

Development of High-Performance Liquid Chromatographic Method for Analysis of Histamine Released from Mast Cells

Monchana Jullangkoon

campi Q	P801. H5	M66	2008	C.1
10 U 11	30141	1		
BID KCY	J. 2 H.A.	2552/		
**************	••••/ ••••••••	*******/ *		

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Pharmacy in Pharmaceutical Sciences

Prince of Songkla University

2008

Copyright of Prince of Songkla University

i

Thesis Title	Development	Development of High-Performance Liquid Chromatographic		
	Method for A	nalysis of Histamine Released from Mast Cells		
Author	Miss Monchana Jullangkoon Pharmaceutical Sciences			
Major Program				
Major Advisor		Examining Committee :		
		Chairperson		
(Asst. Prof. Dr. Anusak Sirikatitham)		(Dr. Kamonthip Wiwatanawongsa)		
Co-advisor		(Asst. Prof. Dr. Anusak Sirikatitham)		
(Assoc. Prof. Dr. Supinya To	ewtrakul)	(Assoc. Prof. Dr. Supinya Tewtrakul)		
		(Dr. Walailuk Matapatara)		

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Pharmacy Degree in Pharmaceutical Sciences

> (Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School

ชื่อวิทยานิพนธ์	อวิทยานิพนธ์ การพัฒนาวิธีวิเคราะห์สารฮีสตามีนที่หลั่งมาจากมาสท์เซลล์โดยใช้		
	โครมาโตกราฟีของเหลวสมรรถนะสูง		
ผู้เขียน	นางสาวมนชนา จุลลางกูร		
สาขาวิชา	เภสัชศาสตร์		
ปีการศึกษา	2551		

บทคัดย่อ

การวิจัยนี้เป็นการพัฒนาวิธีวิเคราะห์เพื่อหาปริมาณสารฮีสตามีนโดยเทคนิคโครมา โตกราฟีของเหลวสมรรถนะสูง (HPLC) โดยใช้ตัวตรวจวัดชนิด ฟลูออเรสเซนต์ ขั้นตอนการ วิเคราะห์ประกอบด้วย การ pre-column derivatization โดยใช้ *o*-phthalaldehyde (OPA) เป็น derivatizing agent แยกสารโดย ODS-C18 column และ mobile phase ที่เป็นสารผสมของ phosphate buffer, pH 6.4 (ที่มี 0.1%v/v TEA ผสมอยู่) : acetonitrile : methanol ในสัดส่วน 60 : 25 : 15 %v/v/v และ isocratic ที่มีอัตราการไหล 1 มิลลิลิตรต่อนาที ตรวจวัดโดยตัวตรวจวัดชนิด ฟลูออเรสเซนต์ที่กวามยาวกลิ่น 348 และ 444 นาโนเมตร สำหรับ excitation และ emission wavelength ตามลำดับ วิธีวิเคราะห์ที่ได้พัฒนานี้ใช้เวลาในการวิเกราะห์ 18 นาทีต่อ 1 ตัวอย่าง, มี กวามจำเพาะเจาะจงโดยแสดงด้วยก่า %recovery 97.3 - 99.1%, กวามแม่นยำที่แสดงโดย withihrun ที่มีก่า 25.05±0.28, 95.02±8.69 และ 201.08±1.42 และ between-run analysis ที่มีก่า 24.47±0.62, 99.76±7.49 และ 197.08±3.76 และมีก่า LOD, LOQ เท่ากับ 5 และ 10 นาโนกรัมต่อ มิลลิลิตร ตามลำดับ

วิธีวิเคราะห์ที่ได้พัฒนาขึ้นนี้ได้ถูกนำมาวิเคราะห์ฮีสตามีนที่หลั่งจากมาสท์เซลล์ที่ ถูกกระตุ้นด้วย compound 48/80 เพื่อศึกษาฤทธิ์ของสารสกัดจากเปลือกผลทับทิมในการยับยั้งการ หลั่งฮีสตามีน จากการศึกษาพบว่า ค่า IC₅₀ ของสารสกัด ellagic acid จากเปลือกผลทับทิมมีค่า 87.09 ใมโครกรัมต่อมิลลิลิตร

Thesis Title	Development of High-Performance Liquid Chromatographic Method for
	Analysis of Histamine Released from Mast Cells
Author	Miss Monchana Jullangkoon
Major Program	Pharmaceutical Sciences
Academic Year	2008

ABSTRACT

An analytical method for quantitative determination of histamine was developed and validated. Following pre-column derivatization with *o*-phthalaldehyde (OPA), the obtained derivative was analyzed using an ODS-C18 column, and mobile phase system consists of phosphate buffer pH 6.4 (0.1%v/v TEA) : acetonitrile : methanol 60 : 25 : 15 %v/v/v. Fluorescence detection was employed at excitation wavelength 348 nm and emission wavelength 444 nm with isocratic elution at flow rate 1 ml/min, the total analysis time is 18 min. Specificity and accuracy was demonstrated with %recovery was in the range of 97.28 and 99.15%. Withinrun and between-run analysis 24.47±0.62, 99.76±7.49, 197.08±3.76 and 24.47±0.62, 99.76±7.49, 197.08±3.76, respectively. LOD and LOQ was 5 and 10 ng/ml, respectively.

The method was used for determination of histamine released from rat mast cells activated by compound 48/80. Histamine release was found to be inhibited by the extract from *Punica granatum* peels (containing ellagic acid) in concentration dependent manner with an IC_{50} 87.09 µg/ml.

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I am deeply indebted to my advisor, Assistant Professor Dr. Anusak Sirikatitham, my co-advisor, Associated Professor Dr. Supinya Tewtrakul, Dr. Kamonthip Wiwatanawongsa, and Assistant Professor Dr. Sirirat Pinsuwan whose help, stimulating suggestions and encouragement help me in difficult times of research.

I would like to thank the Graduate School, Prince of Songkla University for financial support to conduct this investigation.

I would like to extend my sincere thank to Department of Pharmaceutical chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University for their support in scientific equipments.

I would like to thank all staff of Faculty of Pharmaceutical Sciences, Prince of Songkla University for their kindness and help.

Especially, I would like to give my special thank to my family, my friends and Mr. Woraphot Nawakitrangsun for their love enabled me to complete this thesis.

Monchana Jullangkoon

CONTENTS

	Page
บทคัดย่อ	iii
ABSTRACT	iv
ACKNOWLEADGEMENT	v
CONTENTS	vi
LIST OF TABLES	Х
LIST OF ABBREVIATIONS AND SYMBOLS	xi
LIST OF FIGURES	xiv
CHAPTER	
1. INTRODUCTION	
1.1 General introduction	1
1.2 Objectives	3
2. REVIEW OF LITERATURE	
2.1 What is allergy?	4
2.2 Biology of Histamine	7
2.3 Analytical method for determination histamine	10
2.4 Histamine release inhibition study of herbal plants	21
3. RESEARCH METHODOLOGY	
3.1 Materials and Equipments	
3.1.1 Materials	26
3.1.2 Equipments	27
3.2 Methods	
3.2.1 Preparation of standard solutions	28
3.2.2 Preparation of mobile phase	28
3.2.3 Preparation of derivatizing agent	29
3.2.4 Preparation of Modified Tyrode-HEPES-BSA buffer, pH 7.4	29
3.2.5 Preparation of 60% $Percoll^{ $	30
3.2.5.1 Preparation of 10×KRP buffer, pH 7.4	30
[Ca(-), Glc(-), Mg(+)]	

CONTENTS (Continued)

3.2.5.2 Preparation of 1×KRP buffer, pH 7.4	30
3.2.6 Preparation of rat peritoneal mast cells (RPMC)	31
3.2.7 Counting of viable mast cells	32
3.2.8 Development of quantitative analysis of histamine in	32
MT-HEPES-BSA buffer	
3.2.8.1 HPLC system for assay development	32
3.2.8.2 Optimization of mobile phase of HPLC condition for	32
analysis of histamine	
3.2.8.3 Optimization of derivatization procedure	33
3.2.8.3.1 Concentration of derivatizing agent	33
3.2.8.3.2 Volume of 0.1%OPA	34
3.2.8.3.3 Time before reaction	34
3.2.8.3.4 Reaction time	34
3.2.8.3.5 Volume of 3.57 N H ₃ PO ₄	34
3.2.8.3.6 Stability of compound obtained from derivatization	on34
3.2.9 Method validation	
3.2.9.1 Specificity/Selectivity	35
3.2.9.2 Limit of Detection (LOD) and limit of quantitation (LOQ)	36
3.2.9.3 Linearity/Calibration curve	36
3.2.9.4 Accuracy	36
3.2.9.5 Precision	37
3.2.9.5.1 Within-run analysis	37
3.2.9.5.2 Between-run analysis	37
3.2.10 Inhibition of histamine release by ellagic acid (extracted from	38
Punica granatum)	
3.2.10.1 Preparation of control group	39
3.2.10.1.1 Control 1 (histamine released from mast cells	39
without an stimulation)	

CONTENTS (Continued)

	Page
3.2.10.1.2 Control 2 (histamine released from mast cells	39
stimulated by compound 48/80)	
3.2.10.1.3 Control 3 (mixed solution of compound 48/80	40
and ellagic acid rich extracts)	
3.2.10.2 Preparation of sample solution	40
3.2.10.3 Assay of histamine release	40
4. RESULTS AND DISCUSSION	
4.1 Development of assay for quantity analysis of histamine	
4.1.1 Optimization of mobile phase for HPLC analysis of histamine	42
4.1.2 Optimization of derivatization procedure	48
4.1.2.1 Concentration of derivatizing agent	48
4.1.2.2 Volume of 0.1%OPA	48
4.1.2.3 Time before reaction	49
4.1.2.4 Reaction time	50
4.1.2.5 Volume of 3.75 N H_3PO_4	50
4.1.2.6 Stability of the compound obtained from derivatization	51
4.2 Method validation	
4.2.1 Specificity	51
4.2.2 Limit of detection (LOD) and limit of quantitation (LOQ)	54
4.2.3 Linearity/Calibration curve and range	55
4.2.4 Accuracy	57
4.2.5 Precision	
4.2.5.1 Within-run precision	57
4.2.5.2 Between-run precision	57
4.3 Histamine release inhibition study by ellagic acid (extracted from Punica	58
granatum peels)	
5. CONCLUSION	63
REFERENCES	64

CONTENTS (Continued)

VITAE

Page

72

LIST OF TABLES

Table	Page
2-1 Mechanism of action	8
2-2 HPLC conditions for determination of histamine	12
3-1 Chemicals used in preparation of Modified Tyrode-HEPES-BSA buffer, pH 7.4	29
3-2 List of chemicals used in preparation of $10 \times \text{KRP}$ buffer solution, pH 7.4	30
3-3 List of chemicals used in preparation of $1 \times \text{KRP}$ buffer solution, pH 7.4	31
3-4 Mobile phase composition	33
3-5 A design of specificity testing	35
3-6 A design of inhibitory effect study on histamine released by ellagic acid rich	38
extracts	
4-1 Reults of retention time and total run time of five conditions of HPLC system	42
for optimal separation	
4-2 Effect of OPA concentration on the peak area of histamine	48
4-3 Effect of volume of 0.1%OPA on the peak area of histamine	49
4-4 Effect of lag time before addition OPA for reaction on peak area of histamine	49
4-5 Effect of reaction time on peak area of histamine	50
4-6 Effect of volume of 3.57 N H_3PO_4 on peak area of histamine	50
4-7 Effect of lag time before HPLC analysis on peak area of histamine	51
4-8 Peak area for calibration curve	56
4-9 Results of accuracy determination by recovery studied	57
4-10 Summary of within- and between-run precision data for determination of standard	58
histamine	
4-11 %Inhibition of ellagic acid rich extracts on mast cell degranulation	59
4-12 %Inhibition of ketotifen on mast cell degranulation	61

LIST OF ABBREVIATIONS AND SYMBOLS

Page

ECL	=	enterochromaffin-like	1
RIA	=	radio enzymatic assay	2
GC	=	gas chromatography	2
LC/MS	=	liquid chromatography tandom mass spectroscopy	2
HPLC	=	high-performance liquid chromatography	2
AQC	=	6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate	2
µg/ml	=	microgram/mililitre	2
OPA	=	o-phthalaldehyde	2
ng/ml	=	nanogram/mililitre	2
MW	=	molecular weight	7
HDC	=	histidine decarboxylase	7
GI	=	gastrointestinal	7
NaF	=	sodium fluoride	10
SAMe	=	<i>S</i> -[³ H] adenosylmethionine	11
DnsCl	=	dansyl chloride	11
UV	=	ultraviolet	12
ml/min	=	mililitre/minute	12
ref.	=	reference	12
$\lambda_{_{ex}}$	=	excitation wavelength	13
$\lambda_{_{em}}$	=	emission wavelength	13
THF	=	trihydrofuran	13
ACN	=	acetonitrile	13
ODS	=	octadecylsilane	13
KH ₂ PO ₄	=	potassium dihydrogen phosphate	13
H ₂ NaPO ₄	=	sodium dihydrogen phosphate	14
TEA	=	triethylamine	17
PSE	=	4-(1-pyrene)butyric acid N-hydroxysuccinimide ester	18
DNBZ-Cl	=	3,5-dinitrobenzoyl chloride	18

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

			Page
SHS	=	sodium heptanesulfonate	21
PCA	=	passive cutaneous anaphylaxis	22
GSS	=	Gahmi-Shini-San	22
GRJ	=	the gall of Rhus javanica	22
CIAE	=	Cichorium intybus	22
mg/kg	=	milligram/kilogram	22
WEPL	=	Phellinus linteus	23
DNP	=	anti-dinitrophenyl	23
ABWE	=	Agaricus blazei water extract	23
VRFE	=	the fruits of V. rotundifolia (L.) (Verbenaceae)	23
BGE	=	Buckwheat grain extract	23
RPMC	=	rat peritoneal mast cells	24
TKT	=	Tongkytang	24
GBIT	=	Gamibojungikgitang	24
XF	=	Xanthii fructus	24
BSA	=	albumin from bovine serum, lyophilized	26
CaCl ₂ •2H ₂ O	=	calcium chloride dehydrate	26
(CH ₃) ₂ SO	=	dimethylsulphoxide	26
Na ₂ HPO ₄ •2H ₂ O	=	di-sodium hydrogen phosphate dehydrate	26
Na ₂ EDTA	=	ethylenediaminetetraacetic acid	26
$\mathrm{C_8H_{18}N_2O_4S}$	=	HEPES [4-(2-hydroxyethyl)piperazine-1-thanesulonic acid]	26
$C_{19}H_{19}NOS \bullet C_4H$	$I_4O_4 =$	ketotifen fumarate salt	26
$C_6H_9N_3O_2$	=	L-histidine	27
MgCl ₂ •6H ₂ O	=	magnesium chloride hexahydrate	27
2-ME (C_2H_6OS)) =	2-mercaptoethanol	27
CH ₃ OH	=	methanol	27
KC1	=	potassium chloride	27
NaCl	=	sodium chloride	27

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

			Page
$NaH_2PO_4 \bullet 2H_2O$	=	sodium dihydrogen phosphate dehydrate	27
DI water	=	de-ionization water	28
MT-HEPES-BSA	=	Modified Tyrode-HEPES-BSA buffer	28
mmol/l	=	millimole/litre	29
KRP	=	Krebs Ringer Phosphate	30
LOD	=	limit of detection	36
LOQ	=	limit of quantitation	36
R^{2}	=	coefficient of correlation	36
QC	=	quantitative concentration	36
RSD	=	relative standard deviation	37
SD	=	standard deviation	37
EA	=	ellagic acid rich extracts	38
IC ₅₀	=	inhibition concentration at 50%	60

LIST OF FIGURES

Figure	Page
2-1 Mechanism for degranulation of mast cells	6
2-2 Decarboxylation of histidine	7
2-3 OPA derivatization of a primary amine in the presence of a thiol	12
2-4 Chemical structures of ellagic acid	25
4-1 Chromatogram of selected condition of optimal separation for HPLC system	43
4-2 HPLC chromatograms of the specificity validation for the HPLC analysis of	52
Histamine after derivatization	
4-3 HPLC chromatograms of LOD and LOQ analysis	55
4-4 Calibration curve for standard histamine solution analysis	56
4-5 Concentration dependence inhibition of ellagic acid on mast cell degranulation	59
4-6 IC_{50} determination method of ellagic acid on mast cell degranulation	60
4-7 Concentration dependence inhibition of ketotifen on mast cell degranulation	61
4-8 IC_{50} determination method of ketotifen on mast cell degranulation	62

CHAPTER 1

INTRODUCTION

1.1 General introduction

Histamine is a biogenic amine derived from enzymatic decarboxylation of a natural amino acid, histidine (Douabale *et al.*, 2003, Previati *et al.*, 2002). It was synthesized and stored in mast cells. Mast cells are constituents of virtually all organs and tissue. These cells are especially numerous at sites of potential injury such as nose, mouth, feet, internal body surfaces, and blood vessels. Non-mast cell histamine is found in several tissues including the brain, where it functions as a neurotransmitter. Another important site of histamine storage and release is the enterochromaffin-like (ECL) cell of the stomach (Lee *et al.*, 2006). In response to an antigen, mast cells activation and degranulation are mediated by crosslinking of IgE which is bound to FcERI on mast cells. Through degranulation, histamine as well as a number of inflammatory cytokines are mediators releasing from mast cells. Among the inflammatory substances released from mast cells, histamine is the most potent vasoactive mediator and best-characterized mediator associated with the acute phase of hypersensitivity (Kim *et al.*, 1999, Lee *et al.*, 2006, and Shin *et al.*, 2005). Histamine exerts its action from binding to histamine receptors on the target cells. Its main action includes gastric acid secretion, smooth muscle cells contraction, vasodilation and increased vasocular permeability (Choi *et al.*, 2006).

Non anaphylactic mast cell activation can be mediated by compound 48/80, which stimulates trimeric G-proteins at mast cell membrane causing degranulation via phospholipase C and D pathways (Wang *et al.*, 2005). Nevertheless, a high concentration of compound 48/80 is required in inducing almost 90% of histamine releasing from mast cells. An appropriate amount of compound 48/80 has been used in studying the mechanism of anaphylactic reaction (Kim *et al.*, 1999).

To date, inhibitory effect on histamine release from mast cells is mostly examined by determination of in vitro released histamine. Determination of histamine is not straight forward because lacking of a chromophore in the molecule of histamine as well as and very low levels in biological matrix (Arakawa *et al.*, 1986, Douabale *et al.*, 2003, and Previati *et al.*, 2002). Many analytical procedures have been developed to quantitatively determine histamine release from mast cells (Jensen *et al.*, 1995). Previously reported, bioassay, RIA, GC, LC/MS methods are often encountered with either sensitivity problems, or high skilled operators requirement. The most successful methods always utilize precolumn derivatization prior to HPLC and fluorescence detection. This method has been the most commonly used because of its high resolution and high sensitivity (Solomon *et al.*, 2002). 6-Aminoquinolyl-*N*-hydroxysuccinimidyl carbamate (AQC) was used as a derivatizing agent in the determination of histamine in red and white wine, which histamine was determined in μ g/ml range (Hernandez-Orte *et al.*, 2006). Another study using *o*-phthalaldehyde (OPA) as a derivatizing agent was reported for determination of histamine in human whole blood and plasma in concentration as low as ng/ml (Arakawa *et al.*, 1986).

Due to the side effects of common antihistaminic drugs, such as drowsiness, dry mouth, blurred vision, nausea/vomiting, searching for anti-allergic resources other than pharmaceutical agents are achieving enormous interests. It has been reported that ellagic acid (2,3,7,8-tetrahydroxy[1]benzopyrano[5,4,3,-cde][1]benzopyran-5,10-dione), found in many woody plants and in diverse fruits and nuts, possess a variety of biological activities including anti-inflammatory activity, anti-oxidant, anti-fibrosis and anti-cancer properties (Masamune *et* al., 2005). Inhibition of histamine release by herbal crude extract is generally examined by determination of histamine released from mast cells. Normally, compound 48/80 was used to stimulate and induce mast cells degranulation and releasing histamine in vitro (Kim *et al.*, 1999, Moon *et al.*, 2005). Nowadays, inhibitory effect on histamine release from mast cells by crude extract from Thai herbs has not been reported.

This study aims to develop a versatile analytical method that can quantitatively determine histamine released from mast cells. Additionally, application of the developed method to study inhibitory effect of ellagic acid rich extracts on histamine release which was also demonstrated (Masamune *et* al., 2005).

1.2 Objectives

The objectives of this study were as follows:

1.2.1 To develop and optimize a method to quantitative/determine histamine released from mast cells by high-performance liquid chromatographic technique

1.2.2 To validate the developed method

1.2.3 To examine inhibitory effects of the crude extract as a model of inhibitory effect study of Thai herbal crude extract

CHAPTER 2

REVIEW OF LITERATURE

2.1 What is allergy?

Allergy is a disorder of the immune system that is often called atopy (Kim et al., 2005). Allergic reaction is mediated by histamine released from mast cells, derived from CD34+ hematopoietic progenitor cells, generally do not circulate in the blood but are the constituents of every organ and tissue. They are very long lived and retain the ability to proliferate under certain conditions especially at sites susceptible to injury such as the nose, mouth, feet internal body surfaces and blood vessels (Kim et al., 2005, Lee et al., 2006). Mast cells play a major role in immediate-type allergic reaction by releasing chemical mediators such as histamine, serotonin and arachidonic acid metabolites. Allergy is mediated by degranulation of mast cells that when exposed to allergens. Among the inflammatory substances released on the degranulation of mast cells, histamine is the best characterized and most potent vasoactive mediator implicated in the acute phase of immediate-type allergic reaction (Kim et al., 1999, Lee et al., 2006, Shin et al., 2000, and Shin et al., 2005). The important step in mast cell activation appears to be the crosslinking of IgE molecules, which causes the clustering of Fc receptors. Bridging of receptors can also form hydrophilic channels that allow calcium passing and induced increasing intracellular calcium level. Moreover, it has been established that IgE acts as an anchor for an antigen which helps in amplifying the signal transduction (Shin et al., 2005, Lee et al., 2006, Kim et al., 1999, Metcalfe et al., 1997, Froese, 1980). Non-mast cell histamine is found in several tissues, including enterochromaffin-like (ECL) cell of the stomach and in the brain. Functioning as a brain neurotransmitter mediating numerous important neurophysiological functions, such as circadian rhythm, sleep, feeding, drinking, temperature regulation, cognition, motion sickness, cardiovascular control, pain, aggressive behavior and hormonal secretion. It was found that repeat exposure to an allergen crosslinking of the IgE molecules on mast cell surface clusters the Fc receptors. This clustering stimulates a signal transduction causing the mast cell degranulation

(Figure 2-1). It also found that at least two specific IgE molecules were required to induce skin reaction in human.

Allergy (type I or immediate type hypersensitivity) is characterized by excessive activation of mast cells and basophils by IgE. IgE is considered a key mediator in the pathogenesis of allergic diseases as well as asthma (Charles *et al.*, 2006).

Figure 2-1 Mechanism for degranulation of mast cells (National Institute of

Allergy and Infectious Diseases, USA)

2.2 Biology of Histamine

Histamine, 2-(4-imidazole)-ethylamine, a low MW biogenic amine, is an important chemical mediator in allergic reaction and inflammation (Matsubara *et al.*, 2005, and Tanimoto *et al.*, 2006). Histamine is synthesized from L-histidine by histidine decarboxylase (HDC), an enzyme expressed throughout the body. including central nervous system neurons, gastric-mucosa parietal cells, mast cells, basophils, macrophage, and lymphocytes (Abe *et al.*, 1994, Estelle *et al.*, 2004 and Tanimoto *et al.*, 2006).

Figure 2-2 Decarboxylation of histidine

As shown in Figure 2-2, decarboxylation (Fig. 2-2) by HDC can be found in animal tissues and microorganisms (Douabale *et al.*, 2003, Previati *et al.*, 2002). Mammalian HDC is a member of a large family of pyridoxal 5-phosphate (PLP)-dependent enzyme expressed in most tissue, but the highest levels are found in the skin, the gastrointestinal (GI) tracts, and the airways (August *et al.*, 2006). Histamine was synthesized and stored mainly in mast cells and basophils where it is detained within granules (Bachert, *et al.*, 2002, Matsubara, *et al.*, 2005). These intracellular granules are complexed with an acidic protein, macroheparin and histamine dissociates from its complex by cation exchange with extracellular sodium at a natural pH. Histamine released into the synapses is broken down by acetylaldehyde dehydrogenase. It can also be degraded by histamine-*N*-methyltransferase and diamine oxidase (Choi *et al.*, 2006).

Mechanism of action

Addition to vasoactive action, histamine can cause the stimulation of gastric secretion, contraction of most smooth muscles, cardiac stimulation, vasodilation, and increased vascular permeability (Choi *et al.*, 2006).

Histamine exerts its action by binding to cellular histamine receptors. Four histamine receptors with different actions are shown in Table 2-1.

Туре	Location	Function
H ₁	Smooth muscle, endothelium, and	Vasodilation, bronchoconstriction, smooth
	central nervous system tissue	muscle activation, separation of
		endothelial cells (responsible of hives),
		and pain, and itching due to insect stings;
		the primary receptors involved in allergic
		rhinitis symptoms and motion sickness
H ₂	Parietal cells	Primarily stimulate gastric acid secretion
H ₃	-	Decreased neurotransmitter release:
		histamine, acetylcholine, norepinephrine,
		serotonin
H ₄	Thymus, small intestine, spleen,	Unknown physiological role
	and colon. It is also found on	
	basophils and in the bone	
	marrow.	

Table 2-1	Mechanisn	n of action
-----------	-----------	-------------

There are four major types of histamine receptor, H_1 -, H_2 -, H_3 -, and H_4 -receptor. These 4 types of histamine receptor differ in their expression, signal transduction, and function. H_1 - in contrast to H_3 - and H_4 -receptors and H_2 -receptors are more widely expressed. Histamine, which all are heptahelical that transduce extracellular signals by G proteins pathway. All have constitutive activity, which is defined as the ability to rigger downstream events even in the absence of ligand binding. The active and inactive states of the receptors exist in equilibrium (Estelle *et al.*, 2004).

Histamine has many inflammation effect and hypersensitivity, including vasodilation, edema, increased vascular permeability, and smooth muscle contraction (Rang *et al.*, 1995). Increased vascular permeability causes fluid to escape from capillaries into the tissues, which leads to the classic symptom of an allergic reaction runny nose and watery eyes (Sompayrac, 1999). It is thought to be a major mediator of the acute inflammatory response, although histamine H1 antagonists have little effect on acute inflammation (Rang *et al.*, 1995).

Gastric secretion: the most important action of histamine, in a clinical sense, is its stimulation of gastric acid secretion by acting on H2-receptors. It is implicated in the formation of peptic ulcers (Rang *et al.*, 1995).

Smooth muscle Effects: histamine causes of the smooth muscle of the ileum, bronchi and bronchioles, and uterus by acting on H1-receptors. It may be involved in increased peristalsis associated with food allergies (Abbas *et al.*, 1994). Histamine-induced bronchiolar has been implicated in the first phase of bronchial asthma (Rang *et al.*, 1995). In asthmatics, histamine was found to increase airway smooth muscle tone and cause mucosal edema and glandular secretion, resulting in the narrowing of airways and limited air flow. In nonasthmatics, bronchial activity of histamine was limited, most likely due to fewer H1-receptors in airway smooth muscle (Goldie, 1990).

Cardiovascular effects: acting on H1-receptors, histamine causes the dilation of blood vessels; it induces endothelium cell to synthesize vascular smooth muscle relaxants, including prostacyclin and nitric oxide, which cause vasodilation (Abbas *et al.*, 1994). Acting on H2-receptors, it increases heart rate and cardiac output. When injected intradermally, histamine leads to reddening of the skin, wheal, and flare, called the "triple response". Vasodilation of small arterioles and precapillary sphincters causes reddening, while increased permeability of postcapillary venules

capillary permeability. Histamine also induces an "axon reflex", which leads to stimulation of sensory nerve fibers and the release of a vasodilator mediator; this the flare (Rang *et al.*, 1995).

Itching: if histamine is injected into the skin, it causes itching, due to stimulation of sensory nerve ending (Rang *et al.*, 1995).

Allergens can bind to IgE-loaded mast cells in the nasal mucosa, which leads to three clinical responses: sneezing which is results from histamine-associated sensory neural stimulation; hypersecretion from glandular tissue occurs; nasal mucosal congestion due to vascular engorgement caused by vasodilation and increased capillary permeability (Monroe *et al.*, 1997).

2.3 Analytical method for histamine determination

Histamine has been shown to play important roles in allergy, microcirculation, and gastric acid secretion, neurotransmitter, and to participate in some adverse reaction to drugs. Histamine in tissues and body fluids is important in various physiological investigations (Arakawa *et al.*, 1986). A good starting point in understanding the process that leads to allergic symptom is the mast cell. The mast cell remains at the core of understanding of allergic inflammation and is thus a major target for future therapeutic interventions in allergy (Saito *et al.*, 2005).

Mast cell degranulation can be elicited by a number of positively charged substances, known as the "basic secretagogues" of mast cells, such as compound 48/80 or NaF (Na *et al.*, 2002, and Shin *et al.*, 2000). The synthetic compound 48/80 is known to be one of the most potent secretagogues of mast cells. Studies on the compound 48/80-induced mast cell degranulation and ear-swelling response have been continuously performed on a theoretical basis by Kim et al. (Na *et al.*, 2002). Compound 48/80 is a mixture of polymers synthesized by condensing *N*-methyl-*p*-methoxyphenyl ethylamine with formaldehyde, and its hypotensive effect, resulting from histamine release. Compared with the natural process, a high concentration of compound 48/80 induces almost a 90% release of histamine from mast cells. Thus, an

appropriate amount of compound 48/80 has been used as a direct and convenient reagent to study the mechanism of anaphylactic allergy reaction (Na *et al.*, 2002, and Shin *et al.*, 2000). The secretory response of mast cells can be induced by aggregation of their cell surface-specific receptors for IgE by the corresponding antigen (Moon *et al.*, 2005, and Na *et al.*, 2002). It has been established that the anti-IgE antibody induces passive cutaneous anaphylaxis (PCA) as a typical model for mast cell-dependent immediate type allergic reaction (Na *et al.*, 2002).

Since its discovery in 1916 by Gugenheim and Lofler, a variety of techniques and detectors have already been used for determining histamine in various matrices (Douabale et al., 2003). Analytical determination of histamine is not simple because of its structure and it is usually present at low levels in a biological matrix (Arakawa et al., 1986, Douabale et al., 2003, and Previati et al., 2002). Many types of assay methods can be used; the bioassay, the radioenzymatic assay, and fluorometric assay. The biological assay is not sensitive or selective enough to directly determine histamine in biological matrices unless additional extraction and purification steps are taken (Arakawa et al., 1986). The originally developed methods are based on enzymatic or radio enzymatic assays. The radioenzymatic assay using histamine methyltransferase and ${}^{14}C$ or S-[${}^{3}H$] adenosylmethionine (SAMe) has been improved so that it is now a highly sensitive method. However, it requires the use of a highly purified enzyme and commercially unavailable, the complete separation of the isotope-labeled product from ${}^{14}C$ or $[{}^{3}H]$ SAMe after incubation, and special facilities for the handling of radioisotopes, which are not suitable for routine assay in normal laboratories (Arakawa et al., 1986, and Douabale et al., 2003). The most successful assays rely on precolumn derivatization followed by highperformance liquid chromatography (HPLC) and fluorescence detection. This method has been the most commonly used because of its high resolution, sensitivity and selectivity of quantifying low levels of histamine in biological matrices. Employment of the use of fluorescence for histamine analysis developed by Shore et al. in 1959, and have been widely used (Arakawa et al., 1986, Douabale et al., 2003, Previati et al., 2002, and Solomon et al., 2002). Histamine has no chromophore or electrophore, making detection a challenge. Among available fluorescence labeling reagents, dansyl chloride (DnsCl), o-phthalaldehyde (OPA), 6-aminoquinolyl-Nhydroxysuccinimidyl carbamate (AQC), were used either pre-column, on-column or post-column derivatization, for HPLC analysis with fluorescent detection. The most important advantage

offered by OPA is that it reacts with primary amines quickly enabling the biogenic amine detected at fmol levels (Figure 2-3)(Busto *et al.*, 1997).

Figure 2-3 OPA derivatization of a primary amine in the presence of a thiol

OPA rapidly reacts with primary amines to form alkylthiolisoindoles, which are electrochemically active, fluorescent, and UV-absorbing. Moreover, combination of OPA, an appropriate thiol, and pH control, a rapid derivatization and formation of a stable product can be obtained (Solomon, 2002).

Previously studied HPLC conditions for determination of histamine are listed in Table 2-2.

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Human mast	A Delta-Pak	20 ml PIC [®] B-8	0.2	-	UV at 215	August et
cells line	HPI C4 300 A°,	Low UV Reagent			nm	al., 2006
	2.0 × 150 mm	(Waters) in 11 of 10				
	column	mM triethylamine				
	(Waters,	phosphate, pH 3.0				
	Milford, MA)					

 Table 2-2
 HPLC conditions for determination of histamine

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Red wines	Asahipack OP-	Gradient elution;	0.8	OPA	Fluorescence	Busto et
	50 cartridge	eluent (A): 5 mM			detection at	al., 1997
	supplied by	borate buffer			λ_{ex} =340 nm	
	Hewlwtt-	(pH9)/1%THF, (B):			and λ_{em} =450	
	Packard	12 mM OPA-			nm	
		NAC/5 mM borate				
		(pH 9), (C): ACN				
Tuna fish	Spherisorb	20 mM KH ₂ PO ₄ , pH	0.5	-	UV detection	Frattini
	ODS2 C18, 25	3.0			at λ=215 nm	et al.,
	× 4.6 mm (5					1998
	μm) column					
	(Alltech,					
	Milan, Italy)					
Tuna fish	Spherisorb	20 mM KH ₂ PO ₄ (pH	0.8	OPA	Fluorescence	Frattini
	ODS2 C18, 25	4.0) : acetonitrile			detection at	et al.,
	× 4.6 mm (5	(7:3)			λ_{ex} =315 nm	1998
	μm) column				and λ_{em} =415	
	(Alltech,				nm	
	Milan, Italy)					
Whole blood	C18	50 mM acetate	1.0	OPA	Fluorescence	Previati
of colon	Ultrasphere	buffer, pH			detection at	et al.,
cancer	column	4.0:methanol:aceton			λ_{ex} =360 nm	2002
patients	(Beckman,	itrle (44:20:36)			and λ_{em} =450	
	Milan, Italy)	containing 8 mM			nm	
		sodium				
		decanesulfonate				
		(DSF)				

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Standard	Hypersil ODS	Gradient elution.	1.0	OPA	Fluorescence	Kutlan <i>et</i>
solution of		Eluent A: 0.05 M			detection at	al., 2002
histamine		sodium acetate (pH			λ_{ex} =337 nm	
		7.2). Eluent B: 0.1			and λ_{em} =454	
		M sodium acetate-			nm	
		acetonitrile-				
		methanol(46:44:10)				
		(pH 7.2)				
Mast cells of	C18 spherisorb	Methanol:0.02 M	1.0	OPA	Fluorescence	Egger et
mouse	ODS column	sodiumacetate (1:1,			detection at	<i>al.</i> , 1994
	(Beckman)	v/v) supplemented			λ_{ex} =360 nm	
		with 5 mM 1-			and λ_{em} =455	
		octanesulfonic acid			nm	
Wines	Waters Nova-	Gradient elution.	0.8	OPA	Fluorescence	Marcobal
	Pak C18	Eluent A:			detection at	et al.
		Na ₂ HPO ₄ •12H ₂ O			$\lambda_{ex}=340 \text{ nm}$	2005
		(3.6 mg/l, 10 mM).			and λ_{em} =425	
		Eluent B: 1% 2-			nm	
		octanol in				
		acetonitrile and				
		eluent A (70:30 v/v)				
Mast cells	Ace5 C18 with	$0.1 \text{ M H}_2\text{NaPO}_4 \text{ and } 1$	0.8	OPA	Fluorescence	Gordon
	a Zorbax C18	mM Na ₂ EDTA with			detection at	et al.,
	guard column	16% methanol and			$\lambda_{ex}=348 \text{ nm}$	2004
		14%acetonitrile, pH			and λ_{em} =444	
		6.4			nm	

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Meat	Zorbax Eclipse	Gradient elution:	0.6	OPA	Fluorescence	Smela et
products	XDB C8	100 mM acetate			detection at	al. 2003
	column (150	buffer (pH 5.8) and			λ_{ex} =330nm	
	mm×4.6 mm,	acetonitrile			and λ_{em} =440	
	particle size 5				nm	
	μm) with guard					
	column Meta					
	Guard Inertsil					
	C18 (30					
	mm×4.6 mm,					
	particle size 5					
	μm)					
Epithelia of	EC 125/4	$30 \text{ mM Na}_2\text{Ba}_4\text{O}_7$ in	1.5	OPA	Fluorescence	Vietingh
pig colon	Reprosil-Pur	methanol-water			detection at	off et al.,
	C18 AQ	(40/60; v/v) and 0.2			λ_{ex} =350 nm	2006
	(Trentec-	mM OPA			and λ_{em} =450	
	Analysentechni				nm	
	k, Germany)					
Meat	Zorbax Eclipse	Gradient elution:	0.8	Dansylchloride	UV/VIS	Smela et
products	XDB C18	H ₂ O and acetonitrile			detector at	al. 2003
	column				254 nm	
	(150×4.6 mm,					
	partial size 5					
	μ m) with guard					
	column Meta					
	Guard ODS-2					
	(30 mm×4.6					
	mm)					

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Chocolate	Dionex CS17	Gradient elution	0.35	-	Electrochemi	Onal.
		aqueous			cal detector	2007
		methanesulfonic				
		acid				
Meat	IonPac CS17	Gradient elution	1.0	-	UV and MS	Onal.
products	column, a	methanesulfonic				2007
	cation-	acid				
	exchange					
	column					
Wines	Luna C18	Gradient elution.	-	OPA	Diode array	Onal.
		Eluent A: buffer,			detector	2007
		рН8 (30			(DAD): 200-	
		ml)+acetonitrile			550 nm	
		(550 ml)+H ₂ O (420				
		ml). Eluent B:				
		buffer, pH 8 (2				
		ml)+acetonitile(900				
		ml)+H ₂ O(100 ml)				
Tuna fish	Luna C18	Gradient elution.	-	-	DAD	Cinquina
		Eluent A: 85% of				et al.
		buffer solution (pH				2004
		6.9) and 15% of				
		methanol. Eluent B:				
		acetonitrile				

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Musts and	Luna C18	Gradient elution.	1.0	6-	Fluorescence	Hernande
wines	bonded silica	Eluent A: 140 mM		aminoquinolyl-	detection at	z-Orte et
	(Torrance,	sodium acetate		<i>N</i> -	$\lambda_{ex}=250 \text{ nm}$	al., 2006
	USA)	trihydrate and 17		hydroxysuccini	and λ_{em} =395	
		mM TEA (pH 5.05),		midyl carbamate	nm	
		Eluent B: methanol				
Alcoholic	Nova-Pak C18	Gradient elution.	1.0	Post-column	Fluorescence	Vidal-
beverages		Eluent A: 0.1 M		derivatizing with	detection at	Carou et
		sodium acetate and		OPA	$\lambda_{ex}=340$ nm	al. 2003
		10 mM sodium			and λ_{em} =445	
		octanesulfonate (pH			nm	
		5.3). Eluent B:				
		mixture of solvent				
		B-acetonitrile				
		(6.6:3.4), where				
		solvent B was a				
		solution of 0.2 M				
		sodium acetate and				
		10 mM sodium				
		octanesulfonate				
		solution adjusted to				
		pH 4.5				
Alcohol	Inertsil ODS-3	Gradient elution (A)	1.0	Dansylchloride	Fluorescence	Loukou
beverages		H_2O and (B)			detection at	et al.
		acetonitrile			λ_{ex} =320nm	2003
					and λ_{em} =523	
					nm	

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Brain	Microbore	A mixture	50 µl/min	4-(1-	Fluorescence	Yoshitak
microdialy-	colum paked	containing 75%		pyrene)butyric	detection at	e et al.,
sis samples	with C18 silica	acetonitrile in water		acid N-	λ_{ex} =345 nm	2003
from awake	gel (Tokyo,			hydroxysuccini	and λ_{em} =500	
rats	Japan)			mide ester (PSE)	nm	
Coffee	Kromasil C18	Gradient elution; 0.5	1.0	Dansylchloride	Diode array	Casal et
		mM phosphoric:			detector at	al. 2002
		acetonitrile :			254 nm,	
		methanol			connected in	
					series with a	
					fluorimetric	
					detection at	
					λ_{ex} =252 nm	
					and λ_{em} =500	
					nm	
Fish and	С18-µ-	Gradient elution;	1.0	-	UV detector	Shakila
fishery	Bondapak	methanol: H ₂ O			at 254 nm	et al.
products						2001
Fermented	Grom-Sil a	Gradient elution.	-	3,5-	UV-	Kirschba
cabbage	ODS-3 CP 120	Eluent A: 100 mM		dinitrobenzoyl	absorption at	um et al.
juices, soy	RP-18	NaOAc, pH 7.0;		chloride	260 nm	2000
sauces	encapsulated	eluent B: 100 mM		(DNBZ-Cl)		
	polymer coated	NaOAc, pH 4.3;				
	column	eluent C:				
		acetonitrile				

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Wines	LiChrospher	Gradient elution.	1.0	Dansyl chloride	Spectrophoto	Romero
	100 RP-18	Elutent A,			metric	et al.
		consisting of sodium			detection at	2000
		acetate, 10%(v/v)			446 nm	
		dimethylformamide,				
		and 0.23%(v/v)				
		triethylamine (pH				
		5). Eluent B,				
		consisted of				
		acetonitrile-tert				
		butylmethylether-				
		water				
		butylmethylether-				
		water (87.5:10:2.5,				
		v/v/v).				
Wines	Asahipack OP-	Gradient elution (A)	0.8	OPA	Fluorescence	Busto et
	50 cartridge	5 mM borate			detection at	al. 1997
		solution (pH 9) with			$\lambda_{ex}=340$ nm	
		1% THF, (B) 5 mM			and λ_{em} =450	
		borate solution (pH			nm	
		9) with 12 mM				
		OPA-NAC, and (C)				
		CAN				
Fish tissues	IonPac CS17	Gradient elution:	1.0	-	Electrochemi	Cinequin
	column	methanesulfonic			cal detection	a <i>et al</i> .
		acid gradient				2004

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Wines	Synergi Hydro-	Gradient elution.	1.0	1,2-	Spectrophoto	Onal.
	RP C18	Eluent A: 2%(v/v)		naphthoquinone-	metric	2007
		acetic acid aqueous		4-sulfonate	detection at	
		solution, Eluent B:			305 nm and	
		methanol as organic			270 nm	
		modifier				
Spinach,	Nova-Pak C18	Gradient elution.	1.2	OPA	Fluorescence	Lavizzari
hazelnut,		Eluent A: a solution			detection at	et al.,
banana,		of 0.1 M sodium			$\lambda_{ex}=340$ nm	2006
potao, and		acetate and 10 mM			and λ_{em} =445	
milk		sodium			nm	
chocolate		actanesulfonate				
		(pH5.23), eluent B:				
		mixture of solvent				
		B-acetonitrile				
		(6.6:3.4), where				
		solvent B was a				
		solution of 0.2 M				
		sodium acetate				
		and10 mM sodium				
		octanesulfonate				
		solution adjusted to				
		pH 4.5 with acetic				
		acid				

Samples	Stationary	Mobile phase	Flow rate	Derivatization	Detection	Ref.
	phase		(ml/min)			
Wines	A Zorbax C8	Gradient elution.	0.8	1,2-	Spectrophoto	Hlabanga
	column	Eluent A: 15% CAN		naphthoquinone-	metric	na <i>et al</i> .
		+ 85% aqueous		4-sulfonate	detection at	2006
		solution (15 mM			305 nm	
		sodium				
		heptanesulfonate				
		(SHS) + 10 mM				
		phosphoric acid);				
		eluent B: 70% ACN				
		+ 30% aqueous				
		solution (8 mM SHS				
		+ 10 mM				
		phosphoric acid)				
Wines	Inertsil ODS-2	Gradient elution;	1.0	Dansyl chloride	UV detection	Soufleros
	and 3	acetonitrile:water			at 254 nm	et al. 2007
Cheese	Romasil KR	Gradient elution;	0.8	-	Spectrophoto	Innocent
	100-5 C18	acetonitrile:water			metric	e et al.,
					detection at	2006
					254 nm	

2.4 Study on the inhibition of histamine release by herbal plant

In general, immediate allergic reaction, which includes urticaria, allergic rhinitis, and asthma, is mediated by various chemical mediators released from mast cells. Mast cell degranulation can also be elicited by a number of positively charged substances, collectively known as the basic secretagogues of mast cells. Compound 48/80 is one of the most potent secretagogues of mast cells. On a theoretical basis, studies on compound 48/80-induced mast cell

degranulation and ear swelling response have been examined by Kim et al. (Hong *et al.*, 2001, Kim et al., 1999). The secretory response of mast cells can be induced by aggregation of their cell surface-specific receptors for IgE by the corresponding antigen. It has been established that the anti-IgE antibody induces passive cutaneous anaphylaxis (PCA) as a typical model for mast cell-dependent immediate type allergic reaction (Choi *et al.*, 2006, Hong *et al.*, 2001, Kim *et al.*, 1999, Kim *et al.*, 2005).

Gahmi-Shini-San (GSS) is an orient herbal medication that has been used to threat anaphylactic skin diseases in Korea. GSS showed inhibition for the ear swelling response induced by intradermal injection of compound 48/80 in a mouse model on a concentrationdependent basis. GSS significantly inhibited the compound 48/80-induced degranulation from mast cells in ear tissue, and GSS dose-dependently inhibited the histamine release from the rat peritoneal mast cells by compound 48/80. GSS showed inhibition of passive cutaneous anaphylaxis following oral administration that studied the effect of GSS on mast cell-dependent passive cutaneous anaphylaxis activated by dinitrophenyl IgE antibody. These results indicated that GSS has inhibitory effect on mast cell-dependent immediate type cutaneous reaction (Hong *et al.*, 2001).

The gall of *Rhus javanica* (GRJ) is the excrescence produced by parasitic aphids, mainly *Melaphis chinensis* (Bell) Baker, on the leaf of *Rhus javanica* L. (Anacardiaceae). This crude drug has the pharmacological functions of antibacterial activity, antivirus activity and antihelicobacter pylori activity, and has been used for chronic cough, hematochezia, abscess, skin disease and diabetes. GRJ inhibited compound 48/80-induced systemic reactions in mice. GRJ attenuated IgE-mediated local allergic reactions, and dose dependently decreased histamine release from rat peritoneal mast cells activated by compound 48/80 (Kim et al., 2005).

Cichorium intybus (Compositae) is commonly known as 'Chicoryo'. An aqueous extract of *Cichorium intybus* (CIAE) dose-dependently inhibited systemic anaphylactic reaction induced by compound 48/80 in mice. Especially, CIAE inhibited compound 48/80-induced anaphylactic reaction 100% with the dose of 1000 mg. The plasma histamine levels in mice were reduced in a dose-dependent manner, when they were pretreated with CIAE at a concentration ranging from 0.1 to 1000 mg/kg. CIAE (1-1000 μ g/ml) dose-dependently inhibited histamine
release from the rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE (Kim *et al.*, 1999).

Phellinus linteus, an orange color mushroom growing well on mulberry tree, is a well-known fungus of the genus *Phellinus* in the family of Hymenochaetaceae and has been used as a traditional herb medicine in oriental countries and is known to have anti-tumor, immunomodulatory, anti-inflammatory, and anti-allergic activities. Oral administration of water extract from the fruiting body of *Phellinus linteus* (WEPL) inhibited the compound 48/80-induced systemic anaphylaxis-like reaction and ear swelling response. WEPL also inhibited the anti-dinitrophenyl (DNP) IgE-mediated passive systemic and cutaneous anaphylaxis. WEPL dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE (Choi *et al.*, 2006).

Agaricus blazei is a medicinal mushroom native to Brazil. It used to be a source of anti-tumor and immunoactive compounds and considered a health food in many countries. *Agaricus blazei* water extract (ABWE) inhibited compound 48/80-induced systemic anaphylaxislike reaction, ear-swelling response, passive cutaneous anaphylaxis-like reaction in mice. ABWE also inhibited the anti-dinitrophenyl (DNP) IgE-mediated passive systemic and cutaneous anaphylaxis. ABWE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE (Choi *et al.*, 2006)

The fruits of *V. rotundifolia* (L.) (Verbenaceae) (VRFE), well known as 'Man Hyung Ja' in Korea, have been used against headache in upper respiratory infection and they still occupy an important place in traditional Oriental medicine for treatment of various allergic diseases through various administration routes in Korea. VRFE dose-dependently inhibited systemic allergic reaction induced by compound 48/80 and inhibit passive cutaneous anaphylaxis activated by anti-dinitrophenyl (DNP) IgE. VRFE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE (Shin *et al.*, 2000).

Buckwheat grain extract (BGE) is one of the widely consumed foodstuffs. BGE has long been used as therapeutics for anti-inflammation, detoxification and lowering the fever in Korean folk medicine. BGE showed potent inhibitory effect on passive cutaneous anaphylaxis (PCA) activated by anti-dinitrophenyl (DNP) IgE when orally administered and inhibitory potential on the compound 48/80-induced histamine release from rat peritoneal mast cells (RPMC) (Kim *et al.*, 2003).

Tongkytang (TKT) is an Oriental herbal prescription, which has been successfully applied for the treatment of allergic disorders, mainly allergic-rhinitis in clinical medicine. TKT concentration-dependently inhibited the ear-swelling response induced by intradermal injection of compound 48/80. TKT inhibited the compound 48/80-induced degranulation from mast cells in ear tissue. TKT dose-dependently inhibited the histamine release from the rat peritoneal mast cells by compound 48/80 (Na *et al.*, 2002).

Gamibojungikgitang (GBIT) is an Oriental herbal prescription medication, which has been commonly used to treat allergic rhinitis in far Eastern countries including Korea, China, and Japan. GBIT extract dose-dependently inhibited compound 48/80-induced systemic anaphylactic shock. GBIT dose-dependently inhibited the histamine release from the rat peritoneal mast cells by compound 48/80. GBIT showed potent inhibitory effect on passive cataneous anaphylaxis (PCA) activated by anti-dinitrophenyl (DNP) IgE (Moon *et al.*, 2005).

Xanthii fructus (XF) which is well known as "Chang-ihjah" in Korea is the dired fruit of *Xanthium strumarium* L. Water extract of this fruit has been used for treatment of various inflammatory diseases such as tympanitis, allergic rhinitis, or ozena as an alternative therapy material usually by oral administration in far Eastern countries including Korea. The effect on mast cell-mediated allergic reaction, XF inhibited compound 48/80-induced systemic anaphylaxis in mouse. This dose-dependently inhibited histamine release from rat peritoneal mast cells by compound 48/80 (Hong *et al.*, 2003).

In this study, ellagic acid rich extracts from *Punica granatum* was examined for histamine release inhibitory effect study. Ellagic acid (2,3,7,8-tetrahydroxy[1] benzopyrano[5,4,3,-cde][1] benzopyran-5,10-dione)(Figure 2-2), is a hydrolytic chemical found in *Punica granatum*, ellagic acid derivatives product from ellagic acid glycosides and ellagitannins (Lee, 2004). Ellagic acid has a variety of biological activities including antioxidant, anti-inflammatory, anti-fibrosis and anti-cancer properties in bacterial and mammalian systems.

Figure 2-4 Chemical structures of ellagic acid

Also, application of the developed method to study inhibitory effect by ellagic acid rich extracts was also demonstrated as a model for the study of inhibitory effect by various Thai herbal crude extracts.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Materials and Equipments

3.1.1 Materials

Acetonitrile and triethylamine used in this study were HPLC grade obtained from Lab-Scan, Analytical Sciences, Thailand. The other chemicals were analytical grade. All chemicals and solvents are listed below.

Chemicals

Source

Boric acid	Fluka, Switzerland
BSA (Albumin from bovine serum, lyophilized)	Fluka, Switzerland
Calcium chloride dihydrate (CaCl ₂ •2H ₂ O)	AnalaR [®] , England
Dimethylsulphoxide (CH ₃) ₂ SO	Lab-Scan, Analytical Sciences,
	Thailand
di-Sodium hydrogen phosphate dihydrate	Fluka, Germany
$(Na_2HPO_4 \bullet 2H_2O)$	
D-(+)-Glucose, anhydrous	Ajax Finechem, Australia
Ethanol	Siribuncha Co., LTD, Thailand
Ethylenediaminetetraacetic acid (Na ₂ EDTA)	Aiax Finechem, Australia
Gelatin	Fluka, Switzerland
Heparin Sodium salt from bovine intestinal mucosa	Biochemika, Fluka, Germany
HEPES [4-(2-hydroxyethyl)piperazine-1-	Fluka BioChemika, USA
ethanesulonic acid] ($C_8H_{18}N_2O_4S$)	
Histamine dihydrochloride	Fluka, Biochemika, Japan
Ketotifen fumarate salt ($C_{19}H_{19}NOS \cdot C_4H_4O_4$)	Sigma, Japan

L-histidine $(C_6H_9N_3O_2)$	Sigma-Aldrich, Germany
Magnesium chloride hexahydrate (MgCl ₂ •6H ₂ O)	AnalaR [®] , England
2-mercaptoethanol (2-ME)(C ₂ H ₆ OS)	Sigma-Aldrich, Germany
Methanol (CH ₃ OH)	Lab-Scan, Analytical Sciences,
	Thailand
<i>o</i> -phthaldialdehyde (OPA)(C ₈ H ₆ O ₂)	Sigma, Germany
Percoll [®]	Fluka BioChemika, Sweden
Potassium chloride (KCl)	Ajax Finechem, Australia
Sodium chloride (NaCl)	AnalaR [®] , England
Sodium dihydrogen phosphate dihydrate	Merck, Germany
$(NaH_2PO_4 \cdot 2H_2O)$	
Sodium hydroxide	Lab-Scan, Analytical Sciences,
	Thailand
Trypan blue	Invitrogen Corporation, USA
Ellagic acid rich extraced from Punica granatum peels	Assoc. Prof. Dr. Pharkphoom
	Panichayupakaranant

3.1.2 Equipments

High Performan	ce Liquid Chrom	atography (HPL	C) system:	Shimadzu, Japan	
	- System control	ller:	SCL-10AVP mo	odel	
	- Pump:		LC-10ADVP (L	iquid Chromatograph)	
			model		
	- Degasser:		DGU-14A mode	el	
	- Automatically	Injector:	SIL-10ADVP m	odel	
	- Fluorescence I	Detector:	RF-10AXL mod	lel	
	- Column oven:		CTO-10ASVP r	nodel	
HPLC column:		ODS-C18 colum	nn (Sunfire TM , Wa	ater), 0.46 x 15 cm, 5	
		μ m, and security guard column (Phenomenex [®] , USA) was			
		packed with C18 particles, 4×3 mm			

Sonicator:	Ultrasonicator, Chest
Centrifuge:	Hermle Labortechnik (Z 323K), Germany
Micro pipette:	RAININ, USA
Vortex:	Scientific Industries, INC., USA
Vial insert:	Agilent, USA
Precision pipette tips:	RAININ, USA
Microtubes:	Axygen [®] Scientific, USA
Hand tally counter:	SDI corporation, Taiwan
Neubauer Improved Bright-Line:	0.0025 mm^2 , 0.100 mm Tiefe Depth Profoudeur,
	Precicolor HBG, Germany
Deckglaser for Haemocytometer:	20×26 mm In vitro diagnostic, Menzel-Glaser [®]
(cover glass)	
Terumo [®] Syringe:	20 cc, Terumo [®] , Philippines

3.2 Methods

3.2.1 Preparation of standard solutions

Standard stock solution of histamine was prepared by accurately weighting standard histamine dihydrochloride 10 mg and dissolving in 50% methanol (in DI water) to yield a final volume of 10 ml (final concentration 1 mg/ml). This stock solution was used in preparing working histamine standard solution for routine analyses. The stock solution was stable for 1 month at -4°C in refrigerator and kept in dark. Working solution of standard histamine was subsequently prepared in MT-HEPES-BSA buffer, pH 7.4 and diluted to provide series solution of histamine for use in constructing calibration curves for each of analysis.

3.2.2 Preparation of mobile phase

Mobile phase consists of mixture of aqueous phase and acetonitrile and methanol. The aqueous phase consists of $0.1 \text{ M NaH}_2\text{PO}_4$ with 1 mM EDTA and 0.1%(v/v) TEA.

Acetonitrile and methanol were added and adjusted to a final pH 6.4 with 1 M NaOH. The ratio of the mobile phases was prepared by mixing phosphate buffer (obtained %v/v TEA) : acetonitrile : methanol in the proportions as shown in Table 3-4 for finding an optimal separation. Mobile phases were filtered and sonicated before use.

3.2.3 Preparation of derivatizing agent

Derivatizing agent was 1:1 mixture of 0.1%(w/v in methanol) *o*-phthalaldehyde and 2.5 ml/l (in methanol) of 2-mercaptoethanol. This solution was kept in the dark and used within a day.

3.2.4 Preparation of Modified Tyrode-HEPES-BSA buffer, pH 7.4

Modified Tyrode-HEPES-BSA buffer solution was prepared using chemical listed in Table 3-1 and adjusted to pH 7.4 with 1 M NaOH. This solution was steriled by sterile filtration using 0.22 µm membrane filter, and kept in refrigerator.

Table 3-1	Chemicals used in preparation of Modified Tyrode-HEPES-BSA	buffer
	solution (250 ml)	

Item	Reagents	Concentration	MW	g/250 ml
1	Sodium chloride	137 mmol/l	58.44	2.0013
2	Potassium chloride	2.7 mmol/l	74.56	0.0502
3	Calcium chloride, dihydrate	1.8 mmol/l	147.02	0.0662
4	Magnesium chloride, hexahydrate	1 mmol/l	203.3	0.0508
5	Sodium dihydrogen phosphate, dihydrate	0.4 mmol/1	156	0.0156
6	D-(+)-Glucose, anhydrous	5.6 mmol/l	180.16	0.2522
7	HEPES	20 mmol/l	238.31	1.1915
8	Gelatin	0.05%		0.125
9	BSA	0.1%		0.25

3.2.5 Preparation of 60%Percoll[®] solution

90%Percoll[®] was 9:1 mixture of 100% Percoll[®] and 10xKrebs Ringer Phosphate (KRP) buffer solution. This solution was diluted to give 60% Percoll[®] with 1xKRP solution.

3.2.5.1 Preparation of 10 x KRP buffer, pH 7.4 [Ca(-), Glc(-), Mg(+)]

10 x KRP buffer solution was prepared using chemicals listed in Table 3-2 and adjusted to pH 7.4 with 1 M NaOH. This solution was steriled by steriled filtration using 0.22 μ m membrane filter, and kept in refrigerator.

Table 3-2 List of chemicals used in preparation of 10 x KRP buffer solution (50 ml)

Item	Reagents	Concentration	MW	g/50 ml
1	Sodium chloride	9.00%	58.44	4.5
2	Potassium chloride	60 mmol/l	74.56	0.2237
3	Magnesium chloride, hexahydrate	10 mmol/l	203.3	0.1017
4	Sodium dihydrogen phosphate, dihydrate	15.0 mmol/l	156	0.117
5	Disodium hydrogen phosphate, dodecahydrate	85.0 mmol/1	358.14	1.5221

3.2.5.2 Preparation of 1 x KRP buffer, pH 7.4

1 x KRP buffer solution was prepared using chemicals listed in Table 3-3 and adjusted to pH 7.4 with 1 M NaOH. This solution was steriled by sterile filtration using 0.22 μ m membrane filter, and kept in refrigerator.

Item	Reagents	Concentration	MW	g/250 ml
1	Sodium chloride	0.90%	58.44	2.25
2	Potassium chloride	6 mmol/l	74.56	0.1118
3	Magnesium chloride, hexahydrate	1 mmol/l	203.3	0.0508
4	Sodium dihydrogen phosphate, dihydrate	1.50 mmol/l	156	0.0585
5	Disodium hydrogen phosphate, dodecahydrate	8.50 mmol/l	358.14	0.7611
6	D-(+)-Glucose, anhydrous	10 mmol/l	180.16	0.4504

Table 3-3 List of chemicals used in preparation of 1 x KRP buffer solution (250 ml)

3.2.6 Preparation of rat peritoneal mast cells (RPMC)

Wistar rats were sacrificed by neck dislocation. The abdominal surface was wiped with 50% ethanol. Twenty ml of MT-HEPES-BSA buffer containing 5 units/ml of freshly prepared heparin was injected into peritoneal cavity. The abdomen was gently massaged for approximately 90 s before the peritoneal cavity was carefully opened. Peritoneal fluid (containing cellular components) was subsequently aspirated into a polypropylene tube using a pasteur pipette. Thereafter, the peritoneal fluid were centrifuged at 1,100 rpm, 5°C for 5 min, the supernatant fluid was discarded. Cell pellets were washed twice with 10 ml MT-HEPES-BSA buffer and centrifuged at 1,100 rpm, 5°C for 5 min. Cell pellets were reconstituted with 2 ml of MT-HEPES-BSA buffer yielding purified mast cells suspension. Aliquots of the cell suspension were pooled for mast cell separation.

Mast cells were separated from the major components of rat peritoneal cells, (i.e. macrophages and small lymphocytes) by density centrifugation with 60% Percoll[®] solution according to the following procedure. Cells suspension 1 ml were layered on 6 ml of 60% Percoll[®] solution and centrifuged at 1,700 rpm, for 15 min at room temperature. Discard the cells remaining at the MT-HEPES-BSA buffer layer, and 60% Percoll[®] layer. Cell pellets were reconstituted with 5 ml of MT-HEPES-BSA, and centrifuged at 1,700 rpm, for 15 min at room temperature. Centrifugation was repeatedly performed and cell pellets were reconstituted with 0.5 ml of MT-HEPES-BSA solution, and pooled for cell counts.

3.2.7 Counting of viable mast cells

Viability of the cells was examined by 0.4% trypan blue uptake. Cell suspensions were dyed with 0.4% trypan blue solution in 1:1 ratio, then performed cell count using hemocytometer. About 2.8×10^6 cells/ml of viable cells was used for study the inhibitory of histamine released from mast cells by ellagic acid rich extracts from *Punica granatum*.

3.2.8 Development of quantitative analysis of histamine in MT-HEPES-BSA Buffer, pH 7.4

3.2.8.1 HPLC system for assay development

Column:	ODS, C18 column (Sunfire, Water [®]), 0.46 x 15 cm,		
	5 μ m, and guard column was packed with C18		
	particles		
Flow rate:	1.0 ml/min		
Volume of injection:	30 µl		
Detector:	Fluorescence;	excitation 348 nm	
		emission 444 nm	

3.2.8.2 Optimization of mobile phase of HPLC condition for analysis of

histamine (modified from Gordon et al., 2004 and Jensen et al., 1995)

The appropriate system was selected based on optimal resolution with appropriate retention time and total run time. The best HPLC condition for analysis of histamine was examined by varying ratio of mobile phase. These mobile phases were prepared by mixing phosphate buffer (obtained %v/v TEA) : acetonitrile : methanol in the proportions as shown in Table 3-4. Chromatograms of each condition were compared for the condition in which histamine peak well separated from other interfering peaks within an appropriate analysis time.

Condition	Phosphate buffer	Acetonitrile	Methanol
	(%)	(%)	(%)
А	50 (+ 0.5%TEA)	35	15
В	50 (+ 0.5%TEA)	25	25
С	50 (+ 0.1%TEA)	25	25
D	60 (+ 0.1%TEA)	25	15
Е	65 (+ 0.1%TEA)	20	15

Table 3-4	Mobile	phase	com	position
		P		0 0 0 0

3.2.8.3 Optimization of derivatization procedure

According to previously reported method for histamine derivatization (Gordon *et al.*, 2004, Jensen *et al.*, 1995). Histamine solution was mixed with 0.4 M Borate buffer pH 9.5. Derivatizing agent (OPA/ME solution) was subsequently added and the reaction was allowed for min at retention time. The reaction was stopped by phosphoric acid (3.57 N).

Optimization of this procedure was examined according to following variables: - concentration of derivatizing agent

- volume of OPA
- time before reaction
- reaction time, volume of H₃PO₄
- stability of the compound obtained from derivatization

3.2.8.3.1 Concentrations of derivatizing agent

OPA was dissolved with methanol to yield solutions with concentration of 1%, 0.5%, 0.1% 0.05%, and 0.01% w/v. All solutions were mixed with 2.5 ml/l of 2-ME in a 1:1 (v/v) ratio for optimal result.

Volume of OPA, which mixed with 2.5 ml/l ME, was optimized by varying as 10, 20, 30 and 50 μ l for maximum result of histamine derivative.

3.2.8.3.3 Time before reaction

After mixing borate buffer and histamine solution, varying lag time before adding derivatizing agent was done as 0, 2, and 5 min for stability study of mixture.

3.2.8.3.4 Reaction time

Reaction time between histamine and derivatizing agent was varied as 1, 2, 3, 4, 5, and 10 minutes for maximum derivative yield.

3.2.8.3.5 Volume of H₃PO₄

Volume of H_3PO_4 added to stop reaction between histamine and derivatizing agent, were varied to 3.5, 10, 25, and 50 µl.

3.2.8.3.6 Stability of the compound obtained from derivatization

Stability of the compound obtained from derivatization was determined by varying time interval a prior to HPLC injection. The time was test at 0, 5, 10, 15, and 20 minutes accordingly.

3.2.9 Method validation (U.S. Department of Health and Human Services, 2001)

3.2.9.1 Specificity/Selectivity

Selectivity is the ability of an analytical method to differentiate and quantify the analyte in the presence of other components in the sample. Identification of the peak of histamine was carried out using the test solutions listed in Table 3-5. All solutions were derivatized before analysis and the experiments were determined in triplicate. The analyte should not be interfered from other constituents and well resolved from those constituents.

Tested item	MT-HEPES- BSA buffer solution, pH 7.4	Compound 48/80	Histamine standard solution	Rat Peritoneal Mast Cells	Ellagic acid rich extract from pomegranate peels
Blank 1	+	-	-	-	-
Blank 2	-	+	-	-	-
Blank 3	-	-	-	-	+
Control 1	+	-	-	+	-
Control 2	+	+	-	+	-
Control 3	+	+	-	-	-
Standard	+	-	100 ng/ml	-	-
Sample histamine	+	+	-	+	+

 Table 3-5
 A design of specificity testing

+ refers to added in the solution before derivatization

- refers to have not added in the solution before derivatization

3.2.9.2 Limit of detection (LOD) and limit of quantitation (LOQ)

The detection limit of an analytical method is the lowest amount of the analyte that can be detected. LOD value indicates sensitivity of an analytical method. The quantitation limit of an analytical method is the lowest amount of the analyte that can be quantitatively determined with suitable precision and accuracy. LOD and LOQ were determined by analysis of serial dilution of the standard histamine solutions, which obtained minimum signal and minimum signal (that can use as lowest for calibration curve), respectively.

3.2.9.3 Linearity/Calibration curve

Calibration curves were constructed by analysis working standard (after derivatization) at different concentrations covering the expected range. The analysis was performed repeatedly for at least 5 determinations per concentration. Peak area was plotted subsequently against the concentration of each reference working standard solutions. The linearity was assessed by using linear regression. The curves were considered linear if coefficient of correlation (R^2) ≥ 0.99 .

3.2.9.4 Accuracy

The accuracy of an analytical method is the similarity of the test results to the actual value, (i.e. concentration of the analyte). The accuracy of this current analytical method was demonstrated by recovery studies. Three concentrations (low, medium, and high) of working standard solution were prepared as QC samples. These QC samples were analyzed according to the procedure described for calibration curve analysis. Each QC samples concentration was determined in 5 replicates. Recovery was determined using the equation.

Recovery =
$$\frac{C_{obs}}{C_{actual}}$$
 x 100

which C_{obs} refers to determined concentration of histamine

Cactual refers to actual concentration of standard solution of histamine

3.2.9.5 Precision

Precision of analytical method is the similarity of individual measures of an analyte when the procedure is performed repeatedly. Precision was evaluated based on relative standard deviation (RSD%) determined using the following equation.

 $RSD(\%) = \frac{SD}{mean} \times 100$

3.2.9.5.1 Within-run analysis

Within-run analysis studies were determined by analysis of QC

sample (addressed previously in 3.2.9.4). Each QC sample was determined five times repeatedly. Repeatability of the analytical method was evaluated using RSD (%), which should be lower than 15%.

3.2.9.5.2 Between-run analysis

Between-run analysis studies were determined by analysis of QC sample as same as within-run analysis. Each QC samples was determined five times repeatedly for three time of analysis. Reproducability of analytical method was evaluated using RSD (%), which is considered if %RSD is lower than 15%.

3.2.10 Inhibition of histamine release by ellagic acid (extracted from *Punica granatum* peels)

Inhibitory effect of ellagic acid rich extracts from *Punica granatum* peels, on compound 48/80-induced histamine release was studied. The determination of histamine still released from mast cells was evaluated. Buffer was used as a negative control, and ketotifen was used as a positive control (Table 3-6).

Table 3-6 A design of inhibitory effect study on histamine released by ellagic acid rich extracts

Sample	MT-HEPES- BSA buffer	Compound 48/80	DMSO (50 µl)	Mast cells (200 µl)	Ellagic acid rich extracts (EA) from	Ketotifen (50 µl)
	solution, pH 7.4	10 μg/ml			pomegranate peels	
	(50 µl)	(50 µl)			(50 μl)	
Control 1 (n=3)	+	-	+	+	-	-
Control 2 (n=3)	+	+	+	+	-	-
Control 3 (n=3)	+	+	-	-	+	+
Sample 1 (n=3)	-	+	-	+	l μg/ml	$0.1 \ \mu g/ml$
Sample 2 (n=3)	-	+	-	+	10 μg/ml	1 μg/ml
Sample 3 (n=3)	-	+	-	+	100 µg/ml	10 μg/ml
Sample 4 (n=3)	-	+	-	+	1000 µg/ml	-

+ added in the solution

- not added in the solution

3.2.10.1 Preparation of control group

3.2.10.1.1 Control 1 (histamine released from mast cells without stimulation)

The 200 μ l of mast cells suspension (about 2.8×10⁶ cells/ml)

were pipetted into an eppendorf tube and pre-incubated at 37°C for 10 minutes. Fifty microliters of DMSO (as solvent for ellagic acid rich extracts and ketotifen) was added and then incubated at 37°C for 20 minutes. Fifty microliters of MT-HEPES-BSA buffer, pH 7.4 was added and incubated at 37°C for 15 minutes. Incubation tube was then put into a very cool place to stop the reaction.

The cells were separated from the released histamine by centrifugation at 800 rpm for 10 minutes at 4°C and the supernatant was collected. The histamine content was then measured by HPLC analysis.

3.2.10.1.2 Control 2 (histamine released from mast cells stimulated by compound 48/80)

The 200 μ l of mast cells suspension (2.8×10⁶ cells/ml) were pipetted into an eppendorf tube and preincubated at 37°C for 10 minutes. Fifty microliters of DMSO (as solvent for ellagic acid rich extracts and ketotifen) was added and incubated at 37°C for 20 minutes. 50 μ l of 10 μ g/ml compound 48/80 was added and incubated at 37°C for 15 minutes. Incubation tube was put into a very cool place to stop the reaction.

The cells were separated from the released histamine by centrifugation at 800 rpm for 10 minutes at 4°C and the supernatant was collected. The histamine content was then measured by HPLC analysis.

3.2.10.1.3 Control 3 (mixed solution of compound 48/80 and ellagic acid rich extracts)

Control 3 was the mixture of compound 48/80 and ellagic acid rich extracts in 1:1(v/v) ratio. Mixed solution was derivatized before injected into HPLC system.

3.2.10.2 Preparation of sample solution

The 200 μ l purified mast cell suspensions (2.8×10⁶ cells/ml) were pipette and preincubated at 37°C for 10 minutes. Then mast cells were exposed to 50 μ l of various concentrations of ellagic acid rich extracts (1 to 1000 μ g/ml) or ketotifen (0.1 to 10 μ g/ml) for 20 minutes at 3°C immediately prior to stimulation of the cells with 50 μ l of compound 48/80 (10 μ g/ml) and incubated for an additional 15 minutes. The reaction was stopped by cooling the tubes in ice.

The cells were separated from the released histamine by centrifugation at 800 rpm for 10 minutes at 4°C and the supernatant collected. The histamine content was then measured by HPLC analysis.

The percentage inhibition of histamine release was evaluated using the following equation:

%Inhibition = Histamine release without plant extract – Histamine release with plant extract × 100

Histamine release without plant extract

3.2.10.3 Assay of histamine release

Histamine released from mast cells was determined by optimized mobile phase and derivatization procedure. First, the supernatant was mixed with 0.4 M H_3BO_4 in ratio 80:20 v/v. Then 30 µl of 0.1% OPA was added into solution and immediately vortex. The reaction time was 4 minutes before adding 50 µl of 3.57 N H_3PO_4 for stopped reaction. The derivatized compound was immediately determined by HPLC analysis which a mixing phosphate buffer : acetonitrile : methanol in a ratio 60:25:15 v/v/v as mobile phase and flow rate was 1.0 ml/min. The histamine content was detected by fluorescence detection at excitation and emission wavelength as 348 and 444 nm, respectively.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Development of assay for quantitative analysis of histamine

4.1.1 Optimization of mobile phase for HPLC analysis

In the optimized analytical method, analytical method of Gordon *et al.* (2004) and Jensen *et al.* (1995) were modified and optimized by varying ratio of mixture of phosphate buffer (obtained %v/v TEA) : acetonitrile : methanol. ODS C18 column was selected as appropriate stationary phase. All results of HPLC condition are shown in Table 4-1.

Condition	Phosphate buffer	Acetonitrile	Methanol	Total run	Retention
	(%)	(%)	(%)	time (min)	time (min)
А	50 (+ 0.5%TEA)	35	15	15	3.5
В	50 (+ 0.5%TEA)	25	25	25	5.5
С	50 (+ 0.1%TEA)	25	25	25	4.8
D	60 (+ 0.1%TEA)	25	15	20	7.2
Е	65 (+ 0.1%TEA)	20	15	30	13.3

Table 4-1 Reults of retention time and total run time of five conditions of HPLC system

 for optimal separation

Since, histamine was determined at a low level, blank interference was considered as a major problem. All chromatograms are shown in Figure 4-1, which compared between chromatograms of blank and chromatograms of standard histamine solution (1 μ g/ml). Histamine standard solution was clearly separated from the others and no interfering peaks under condition D and E of HPLC system. But condition D is the best condition because its run time is the most suitable for routine analytical method. So, the best result is a ratio of phosphate buffer

(obtained 0.1%v/v TEA) : acetonitrile : methanol as 60:25:15 %v/v/v, was obtained base on optimal resolution with appropriate retention time and total run time.

Figure 4-1 Chromatograms of selected conditions of optimal separation for HPLC system;
A-1, B-1, C-1, D-1 and E-1 are blank chromatograms of each condition. A2, B-2, C-2, D-2 and E-2 are chromatograms of standard histamine solution of each condition (1 µg/ml)

Figure 4-1 (continued) Chromatograms of selected conditions of optimal separation for HPLC system; A-1, B-1, C-1, D-1 and E-1 are blank chromatograms of each condition. A-2, B-2, C-2, D-2 and E-2 are chromatograms of standard histamine solution of each condition (1 μg/ml)

Figure 4-1 (continued) Chromatograms of selected conditions of optimal separation for HPLC system; A-1, B-1, C-1, D-1 and E-1 are blank chromatograms of each condition. A-2, B-2, C-2, D-2 and E-2 are chromatograms of standard histamine solution of each condition (1 μg/ml)

Figure 4-1 (continued) Chromatograms of selected conditions of optimal separation for HPLC system; A-1, B-1, C-1, D-1 and E-1 are blank chromatograms of each condition. A-2, B-2, C-2, D-2 and E-2 are chromatograms of standard histamine solution of each condition (1 μg/ml)

Figure 4-1 (continued) Chromatograms of selected conditions of optimal separation for HPLC system; A-1, B-1, C-1, D-1 and E-1 are blank chromatograms of each condition. A-2, B-2, C-2, D-2 and E-2 are chromatograms of standard histamine solution of each condition (1 μg/ml)

4.1.2 Optimization of derivatization conditions

Since, histamine was determined at a very low level in biological fluid, a derivatization step was optimized to ensure adequate sensitivity before analysis. The best derivatization procedure for analysis of histamine was considered based on the highest peak area of standard histamine determination (50 ng/ml and 100 ng/ml) by varying concentration of derivatizing agent, reaction time, and volume of $3.57 \text{ N H}_3\text{PO}_4$ (stopped reaction agent) and test for stability of derivatized compound.

4.1.2.1 Concentration of derivatizing agent

O-phthalaldehyde (OPA) was chosen as a derivatizing agent for histamine determination because OPA was rapidly reacted with primary amine. The results are shown in Table 4-2. OPA concentration was varied at five concentrations for every standard histamine concentration. The sufficient concentration of OPA for derivatized histamine was 0.1%w/v, which achieve the maximum yield at all concentration of standard histamine.

Table 4-2 Effect of OPA concentration on the peak area of histamine.

Concentration of	Peak area of result from varying concentration of derivatizing agent						
standard histamine	0.01%	0.05%	0.1%	0.5%	1%		
50 ng/ml	762,284	752,038	900,479	540,538	374,642		
100 ng/ml	1,453,815	1,452,204	2,109,238	1,008,847	371,394		

4.1.2.2 Volume of 0.1%OPA

The volume of 0.1%OPA was optimized by varying a volume as 10, 20, 30 and 50 μ l. The results are shown in Table 4-3. It was clear that 30 μ l is the most suitable

volume of 0.1%OPA for derivatization of histamine, which achieve the maximum yield at all concentration of standard histamine.

Concentration of	Peak area of result from varying volume of 0.1%OPA						
standard histamine	10 µl	20 µl	30 µl	50 µl			
50 ng/ml	776,604	681,004	1,078,102	364,927			
100 ng/ml	1,522,457	1,531,916	1,829,629	971,455			

Table 4-3 Effect of volume of 0.1%OPA on the peak area of histamine

4.1.2.3 Time before reaction

After mixing between standard histamine solution and borate buffer, lag time before reaction was optimized for stability study of a mixture. The results are shown in Table 4-4. The signals were optimum when immediately addition of OPA for reaction. A mixture of histamine solution and borate buffer have not stability, but because borate buffer necessary use in reaction of OPA/ME with histamine. So, addition derivatizing agent was immediately done.

Table 4-4 Effect of lag time before addition OPA for reaction on peak area of histam	ine
--	-----

Concentration of standard	Peak area of result from varying lag time before addition OPA for reaction			
instainine	0 min	2 min	5 min	
50 ng/ml	1,078,102	988,887	779,935	
100 ng/ml	1,829,629	1,369,170	1,177,615	

4.1.2.4 Reaction time

Reaction times (1, 2, 3, 4, 5 and 10 min) were optimized for derivatization of histamine. The results are shown in Table 4-5. Four minutes is the best reaction time for reaction between histamine and OPA, which achieve the maximum yield at all concentration of standard histamine.

Table 4-5 Effect of reaction time on peak area of histamine.

Concentration	Peak area of result from varying reaction time							
of histamine	1 min	2 min	3 min	4 min	5 min	10 min		
50 ng/ml	569,023	466,555	240,759	1,078,102	748,895	440,377		
100 ng/ml	1,305,799	1,502,754	491,094	1,829,629	1,441,831	507,465		

4.1.2.5 Volume of 3.57 N H₃PO₄

The volume of $3.57 \text{ N H}_3\text{PO}_4$ were optimized by varying volume as 3.5, 10, 25, 50 µl. The results are shown in Table 4-6. Fifty microlitres is the best volume of 3.57 N H₃PO₄ for stop reaction between histamine and OPA.

Table 4-6 Effect of volume of 3.57 N H₃PO₄ on peak area of histamine.

Concentration of	Peak area of result from varying volume of 3.57 N H ₃ PO ₄						
histamine	3.5 µl	10 µl	25 μl	50 µl			
50 ng/ml	545,231	398,403	579,632	1,078,102			
100 ng/ml	1,298,234	1,126,180	1,192,374	1,829,629			

4.1.2.6 Stability of the compound obtained from derivatization

The stability of compound obtained from derivatization was studied by varying lag time before HPLC analysis. The results are shown in Table 4-7. Immediately analysis after stopped reaction was selected as optimum for derivatization that mean derivatization complex has not stability.

Table 4-7 Effect of lag time before HPLC analysis on peak area of histamine.

Concentration of	Peak area of result from varying lag time before HPLC analysis					
histamine	0 min	5 min	10 min	15 min	20 min	
50 ng/ml	1,895,824	1,877,702	1,690,948	1,231,833	1,174,605	
100 ng/ml	3,749,579	2,943,378	1,915,786	2,252,879	1,771,905	

4.2 Method validation

4.2.1 Specificity

Method validation was started by selectivity study. Blanks, controls, working of standard histamine solution and sample histamine were evaluated for selectivity. The HPLC chromatograms obtained from the analysis after derivatization are shown in Figure 4-2. They showed that the peak of standard histamine solution and sample histamine solution had appeared at the same retention time, 7.2 min and absence the other peaks in blank and control 3 chromatograms that shown in Table 4-1. It indicating that this method gave satisfactory specificity for determination of histamine released from rat peritoneal mast cells.

Figure 4-2 HPLC chromatogram of the specificity validation for the HPLC analysis of histamine after derivatization: (A) blank1; (B) blank2; (C) blank3; (D) Control 1; (E) Control 2; (F) Control 3; (G) standard histamine solution 100 ng/ml

Figure 4-2 (continued) HPLC chromatogram of the validation for the HPLC analysis of histamine after derivatization: (A) blank1; (B) blank2; (C) blank3; (D) Control 1; (E) Control 2; (F) Control 3; (G) standard histamine solution 100 ng/ml

Figure 4-2 (continued) HPLC chromatogram of the specificity validation for the HPLC analysis of histamine after derivatization: (A) blank1; (B) blank2; (C) blank3; (D) Control 1; (E) Control 2; (F) Control 3; (G) standard histamine solution 100 ng/ml

4.2.2 Limit of detection (LOD) and limit of quantitation (LOQ)

Limit of detection (LOD) and limit of quantitation (LOQ) was estimated by evaluated minimum signal and minimum signal (that can use as lowest for calibration curve), respectively. The chromatograms of LOD and LOQ were presented in Figure 4-3. LOD and LOQ were found to be 5 ng/ml and 10 ng/ml, respectively.

Figure 4-3 HPLC chromatogram of LOD (A) and LOQ (B) analysis

4.2.3 Linearity/Calibration curve and range

Calibration curve for standard histamine solution prepared in mast cell incubation buffer were found to be linear in the concentration range of 10 to 300 ng/ml, when peak area of derivatized histamine standard solutions were plotted against the concentrations of standard histamine solutions. Linearity determination was performed by using five determinations per concentration (10, 25, 50, 100, 200, and 300 ng/ml). The peak area results of calibration curve are shown in Table 4-8. The representative linear equation was y = 47732x - 19441, when y is peak area and x is concentration of standard histamine solution. The correlation coefficient of determination (R²) is 0.999, is considered acceptable for biological analysis. Regression plot and correlation coefficient are shown in Figure 4-4.

Concentration		Peak area	of derivatized	d histamine				
of standard histamine solution (ng/ml)	N1	N2	N3	N4	N5	average	SD	RSD (%)
10	310,723	386,679	347,322	335,189	366,472	349,277	29,083	8.33
25	964,243	990,981	989,553	935,060	944,455	964,858.4	25,479.6	2.64
50	2,008,061	2,154,758	2,185,266	2,312,056	2,314,964	2,195,021	127,234	5.80
100	4,478,510	4,958,486	4,443,144	4,268,293	4,753,307	4,580,348	273,623	5.97
200	8,943,070	9,452,718	8,772,622	9,348,329	9,696,592	9,242,666	378,165	4.09
300	14,622,362	14,270,644	14,237,801	13,606,726	14,250,260	14,197,559	367,178	2.59

Table 4-8 Peak area for calibration curve

Figure 4-4 Calibration curve for standard histamine solution analysis

4.2.4 Accuracy

The accuracy of an analytical method was assessed by recovery studied. The %recovery was between 97.28 and 99.15 as shown in Table 4-9. It showed that the proposed analytical method has good accuracy with $\$ RSD < 15%.

Spiked level Recovery (%			a	Mean	$\mathbf{RSD}\left(\%\right)^{\mathrm{b}}$
(ng/ml)	Day 1	Day 2	Day 3	(%)	
25.15	99.60±0.28	97.53±0.75	94.71±0.32	97.28	2.52
100.61	94.44±8.69	107.74±1.41	95.27±4.16	99.15	7.51
201.22	99.93±1.42	97.67±9.49	96.23±4.47	97.94	1.91

Table 4-9 Results of accuracy determination by recovery studied.

^amean \pm SD; ^bRSD (%) = (SD/mean) × 100

4.2.5 Precision

4.2.5.1 Within-run precision

The within-run analysis was assessed by analysis at three concentrations: 25.15, 100.61, and 201.22 ng/ml of standard histamine solution (n=3). The RSD (%) were 1.13, 9.15, and 0.71%, respectively as shown in Table 4-10. It shows good within-run precision revealed $\mbox{RSD} < 15$.

4.2.5.2 Between-run precision

The between-run analysis was assessed for three days by analysis at three concentrations: 25.15, 100.61, and 201.22 ng/ml of standard histamine solution (n=9). The RSD (%) were 2.52, 7.51, and 1.90%, respectively as shown in Table 4-10. It shows good within-run precision revealed %RSD < 15.

Concentration	Within-ru	ın (n=3)	Between-run (n=9)		
(ng/ml)	Mean ^a	RSD^{b} (%)	Mean ^a	RSD^{b} (%)	
25.15	25.05±0.28	1.13	24.47±0.62	2.52	
100.61	95.02±8.69	9.15	99.76±7.49	7.51	
201.22	201.08±1.42	0.71	197.08±3.76	1.90	

 Table 4-10 Summary of within- and between-run precision data for determination of standard

^amean \pm SD; ^bRSD (%) = (SD/mean) × 100

histamine

4.3 Histamine release inhibition study by ellagic acid (extracted from *Punica granatum*

peels)

The pathological mechanism involved Type-I allergy has been explained as the degranulation of mast cells, followed by the release of mediators such as histamine, leukotrienes and prostaglandins. Histamine is the most important mediator for allergy. The degranulation of mast cells occurs in response to the immunological stimuli in which the antigen-antibody reaction on the mast cell surface. Therefore, inhibition for degranulation of mast cell was studied. Ellagic acid (EA) rich extracts from *Punica granatum* peels were studied for inhibitory effect on compound 48/80 induced histamine released from mast cells. Using ketotifen as a positive controls, results were summaried in Table 4-11 and Figure 4-5.
Sample (µg/ml)	Pea	ık area of deri	vatized histam		Substract	%	
	N1	N2	N3	N4	average	from control 1	Inhibition
EA 1	14,703,460	14,903,546	15,489,839	15,549,433	15,161,569	6,101,816	7.66
EA 10	11,692,829	11,693,773	14,905,796	15,279,621	13,393,004	4,333,251	34.42
EA 100	13,531,229	13,743,051	11,194,304	11,115,462	12,396,011	3,336,258	49.51
EA 1000	10,283,689	10,117,505	11,572,062	11,838,723	10,952,994	1,893,241	71.35
Control 1	8,291,372	8,444,952	10,011,332	9,491,358	9,059,753	0	-
Control 2	19,002,993	18,648,038	1,248,240	12,591,613	15,667,721	6,607,967	-

Table 4-11 %Inhibition of ellagic acid rich extracts on mast cell degranulation

Figure 4-5 Concentration dependence inhibition of ellagic acid on mast cell degranulation

Figure 4-6 IC_{50} determination method of ellagic acid on mast cell degranulation

The present investigation indicates that ellagic acid rich extracts from *Punica* granatum peels is active in Type-I allergic conditions because its ability to inhibited the degranulation of mast cells in concentration range of 1-1,000 μ g/ml. Comparison to a positive control, ketotifen ability to inhibited the degranulation of mast cells in concentration range of 0.1-10 μ g/ml as shown in Table 4-12 and Figure 4-7. The IC₅₀ for ketotifen was 0.56 μ g/ml, while 87.09 μ g/ml as IC₅₀ of ellagic acid that shown in Figure 4-6 and 4-8. So, inhibitory effect study of ellagic acid rich extracts as a model of Thai herbal crude extract for inhibitory effect study on histamine released from mast cells was successfully established by this analytical method.

Sample	Peak area of derivatized histamine					Substract	%
(µg/ml)	N1	N2	N3	N4	average	from control 1	Inhibition
ketotifen 0.1	5,406,899	5,639,955	6,079,448	5,805,411	5,732,928.2	3,021,315	31.39
ketotifen 1	3,922,916	4,284,075	4,636,633	5,298,038	4,535,415.5	1,823,802.	58.58
ketotifen 10	3,734,427	4,177,268	3,133,671	3,071,363	3,529,182.2	817,569	81.43
Control 1	2,406,069	3,140,324	2,844,681	2,455,379	2,711,613.2	0	-
Control 2	7,610,826	7,446,220	5,997,078	7,406,570	7,115,173.5	4,403,560.2	-

Table 4-12 %Inhibition of ketotifen on mast cell degranulation

Figure 4-7 Concentration dependence inhibition of ketotifen on mast cell degranulation

Figure 4-8 IC_{50} determination method of ketotifen on mast cell degranulation

CHAPTER 5

CONCLUSION

Quantitative analysis of histamine was successfully developed and validated. Using reverse-phased high performance liquid chromatographic method with fluorescence detection (348 nm and 444 nm for excitation and emission wavelength, respectively), the method was simple, rapid, accurate and precise. A mixture of phosphate buffer (obtained 0.1%v/v TEA) : acetonitrile : methanol in a ratio 60 : 25 : 15 %v/v/v, pH 6.4 was employed in the isocratic mode with a solvent delivery system at a flow rate of 1.0 ml/min as a mobile phase. Pre-column derivatization of histamine was required before analysis by ODS-C18 column. Derivatization procedure initiated by alkalinizing histamine solution with 0.4 M H₃BO₄. Then, 30 µl of 0.1% OPA was added into solution and the reaction was allowed for 4 minutes at retention time. The reaction was terminated by addition of phosphoric acid. The derivatized compound was instantly injected onto by HPLC column to prevent degranulation of the derivatives.

This method was sensitive with a detection limit of 5 ng/ml. Linearity was fixed in range concentration as 10 to 300 ng/ml. Calibration curve were drawn between the peak area versus concentration of histamine. The slope and correlation coefficient value were y = 47,732x -19,441 and 0.999, respectively. Accuracy of the method was evaluated by %recovery, which ranged was between 97.28 and 99.15%. Within-run analysis of three concentrations showed acceptable results with %RSD = 1.13, 9.15, and 0.71%. Between-run analysis of three concentration revealed good between-run precision with %RSD = 2.52, 7.51, and 1.90%, respectively. The %RSD of both within-run and between-run were within 15% indicating good precision of the method.

Application of the developed method was demonstrated in the study of the inhibitory effect of ellagic acid on histamine released from mast cells. Ellagic acid inhibited histamine released from rat-peritoneal mast cell in concentration dependent mannar. By in studying histamine release, IC_{50} of ellagic acid was 87.1 µg/ml. Therefore, the developed method was proved to be sufficient and applicable to determine histamine in physiological-relvant level.

CHAPTER 5

CONCLUSION

Quantitative analysis of histamine was successfully developed and validated. Using reverse-phased high performance liquid chromatographic method with fluorescence detection (348 nm and 444 nm for excitation and emission wavelength, respectively), the method was simple, rapid, accurate and precise. A mixture of phosphate buffer (obtained 0.1%v/v TEA) : acetonitrile : methanol in a ratio 60 : 25 : 15 %v/v/v, pH 6.4 was employed in the isocratic mode with a solvent delivery system at a flow rate of 1.0 ml/min as a mobile phase. Pre-column derivatization of histamine was required before analysis by ODS-C18 column. Derivatization procedure initiated by alkalinizing histamine solution with 0.4 M H₃BO₄. Then, 30 µl of 0.1% OPA was added into solution and the reaction was allowed for 4 minutes at retention time. The reaction was terminated by addition of phosphoric acid. The derivatized compound was instantly injected onto by HPLC column to prevent degranulation of the derivatives.

This method was sensitive with a detection limit of 5 ng/ml. Linearity was fixed in range concentration as 10 to 300 ng/ml. Calibration curve were drawn between the peak area versus concentration of histamine. The slope and correlation coefficient value were y = 47,732x -19,441 and 0.999, respectively. Accuracy of the method was evaluated by %recovery, which ranged was between 97.28 and 99.15%. Within-run analysis of three concentrations showed acceptable results with %RSD = 1.13, 9.15, and 0.71%. Between-run analysis of three concentration revealed good between-run precision with %RSD = 2.52, 7.51, and 1.90%, respectively. The %RSD of both within-run and between-run were within 15% indicating good precision of the method.

Application of the developed method was demonstrated in the study of the inhibitory effect of ellagic acid on histamine released from mast cells. Ellagic acid inhibited histamine released from rat-peritoneal mast cell in concentration dependent mannar. By in studying histamine release, IC_{50} of ellagic acid was 87.1 µg/ml. Therefore, the developed method was proved to be sufficient and applicable to determine histamine in physiological-relvant level.

REFERENCES

- Abbas, A., Lichtman, A. and Pober, J. 1994. Cellular and Molecular Immunology. Philadelphia, PA: W. B. Saunders Company. P. 287.
- Abe, T., Omata, T., Yoshida, K., Mutsumura., T., Ikeda, Y., Segawa, Y., Mutsuda, K. and Nagai,
 H. 1994. Antiallergic effect of ZCR-2060: antihistaminic action. *Japanese journal of Pharmacology*. 66: 87-94.
- Arakawa, Y. and Tachibana, S. 1986. A direct and sensitive determination of histamine in acid deproteinized biological samples by high-performance liquid chromatography. *Analytical Biochemistry*. 158: 20-27.
- August, E.M., Patnaude, L., Hopkins, J., Studts, J., Gautschi, E., Shrutkowski, A., Kronkaitis, A., Brown, M., Kabcenell, A. and Rajotte, D. 2006. Development of a high-throughput assay to measure histidine decarboxylase activity. *Journal of Biomolecular Screening*. 11(7): 816-820.
- Bachert, C. 2002. The role of histamine in allergic disease: re-appraisal of its inflammatory potential. *Allergy*. 57: 287-296.
- Brito, F.A., Lima, L.A., Ramos, M.F.S., Nakamura, M.J., Cavacher-Machado, S.C., Siani, A.C., Henriques, M.G.M.O. and Sampaio, A.L.F. 2007. Pharmacological study of anti-allergic activity of *Syzygium cumini* (L.) Skeels. *Blazilian Journal of medical and Biological Research*. 40(1): 105-115.
- Busto, O., Miracle, M., Guasch, J. and Borrull, F. 1997. Determination of biogenic amines in wines by high-performance liquid chromatography with on-column fluorescene derivatization. *Journal of chromatography A*. 757: 311-318.

- Casal, S., Oliveira, M.B.P.P. and Ferreira, M.A. 2002. Determination of biogenic amines in coffee by an optimized liquid chromatographic method. *Journal of Liquid Chromatography & Related Technologies*. 25: 2535-2549.
- Choi, Y.H., Yan, G.H., Chai, O.H., Lim, J.M., Sung, S.Y., Zhang, X., Kim, J.H., Choi, S.H., Lee, M.S., Han, E.H., Kim, H.T. and Song, C.H. 2006. Inhibition of anaphylaxis-like reaction and mast cell activation by water extract from fruiting body of *Phellinus linteus*. *Biological & Pharmaceutical Bulletin*. 29(7): 1360-1365.
- Choi, Y.H., Yan, G.H., Chai, O.H., Choi, Y.H., Zhang, X., Lim, J.M., Kim, J.H., Lee, M.S., Han, E.H., Kim, H.T. and Song, C.H. 2006. Inhibitory effects of *Agaricus blazei* on mast cellmediated anaphylaxis-like reaction. *Biological & Pharmaceutical Bulletin*. 29(7): 1366-1371.
- Cinquina, A.L., Cali, A., Longoa, F., De Santis, L., Severoni, A. and Abballe, F. 2004. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. *Journal of Chromatography A*. 1032: 73-77.
- Cinquina, A.L., Longo, F., Cali, A., De Santis, L., Baccelliere, R. and Cozzani, R. 2004. Validation and comparison of analytical methods for the determination of histamine in tuna fish samples. *Journal of Chromatography A*. 1032: 79-85.
- Douabale, S.E., Dione, M., Coly, A. and Tine, A. 2003. Contributions to the determination of histamine rate by measuring out the histamine-orthophalaldehyde complex in the absorption and fluorescene. *Talanta*. 60: 581-591.
- Egger, D., Reisbach, G. and Holtner, L. 1994. Simultaneous determination of histamine and serotonin in mast cells by high-performance liquid chromatography. *Journal of Chromatography B*. 662: 103-107.

- Estelle, F. and Simons, R. 2004. Advances in H₁-antihistamines. *The New England Journal of Medicine*. 351: 2203-2217.
- FDA Guidance for industry biological method validation. 2001. Rockville, Marryland.
- Foreman, J.C. 1993. Immunopharmacology of Mast cells and Basophils. 1st ed. San diego, Academic Press INC.
- Forese, A. 1980. Structure and function of the receptor for IgE. *Critical Reviews in Immunology*. 1(2): 79-132.
- Frattini, V. and Lionetti, C. 1998. Histamine and histidine determination in tuna fish samples using high-performance liquid chromatography derivatization with o-phthalaldehyde and fluorescence detection or UV detection of "free" species. *Journal of Chromatography A*. 809: 241-245.
- Goldie, R. 1990. Receptors in asthmatic airways. The American Review of Respiratory Disease. 141(3): S151-6.
- Gordon, E.M., Myers, C. and Blumer, J. 2004. In vitro evaluation of the potential role of sulfite radical in morphine-associated histamine release. *BMC Pharmacology*. 4(21): 1-8.
- Harwood, R. 1974. Cell separation by gradient centrifugation. International Review of Cytology.38: 369-403.
- Hernandez-Orte, P., Pena-Gallego, A., Ibarz, M.J., Cacho, J. and Ferreira, V. 2006. Determination of the biogenic amines in musts and wines before and after malolactic fermentation using 6-aminoquinolyl-*N*-hydroxysuccinimidyl carbamate as the derivatizing agent. *Journal of Chromatography A*. 1129: 160-164.

- Hlabangaba, L., Hernandez-Cassou, S. and Saurina, J. 2006. Determination of biogenic amines in wines by ion-pair liquid chromatography and post-column derivatization with 1,2-naphthoquinone-4-sulphonate. *Journal of Chromatography A*. 1130: 130-136.
- Hong, S.H., Jeong, H.J. and Kim, H.M. 2003. Inhibitory effects of *Xanthii fructus* extract on mast cell-mediated allergic reaction in murine model. *Journal of Ethnopharmacology*. 88: 229-234.
- Hong, S.H., Kim, M.S., Lee, J.Y., Hwang, C.Y., Baek, S.H., Han, D.S., Jung, W.Y., Seo, S.B., Kajiuchi, T. and Kim, H.M. 2001. Novel findings in inhibition of mast cell-dependent immediate-type cutaneous reactions by Gahmi-Shini-San. *Clinica Chimica Acta*. 309: 85-90.
- Innocente, N., Biasutti, M., Padovese, M. and Moret, S. 2007. Determination of biogenic amines in cheese using HPLC technique and direct derivatization o acid extract. *Food Chemistry*. 101 (3): 1285-1289.
- Jensen, T.B. and Marley, P.D. 1995. Development of an assay for histamine using automated high-performance liquid chromatography with electrochemical detection. *Journal of Chromatography B*. 670: 199-207.
- Kim, C.D., Lee, W.K., No, K.O., Park, S.K., Lee, M.H., Lim, S.R and Roh, S.S. 2003. Antiallergic action of buckwheat (*Fagopyrum esculentum* Moench) grain extract. *International Immunopharmacology*. 3: 129-136.
- Kim, H.M., Kim, H.W., Lyu, Y.S., Won, J.H., Kim, D.K., Lee, Y.M., Morii, E., Jippo, T., Kitamura, Y. and An, N.H. 1999. Inhibitory effect of mast cell-mediated immediate-type allergic reactions by *Cichorium Intybus*. *Pharmacological Research*. 40(1): 61-65.

- Kim, H.M., Lee, E.H., Lee, J.H., Jung, J.A. and Kim, J.J. 1999. Salviae radix root extract inhibits immunoglobulin E-mediated allergic reaction. *General Pharmacology*. 32: 603-608.
- Kim, S.H., Park, H.H., Lee, S., Jun, C.D., Choi, B.J., Kim, S.Y., Kim, S.H., Kim, D.K., Park, J.S., Chae, B.S. and Shin, T.Y. 2005. The anti-anaphylactic effect of the gall of *Rhus javanica* is mediated through inhibition of histamine release and inflammatory cytokine secretion. *International Immunopharmacology*. 5: 1820-1829.
- Kirschbaum, J., Rebscher, K. and Bruckner, H. 2000. Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5-dinitrobenzoyl chloride. *Journal of Chromatography A*. 881: 517-530.
- Kutlan, D., Presits, P. and Molnar-Perl, I. 2002. Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde/3-mercaptopropionic acid and with ophthaldialdehyde/N-acetyl-L-cysteine reagents. Journal of Chromatography A. 949: 235-248.
- Lavizzari, T., Veciana-Nogues, M.T., Bover-Cid, S., Marine-Font, A. and Vidal-Carou, M.C. 2006. Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography. *Journal of Chromatography A*. 1129: 67-72.
- Loukou, Z. and Zotou, A. 2003. Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. *Journal of Chromatography A*. 996: 309-317.

- Marcobal, A., Polo, M.C., Martin-Alvarez, P.J. and Moreno-Arribas, M.V. 2005. Biogenic amine content of red Spanish wines: comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. *Food Research International*. 38: 387-394.
- Matsubara, M., Tamura, T., Ohmori, K. and Hasegawa, K. 2005. Histamine H1 receptor antagonist blocks histamine-induced proinflammatory cytokine production through inhibition of Ca²⁺-dependent protein kinase C, Raf/MEK/ERK and IKK/IκB/NF-κB signal cascades. *Biochemical Pharmacology*. 69: 433-449.
- Metcalfe, D., Baram, D. and Mekori, Y. 1997. Mast cells. Physiological Reviews. 77(4): 1033-79.
- Monroe, E., Daly, A. and Shalhoub, R. 1997. Appraisal of the validity of histamine-induced wheal and flare to predict the clinical efficacy of antihistamines. *Journal of Allergy and Clinical Immunology*. 99(2): 789-806.
- Moon, P.D., Na, H.J., Jeong, H.J. and Hong, S.H. 2005. Inhibitory effect of Gamibojungikgitang extract on mast cell-mediated allergic reaction in murine model. *Journal of Pharmacey and Pharmaceutical Sciences*. 8(1): 94-101.
- Na, H.J., Jeong, H.J., Bae, H., Kim, Y.B., Park, S.T., Yun, Y.G. and Kim, H.M. 2002. Tongkyytang inhibits mast cell-dependent allergic reactions and inflammatory cytokines secretion. *Clinica Chimica Acta*. 319: 35-41.
- önal, A. 2007. A review: Current analytical methods for the determination of biogenic amines in foods. *Food Chemistry*. 103: 1475-1486.
- Previati, M., Raspadori, A., Bertolaso, L., Parmeggiani, A., Bindini, D., Vitali, C., Lanzoni, I., Corbacella, E., Saviano, M., Fagioli, F., Blo, G. and Capotani, S. 2002. Determination of histamine in the whole blood of colon cancer patients. *Journal of Chromatography B*. 780(2): 331-339.

- Ricci, D., Giamperi, L., Bucchini, A. and Fraternale, D. 2006. Antioxidant activity of *Punica granatum* fruits. *Fitoterapia*. 77: 310-312.
- Romero, R., Gazquez, D., Bagur, M.G. and Sanchez-Vinas, M. 2000. Optimization of chromatographic parameters for the determination of biogenic amines in wines by reversed-phase high performance liquid chromatography. *Journal of Chromatography A*. 871: 75-83.
- Saito, H. and Okayama, Y. 2005. Mast cells in allergic diseases. British Journal of Clinical Pharmacology. 62:4, 508.
- Sestili, P., Martinelli, C., Ricci, D., Fraternale, D., Bucchini, A., Giamperi, L., Curcio, R., Piccoli,
 G. and Stocchi, V. 2007. Cytoprotective effect of preparations from various parts of *Punica granatum* L. fruits in oxidatively injured mammalian cells in comparison with their antioxidant capacity in cell free systems. *Pharmacological Research*. 56(1): 18-26.
- Shakila, R.J., Vasundhara, T.S. and Kumudavally, K.V. 2001. A comparison of the TLCdensitometry and HPLC method for the determination of biogenic amines in fish and fishery products. *Food Chemistry*. 75: 255-259.
- Shin, T.Y., Kim, S.H., Lim, J.P., Suh, E.S., Jeoung, H.J., Kim, B.D., Park, E.J., Hwang, W.J., Rye, D.G., Baek, S.H., An, N.H. and Kim, H.M. 2000. Effect of *Vitex rotundifolia* on immediate-type allergic reaction. *Journal of Ethnopharmacology*. 72: 443-450.
- Smela, D., Pechova, P., Komprda, T., Klejdus, B. and Kuban, V. 2003. Liquid chromatographic determination of biogenic amines in a meat product during fermentation and long-term storage. *Czech Journal of Food Sciences*. 21(5): 167-175.
- Solomon, B.P. 2002. Determination of histamine in rat microdialysates with automated precolumn derivatization. *Current Separations*. 19(4): 136-137.

- Soufleros, E.H., Bouloumpasi, E., Zotou, A. and Loukou, Z. 2007. Determination of biogenic amines in Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors affecting their presence and concentration. *Food Chemistry*. 101: 704-716.
- Tanimoto, A., Sasaguri, Y. and Ohtsu, H. 2006. Histamine network in atherosclerosis. Trends in Cardiovascular Medicine. 16(8): 280-284.
- Vidal-Carou, M.C., Lahoz-Portole's, F., Bover-Cid, S. and Marine'-Font, A. 2003. Ion-pair higperformance liquid chromatographic determination of bioganic amines and polyamines in wine and other alcoholic beverages. *Journal of Chromatography A*. 998: 235-241.
- Vietinghoff, V.V., Gabel, G. and Aschenbach, J.R. 2006. High-performance liquid chromatographic method for the determination of histamine and 1-methylhistamine in biological buffers. *Journal of Chromatography B*. 844(2): 335-339.
- Wang, X.S., Sam, S.W., Yip, K.H. and Lau, H.Y.A. 2006. Functional characterization of human mast cells cultured from adult peripheral blood. *International Immunopharmacology*. 6: 839-847.
- Wang, Y.H., Tache, Y., Harris, A.G., Kreutner, W., Daly, A.F. and Wei, J.Y. 2005. Desloratadine prevents compound 48/80-induced mast cell degranulation: visualization using a vital fluorescent dye technique. *Allergy*. 60: 117-124.
- Yoshitake, T., Yamaguchi, M., Nohta, H., Ichinose, F., Yoshida, H., Yoshitake, S., Fuxe, K. and Kehr, J. 2003. Determination of histamine in microdialysis samples from rat brain by microbore column liquid chromatography following intramolecular excimer-forming derivatization with pyrene-labeling reagent. *Journal of Neuroscience Methods*. 127: 11-17.

VITAE

Name	Miss Monchana Jullangkoon	
Student ID	4852021	
Education Attainment		
Degree	Name of Institution	Year of Graduation
Bachelor of Sciences	Prince of Songkla University	2002
(Chemistry)		

List of Publication and Proceeding

Jullangkoon, M., Sirikatitham, A. and Tewtrakul, S. 2007. *Validation of high-performance liquid chromatographicmethod for analysis of histamine released from mast cells*. 8th National Grad Research Conference, Mahidol University, Salaya Campus, Thailand.