) sin t+ b(x) cos t[

d2α

dx2α
a(x)− a(x)

]
+ sin t

[
d2α

dx2α
b(x) + c(x)

]
+ cos t

[
d2α

dx2α
c(x)− b(x)

]
= 0.

Since 1, sin t and cos t are linearly independent functions, we obtain a system of

space-fractional ordinary differential equations

d2αa(x)

dx2α
= a(x), a(0) = a′(0) = 0, (3.14)

d2αb(x)

dx2α
= −c(x), b(0) = 1, b′(0) = 0, (3.15)

d2αc(x)

dx2α
= b(x), c(0) = 0, c′(0) = 1. (3.16)
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Applying the Laplace transform to both sides of equation (3.14), we get

L
{
d2αa(x)

dx2α
; s

}
= L

{
a(x); s

}
s2αA(s)− s2α−1a(0)− s2α−2a′(0) = A(s)

A(s) = 0.

Taking inverse Laplace transform yields

a(x) = 0.

Now, we transform equation (3.15) and (3.16) by setting

~z(x) =

[
b(x)

c(x)

]
.

Then
d2α

dx2α
~z(x) =

[
0 −1

1 0

][
b(x)

c(x)

]
= A~z(x),

where A =

[
0 −1

1 0

]
and ~z(0) =

[
1

0

]
, ~z′(0) =

[
0

1

]
.

Applying Laplace transform to both sides, then we obtain

s2α ~Z(s)− s2α−1~z(0)− s2α−2~z′(0) = A~Z(s)

(s2αI − A)~Z(s) = s2α−1~z(0) + s2α−2~z′(0)[
s2α 1

−1 s2α

]
~Z(s) =

[
s2α−1

0

]
+

[
0

s2α−2

]
=

[
s2α−1

s2α−2

]

~Z(s) =

[
s2α 1

−1 s2α

]−1 [
s2α−1

s2α−2

]

=
1

s4α + 1

[
s2α −1

1 s2α

][
s2α−1

s2α−2

]
[
B(s)

C(s)

]
=

s
4α−1 − s2α−2

s4α + 1
s4α−2 + s2α−1

s4α + 1

 .
Then we get

B(s) =
s4α−1

s4α + 1
− s2α−2

s4α + 1
.
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By using (2.5), we have

B(s) = L{E4α,1(−x4α)} − L{x2α+1E4α,2α+2(−x4α)}

Taking inverse Laplace transform yields

b(x) = E4α,1(−x4α)− x2α+1E4α,2α+2(−x4α).

And

C(s) =
s4α−2

s4α + 1
+

s2α−1

s4α + 1
.

By using (2.5), we have

C(s) = L{xE4α,2(−x4α)}+ L{x2αE4α,2α+1(−x4α)}.

Taking inverse Laplace transform yields

c(x) = xE4α,2(−x4α) + x2αE4α,2α+1(−x4α).

Therefore, the solution of equation (3.13) is

u(x, t) =

[
E4α,1(−x4α)− x2α+1E4α,2α+2(−x4α)

]
sin t

+

[
xE4α,2(−x4α) + x2αE4α,2α+1(−x4α)

]
cos t.

If α = 1, then the solution of classical telegraph equation is

u(x, t) =

[
E4,1(−x4)− x3E4,4(−x4)

]
sin t+

[
xE4,2(−x4) + x2E4,3(−x4)

]
cos t.

3.2 The time-fractional telegraph equations

Consider the time-fractional telegraph equation with 0 < β ≤ 1

∂2u

∂x2
=
∂2βu

∂t2β
+
∂βu

∂tβ
+ u, x > 0, t > 0, (3.17)

where
∂2β

∂t2β
and

∂β

∂tβ
are time-fractional derivatives in the Caputo sense. Now, we set

the differential operator

F [u] =
∂2u

∂x2
− u. (3.18)

To obtain an exact solution of time-fractional telegraph equation (3.17) by applying

the invariant subspace method is stated in the following theorem.
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Theorem 3.2.1. The time-fractional telegraph equation (3.17) admits a solution of

the form

u(x, t) = c1(t) + c2(t)e
ax + c3(t)xe

ax,

where c1(t), c2(t), and c3(t) are solutions of the following system of fractional ordi-

nary differential equations

d2βc1(t)

dt2β
+
dβc1(t)

dtβ
= −c1(t),

d2βc2(t)

dt2β
+
dβc2(t)

dtβ
= a2c2(t) + 2ac3(t)− c2(t),

d2βc3(t)

dt2β
+
dβc3(t)

dtβ
= a2c3(t)− c3(t).

(3.19)

Proof. Under the operator F [.] defined by (3.18), we choose the invariant subspace

W 3
3 = L{1, eax, xeax}, a 6= 0 because

F [c1 + c2e
ax + c3xe

ax] = −c1 + (a2c2 + 2ac3 − c2)eax + (a2c3 − c3)xeax ∈ W 3
3 .

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W 3
3 , that is,

u(x, t) = c1(t) + c2(t)e
ax + c3(t)xe

ax. (3.20)

Then we have

F [u(x, t)] = −c1(t) +
(
a2c2(t) + 2ac3(t)− c2(t)

)
eax +

(
a2c3(t)− c3(t)

)
xeax.

(3.21)

Applying the fractional derivative of order 2α and α with respect to t in both sides

of equation (3.20), we sum them together, we obtain

d2βu(x, t)

dt2β
+
dβu(x, t)

dtβ
=
d2βc1(t)

dt2β
+
dβc1(t)

dtβ
+
d2βc2(t)

dt2β
eax +

dβc2(t)

dtβ
eax

+
d2βc3(t)

dt2β
xeax +

dβc3(t)

dtβ
xeax. (3.22)

Substituting (3.22) and (3.21) in (3.17), we get[
d2βc1(t)

dt2β
+
dβc1(t)

dtβ
+ c1(t)

]
+ eax

[
d2βc2(t)

dt2β
+
dβc2(t)

dtβ
− a2c2(t)− 2ac3(t)

+ c2(t)

]
+ xeax

[
d2βc3(t)

dt2β
+
dβc3(t)

dtβ
− a2c3(t) + c3(t)

]
= 0.

Since 1, eax, and xeax are linearly independent functions, we get a system of frac-

tional ordinary differential equations (3.19).
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Remark 3.2.2. We would like to mention that, in a similar way, there are several

invariant subspaces under the operator (3.18) can be proved this theorem. In the

following, we classify all possible invariant subspaces with respect to the differential

operator (3.18)

1. The subspace Wn = L{1, x, ..., xn} is invariant under F because

F (c1 + c2x+ ...+ cn+1x
n) = (2c3 − c1) + (6c4 − c2)x

− ...− cn+1x
n ∈ Wn.

2. The subspace W2 = L{1, eax}, a 6= 0 is invariant under F because

F (c1 + c2e
ax) = −c1 + (a2c2 − c2)eax ∈ W2.

3. The subspace W 1
3 = L{1, sin(ax), cos(ax)}, a 6= 0 is invariant under F be-

cause

F [c1 + c2 sin(ax) + c3 cos(ax)] = −c1 − [c2 + a2c2] sin(ax)

− [c3 + a2c3] cos(ax) ∈ W 1
3 .

4. The subspace W 2
3 = L{1, sinh(ax), cosh(ax)}, a 6= 0 is invariant under F

because

F [c1 + c2 sinh(ax) + c3 cosh(ax)] = −c1 + [a2c2 − c2] sinh(ax)

+ [a2c3 − c3] cosh(ax) ∈ W 2
3 .

5. The subspace W 4
3 = L{1, eax cos bx, eax sin bx}, a, b 6= 0 is invariant under F

because

F [c1 + c2e
ax cos bx+ c3e

ax sin bx]

= −c1 + [a2c3 − b2c2 + 2abc3 − c2]eax cos bx

+ [a2c3 − 2abc3 − b2c3 − c3]eax sin bx ∈ W 4
3 .

The benefit of these different invariant subspaces is that, by choosing an appro-

priate invariant subspace with respect to the initial conditions, we are able to solve

the time-fractional telegraph equation.
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Next, we solve some examples which are stated in [11, 13] by using the invariant

subspace method.

Example 3.2.3. (Srivastava et al. [11]) Consider the time-fractional telegraph equa-

tion with 0 < β ≤ 1

∂2u

∂x2
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u, x > 0, t > 0, (3.23)

subject to the initial conditions

u(x, 0) = ex,
∂u(x, 0)

∂t
= −2ex.

Under the operator

F [u] =
∂2u

∂x2
− u,

we choose the invariant subspace

W2 = L{1, ex}.

Now, we assume the solution u(x, t) as a linear combination of the elements in the

invariant subspace W2, that is,

u(x, t) = a(t) + b(t)ex.

It follows the initial conditions

• u(x, 0) = ex ⇒ a(0) + b(0)ex = ex ⇒ a(0) = 0, b(0) = 1,

• ∂u(x, 0)

∂t
= −2ex ⇒ a′(0) + b′(0)ex = −2ex ⇒ a′(0) = 0, b′(0) = −2.

Substituting u(x, t) into the equation (3.23), we obtain

d2β

dt2β
a(t) + ex

d2β

dt2β
b(t) + 2

dβ

dtβ
a(t) + 2ex

dβ

dtβ
b(t) = −a(t)[

d2β

dt2β
a(t) + 2

dβ

dtβ
a(t) + a(t)

]
+ ex

[
d2β

dt2β
b(t) + 2

dβ

dtβ
b(t)

]
= 0.

Since 1 and ex are linearly independent functions, we obtain a system of time-

fractional ordinary differential equations

d2β

dt2β
a(t) + 2

dβ

dtβ
a(t) = −a(t), a(0) = a′(0) = 0, (3.24)

d2β

dt2β
b(t) + 2

dβ

dtβ
b(t) = 0, b(0) = 1, b′(0) = −2. (3.25)
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Applying the Laplace transform to both sides of equation (3.24), we obtain

L
{
d2β

dt2β
a(t); s

}
+ 2L

{
dβ

dtβ
a(t); s

}
= −L

{
a(t); s

}
s2βA(s)− s2β−1a(0)− s2β−2a′(0) + 2sβA(s)− 2sβ−1a(0) = −A(s)

A(s) = 0.

Taking inverse Laplace transform yields

a(t) = 0.

Applying the Laplace transform to both sides of equation (3.25), we get

L
{
d2β

dt2β
b(t); s

}
= −2L

{
dβ

dtβ
b(t); s

}
s2βB(s)− s2β−1b(0)− s2β−2b′(0) = −2sβB(s) + 2sβ−1b(0)

s2βB(s) + 2sβB(s) = 2sβ−1 + s2β−1 − 2s2β−2

B(s) = 2
sβ−1

s2β + 2sβ
+

s2β−1

s2β + 2sβ
− 2

s2β−2

s2β + 2sβ

= 2
sβ(s−1)

sβ(sβ + 2)
+

sβ(sβ−1)

sβ(sβ + 2)
− 2

sβ(sβ−2)

sβ(sβ + 2)

= 2
1

s(sβ + 2)
+

sβ−1

sβ + 2
− 2

sβ−2

sβ + 2

=
1

s
− sβ−1

sβ + 2
+

sβ−1

sβ + 2
− 2

sβ−2

sβ + 2

=
1

s
− 2

sβ−2

sβ + 2
.

By using (2.5), we have

B(s) = L{1} − 2L{tEβ,2(−2tβ)}.

Taking inverse Laplace transform yields

b(t) = 1− 2tEβ,2(−2tβ).

Therefore, the exact solution of equation (3.23) is

u(x, t) = ex
[
1− 2tEβ,2(−2tβ)

]
,

which is the same solution obtained by the reduced differential transform method by

Srivastava et al. [11].

In particular, if β = 1, then the exact solution of classical telegraph equation is

u(x, t) = ex
[
1− 2tE1,2(−2t)

]
= ex

[
1 + E1,1(−2t)− 1

]
= ex−2t.
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Example 3.2.4. (Srivastava et al. [11]) Consider the following time-fractional tele-

graph equation with 0 < β ≤ 1

∂2u

∂x2
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u, x > 0, t > 0, (3.26)

subject to the initial conditions

u(x, 0) = sinh x,
∂u(x, 0)

∂t
= −2 sinhx.

Under the operator

F [u] =
∂2u

∂x2
− u,

we choose the invariant subspace

W 1
2 = L

{
1, sinhx}.

We assume the solution u(x, t) as a linear combination of the elements in the invari-

ant subspace W 1
2 , that is,

u(x, t) = a(t) + b(t) sinhx.

By using the initial conditions u(x, 0) = sinh x, that

a(0) + b(0) sinhx = sinhx⇒ a(0) = 0, b(0) = 1,

and
∂u(x, 0)

∂t
= −2 sinhx, that

a′(0) + b′(0) sinhx = −2 sinhx⇒ a′(0) = 0, b′(0) = −2.

Substituting u(x, t) into the equation (3.26), we obtain

d2β

dt2β
a(t) + sinh x

d2β

dt2β
b(t) + 2

dβ

dtβ
a(t) + 2 sinhx

dβ

dtβ
b(t) = −a(t)[

d2β

dt2β
a(t) + 2

dβ

dtβ
a(t) + a(t)

]
+ sinhx

[
d2β

dt2β
b(t) + 2

dβ

dtβ
b(t)

]
= 0.

Since 1 and sinhx are linearly independent, we obtain a system of time-fractional

ordinary differential equations

d2β

dt2β
a(t) + 2

dβ

dtβ
a(t) = −a(t), a(0) = a′(0) = 0, (3.27)

d2β

dt2β
b(t) + 2

dβ

dtβ
b(t) = 0, b(0) = 1, b′(0) = −2, (3.28)
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where a system of fractional ordinary differential equations has already found in a

example (3.2.3), that

a(t) = 0, b(t) = 1− 2tEβ,2(−2tβ).

Therefore, the exact solution of equation (3.26) is

u(x, t) =
[
1− 2tEβ,2(−2tβ)

]
sinhx,

which is the same solution obtained by the reduced differential transform method by

Srivastava et al. [11].

In particular, if β = 1, then the exact solution of classical telegraph equation is

u(x, t) = e−2t sinhx.

Example 3.2.5. Consider the time-fractional telegraph equation with 0 < β ≤ 1

∂2u

∂x2
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u, x > 0, t > 0, (3.29)

subject to the initial conditions

u(x, 0) = cosh x,
∂u(x, 0)

∂t
= −2 coshx.

Under the operator

F [u] =
∂2u

∂x2
− u,

we choose the invariant subspace

W 2
2 = L

{
1, coshx}.

Now we assume the solution u(x, t) as a linear combination of the elements in the

invariant subspace W 2
2 , that is,

u(x, t) = a(t) + b(t) coshx.

Using the initial conditions

• u(x, 0) = cosh x⇒ a(0) + b(0) coshx = coshx⇒ a(0) = 0, b(0) = 1,

• ∂u(x, 0)

∂t
= −2 cosh⇒ a′(0) + b′(0) coshx = −2 coshx

⇒ a′(0) = 0, b′(0) = −2.
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Substituting u(x, t) into the equation (3.29), we obtain

d2β

dt2β
a(t) + cosh x

d2β

dt2β
b(t) + 2

dβ

dtβ
a(t) + 2 coshx

dβ

dtβ
b(t) = −a(t)[

d2β

dt2β
a(t) + 2

dβ

dtβ
a(t) + a(t)

]
+ coshx

[
d2β

dt2β
b(t) + 2

dβ

dtβ
b(t)

]
= 0.

Since 1 and coshx are linearly independent, we obtain a system of time-fractional

ordinary differential equations

d2β

dt2β
a(t) + 2

dβ

dtβ
a(t) = −a(t), a(0) = a′(0) = 0, (3.30)

d2β

dt2β
b(t) + 2

dβ

dtβ
b(t) = 0, b(0) = 1, b′(0) = −2, (3.31)

where a system of fractional ordinary differential equations has found in a example

(3.2.4), we have

a(t) = 0, b(t) = 1− 2tEβ,2(−2tβ).

Therefore, the exact solution of equation (3.29) is

u(x, t) =
[
1− 2tEβ,2(−2tβ)

]
coshx.

In particular, if β = 1, then the exact solution of classical telegraph equation is

u(x, t) = e−2t coshx.

Example 3.2.6. Consider the time-fractional telegraph equation with 0 < β ≤ 1

∂2u

∂x2
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u, x > 0, t > 0, (3.32)

subject to the initial conditions

u(x, 0) = cos x,
∂u(x, 0)

∂t
= sinx.

Under the operator

F [u] =
∂2u

∂x2
− u,

we choose the invariant subspace

W3 = L
{

1, sinx, cosx
}
.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W3, that is,

u(x, t) = a(t) + b(t) sinx+ c(t) cosx.
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By using the initial conditions

• u(x, 0) = cos x⇒ a(0) + b(0) sinx+ c(0) cosx = cosx

⇒ a(0) = b(0) = 0, c(0) = 1,

• ∂

∂t
u(x, 0) = sin x⇒ a′(0) + b′(0) sinx+ c′(0) cosx = sinx

⇒ a′(0) = 0, b′(0) = 1, c′(0) = 0.

Substituting u(x, t) into the equation (3.32), we get

d2βa(t)

dt2β
+ sinx

d2βb(t)

dt2β
+ cosx

d2βc(t)

dt2β
+ 2

dβa(t)

dtβ
+ 2 sinx

dβb(t)

dtβ
+ 2 cosx

dβc(t)

dtβ

= −a(t)− 2b(t) sinx− 2c(t) cosx[
d2βa(t)

dt2β
+ 2

dβa(t)

dtβ
+ a(t)

]
+ sinx

[
d2βb(t)

dt2β
+ 2

dβb(t)

dtβ
+ 2b(t)

]
+ cosx

[
d2βc(t)

dt2β
+ 2

dβc(t)

dtβ
+ 2c(t)

]
= 0.

Since 1, sinx and cosx are linearly independent functions, we get a system of frac-

tional ordinary differential equations

d2βa(t)

dt2β
+ 2

dβa(t)

dtβ
= −a(t), a(0) = a′(0) = 0, (3.33)

d2βb(t)

dt2β
+ 2

dβb(t)

dtβ
= −2b(t), b(0) = 0, b′(0) = 1, (3.34)

d2βc(t)

dt2β
+ 2

dβc(t)

dtβ
= −2c(t), c(0) = 1, c′(0) = 0. (3.35)

Applying the Laplace transform to both sides of equation (3.33), we obtain

L
{
d2βa(t)

dt2β
; s

}
+ 2L

{
dβa(t)

dtβ
; s

}
= −L

{
a(t); s

}
s2βA(s)− s2β−1a(0)− s2β−2a′(0) + 2sβA(s)− 2sβ−1a(0) = −A(s)

A(s) = 0.

Taking inverse Laplace transform yields

a(x) = 0.

Applying the Laplace transform to both sides of equation (3.34), we get

L
{
d2βb(t)

dt2β
; s

}
+ 2L

{
dβb(t)

dtβ
; s

}
= −2L

{
b(t); s

}
s2βB(s)− s2β−1b(0)− s2β−2b′(0) + 2sβB(s)− 2sβ−1b(0) = −2B(s)

B(s)
[
s2β + 2sβ + 2

]
= s2β−2
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B(s) =
s2β−2

s2β + 2sβ + 2

=
s2β−2

(sβ + 1)2 + 1

=
s2β−2

(sβ + 1)2

[
1

1 + 1
(sβ+1)2

]
.

We have
1

1 + t
=
∞∑
n=0

(−1)ntn.

Then
1

1 +
1

(sβ + 1)2

=
∞∑
n=0

(−1)n
1

(sβ + 1)2n
.

Hence

B(s) =
∞∑
n=0

(−1)n
s2β−2

(sβ + 1)2n+2
.

By using

L{zαn+β−1E(n)
α,β(±λzα); s} =

n!sα−β

(sα ∓ λ)n+1
,

we get

B(s) =
∞∑
n=0

(−1)n

(2n+ 1)!
L
{
t2nβ+1E

(2n+1)
β,2−β (−tβ)

}
.

Applying the inverse Laplace transform to both sides, we get

b(t) =
∞∑
n=0

(−1)n

(2n+ 1)!
t2nβ+1E

(2n+1)
β,2−β (−tβ).

Applying the Laplace transform to both sides of equation (3.35), we obtain

L
{
d2βc(t)

dt2β
; s

}
+ 2L

{
dβc(t)

dtβ
; s

}
= −2L

{
c(t); s

}
s2βC(s)− s2β−1c(0)− s2β−2c′(0) + 2sβC(s)− 2sβ−1c(0) = −2C(s)

C(s)
[
s2β + 2sβ + 2

]
= s2β−1 + 2sβ−1
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C(s) =
s2β−1 + 2sβ−1

s2β + 2sβ + 2

=
sβ−1(sβ + 1) + sβ−1

(sβ + 1)2 + 1

=
sβ−1(sβ + 1)

(sβ + 1)2 + 1
+

sβ−1

(sβ + 1)2 + 1

=
sβ−1(sβ + 1)

(sβ + 1)2

[
1

1 + 1
(sβ+1)2

]
+

sβ−1

(sβ + 1)2

[
1

1 + 1
(sβ+1)2

]
=
∞∑
n=0

(−1)n
sβ−1

(sβ + 1)2n+1
+
∞∑
n=0

(−1)n
sβ−1

(sβ + 1)2n+2
.

We have

L{zαn+β−1E(n)
α,β(±λzα); s} =

n!sα−β

(sα ∓ λ)n+1
.

Thus

C(s) =
∞∑
n=0

(−1)n

(2n)!
L
{
t2βnE

(2n)
β,1 (−tβ)

}
+
∞∑
n=0

(−1)n

(2n+ 1)!
L
{
t(2n+1)βE

(2n+1)
β,1 (−tβ)

}
.

Taking the inverse Laplace transform yields

c(t) =
∞∑
n=0

(−1)n
[
t2βn

(2n)!
E

(2n)
β,1 (−tβ) +

t(2n+1)β

(2n+ 1)!
E

(2n+1)
β,1 (−tβ)

]
.

Therefore, the solution of equation (3.32) is

u(x, t) =
∞∑
n=0

(−1)n
[
t2nβ+1

(2n+ 1)!
E

(2n+1)
β,2−β (−tβ)

]
sinx

+
∞∑
n=0

(−1)n
[
t2βn

(2n)!
E

(2n)
β,1 (−tα) +

t(2n+1)β

(2n+ 1)!
E

(2n+1)
β,1 (−tβ)

]
cosx.

If β = 1, then the solution of classical telegraph equation is

u(x, t) =
∞∑
n=0

(−1)n
[

t2n+1

(2n+ 1)!
E

(2n+1)
1,1 (−t)

]
sinx

+
∞∑
n=0

(−1)n
[
t2n

(2n)!
E

(2n)
1,1 (−t) +

t2n+1

(2n+ 1)!
E

(2n+1)
1,1 (−t)

]
cosx

= −e−t sin(t) sinx+ e−t cos t cosx− e−t sin t cosx

= e−t cos(t+ x)− e−t sin t cosx.
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Example 3.2.7. (Das et al. [13]) Consider time-fractional telegraph equation

∂2u

∂x2
=
∂µu

∂tµ
+
∂µ−1u

∂tµ−1
+ u+

tn

n!
sinhx, 1 < µ < 2, (3.36)

subject to initial condition

u(x, 0) =
∂u(x, 0)

∂t
= 0.

Under the operator

F [u] =
∂2u

∂x2
− u,

we choose the invariant subspace

W2 = L{1, sinhx}.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W2, that is,

u(x, t) = a(t) + b(t) sinhx.

It follows the initial condition u(x, 0) = 0, we have

a(0) + b(0) sinhx = 0⇒ a(0) = b(0) = 0.

And another initial condition
∂u(x, 0)

∂t
= 0, we have

a′(0) + b′(0) sinhx = 0⇒ a′(0) = b′(0) = 0.

Substituting u(x, t) into the equation (3.36), we obtain

dµa(t)

dtµ
+ sinhx

dµb(t)

dtµ
+
dµ−1a(t)

dtµ−1
+ sinhx

dµ−1b(t)

dtµ−1
= −a(t) +

tn

n!
sinhx[

dµa(t)

dtµ
+
dµ−1a(t)

dtµ−1
+ a(t)

]
+ sinhx

[
dµb(t)

dtµ
+
dµ−1b(t)

dtµ−1
− tn

n!

]
= 0.

Since 1 and sinhx are linearly independent functions, we get a system of fractional

ordinary differential equations

dµa(t)

dtµ
+
dµ−1a(t)

dtµ−1
= −a(t), a(0) = a′(0) = 0, (3.37)

dµb(t)

dtµ
+
dµ−1b(t)

dtµ−1
=
tn

n!
, b(0) = b′(0) = 0. (3.38)
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Applying Laplace transform to both sides of equation (3.37), we obtain

L
{
dµa(t)

dtµ
; s

}
+ L

{
dµ−1a(t)

dtµ−1
; s

}
= −L

{
a(t); s

}
sµA(s)− sµ−1a(0)− sµ−2a′(0) + sµ−1A(s)− sµ−2a(0) = −A(s)

A(s)
[
sµ + sµ−1 + 1

]
= 0

A(s) = 0.

Applying inverse Laplace transform yields

a(t) = 0.

Taking Laplace transform to both sides of equation (3.38), we get

L
{
dµb(t)

dtµ
; s

}
+ L

{
dµ−1b(t)

dtµ−1
; s

}
= L

{
tn

n!
; s

}
sµB(s)− sµ−1b(0)− sµ−2b′(0) + sµ−1B(s) + sµ−2b(0) =

1

n!

(
n!

sn+1

)
B(s)

[
sµ + sµ−1

]
=

1

sn+1

B(s) =
1

sn+1
(
sµ + sµ−1

)
=

1

sn+1sµ−1(s+ 1)

=
s−(n+µ)

s+ 1
.

By using

L{zβ−1Eα,β(±λzα); s} =
sα−β

sα ∓ λ
,

we have

B(s) = L{tn+µE1,n+µ+1(−t)}

Taking inverse Laplace transform yields

b(t) = tn+µE1,n+µ+1(−t).

Therefore, the solution of equation (3.36) is

u(x, t) =
[
tn+µE1,n+µ+1(−t)

]
sinhx,

which is the same solution obtained by the homotopy analysis method by Das et al.

[13].
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If µ = 2, then the solution of classical telegraph equation is

u(x, t) =
∞∑
k=0

(−1)k
tk+n+2

(k + n+ 2)!
sinhx

=
∞∑

m=n+2

(−1)m−(n+2) t
m

m!
sinhx, k = m− (n+ 2)

= (−1)−(n+2)

∞∑
m=n+2

(−1)m
tm

m!
sinhx

= (−1)−(n+2)

[
e−t −

n+1∑
m=0

(−t)m

m!

]
sinhx.

3.3 The space and time-fractional telegraph equations

Consider the space and time-fractional telegraph equation with 0 < α, β ≤ 1

∂2αu

∂x2α
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u, x > 0, t > 0, (3.39)

where
∂2α

∂x2α
and

∂2β

∂t2β
are space-fractional and time-fractional derivatives in the Ca-

puto sense, respectively.

If α = 1, then equation (3.39) becomes to time-fractional telegraph equation of the

form
∂2u

∂x2
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u.

If β = 1, then equation (3.39) becomes to space-fractional telegraph equation of the

form
∂2αu

∂x2α
=
∂2u

∂t2
+ 2

∂u

∂t
+ u.

As a means to find the solution of the space and time-fractional telegraph equa-

tion (3.39) by using the invariant subspace method, we need to choose the operator

F [u] =
∂2αu

∂x2α
− u. (3.40)

The way to obtain an exact solution of equation (3.39) by using the invariant sub-

space method will be shown in the following theorem.

Theorem 3.3.1. The space and time-fractional telegraph equation (3.39) admits a

solution of the form

u(x, t) = c1(t) + c2(t)x
2α,
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where c1(t), c2(t) are solutions of the following system of fractional ordinary differ-

ential equations
d2βc1(t)

dt2β
+ 2

dβc1(t)

dtβ
= c2(t)Γ(2α + 1)− c1(t),

d2βc2(t)

dt2β
+ 2

dβc2(t)

dtβ
= −c2(t).

(3.41)

Proof. The subspaceW2 = L{1, x2α} is invariant under the differential operator F [.]

defined by (3.40) because

F
[
c1 + c2x

2α
]

=
[
c2Γ(2α + 1)− c1

]
− c2x2α ∈ W2.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W2, that is,

u(x, t) = c1(t) + c2(t)x
2α. (3.42)

Then we have

F [u(x, t)] =
[
c2(t)Γ(2α + 1)− c1(t)

]
− c2(t)x2α. (3.43)

Taking the fractional derivative of order 2β and β with respect to t in both sides of

equation (3.42), we sum them together, we obtain

d2βu(x, t)

dt2β
+ 2

dβu(x, t)

dtβ
=
d2βc1(t)

dt2β
+ x2α

d2βc2(t)

dt2β
+ 2

dβc1(t)

dtβ
+ 2x2α

dβc2(t)

dtβ
.

(3.44)

Substituting equation (3.44) and (3.43) in equation (3.39), we get[
d2βc1(t)

dt2β
+ 2

dβc1(t)

dtβ
− c2(t)Γ(2α + 1) + c1(t)

]
+ x2α

[
d2βc2(t)

dt2β
+ 2

dβc2(t)

dtβ
+ c2(t)

]
= 0.

Since 1 and x2α are linearly independent functions, we get a system of fractional

ordinary differential equations (3.41).

Remark 3.3.2. Hence, this theorem can be stated in a similar way when we choose

other invariant subspaces with respect to the operator (3.40). Under the operator

(3.40), we classify all possibilities of invariant subspaces as follows

1. The subspace W 1
2 = L{1, E2α(ax2α)}, a 6= 0 is invariant under F because

F
[
c1 + c2E2α(ax2α)

]
=

d2α

dx2α

[
c1 + c2E2α(ax2α)

]
−
[
c1 + c2E2α(ax2α)

]
= ac2E2α(ax2α)− c1 − c2E2α(ax2α)

= −c1 +
[
ac2 − c2

]
E2α(ax2α) ∈ W 1

2 .
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2. The subspace W 2
2 = L{1, E2α(x2α)} is invariant under F because

F
[
c1 + c2E2α(x2α)

]
=

d2α

dx2α

[
c1 + c2E2α(x2α)

]
−
[
c1 + c2E2α(x2α)

]
= c2E2α(x2α)− c1 − c2E2α(x2α) = −c1 ∈ W 2

2 .

3. The subspace Wn = L{1, x2α, · · · , x(2n)α} is invariant under F because

F
[
c1 + c2x

2α + · · ·+ cn+1x
(2n)α

]
= c2Γ(2α + 1)− c1
− · · · − cn+1x

(2n)α ∈ Wn.

The usefulness of these distinct invariant subspaces is that, by choosing an ap-

propriate invariant subspace, we can solve the space and time-fractional telegraph

equation with respect to distinct initial conditions.

In the following example is the same as the time-fractional telegraph equation

when the space-fractional order derivative closes to one.

Example 3.3.3. Consider the following space and time-fractional telegraph equation

with 0 < α, β ≤ 1

∂2αu

∂x2α
=
∂2βu

∂t2β
+ 2

∂βu

∂tβ
+ u, x > 0, t > 0, (3.45)

subject to the initial conditions

u(x, 0) = E2α,1(x
2α), ut(x, 0) = −2E2α,1(x

2α).

Under the operator

F [u] =
∂2αu

∂x2α
− u,

we choose the invariant subspace

W 2
2 = L{1, E2α,1(x

2α)}.

Assume the solution u(x, t) as a linear combination of the elements in the invariant

subspace W 2
2 , that is,

u(x, t) = a(t) + b(t)E2α,1(x
2α).

By using the initial conditions

• u(x, 0) = x2α, we have

a(0) + b(0)E2α,1(x
2α) = E2α,1(x

2α)⇒ a(0) = 0, b(0) = 1,
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• ut(x, 0) = −2E2α,1(x
2α), we have

a′(0) + b′(0)E2α,1(x
2α) = −2E2α,1(x

2α)⇒ a′(0) = 0, b′(0) = −2.

Substituting u(x, t) into the equation (3.45), we obtain

d2β

dt2β

[
a(t) + b(t)E2α,1(x

2α)

]
+ 2

dβ

dtβ

[
a(t) + b(t)E2α,1(x

2α)

]
= −a(t)[

d2βa(t)

dt2β
+ 2

dβa(t)

dtβ
+ a(t)

]
+ E2α,1(x

2α)

[
d2βb(t)

dt2β
+ 2

dβb(t)

dtβ

]
= 0.

Since 1 and E2α,1(x
2α) are linearly independent functions, we get a system of frac-

tional ordinary differential equations.

d2βa(t)

dt2β
+ 2

dβa(t)

dtβ
= −a(t), a(0) = 0, a′(0) = 0, (3.46)

d2βb(t)

dt2β
+ 2

dβb(t)

dtβ
= 0, b(0) = 1, b′(0) = −2. (3.47)

Applying Laplace transform to both sides of equation (3.47), we get

L
{
d2βb(t)

dt2β
; s

}
= −2L

{
dβb(t)

dtβ
; s

}
s2βB(s)− s2β−1b(0)− s2β−2b′(0) = −2sβB(s) + 2sβ−1b(0)

B(s)
[
s2β + 2sβ

]
= s2β−1 − 2s2β−2 + 2sβ−1

B(s) =
s2β−1 − 2s2β−2 + 2sβ−1

s2β + 2sβ

=
sβ−1 − 2sβ−2 + 2s−1

sβ + 2

=
sβ−1

sβ + 2
− 2

sβ−2

sβ + 2
+

2

s(sβ + 2)

=
sβ−1

sβ + 2
− 2

sβ−2

sβ + 2
+

1

s
− sβ−1

sβ + 2

=
1

s
− 2

sβ−2

sβ + 2
.

By using (2.5), we have

B(s) = L{1} − 2L{tEβ,2(−2tβ)}.

Taking inverse Laplace transform yields

b(t) = 1− 2tEβ,2(−2tβ).



37

Applying Laplace transform to both sides of equation (3.46), we obtain

L
{
d2βa(t)

dt2β
; s

}
+ 2L

{
dβa(t)

dtβ
; s

}
= −L{a(t)}

s2βA(s)− s2β−1a(0)− s2β−2a′(0) + 2sβA(s)− 2sβ−1a(0) = −A(s)

A(s)
[
s2β − 2sβ + 1

]
= 0

A(s) = 0.

Taking inverse Laplace transform yields

a(t) = 0.

Therefore, the solution of equation (3.45) is

u(x, t) =
[
1− 2tEβ,2(−2tβ)

]
E2α,1(x

2α).

If α = 1, then the solution of equation (3.45) is

u(x, t) =
[
1− 2tEβ,2(−2tβ)

]
coshx,

which is the same as solution of time-fractional telegraph equation in the previous

example (3.2.5).
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Conclusions

The objective of this thesis was to construct exact solutions of three

classes of fractional telegraph equations, i.e., space-, time-, and space and time-

fractional telegraph equations. The invariant subspace method by Galaktinov and

Svirshchevskii [14] was mainly used in our study.

The following are the summarized results we have obtained:

1. In theorem 3.1.1, we have constructed an exact solution of space-fractional

telegraph equation by using the invariant subspace method under the invariant

subspace in time Wn = L{1, t, ..., tn}.

2. In remark 3.1.2, we have given some invariant subspace in time.

3. In example 3.1.3-3.1.5, we have applied the invariant subspace method to de-

rive solutions to space-fractional telegraph equation with different boundary

conditions.

4. In theorem 3.2.1, we have derived an exact solution of time-fractional tele-

graph equation by using the invariant subspce method along with the invariant

subspace W 3
3 = L{1, eax, xeax}.

5. In remark 3.2.2, we have listed other invariant subspace in space.

6. In example 3.2.3-3.2.6, we have derived explicit solutions of time-fractional

telegraph equation with different initial conditions.

7. In theorem 3.3.1, we have combined both space- and time-fractional deriva-

tives in the telegraph equation and shown an exact solution by using the invari-

ant subspace method under the invariant subspace in space W2 = L{1, x2α}.
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8. In remark 3.3.2, we have given other invariant subspace in space.

9. In example 3.3.3, we have modified an example of time-fractional telegraph

equation by replacing the integer order in space with fractional order and de-

rived the solution. In particular, we have shown that the obtained solution

closes to the solution in time-fractional telegraph equation when the space-

fractional order derivative closes to one.
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