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ABSTRACT 

This thesis proposes a method of elbow joint motions recognition using 

surface electromyography (sEMG) signal for disable people with below-elbow 

amputation. It solves the situation that forearm without muscle cannot control forearm 

pronation. The complete system could be categorised into 4 components: (1) signal 

measurement, (2) pre-processing, (3) classification and (4) control system. First, the 

signal measurement includes sEMG data collection and the relationship of motions and 

muscles. Second, the pre-processing component denoises the sEMG signals by soft 

threshold method. It reduces not only the electrical noise but also the white Gaussian 

noise. Third, the classification system recognizes elbow joint motions. Five 

characteristic features, Mean Absolute Value (MAV), Root Mean Square (RMS), Slope 

Change (SC), Signal Length (SL) and Zero Crossing (ZC), are extracted from denoised 

sEMG signals of each channel. The 5 features are used in back propagation neural 

network (BPNN) for the classifier of 3 channels, which outputs the 99.54% of the elbow 

joint motions accuracy from 8 healthy subjects. Furthermore, the results of classifier 

are tested on a subject-by-subject basis. It means that the classification system is a user-
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dependent system. It can detect the motions of healthy subject based on his or her own 

sEMG signals. At the end, the control system is designed in MATLAB and it 

demonstrates that the recognition results from the classifier is sent to the controller 

correctly. Moreover, the system is tested when the subjects lifts the weight of 1.5 kg 

and the accuracy is 96.64% that does not change significantly. 
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CHAPTER 1 

Introduction 

1.1  Background 

According to the World Health Organization, reports show that the 

population of disable people is over 1 billion in the world, about 15% of the world’s 

population. It increases from the war, population ageing, car accident, occupational 

injury and a lot of accidents. However, the disable people have less access to health 

care services [1]. Among disable people, the amount of American people with a major 

upper-limb loss is approximately 100,000 [2]-[4]. Making the disable people recover 

their orthobiosis is very beneficial. 

Normally, disable people cannot do daily work using forearm if they had 

a surgery of below-elbow amputation. The problem makes a tough life to disable people. 

For example, they cannot do sports again and even cannot eat food by themselves. On 

the other hand, existing artificial prostheses may not solve the problem well. Some 

prostheses with mechanical component only can provide fixed motion for disable 

people. In addition, the system needs a long training time and costs relatively high. 

Therefore, improvements can be done to make artificial prosthesis more friendly and 

affordable to users. 

Nowadays the artificial prosthesis is easy to find. There are many ways 

to control artificial prostheses. Electroencephalography (EEG), electromyography 
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(EMG), and electrooculography (EOG) are body signals used for the artificial 

prosthesis control. Different body signals have both advantages and disadvantages. The 

EEG signal can predict before limb motion, but require subject-specific training and 

exhibit decreasing performance as the number of possible targets increase [5]. The EOG 

can predicts motion before motion starts, but it has low accuracy [5]. The EMG gives 

high accuracy, but only once the motion has begun [5]. 

There are other methods for controlling artificial arm, such as sensor 

technology, camera and video camera. The sensor technology cannot serve for disable 

people because it becomes difficult for disable people to obtain complex motions with 

this technology [6]. The camera and video camera technology need professional 

operation with high cost [6]. Nevertheless, EMG is easier than other methods for disable 

people. 

The EMG is used to evaluate the muscles state and record the electrical 

signals for the medicine. [7]. In upper-limb prosthetics research, number of research 

publications have obviously increased in the last ten years. An online search shows that 

until 2010, the hand prosthesis has about 4000 publications, which are most published 

on 2001-2010 [8]. 

Furthermore, the EMG technology is very mature and stable. Cram and 

Steger provide a device to scan the muscles for EMG in the early 1980s [9]. There are 

two kinds in EMG: surface-EMG (sEMG) and intramuscular EMG (iEMG). However, 
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the EMG is limited in the medicine by some US states such as New Jersey and Michigan. 

[10]-[12]. The sEMG technology is cheaper and safer than iEMG [13], [14]. Since using 

the iEMG sometimes causes the disable people to have an infection from the electrode 

of fine wires inserted into muscle. Hence, the sEMG is suitable to use in this thesis. 

 

  

https://en.wikipedia.org/wiki/Electromyography#cite_note-10
https://en.wikipedia.org/wiki/Electromyography#cite_note-12
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1.2  Problem statement 

Nowadays, many researches are applied to control artificial arm. Some 

of these researches, however, are not adequate to help disable people who have a 

surgery of below-elbow amputation. Actually, few researches serve for disable people 

of below-elbow amputation, because the forearm without muscles cannot activate 

forearm pronation. In this condition, artificial prostheses that disable people can buy 

are generally made of the mechanical structure, which are not convenient for the disable 

people to use in daily life [15].  Hence this thesis uses sEMG to control artificial 

prostheses. It means that the method of sEMG of the upper arm controlling forearm 

motions is improved and the feasible motion cases are put forward in this thesis.  

This thesis proposes a method of pattern recognition of elbow joint 

motions using sEMG signal for an artificial arm. The sEMG is a non-invasive, painless 

means, which helps disable people of below-elbow amputation. The method uses elbow 

joint of extension motion with high-intensity force to activate artificial arm of forearm 

pronation in this research. The disable people experience a short delay time before 

pronation is activated from elbow joint of extension with high-intensity force. 

However, this thesis cannot be used to help disable people whose 

osteotomy sites for metaphyseal and diaphyseal has abnormal muscle of contractility 

on upper arm [16]. After surgery, disable people whose osteotomy sites for 
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supracondylar above-elbow amputation or below-elbow amputation needs the 

rehabilitation training from rehabilitation hospital [17].  
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CHAPTER 2 

Literature review 

2.1  The reviews of upper limb prosthesis research 

Nowadays, there are many researches about sEMG. Some researches 

about powered upper limb prosthesis are reviewed, which usually show a part of 

proportional myoelectrical control [18]-[24]. In addition, the chronological researches 

on proportional myoelectrical control are shown in Table 2.1 which is in a 

chronological order to demonstrate how many researches of powered upper limb 

prosthesis [25]. Moreover, a chronological representation of papers is applied into 

myoelectrical proportional control for upper limb prostheses [25].  

Table 2.1: The chronological researches on proportional myoelectrical control [25] 

Years Research 

2017 4 

2011-2016 32 

2000-2010 9 

1990-2000 7 

1980-1990 9 

1970-1980 7 

1960-1970 10 

In the development of prosthesis, the multifunction hands is a new 

control models like targeted muscle reinnervation [26] and implanted electrodes [27]-

[30] increase the demand for control systems of prosthesis. It is beneficial for research 
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and discussion to use common expressions, which are easy to understand. In prosthesis 

or prosthetic EMG, it has many expressions. Table 2.2 explains the expressions in 

publications of EMG control models. In Table 2.2, we also give a lot of normally used 

expressions because some expressions are fuzzy in different areas. 

Table 2.2: Common expression in EMG control models 

Expression Description Examples 

User intent 
The user intends to exploit a set of 

motor functions, or to activate 

motion classes. 

Move the leg to walk, move 

the hand to catch the target. 

Intent 

interpretation 

The classifier recognizes the 

motions to build a classification 

system. 

The layer 4 and 5 of 

examples 1-3 in Fig. 2.1. 

Hybrid 

prostheses 

Prostheses combined with body- 

powered component and electrical 

component [31]. 

The prosthesis of body-

powered leg. 

Mechanical 

impedance 

control 

The control system activated with 

impedance variables. 
Impedance control [32]. 

System 

training 

Training of the prosthesis control 

system to recognize input signals 

from the prosthesis user, which is 

often just referred to as training or 

supervision in the pattern 

recognition. 

Prosthesis-guided training 

[33], [34]. 

To explain the relationship between different terms normally used in 

prosthesis control, the functionally partitioned model and relevant examples are shown 

in Fig. 2.1. It has eight layers with an improved version of the model supplied by Losier 

[35].  
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Fig. 2.1   The functionally partitioned model and relevant examples for the prosthesis 

control [35]. 

In the left area of Fig. 2.1, the functionally partitioned model has eight 

layers. The eight layers are [35]: 

A. Pre-processing 

(1) Input signal capture 

(2) Signal conditioning 

(3) Feature extraction 
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B. Intent recognition 

(4) Control channel decoding 

(5) Motor function determination 

C. Output 

(6) Actuator function selection 

(7) Motor control 

(8) Actuation/sensing 

The layers show main functions of the control system in this model, but 

it is not physical software or hardware modules. To put it simply, layers 1-3 are 

classified into pre-processing; layers 4-5 are classified into intent recognition; layers 6-

8 are classified into output.  

Moreover, the thesis follows the functionally partitioned model to 

design the system. In this thesis, the pre-processing system has two systems: the 

denoised system and feature extraction system, intent recognition is a classification 

system, output is a control system.  
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2.2  Examples for the prosthesis control 

In the right area of the Fig. 2.1, three examples for the prosthesis control 

are shown. At the first, the example 1 is a control system of Boston Arm in 1968 [36]. 

It is a rudiment of control system for the prosthesis arm. It gives the sample to the 

system development. 

Then, the example 2 is a proportional mutex control system. The layers 

1-5 correspond to research by Hudgins [37]. The layers 6-8 (dashed lines) are a feasible 

system in the prosthesis [25]. In addition, the training time in the control system is 

typically less than 5 minutes for the microcomputer implementation [37]. It used 100 

datasets to test the neural network [37]. The control system design is shown in Fig. 2.2. 

In addition, it has 30 input layer nodes, 8 hidden layer nodes and 4 output layer nodes 

in the neural network classifier. 
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Fig. 2.2   Control system design [37] 

At the end, the example 3 is a system of multi-model pattern recognition. 

The layers 1-5 are shown by Fougner [38]. The dashed lines represent a probable 

performance of layers 6-8. Moreover, this example improves the classification accuracy 

for arm motions by accelerometer. The motions are shown in the Fig. 2.3. C1 is wrist 

flexion. C2 is wrist extension. C3 is pronation. C4 is supination. C5 is open hand. C6 

is power grip. C7 is pinch grip. C8 is hand at rest. P1 to P5 are the arm motions. For 

example, the P3 is straight arm raising up to 45° [38].  
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Fig. 2.3   Detected motions by Fougner [38] 

The placement of electrodes and sensors are shown in Fig. 2.4. It has 8 

channels of EMG on the forearm. The eight channels of EMG are differentially 

amplified. The system uses remote ac electrode-amplifiers and low pass filter at 500 Hz 

with a fifth-order Butterworth filter [38]. Six accelerometer channels and eight EMG 

channels were using a 16-bit analog-to-digital converter [38]. The sampling frequency 

is 1 kHz. 
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Fig. 2.4   The placement of electrodes and sensors [38] 

After the structure of prosthesis control system discussion, the 

improvement model is produced. As following the improvement model, the Kevin 

Englehart’s model researches about forearm motions [39]. The Kevin Englehart’s 

model uses four channels to get myoelectrical signal (MES). The placements of 

electrodes are shown in Fig. 2.5. There are 4 channels of electrode on forearm. Kevin 

Englehart compares two channels and four channels. The result shows that the model 

of four channels is better than the model of two channels [39]. The four channels have 

lower error in Kevin Englehart’s research. 
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Fig. 2.5   The Kevin Englehart’s placements of electrodes [39] 

In Kevin Englehart’s research, there are 6 classes of motion in the 

classifier as shown in Fig. 2.6. The 6 classes of motion: (1) hand close, (2) hand open, 

(3) wrist flexion, (4) wrist extension, (5) ulnar deviation of wrist, (6) radial deviation 

of wrist. 

 

Fig. 2.6   The 6 classes of motion used in the four channels experiments [39] 
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The signal classification shown in Fig. 2.7 is a multistage process [39]. 

The first step is the measured signal (each channel of myoelectrical signal). Measured 

signal sends data to feature extraction. Feature extraction uses 4 algorithms. In this case, 

feature extraction makes a feature set by time domain feature set (TD), the short-time 

Fourier transform (STFT), the wavelet transform (WT) and the wavelet packet 

transform (WPT) coefficients [39]. The dimensionality reduction uses principal 

components analysis (PCA) for feature set and subject, making a reduced feature set 

from each channel. Then, the PCA makes a total feature set for six classes of motion.  

 

Fig. 2.7   Signal classification [39] 

In addition, the 30 features are used in the classification (LDA classifier) 

[39]. The feature extraction shown in the Fig. 2.7 has 4 algorithms. The time domain 

feature set (TD) is a set of features for the signal in time domain. In Kevin Englehart’s 

research, they use STFT to analyze localized features in the signal to be examined. The 

equation is shown in Eq. (2.1), 
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𝐹(𝑓, 𝑏) = ∫ 𝑥(𝑡)ℎ(𝑡 − 𝑏)𝑒−𝑖(2𝜋𝑓)𝑡𝑑𝑡

∞

−∞

,                              (2.1) 

where ℎ(𝑡 − 𝑏) is the window function as the windowed Fourier transform.  

In the wavelet transform, the signal x(t)  use a range of dilation 

parameter a and location parameter b. The wavelet transform function of a continuous 

signal is shown in Eq. (2.2), 

𝑇(𝑎, 𝑏) = 𝜔(𝑎) ∫ 𝑥(𝑡)Ψ∗ (
𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

,                               (2.2) 

where 𝜔(𝑎) is a weight function.  

The last one is the wavelet packet transform (WPT) which is a 

generalization of the discrete wavelet transform. Wavelet packets involve particular 

linear combinations of wavelets and the wavelet packet decomposition of a signal is 

performed in a manner similar to the multiresolution algorithm given earlier for the 

discrete wavelet transform. 
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Fig. 2.8   The processing delays use different feature set at record length [39] 

In the signal classification, the processing delay uses a 450-MHz 

Pentium III-based workstation and performed in Matlab [39]. There is a processing 

delay using different feature sets in Fig. 2.8. Farrell et al. found that human cannot feel 

a time delay of less than 100 ms [40] and others have advocated that human can accept 

a delay of up to 300 ms to 400 ms [41]-[43]. In the Fig. 2.8, it is acceptable that the 

total delay time is 200 ms when the record length is 256 ms [39].   
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2.3  Summary 

Table 2.3: The summary 

Literature review Advantage Disadvantage 

The control system of 

Boston Arm (1968) 

[36] 

A rudiment of control 

system for prosthesis arm 

in 1968s 

Low accuracy, not useful 

for disable people with 

below-elbow amputation 

A proportional mutex 

control system by 

Hudgins (1993) [37] 

Good accuracy based on 

neural network 

5 mins for training time, 

not useful for disable people 

with below-elbow 

amputation 

Kevin Englehart of 

classifier (2001) [39] 

Channel comparison, 

record length comparison 

Not useful for disable 

people with below-elbow 

amputation 

Losier’ model (2009) 

[35] 

A complete system for the 

prosthesis control 

Not useful for disable people 

with below-elbow 

amputation 

A multi-model pattern 

recognition method by 

Fougner (2011) [38] 

Good accuracy 

Required 8 channels, not 

useful for disable people 

with below-elbow 

amputation 

In the Table 2.3, the control system of Boston Arm (1968) [36] creates 

a new idea for prosthesis arm. A proportional mutex control system of Hudgins (1993) 

[37] has good accuracy based on neural network. The classifier of Kevin Englehart 

(2001) [39] compares the numbers of channels and record lengths. Losier’ model (2009) 

[35] builds a complete system for the prosthesis control. A multi-model pattern 

recognition method by Fougner (2011) [38] has good accuracy. But all of researches in 

the literature review cannot be directly applied for disable people with a below-elbow 

amputation. This thesis proposes a new method for artificial elbow joint motions based 

on sEMG signals of upper arm.  
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2.4  Objectives 

2.4.1. Design a system to solve the problem that the forearm without muscle cannot 

activate the forearm pronation. 

2.4.2. Design a classification system using sEMG signals on upper arm of muscles 

for artificial arm. 

2.4.3. Design a classification system for the elbow joint motions 

2.4.2.1. No movement 

2.4.2.2. Elbow joint of flexion motion 

2.4.2.3. Elbow joint of extension motion 

2.4.2.4. Forearm pronation motion 

2.4.2.5. Forearm supination motion 
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2.5 Scope 

2.5.1. The thesis investigates of the relationship between muscle and motion.  

2.5.2. The thesis designs a classification system for recognition of elbow joint 

motions. 

2.5.3. The system is applied into disable people whose osteotomy sites for 

supracondylar above-elbow amputation or below-elbow amputation. 

2.5.4. The system cannot be used to help disable people whose osteotomy sites for 

metaphyseal and diaphyseal has abnormal muscle of contractility on upper arm. 

2.5.5. The real amputee is not tested in this thesis.  
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CHAPTER 3 

Methodology 

3.1  Kinesiology 

The 5 detected motions shown in Fig. 3.1 are applied into this thesis: (1) 

elbow joint of flexion motion, (2) elbow joint of extension motion, (3) forearm 

pronation motion, (4) forearm supination motion and (5) no movement, which is not 

shown. In human anatomy, the forearm has two main bones: radius and ulna. In 

addition, the main bone on the upper arm is humerus shown in Fig. 3.2. The relationship 

between muscle and kinesiology is shown in Table 3.1.  

Motion.  1 Elbow joint of flexion Motion.2   Elbow joint of extension

Motion.3   Forearm supination Motion.4   Forearm pronation  

Fig. 3.1   Four targeted motions 
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Fig. 3.2   The muscle placements [44] 

Table 3.1: The muscle and kinesiology [44] 

Muscle Attachment Primary action(s) 

Biceps Humerus Flexion, assists with supination 

(Long head)  Flexion, assists with supination 

(Short head)  Flexion, assists with supination 

Triceps Humerus Extension 

(Long head)  Extension (sustained force) 

(Lateral head)  Extension (occasional high-force) 

(Medial head) Deep muscle Extension (low-force) 

Brachioradialis Humerus and radius Flexion, pronation, supination 

Brachialis 
Humerus (deep 

muscle) 
Flexion 

Pronator teres Radius Pronation, assists with flexion 

Pronator 

quadratus 
Radius and ulna Pronation 

Anconeus Humerus and ulna Assists with extension 

Supinator Radius and ulna Supination 

Anterior side Posterior side 
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In the Table 3.1, the elbow joint of flexion and extension are shown. The 

muscle contributes effectively to flexion when the forearm is supinated because it is 

slightly stretched [44]. The relationship between muscle and elbow joint of flexion and 

extension is shown in Fig. 3.3. First, the elbow joint of flexion is activated when the 

biceps of long head contracts. Sometimes, the triceps of long head also contracts to 

support the elbow joint of flexion when the biceps of long head is not strong enough. 

Next, the triceps of long head contracts to activate the elbow joint of extension. In 

addition, the biceps of long head is also contracted to support the elbow joint of 

extension. 

 

Fig. 3.3   The relationship between muscle and motion [44] 

On the other hand, the forearm supination and pronation are activated 

based on the forearm muscles. The tension in the supinator lessens when the elbow is 

in the state of flexion, and the biceps assists with supination. The biceps is the primary 

muscle as a supinator when the elbow is flexed to 90° or less, so that the upper arm 
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without muscle activates forearm pronation. The contraction of triceps of lateral head 

can activate the elbow joint of extension motion with high-intensity force. When 

forearm pronation over 180° is done, the elbow joint of extension with high-intensity 

force is activated. The users feel a little delay to active forearm pronation. Hence, the 

triceps of lateral head are used to activate the forearm pronation motion in this thesis.  

Therefore, this thesis proposes a new method to classify forearm 

pronation motion for disable people with below-elbow amputation. Forearm pronation 

motion is activated by lateral head of triceps using elbow joint of extension motion with 

high-intensity force to control artificial arm of forearm pronation motion for disable 

people with below-elbow amputation. In addition, the biceps of long head, the triceps 

of lateral head and the triceps of long head are used into this thesis for 5 detected 

motions.  
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Table 3.2: Primary actions of muscle 

In summary, the forearm pronation motion is activated by all of muscles 

on radius and ulna. Hence, it is impossible for disable people with below-elbow 

amputation to use muscle of original function to activate forearm pronation motion. In 

addition, the five detected motions are based on different muscles. The primary actions 

of muscle are shown in Table 3.2. The elbow joint of flexion and extension are based 

on biceps of long head and triceps of long head. On the other hand, the detected muscles 

of forearm supination and pronation are biceps of long head and triceps of lateral head. 

Furthermore, the forearm horizontal abduction and adduction motion are 

not considered in this thesis because the two motions base on the glenohumeral joint; 

however, the disable people with below-elbow amputation has full function of muscles 

on shoulder.  

  

Primary Action Muscle 

Elbow joint of flexion Biceps of long head and triceps of long head 

Elbow joint of extension Biceps of long head and triceps of long head 

Forearm supination Biceps of long head and triceps of lateral head 

Forearm pronation Biceps of long head and triceps of lateral head 

No movement Biceps and triceps 
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3.2  Experiment 

The experiment is performed by 8 healthy subjects shown in Table 3.3. 

All subjects use their right upper limb in this experiment though two of subjects are 

left-handed. Every subject performs each motion 30 times, 20 datasets are used to train 

the classifier and 10 datasets are utilized to test the classification system. The 8 healthy 

subjects are asked to activate the 5 motions within 3 seconds as shown in Table 3.4.  

Table 3.3: Details of 8 healthy subjects 

Subject Gender Height Weight Age Handedness 

1 Female 170cm 55kg 30 L(left) 

2 Female 150cm 50kg 23 R(right) 

3 Female 163cm 40kg 25 R 

4 Female 160cm 49kg 28 R 

5 Male 175cm 72kg 25 L 

6 Male 170cm 76kg 24 R 

7 Male 170cm 65kg 25 R 

8 Male 182cm 78kg 26 R 

 

Table 3.4: The experimental setup 

Subject 
Motion times 

for training 

Motion times 

for test 

Action time for each 

motion (second) 

1~8 20 10 Within 3 seconds 
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In addition, the onset of 5 motions are activated when it reaches 2 

seconds. The motion is terminated when the time reaches 4.5 seconds. The experimental 

motion timeline is shown in Fig. 3.4. 

 

Fig. 3.4   The experimental motion timeline  

For human joint, the anatomy is a constraint of inherent attribute from 

each joint. Range of joint is used for motor of artificial arm in Table 3.5. The range of 

elbow joint of flexion motion is between 0° and 150° and the range of elbow joint of 

extension motion also is between 0° and 150°. The range of forearm pronation motion 

is between 0° and 225° and the range of forearm supination motion is between 0° and 

180°. Actually, human attempts to over extend their own forearm that leads the joint to 

be the hyperextension of about 0° to 5° [45]. 

Table 3.5: Ranges for each motion 

Motion Onset of motion Termination of motion 

Elbow joint of flexion 0° 150° 

Elbow joint of extension 150° 0° 

Forearm pronation 0° 225° 

Forearm supination 180° 0° 

0    1    2    3    4    5    6    7 

Time (second) 

Motion No movement No movement 

2s 2.5s 2.5s 
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3.3  System 

 

Fig. 3.5   The system structure 

In this thesis, the complete system shown in Fig. 3.5 could be 

categorised into 4 components: (1) signal measurement, (2) pre-processing, (3) 

classification and (4) artificial robot arm control. First of all, the signal measurement 

contains data collection. The band-pass filtered is used in this component. Then, the 

denoised system in the pre-processing component reduces the noise from filtered sEMG 

signals by soft threshold method. It reduces not only the electrical noise but also the 

Biopac MP36 

Filter sEMG signal 

Denoised sEMG signal 

Back propagation network 

Features extraction 

Label of motion 

Signal Measurement 

Pre-processing 

Classification 

Control system 

Filtered Surface-EMG 

signal from Biopac 

Denoising sEMG signals 

Feature extraction 

Controller control the 

motor 
Control system 

Classifier 
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white Gaussian noise. Next, the classification system is applied to recognize elbow joint 

motions. In order to design a classification system of high performance, the advisable 

features are needed to be constructed and selected to reduce the dimension of features. 

Therefore, five characteristic features, Mean Absolute Value (MAV), Root Mean 

Square (RMS), Slope Change (SC), Signal Length (SL) and Zero Crossing (ZC), are 

extracted from denoised sEMG signals of each channel. All five features are applied 

into back propagation neural network (BPNN) for classifier. Moreover, the results of 

classifier are tested on a subject-by-subject basis. It means that the classification system 

is a user-dependent system. It can detect the motions of healthy subject based on his or 

her own sEMG signals. The final component which is the control system demonstrates 

the test result on robot arm by Adrunio controller. 

  



30 
 

3.3.1 Signal measurement 

The signal measurement uses electrodes (Red Dot, disposable electrode 

ECG, 3M health care) shown in Fig. 3.6 (b) and Biopac MP36 Four Channel Data 

Acquisition System shown in Fig. 3.6 (a). The data collection of sEMG signal uses the 

Biopac Student Lab (BSL) PRO (Version: 3.73, Build: 08.26.2008). 

 

Fig. 3.6   Biopac MP36 (a) and Electrode (b) 

The BSL system has hardware with built-in general amplifiers to record 

condition of electrical signals from the heart, muscle, nerve, brain, eye, respiratory 

system, and tissue preparations. The system receives the signals from electrodes and 

transducers [46]. 

The sampling frequency is 1 kHz in the Biopac MP36. A band-pass filter 

that begins from 30 Hz to 500 Hz cuts noise from the raw sEMG signal because the 

frequency band for sEMG signals on the muscles of upper arm is 30 Hz to 500 Hz [14]. 

The raw sEMG signal is shown in Fig. 3.7 (a) and the filtered sEMG signal is shown in 

(a) (b) 
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Fig. 3.7 (b). In Fig. 3.7 (a), the raw sEMG signal has a floating sEMG signal component 

that can cause motion detection error. Hence, the filtered sEMG signal shown in Fig. 

3.7 (b) is better than the raw sEMG signal shown in Fig. 3.7 (a) for motion detection. 

 

Fig. 3.7   The raw sEMG signal (a) and the filtered sEMG signal (b) 

In frequency domain, the raw sEMG signal and filtered sEMG signal are 

transformed by fast fourier transform (FFT) 𝑋𝑓𝑓𝑡(𝑘) shown in Eq. (3.1)  

𝑋𝑓𝑓𝑡(𝑘) = ∑ 𝑥(𝑗)

𝑁−1

𝑗=0

𝑊𝑁
jk
,                                           (3.1) 

where k=0,…,N-1 and 𝑊𝑁 is 𝑁𝑡ℎ root of unity, it is calculated by Eq. (3.2) and 

𝑊𝑁 = 𝑒
(−2𝜋𝑖)/𝑁,                                                              (3.2) 

where N is length of signal. 

In Fig. 3.8, the magnitude of filtered sEMG signal in the frequency 

domain is reduced by the band pass filter. It means that the band pass filter reduces not 

(b) 

(a) 
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only the magnitude outside of the pass band of 30 Hz to 500 Hz, but also the magnitude 

within the pass band. In addition, the reduced magnitude outside of the pass band is 

bigger than inside. Moreover, the electrical noise of filtered sEMG signal shown in Fig. 

3.8 (b) is less than the electrical noise of the raw sEMG signal shown in Fig. 3.8 (a) at 

50 Hz. It means that the electrical noise is reduced by band-pass filter. In conclusion, 

the band pass filter remove noise outside of the pass band of 30 Hz to 500 Hz that is 

not the sEMG signals on the muscle of upper arm. The filtered sEMG signal is better 

than the raw sEMG signal for motion detection and interference of electrical noise. 

 

Fig. 3.8   In frequency domain, the raw sEMG signal (a) and  

the filtered sEMG signal (b) 

  

Frequency: 50Hz. 

Magnitude: 29.75dB. 

Frequency: 50Hz. 

Magnitude: 14.28dB. 

(a) 

(b) 
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3.3.2 Electrode placements 

In the signal measurement, the biceps of long head, the triceps of lateral 

head and the triceps of long head are used into this thesis for four detected motions, so 

that the sEMG signals of 3 channels are collected to detect and classify the four motions. 

Three electrode placements are shown in Fig. 3.9. The channel 1 (ch.1) is biceps of long 

head. The channel 2 (ch.2) is triceps of lateral head. The channel 3 (ch.3) is triceps of 

long head. There is a common ground for all channels. 

Posterior sideAnterior side Profile

Ch. 1 Ch. 3Ch. 2

Ground

  

Fig. 3.9   The electrode placements 

The complete signal measurement system is shown in Fig. 3.10. After 

the filtered sEMG signals collection, the filtered sEMG signal data are sent to the next 

component for pre-processing. 

BSL PRO

Biopac MP36

Subject

 

Fig. 3.10   The complete signal measurement system 
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3.3.3 Sampling windows 

The filtered sEMG signal is partitioned into different window sizes for 

features extraction in classification system. It means that the system processes data 

based on a window basis. So that the window sizes are compared in the thesis, including 

1024 samples, 512 samples, 256 samples and 128 samples. The window sizes bigger 

than 1024 samples are not considered, because the approximately acceptable delay is 

300 milliseconds to 400 milliseconds [26]. In addition, the sampling frequency is 1000 

Hz for collection sEMG signal. The window size of 1024 and 512 samples would take 

1024 milliseconds and 512 milliseconds. Therefore, the sampling time over 1 second is 

not suitable to use. An example of forearm pronation for sampling window size of 256 

samples is shown in Fig. 3.11.  

 

Fig. 3.11    An example of forearm pronation for a sampling window of 256 samples 

  



35 
 

Furthermore, the contractive sEMG signal less than 100 milliseconds in 

one window is stipulated as no movement because the spasms lead to the abnormal 

sEMG signal from muscle of persistent contraction. The amyostasia that is muscle 

sickness generates muscle contraction from 4 times to 6 times in every second. It means 

that the contractive sEMG signal is between 250 milliseconds and 166 milliseconds. 

Since, the contractive sEMG signal length less than 100 millisecond means muscle 

spasms without any intent movement. The 100 milliseconds are optimal time to build a 

suitable sensitivity classification system and it improves the stability for classification 

system. In conclusion, the contractive sEMG signal less than 100 samples in one 

window is stipulated no movement in this thesis shown in Fig. 3.12. 

 

Fig. 3.12 Example of stipulated no movement window 

  

No movement 
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3.3.4 Pre-processing 

The filtered sEMG signals are sent to PC in Matlab from Biopac through 

a USB port. Matlab (Matlab 2014a, 8.3.0.532, 64-bit) is used to process the filtered 

sEMG signals. Because the filtered sEMG signal is the voltage of millivolt, it is easy to 

be interfered by noises. However, the filtering procedures are very difficult to remove 

the interference of random noises [47]. For example, the white Gaussian noise. Hence, 

the filtered sEMG signal requires a denoised algorithm to remove these random noises. 

Nowadays, there are many algorithms for noise reduction. The wavelet 

denoising algorithm provides the high effect to remove random noises [48]. On one 

hand, the magnitude thresholding removes noise from signals with two or more 

components. In order to reduce the noise in the signal, selected wavelet coefficients are 

reduced or removed. Two most popular denoised algorithms are hard thresholding 

algorithm and soft thresholding algorithm.  

The hard thresholding algorithm judges simply to keep or remove the 

coefficients shown in Fig. 3.13 (a). The soft thresholding algorithm recognizes the 

coefficients containing both signal and noise to isolate the signal by removing the noisy 

part from all coefficients shown in Fig. 3.13 (b). Hence, soft thresholding is carried out 

to remove noise from filtered sEMG signal.  
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Fig. 3.13 The hard thresholding algorithm (a) and the soft thresholding algorithm (b) 

Moreover, the equation of soft thresholding algorithm is shown in Eq. 

(3.3), 

𝜔𝑖
𝑆𝑜𝑓𝑡

= {
0                                    |𝜔𝑖| < 𝜆

𝑠𝑖𝑔𝑛(𝜔𝑖)(|𝜔𝑖| − 𝜆)  |𝜔𝑖| ≥ 𝜆
 ,                                (3.3) 

where 𝜔𝑖 is sequentially indexed coefficients, the λ is the value of threshold and the 

detail is shown after the section for sequentially indexed coefficients 𝜔𝑖. Moreover, 

the absolute value of the sequentially indexed coefficients 𝜔𝑖  are smaller than the 

threshold 𝜆, which equal to zero. It means that the sequentially indexed coefficients 𝜔𝑖 

of zero do not change the value of sEMG signal. The absolute value of the sequentially 

indexed coefficients 𝜔𝑖 are bigger than the threshold 𝜆, which are calculated by the 

equation of 𝑠𝑖𝑔𝑛(𝜔𝑖)(|𝜔𝑖| − 𝜆).  

The denoised system is shown in Fig. 3.14. It has four components to 

process the filtered sEMG signals. 

𝜔𝑖
ℎ𝑎𝑟𝑑 𝜔𝑖

𝑠𝑜𝑓𝑡 

𝜔𝑖 𝜔𝑖 (a) (b) 
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Fig. 3.14   Denoising system 

In the first component of denoised system, the formula shown in Eq. 

(3.4) is used to compare SymN for calculation of levels of decomposition, 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10

(

 
|√∑𝑥𝑠𝑖𝑔𝑛𝑎𝑙2|

|√∑𝑥𝑠𝑖𝑔𝑛𝑎𝑙2| − |√∑𝑥𝑑𝑠𝑖𝑔𝑛𝑎𝑙2|)

  ,                              (3.4) 

where 𝑥𝑠𝑖𝑔𝑛𝑎𝑙 is the filtered sEMG signal data, 𝑥𝑑𝑠𝑖𝑔𝑛𝑎𝑙 is the denoised signal data and 

SNR is value of signal-to-noise ratio (SNR). In addition, the SNR is calculated based 

on per window size of 256 samples basis. 



39 
 

In this thesis, the Symlet wavelets are used. It is a more symmetrical 

model based on Daubechies wavelets. The general characteristics of Symlet wavelets 

are shown in Table 3.6.  

Table 3.6: The general characteristics of Symlets wavelets 

Family Symlets 

Short name Sym 

Order N N= 2,3,… 

Orthogonal Yes 

Compact support Yes 

DWT Possible 

CWT Possible 

Support width 2N-1 

Filters length 2N 

Regularity About 0.2 N for large N 

Symmetry Nearly symmetric 

Number of vanishing moments for ψ N 

In the Table 3.6, the SymN has high regularity which is sparse basis with 

low smooth error. It renders the smooth process to signals decomposition. In addition, 

the smoothness of vanishing moments increases with the increase of N in SymN. The 

higher smoothness of vanishing moments makes not only higher localization ability in 

frequency domain, but also higher ability to partition the frequency band for signals. 

But the higher N in SymN increases the calculated amount, which reduces the compact 

support in time domain. The symmetry of SymN is higher than dbN, which reduces the 

phase distortion to the signal analysis and reconstruction. 
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Moreover, a discrete input signal of length N can be broken down into 

exactly N components without any loss of information using discrete orthonormal 

wavelets as Symlet wavelets [49]. Hence, Symlet wavelets is applied to calculate signal 

of decomposition levels 𝑖. Result is shown in Fig. 3.15, the SNR does not change 

significantly when the signal uses Sym5 to Sym15.  Therefore, the Sym5 in my 

denoised system is applied to calculate decomposition levels 𝑖 shown in Table 3.7. In 

addition, the length of decomposition low-pass filter for Sym5 is 10, it means that the 

length of data in full level of decomposition M is approximate 20. 

 

Fig. 3.15   The SNR of SymN for calculation of levels for decomposition 
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Table 3.7: Decomposition levels 𝑖 by Sym5 

Window size decomposition levels 𝑖 by Sym5 

1024 samples 6 

512 samples 5 

256 samples 4 

128 samples 3 

In the second component, the SymN wavelet is also used in 

multiresolution algorithm. In the Fig. 3.16, it compares Sym1 to Sym8 by SNR. The 

SNR is similar when the signal uses Sym4 to Sym8. So, the Sym4 is used to calculate 

sequentially indexed coefficients 𝜔𝑖 based on multiresolution algorithm shown in the 

Fig. 3.17.  

 

Fig. 3.16   The SNR of SymN for denoising signal 

Moreover, the sequentially indexed coefficients 𝜔𝑖 shown in Fig. 3.18 

has two components. They are approximation 𝑆𝑚,𝑛 and detail coefficient 𝑇𝑚,𝑛. The 

formulas are shown in Eq. (3.5) and Eq. (3.6) 

𝑆𝑚+1,𝑛 =
1

√2
∑𝑐𝑘𝑆𝑚,2𝑛+𝑘
𝑘

,                                              (3.5) 

𝑇𝑚+1,𝑛 =
1

√2
∑𝑏𝑘𝑆𝑚,2𝑛+𝑘
𝑘

,                                             (3.6) 
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where 𝑚  is level of decomposition, 𝑛  is number of sequence, scaling coefficient 

1

√2
𝑐𝑘 and wavelet function coefficient 

1

√2
𝑏𝑘 represents the low-pass filter and high-

pass filter in wavelet transform, respectively. The two coefficients are calculated by Eq. 

(3.7) and Eq. (3.10) by SymN. 

∅(𝑡) =∑𝑐𝑘∅(2𝑡 − 𝑘)

𝑘

                                                   (3.7) 

𝜓(𝑡) =∑(−1)𝑘𝑐𝑁𝑘−1−𝑘𝜙(2𝑡 − 𝑘)

𝑘

                            (3.8) 

where ∅(𝑡)  is a scaling function, 𝜓(𝑡)  is a wavelet function. In 

addition, the Symlet wavelets are defined by scaling function ∅(𝑡)  and wavelet 

function 𝜓(𝑡). This ordering of scaling coefficients used in the wavelet equation allows 

for wavelets and corresponding scaling equations to have support over the same interval 

[0, 𝑁𝑘−1]. Eq. (3.10) is calculated by Eq. (3.8) and Eq. (3.9). The Eq. (3.10) is used in 

my denoised system for wavelet function coefficient 
1

√2
𝑏𝑘.  

∑𝑏𝑘
𝑘

=∑(−1)𝑘𝐶𝑁𝑘−1−𝑘 = 0          

𝑘

                           (3.9) 

𝜓(𝑡) = ∑ 𝑏𝑘𝜙(2𝑡 − 𝑘)                       

𝑁𝑘−1

𝑘=0

                      (3.10) 



43 
 

 

Fig. 3.17   Multiresolution algorithm  
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Fig. 3.18   The sequentially indexed coefficients 𝜔𝑖 

In the third component, the processing of threshold 𝜆 is shown in the 

Fig. 3.19. The full level of sequentially indexed coefficients 𝜔𝑖 is decomposed into 2 

sections of decomposition which are the first section of approximation 𝑆𝑚,𝑛 and the 

second section of detail coefficient 𝑇𝑚,𝑛. So 2 sections 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 are calculated by the 

sequentially indexed coefficients 𝜔𝑖 in the full level of decomposition.  

 

Fig. 3.19   The processing of threshold 𝜆 

Sequentially indexed coefficients 𝜔𝑖  

Sections of decomposition 

Threshold 𝜆 in section 

Approximation 𝑆𝑚,𝑛  and detail coefficient 𝑇𝑚,𝑛  

Minimax thresholding method 

ω𝑖 , 

ω𝑖 , 

ω𝑖 , 

ω𝑖 , 
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Then, defined the minimax quantities Λ𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛
∗  is calculated by Eq. 

(3.11) based on minimax thresholding method in every section. The threshold λ ≡ the 

largest 𝜆 attaining Λ𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛
∗  above [50].  

Λ𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛
∗ ≡  

𝑖𝑛𝑓
𝜆

𝑠𝑢𝑝
𝜔𝑖
 {

𝑅𝜆(𝜔𝑖)

𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛
−1 +𝑚𝑖𝑛(𝜔𝑖

2, 1)
}           (3.11) 

where 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 is length of section, the risk of the component 𝑅𝜆(𝜔𝑖) is shown in Eq. 

(3.12). 

𝑅𝜆(𝜔𝑖) = 𝐸(𝜔�̂� −𝜔𝑖)
2                                                   (3.12) 

where 𝜔�̂� is the estimate 𝜔�̂� of 𝜔𝑖. 

Finally, the denoised sequentially indexed coefficients 𝜔𝑖 is calculated 

by Eq. (3.3) in every level of decomposition. At the end, the fourth component is that 

the denoised sEMG signal is reconstructed based on denoised sequentially indexed 

coefficients 𝜔𝑖  of full level of decomposition. The process of reconstruction for 

denoised sEMG signal is shown in Fig. 3.20 and an example for denoised system is 

shown in Fig. 3.21. 

  



46 
 

 

Fig. 3.20   The reconstruction of sequentially indexed coefficients 𝜔𝑖  

 

Fig. 3.21   An example for denoised system 

In the Fig. 3.21, the noise is removed from the filtered sEMG signal. In 

order to analyze the benefit of the denoised system in frequency domain, the filtered 

sEMG signal is shown in Fig. 3.22 (a), the denoised sEMG signal is shown in Fig. 3.22 

(b) and the removed sEMG signal is shown in Fig. 3.22 (c). Moreover, the filtered 

sEMG signal is the voltage of millivolt, it mostly distributes in the low frequency band 

and it is easy to be interfered by noises. The filtering procedures are very difficult to 

ω𝑖, 

ω𝑖, 

ω𝑖, 

ω𝑖, 
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remove the interference of random noises [47]. However, the denoised system based on 

wavelet denoising algorithm can remove these noises [48].  

 

 

Fig. 3.22   In frequency domain, the filtered sEMG signal (a), the denoised sEMG signal (b) 

and the removed sEMG signal (c) 

Through comparing electrical noise in the filtered sEMG signal and the 

denoised sEMG signal the denoised system reduces the electrical noise of the filtered 

sEMG signals at 50 Hz. 

Frequency: 50Hz. 

Magnitude: 14.78dB. 

(a) 

Frequency: 50Hz. 

Magnitude: 12.88dB. 

(b) 

Frequency: 50Hz. 

Magnitude: 11.2dB. 

(c) 
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In addition, the removed sEMG signal in frequency domain is shown in 

Fig. 3.22 (c). It is calculated by the filtered sEMG signal minus the denoised sEMG 

signal. The removed sEMG signal mostly distributes in the low frequency band. It 

means that the denoised system reduces the interference of noises in low frequency 

band to sEMG signal, especially for electrical noise. 

According to the characteristic of the removed sEMG signal, the power 

spectrum density of removed sEMG signal is shown in Fig. 3.23 (a). Its distribution 

matches uniform distribution in the frequency band of 30 Hz to 500Hz, because the 

band-pass filter also reduces the noises outside the pass-band. 

The histogram for the amplitude of the removed sEMG signal is shown 

in Fig. 3.23 (b). The amplitude distribution matches the Gaussian distribution. Hence, 

the removed sEMG signal is white Gaussian noise, which is hard to be reduced by band-

pass filter. 
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Fig. 3.23   In the power spectrum density of removed sEMG signal (a) and the histogram for 

the amplitude of the removed sEMG signal (b) 

In conclusion, the denoised system not only reduces the electrical noise 

but also the white Gaussian noise which is removed difficultly by the band-pass filter. 

The four examples of denoised sEMG signal of motion case are shown 

in Fig. 3.24 to Fig. 3.27. The denoised sEMG signals of elbow joint of flexion motion 

are shown in Fig. 3.24. The Fig. 3.25 shows the denoised sEMG signals of elbow joint 

of extension motion. It shows the denoised sEMG signals of forearm pronation motion 

in Fig. 3.26. The denoised sEMG signals of forearm supination motion are shown in 

Fig. 3.27. 

(a) 

(b) 
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Fig. 3.24   The denoised sEMG signals of elbow joint of flexion motion 

 

Fig. 3.25   The denoised sEMG signals of elbow joint of extension motion 
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Fig. 3.26   The denoised sEMG signals of forearm pronation motion 

 

Fig. 3.27   The denoised sEMG signals of forearm supination motion 

In addition, there is another algorithm to denoise the input sEMG signal 

that is a moving average algorithm. Because the elbow motions are activated at low 
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frequency [51], but the algorithm does not provide a beneficial result. The comparison 

is shown below for moving average algorithm. 

The moving average algorithm can analyze the data of time series by 

averaging a sliding window and the function of moving average algorithm is a low-pass 

filter with filter coefficients equalling to the reciprocal of the length of sliding window. 

The moving average algorithm can reduce the effect of periodicity interference for 

signals, it not only has high smoothness but also low sensitivity. However, it does not 

limit the occasional pulse interference efficiently. Therefore, it is applied to the high 

frequency oscillation system without the situation of high pulse interference. It is 

favourable to avoid the shifting induced by using only ‘past’ data for a lot of 

applications. When using data equally spaced on any side of the point in the series 

where the mean is calculated, a central moving average can be computed. Hence, that 

using an odd number of datum points is required in the sample window.  

At first, the length of window n𝑤 for calculation is calculated by Eq. 

(3.13). 

n𝑤 = N𝑠 − 1 + (N𝑠 𝑚𝑜𝑑 2)                                         (3.13) 

where N𝑠 is length of window for setup. 

The process of moving average algorithm is shown in Fig. 3.28. It has 

three steps for the calculation. At the first, the length of window follows the consecutive 
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odd numbers to increase length of window until the y(𝑚𝑤) shown in Eq. (3.14) that 

length of window equal n𝑤.  

𝑚𝑤 =
𝑛𝑤 + 1

2
                                                        (3.14) 

Then, the constant number is used for length of window. The window 

slides to extract average from each sliding time. At the end, the y(𝑚𝑖 + 1) shown in 

Eq. (3.15) of smoothed sEMG signal is calculated by the reverse first step. Finally, the 

smoothed sEMG signal is shown in Fig. 3.29. 

𝑚𝑖 = 𝑀𝑠 −𝑚𝑤                                                     (3.15) 

where 𝑀𝑠 is the length of denoised sEMG signal. 
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Fig. 3.28   The moving average algorithm 

The increasing 

length of 

window 

The constant length of 

window 

The reducing length 

of window 
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The smoothed sEMG signal

 

Fig. 3.29   The smoothed sEMG signal 
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Since, the function of moving average algorithm is a low-pass filter. The 

amplitude frequency responses are shown in Fig. 3.30 for the setup length 10 to 100 of 

window N𝑠, which are calculated by Eq. (3.16), 

𝐻(𝑗𝜔) =
|𝑌(𝑗𝜔)|

|𝑋(𝑗𝜔)|
,                                                   (3.16) 

where |𝑌(𝑗𝜔)| is the modulus of FFT of smoothed sEMG signal and |𝑋(𝑗𝜔)| is the 

modulus of FFT of denoised sEMG signal. 

 

Fig. 3.30   The amplitude frequency response for the setup length 10 of window 

In the Fig. 3.30, the stopband edge 𝜔𝑠  is 0.223𝜋 , it means that the 

stopband edge 𝜔𝑠 in the setup length 10 of window is 111.5 Hz by product of 0.223 

and 500Hz which is the stopband edge of the band pass filter. 
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Table 3.8: The cut-off band for each setup 𝑁𝑠 length of window 

The setup length N𝑠 of 

window 
Passband edge 𝜔𝑝 Stopband edge 𝜔𝑠 

10 0 Hz 111.5 Hz (0.223𝜋) 

20 0 Hz 53 Hz (0.106𝜋) 

30 0 Hz 34.5 Hz (0.069𝜋) 

40 0 Hz 25.5 Hz (0.051𝜋) 

50 0 Hz 20.5 Hz (0.041𝜋) 

60 0 Hz 17 Hz (0.034𝜋) 

70 0 Hz 14 Hz (0.028𝜋) 

80 0 Hz 12.5 Hz (0.025𝜋) 

90 0 Hz 11 Hz (0.022𝜋) 

100 0 Hz 10.5Hz (0.021𝜋) 

According to the analysis of the amplitude frequency responses, the 

passband edge 𝜔𝑝 and stopband edge 𝜔𝑠 for each setup length N𝑠 of window are 

calculated and it is shown in Table 3.8. The stopband edge 𝜔𝑠 with the setup length 

40 to 100 of window is lower than 30 Hz. In addition, the signal measurement system 

sets up a band-pass filter of 30Hz to 500Hz, it means that only noises are passed by the 

moving average algorithm. Because the pass-band of moving average algorithm 

overlaps with the band pass filter used to filter the raw EMG signals, the moving 

average algorithm does not achieve a high benefit for the noise reduction.  
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3.3.5 Features extraction 

In order to detect each motion of sEMG signals clearly in the time 

domain, the 5 features of sEMG signals shown in Table 3.9 are analyzed as follows: 

Table 3.9: The 5 features of sEMG signals 

Number Feature of sEMG signals Abbreviation 

1 Mean absolute value MAV 

2 Frequency of signal slope 

change 
SC 

3 Root mean square RMS 

4 Signal length SL 

5 Zero crossing ZC 

MAV of detected sEMG is used to reflect the status of a stimulated 

muscle. The value of MAV is high when the muscle contracts and it is low when muscle 

relaxes. The formula calculates the average of amplitude of denoised sEMG siganls 

shown in Eq. (3.17), 

MAV =
1

𝑁
∑|𝑥𝑛|

𝑁

𝑛=1

,                                                  (3.17) 

where N is the length of sEMG signal, and 𝑥𝑛 is denoised sEMG signal. 

SC is refleted by slope changes. The value of SC is high when the muscle 

contracts and it is low when muscle relaxes. In addition, the SC reflects the high 

frequency content of sEMG signal. The SC is shown in Eq. (3.18), 
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𝑆𝐶 =
1

𝑁 − 2
∑ 𝑓𝑛𝑠𝑐

𝑁−2

𝑛=1

,                                             (3.18) 

𝑓𝑛𝑠𝑐 = {
1, (𝑥𝑛 − 𝑥𝑛−1)(𝑥𝑛 − 𝑥𝑛+1) > 𝜆𝑠𝑐
0, 𝑒𝑙𝑠𝑒

,                   (3.19) 

where 𝜆𝑠𝑐  is threshold. It is calculated with sEMG signal in no movement, the 

maximum value from (𝑥𝑛 − 𝑥𝑛−1)(𝑥𝑛 − 𝑥𝑛+1) is used to be the threshold 𝜆𝑠𝑐. The 

𝑓𝑛𝑠𝑐  are calculated by each value of (𝑥𝑛 − 𝑥𝑛−1)(𝑥𝑛 − 𝑥𝑛+1). When the value of 

(𝑥𝑛 − 𝑥𝑛−1)(𝑥𝑛 − 𝑥𝑛+1) is higher than threshold 𝜆𝑠𝑐, the 𝑓𝑛𝑠𝑐  equals to 1, the 𝑓𝑛𝑠𝑐  

equals to 0 for other conditions. 

RMS shown in Eq. (3.20) reflects the energy of sEMG signals. The value 

of RMS is high when the muscle contracts and it is low when muscle relaxes, 

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑛2
𝑁

𝑛=1

.                                               (3.20) 

SL shown in Eq. (3.21) is the signal length of N samples. This feature 

interprets amplitude of sEMG signal and frequency. Moreover, the value of SL is high 

when the muscle contracts and it is low when muscle relaxes, 

𝑆𝐿 =
1

𝑁 − 1
∑|𝑥𝑛+1 − 𝑥𝑛|

𝑁−1

𝑛=1

.                              (3.21) 
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ZC shown in Eq. (3.22) reflects the frequency of sEMG data through the 

zero. In addition, the value of ZC is high when the muscle contracts and it is low when 

muscle relaxes, 

𝑍𝐶 =
1

𝑁 − 2
∑ 𝑓𝑛𝑧𝑐

𝑁−2

𝑛=1

,                                           (3.22) 

𝑓𝑛𝑧𝑐 = {
1, 𝑥𝑛𝑥𝑛+1 < 0, |𝑥𝑛 − 𝑥𝑛+1| > 𝜆𝑧𝑐
0, 𝑒𝑙𝑠𝑒

,                (3.23) 

where 𝜆𝑧𝑐  is threshold. It is calculated with sEMG signal with no movement. The 

maximum value from |𝑥𝑛 − 𝑥𝑛+1| is used to be the threshold 𝜆𝑧𝑐 for ZC. The 𝑓𝑛𝑧𝑐 

are calculated by each value of 𝑥𝑛𝑥𝑛+1 and |𝑥𝑛 − 𝑥𝑛+1|. The 𝑓𝑛𝑧𝑐 equals to 1 when 

the value of 𝑥𝑛𝑥𝑛+1 is negative and |𝑥𝑛 − 𝑥𝑛+1| is higher than threshold 𝜆𝑧𝑐, the 

𝑓𝑛𝑧𝑐  equals to 0 for other conditions.  

In addition, the feature distributions from subject 8 are shown in Fig. 

3.31 to Fig. 3.35.  
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Fig. 3.31   An example of MAV distribution for subject 8 

In the Fig. 3.31, the MAV is based on the data of subject 8: (1) the MAV 

values of no movement approximate to 0 on all axes, (2) the MAV value of elbow joint 

of flexion is high on the biceps of long head axis, (3) the MAV value of elbow joint of 

extension is high on the triceps of long head axis, (4) the MAV value of forearm 

pronation on the triceps of lateral head axis is high, (5) the value on the biceps of long 

head axis is high for the MAV of forearm supination, but it is lower than the value of 

elbow joint of flexion. The MAV values follow the kinesiology in section 3.1. 
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Fig. 3.32   An example of RMS distribution for subject 8 

In the Fig. 3.32, the RMS is extracted from the sEMG signals of subject 

8: (1) the RMS values of no movement close to 0 on all axes, (2) the RMS value of 

elbow joint of flexion is high on the biceps of long head axis, (3) the RMS value of 

elbow joint of extension is high on the triceps of long head axis, (4) the RMS value of 

forearm pronation on the triceps of lateral head axis is high, (5) the value on the biceps 

of long head axis is high for the RMS of forearm supination and the value is lower than 

the value of elbow joint of flexion. The RMS values obey the kinesiology in section 

3.1. 
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Fig. 3.33   An example of SC distribution for subject 8 

In the Fig. 3.33, the SC is calculated by the data of subject 8: (1) the SC 

values of no movement distribute around 0 on all axes, (2) the SC value of elbow joint 

of flexion on the triceps of lateral head axis is high, (3) the SC value of elbow joint of 

extension is high on the triceps of long head axis, (4) the SC value of forearm pronation 

is high on the triceps of lateral head axis, (5) the value on the biceps of long head axis 

is lower than the value of elbow joint of flexion for the SC of forearm supination. The 

SC values comply with the kinesiology in section 3.1. 
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Fig. 3.34   An example of SL distribution for subject 8 

In the Fig. 3.34, the SL is based on the data of subject 8: (1) the SL 

values of no movement approximate to 0 on all axes, (2) the value on the biceps of long 

head axis is high for the SL of elbow joint of flexion, (3) the SL value of elbow joint of 

extension on the triceps of long head axis is high, (4) the SL value of forearm pronation 

is high on the triceps of lateral head axis, (5) the value on the biceps of long head axis 

is high for the SL of forearm supination, but it is lower than the value of elbow joint of 

flexion. The SL values follow the kinesiology in section 3.1. 
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Fig. 3.35   An example of ZC distribution for subject 8 

In the Fig. 3.35, the ZC is extracted from the data of subject 8: (1) the 

ZC values of no movement distribute around 0 on all axes, (2) the ZC value of the 

elbow joint of flexion is high on the biceps of long head axis, (3) the ZC value of elbow 

joint of extension on the triceps of long head axis is high, (4) the ZC value of forearm 

pronation is high on the triceps of lateral head axis, (5) the value on the biceps of long 

head axis is lower than the value of elbow joint of flexion for the ZC of forearm 

supination. The ZC values obey the kinesiology in section 3.1. 

On the other hand, the features in frequency domain are also used for 

classification. The [52] and [53] concludes that the features in frequency domain are 

used for muscle force estimation and muscle condition, normally. The degree of muscle 

force is different for everyone, which is even different for every muscle. Therefore, it 

is very difficult to apply the features of frequency domain in a standard criterion. They 

are power spectrum density (PSD), mean frequency (MNF) and median frequency 
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(MDF). These three features are used to compare the valuation for the five motions 

detection. Moreover, two conditions are designed to select the features in frequency 

domain: (1) the feature values of contracted muscle should be higher than the feature 

values of other muscles, (2) the feature values of elbow joint of flexion, extension, 

forearm pronation and supination should be better than the feature values of no 

movement. If the feature follows the two conditions, the feature can be used to detect 

motions for classification system. 

At the first, the PSD shown in Eq. (3.24) reflects the power of sEMG 

signal in frequency domain, 

𝑃𝑆𝐷 =
|𝑋𝑓𝑓𝑡(𝑘)|

2

𝑁
,                                              (3.24) 

where 𝑋𝑓𝑓𝑡(𝑘) is the FFT of signal, 𝑁 is the length of 𝑋𝑓𝑓𝑡(𝑘). 

The PSD is a group of data that is used to analyze the condition of 

muscle [54]. But it will increase so many dimensions of feature and generates a long 

processing time. Hence, the PSD is not suitable to use in this thesis. 

Next, the MNF shown in Eq. (3.25) detects the average frequency by the 

sum of product of power spectrum and the frequency to divide the total spectrum 

intensity. It summarizes the average frequency of the denoised sEMG signals, 

MNF = ∑𝑓𝑛𝑃𝑛

𝑁

𝑛=1

∑𝑃𝑛

N

𝑛=1

⁄ ,                                                (3.25) 
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where the 𝑓𝑛 is the frequency of sEMG power spectrum, the 𝑃𝑛 is the sEMG power 

spectrum and the 𝑁 is the length of frequency. 

 

Fig3.36   The MNF for elbow joint of flexion 

The MNF values of each motion that sampling window size of 256 

samples in one subject are shown in Fig. 3.36 to Fig. 3.39. The MNF values for elbow 

joint of flexion are shown in Fig. 3.36. The MNF of elbow joint of flexion is from 

window 5 to window 10. As following the two conditions, the window 5 to window 10 

of channel 1 (biceps of long head) should be higher than window 5 to window 10 of 

other 2 channels and the window 5 to window 10 should be higher than other windows 

in channel 1. Hence, the window 5 and window 10 do not match the two conditions. 

Other windows match the two conditions. 
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Fig. 3.37   The MNF for elbow joint of extension 

In the Fig. 3.37, the MNF values for elbow joint of extension are shown. 

From the window 11 to window 14 is the MNF values of elbow joint of extension. In 

the two conditions design, the window 11 to window 14 of channel 3 (triceps of long 

head) should be higher than window 11 to window 14 of other 2 channels and the 

window 11 to window 14 should be higher than other windows in channel 3. Hence, 

only window 11 do not follow the two conditions. Other windows follow the two 

conditions. 
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Fig. 3.38   The MNF for forearm pronation 

The MNF values for forearm pronation are shown in Fig. 3.38. From the 

window 9 to window 17 is the MNF of forearm pronation. The window 9 to window 

17 of channel 2 (triceps of lateral head) should be higher than window 9 to window 17 

of other 2 channels and the window 9 to window 17 should be higher than other 

windows in channel 2. In addition, all of windows match the two conditions.  
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Fig. 3.39   The MNF for forearm supination 

The MNF values for forearm supination are shown in Fig. 3.39. From 

the window 7 to window 13 is the MNF of forearm supination. The window 7 to 

window 13 of channel 1 (biceps of long head) should be higher than window 7 to 

window 13 of other 2 channels and the window 9 to window 17 should be higher than 

other windows in channel 1. So the window 10 and window 13 do not match the two 

conditions. Other windows match the two conditions. 

In conclusion, the MNF features are compared by each motion. The 

elbow joint of extension and forearm pronation have a high matching condition. But 

the elbow joint of flexion and forearm supination have a low matching condition. It 

means that the MNF feature is not suitable to detect the motion for classification system. 
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At the third, the MDF is calculated by Eq. (3.26), it searches the 

frequency at which the power spectrum of denoised sEMG signals is divided into two 

equally section, 

𝑀𝐷𝐹 = ∑ 𝑃𝑛

𝑁

𝑛=𝑀𝐷𝐹

,                                                     (3.26) 

∑ 𝑃𝑛

𝑁

𝑛=𝑀𝐷𝐹

=
1

2
∑𝑃𝑛

𝑁

𝑛=1

.                                                  (3.27) 

In addition, the conditions of MDF and MNF are similar because the 

features are two kinds of averages in statistics. Hence, the results of MDF for each 

motions are not shown in this thesis. The conclusion of MDF features is not suitable to 

detect the motion for classification system. 

In conclusion, the PSD, MDF and MNF give the low benefit to 

classification system. Therefore, the five features in time domain, MAV, SC, RMS, SL 

and ZC, are used in the input layer of classifier shown in Fig. 3.40. Moreover, the five 

features are used in other researches of sEMG for classification. 

 

Fig. 3.40   The input structure of 15 features 
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3.3.6 Classification system 

In this thesis, the classifier of 3 channels recognizes five motions: (1) no 

movement, (2) elbow joint of flexion, (3) elbow joint of extension, (4) forearm 

pronation and (5) forearm supination. Moreover, the classifier of 2 channels shown in 

Fig. 3.41 and the classifier of 3 channels shown in Fig. 3.42 are compared.  

 

Fig. 3.41   The structure of the classifier of 2 channels 

 

Fig. 3.42   The structure of classifier of 3 channels 
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In addition, the classification system uses back propagation network (BP 

network). The BP network is a kind of artificial neural network (ANN). It is a method 

with hidden layer of multilayer feedforward network. The error data backward 

propagate to modify the weight and threshold. The BP network is able to solve the 

problem of linear inseparable and it is very effective in the pattern recognition, 

regression, approach and compression.  

Moreover, steepest descent method is a very classical method in BP 

network. It has a factor of momentum to improve the processing time. Steepest descent 

method is also called a gradient descent method. It is a first-order iterative optimization 

algorithm. Steepest descent method is used to find a local minimum of a function. It 

takes steps proportional to the negative of the gradient (or approximate gradient) of the 

function at the current point. Error signal propagates backward in classifier. 
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Fig. 3.43   The structure of BP network for the classifier 

In BP network design, the input layer nodes are M, the output layer 

nodes are J, the hidden layer nodes are I, the i of hidden layer node is 𝑘𝑖,the j of 

output layer node is 𝑦𝑗, the ω𝑖𝑗 is a link weight from 𝑘𝑖 to 𝑦𝑗, the u is input and 

the v is output for every layer.  

In addition, the structure of classifier of 3 channels is shown in the Fig. 

3.43. Hence, the input layer nodes M are 15. The hidden layer nodes I are 15. The 

output layer nodes J are 3. The j of output layer node is 𝑣𝐽
𝑗
(𝑛) in Eq. (3.28), 

𝑣𝑗
𝑖(𝑛) = 𝑔 (𝑢𝑗

𝑖(𝑛)) ,                                     (3.28) 



74 
 

where the j of input layer node is 𝑢𝐽
𝑗
(𝑛).  

The e(n) is 𝑒𝑗(𝑛) of second derivative and the differential is first 

partial derivative shown in Eq. (3.29), 

𝜕𝑒(𝑛)

𝜕𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛) .                                               (3.29) 

Eq. (3.30) is calculation for partial derivative, 

𝜕𝑒𝑗(𝑛)

𝜕𝑣𝐽
𝑖(𝑛)

= −1 .                                                  (3.30) 

Eq. (3.31) and Eq. (3.32) are output layer of derivative, 

𝜕𝑣𝐽
𝑗
(𝑛)

𝜕𝑢𝐽
𝑗
(𝑛)

= 𝑔′𝑢𝐽
𝑗
(𝑛) ;                                       (3.31) 

𝜕𝑢𝐽
𝑗
(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
= 𝑣𝐼

𝑖(𝑛) .                                           (3.32) 

The local gradient describes the value of modified weight shown in Eq. 

(3.33), 

𝛿𝐽
𝑗
= −

𝜕𝑒(𝑛)

𝜕𝑢𝐽
𝑗(𝑛)

= −
𝜕𝑒(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑣𝐽
𝑗(𝑛)

∙
𝜕𝑣𝐽

𝑗(𝑛)

𝜕𝑢𝐽
𝑗(𝑛)

= 𝑒𝑗(𝑛)𝑔
′ (𝑢𝐽

𝑗(𝑛)) .           (3.33) 

The local gradient equals to the product between the error and derivative 

of transform function. The threshold and weight are modified together and the threshold 

modify from local gradient between input layer and hidden layer. 
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Moreover, the error of classifier is calculated by the mean squared errors 

(MSE) shown in Eq. (3.35), 

𝑒𝑛 = Y𝑜𝑢𝑡𝑝𝑢𝑡𝑛 − 𝑦𝑜𝑢𝑡𝑝𝑢𝑡𝑛  ,                                     (3.34) 

where Y𝑜𝑢𝑡𝑝𝑢𝑡𝑛  are the user motions, 𝑦𝑜𝑢𝑡𝑝𝑢𝑡𝑛  are the predicted motions by BP 

network.  

𝑀𝑆𝐸 =
1

𝑁
∑(�̂�𝑛 − 𝑒𝑛)

2

𝑁

𝑛=1

 ,                                     (3.35) 

where N is the training times, �̂�𝑛 is the mean of 𝑒𝑛.  

The errors of classifier are judged by error margin. When the MSE is 

greater than error margin, the algorithm is defined MSE without convergence. The 

weight is modified from MSE and gradient 
𝜕𝑒(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
, until the MSE is converged. In this 

modified step, the errors are propagated backward. The value of gradient 
𝜕𝑒(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
 is 

shown in Eq. (3.36), 

𝜕𝑒(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
=
𝜕𝑒(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑣𝐽
𝑗(𝑛)

∙
𝜕𝑣𝐽

𝑗(𝑛)

𝜕𝑢𝐽
𝑗(𝑛)

∙
𝜕𝑢𝐽

𝑗(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
= −𝑒𝑗(𝑛)𝑔

′ (𝑢𝐽
𝑗(𝑛)) 𝑣𝐼

𝑖(𝑛).  (3.36) 

The weight is shown in Eq. (3.37). The weight 𝜔𝑖𝑗 modifies between 

hidden layer and output layer, 

∆𝜔𝑖𝑗(𝑛) = −𝜂𝑒𝑗(𝑛)𝑔
′ (𝑢𝐽

𝑗(𝑛)) 𝑣𝐼
𝑖(𝑛) = 𝜂𝛿𝐽

𝑗
𝑣𝐼
𝑖(𝑛),                      (3.37) 
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where i  and j  are the hidden layer node in J  and the output layer node in I , 

respectively.  

Steepest descent method has factor of momentum shown in Eq. (3.38), 

∆𝜔(𝑛) = −𝜂(1 − 𝛼)∇𝑒(𝑛) + 𝛼∆𝜔(𝑛 − 1),                          (3.38) 

where ∇𝑒(𝑛) is gradient and the learning rate is 𝜂. Normally, it is known that value 

of factor of momentum is 0.1 to 0.8 and 0.8 is used for the factor of momentum in this 

thesis.  

After first training, there is a factor of momentum α(0 < α < 1) in the 

modified weight processing. The direction and amplitude of modified weight are not 

only from ∆𝜔(𝑛), but also from ∆𝜔(𝑛 − 1). Thus it makes the modified convergence 

faster. If ∆𝜔(𝑛) and ∆𝜔(𝑛 − 1) of gradient direction are the same, it means that the 

value of |−𝜂(1 − 𝛼)∇𝑒(𝑛)| plus the 𝛼∆𝜔(𝑛 − 1) and the weight of result is larger. 

As a result, the convergence speeds up. On the other hand, when the ∆𝜔(𝑛) and 

∆𝜔(𝑛 − 1)  of gradient direction are opposite, the |−𝜂(1 − 𝛼)∇𝑒(𝑛)|  minus 

𝛼∆𝜔(𝑛 − 1), the weight of result is smaller, which is easier to find the minimum point. 

The value of modified weights was saved in the modified weight processing.  

Moreover, the classifier has 6 steps that follow the BP network design 

in the classification system shown in the Fig. 3.44. It is worth mentioning that all of 
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setups are shown based on the 8 healthy subjects with sampling window size of 256 

samples, because it provides the best accuracy.  

 

Fig. 3.44   The classification system 

In the Fig. 3.44, the first and second step are used to initialize the 15 

features from 8 healthy subjects. The numbers of window for training data are shown 

in Table 3.10 for the classification system. The 15 features are normalized by Minmax 

algorithm shown in Eq. (3.39), 

X𝑛 =
𝑥𝑓 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
,                                               (3.39) 
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where the 𝑥𝑓 is the value for each feature, the 𝑥𝑚𝑖𝑛 is the minimum of 𝑥𝑓, the 𝑥𝑚𝑎𝑥 

is the maximum of 𝑥𝑓. 

Table 3.10: The numbers of window for training data based on the sampling window 

size of 256 samples 

Subject 
No 

movement 

Elbow 

joint of 

flexion 

Elbow 

joint of 

extension 

Forearm 

pronation 

Forearm 

supination 

1 1612 144 144 136 196 

2 1405 144 99 118 134 

3 1516 86 75 95 68 

4 2121 140 125 150 247 

5 1666 279 290 254 271 

6 1697 266 283 205 309 

7 2170 144 173 141 132 

8 1550 316 306 291 297 

Total 13737 1519 1495 1390 1654 

In the Table 3.10, the total training data for no movement are 13737 

windows based on the window size of 256 samples. The total training data for elbow 

joint of flexion are 1519 windows based on the window size of 256 samples. The total 

training data for elbow joint of extension are 1495 windows based on the window size 

of 256 samples. The total training data for forearm pronation are 1390 windows based 

on the window size of 256 samples. The total training data for forearm supination are 

1654 windows based on the window size of 256 samples. 
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The third step initializes the BP network. The training method is steepest 

descent method having factor of momentum in batch mode. In addition, the transfer 

function in hidden layer is Tan-Sigmoid function shown in Eq. (3.40) and Fig. 3.45, 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

1 + 𝑒−2𝑛
− 1,                                     (3.40) 

where range of n is minus infinity to infinite and range of 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) is -1 to 1. The 

tan-sigmoid function works as transform function in the hidden layer or the output layer. 

The tan-sigmoid with smoothing function and differentiable characteristic is better than 

the linear function in accuracy and fault tolerance, because tan-sigmoid with nonlinear 

amplifying function maps to the range of -1 to 1 from the range of minus infinity to 

infinity. The tan-sigmoid function is used in hidden layer and it achieves the results of 

hidden layer in a limited range. 

 

Fig. 3.45   Tan-Sigmoid function 

In the third step, the threshold and weight are modified together. It 

means that there is constant value of one in the input layer. Therefore, a weight of matrix 

is not only between input layer and hidden layer in size of 3 × N but also between 
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hidden layer and output layer in size of (N + 1) × 1, where N is the number of hidden 

layer node. 

Initially, a low random value is assigned for the weight. The number of 

hidden layer nodes are calculated by Eq. (3.41), 

𝐼 = √𝑀 + 𝐽 + 𝑎,                                                        (3.41) 

where 𝑀 and 𝐽 are the number of input layer nodes and the number of output layer 

nodes respectively, 𝑎 is a constant from 0 to 10. 

 

Fig. 3.46   The comparisons based on sampling window size of 256 samples 

Furthermore, the BP network with 1 hidden layer nodes to 17 hidden 

layer nodes are compared based on sampling window size of 256 samples shown in Fig. 

3.46. The 1 to 4 hidden layer nodes do not show in the Fig. 3.46, because it does not 

match the performance goal 0.01. Moreover, the 15 hidden layer nodes of BP network 
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achieve the best training MSE of 0.009967. The other parameters of BP network are 

shown in Table 3.11.  

Table 3.11: The parameters of BP network 

Parameter Value 

The maximum training times 3000 

The training MSE goal 0.01 

The learning ratio 0.6 

The factor of momentum 0.8 

The hidden layer nodes 15 

The training output for no movement (0, 0, 1) 

The training output for elbow joint of flexion (0, 1, 0) 

The training output for elbow joint of extension (1, 0, 0) 

The training output for forearm pronation (1, 1, 0) 

The training output for forearm supination (1, 1, 1) 

Moreover, the 2 numbers output is not suitable and accurate. Hence, the 

training output uses 3 numbers to classify five motions. On one hand, the training output 

for no movement is (0, 0, 1). The training output for the elbow joint of flexion is (0, 1, 

0). The training output for the elbow joint of extension is (1, 0, 0). The training output 

for the forearm pronation is (1, 1, 0). The training output for the forearm pronation is 

(1, 1, 1). Because the five motions are detected, the training output need at least 3 

numbers to separate it. 

On the other hand, the testing output for each motion is the same as the 

training output. Except the 5 testing outputs for each motion, the other results are 

recognized as no movement. For example, the (0, 0, 0) is recognized as no movement. 
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In addition, the transfer function in output layers is linear transfer 

function shown in Fig. 3.47. The equation of linear transfer function lin(𝑛) is shown 

in Eq. (3.42), the transfer function achieves the results of output layers from hidden 

layers. Because the inputs of hidden layers are the data with a limited range, the linear 

transfer function is used in the output layers, it means that the values of the linear 

transfer function equal to the values of tan-sigmoid in the BP network. 

𝑦lin(𝑛) = xlin(𝑛).                                                   (3.42) 

 

Fig. 3.47   Linear transfer function 

The fourth step calculates the MSE, the weight is modified from error 

and gradient 
𝜕𝑒(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
, until the MSE converges. It means that the training times stop at 

which the MSE is smaller than training MSE goal (error margin). The MSE of training 

data is shown in Fig. 3.48 to Fig. 3.55 for each healthy subject with sampling window 

size of 256 samples. 

The fifth step tests the classification system. The testing data is also 

normalized by min-max algorithm. The MSE of testing data is shown in Table 3.12 to 

Table 3.19. 
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Fig. 3.48   The MSE for Subject 1 

The MSE of training data of subject 1 is shown in Fig. 3.48. The best 

training MSE is 0.0099546 when the classifier is trained 325 times. After the classifier 

of subject 1 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.12. The average of testing MSE is 0.0102997. The maximum of testing MSE 

is 0.0135177. The minimum of testing MSE is 0.0071363. 

Table 3.12: The MSE of testing data for subject 1 

Subject 1 The testing MSE 

Average 0.0102997 

Maximum 0.0135177 

Minimum 0.0071363 
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Fig. 3.49   The MSE for subject 2 

The MSE of training data of subject 2 is shown in Fig. 3.49. The best 

training MSE is 0.0099801 when the classifier is trained 680 times. After the classifier 

of subject 2 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.13. The average of testing MSE is 0.0117686. The maximum of testing MSE 

is 0.0176062. The minimum of testing MSE is 0.0048701. 

Table 3.13: The MSE of testing data for subject 2 

Subject 2 The testing MSE 

Average 0.0117686 

Maximum 0.0176062 

Minimum 0.0048701 
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Fig. 3.50   The MSE for subject 3 

The MSE of training data of subject 3 is shown in Fig. 3.50. The best 

training MSE is 0.0099778 when the classifier is trained 373 times. After the classifier 

of subject 3 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.14. The average of testing MSE is 0.0104910. The maximum of testing MSE 

is 0.0138346. The minimum of testing MSE is 0.0069430. 

Table 3.14: The MSE of testing data for subject 3 

Subject 3 The testing MSE 

Average 0.0104910 

Maximum 0.0138346 

Minimum 0.0069430 
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Fig. 3.51   The MSE for subject 4 

The MSE of training data of subject 4 is shown in Fig. 3.51. The best 

training MSE is 0.0098671 when the classifier is trained 88 times. After the classifier 

of subject 4 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.15. The average of testing MSE is 0.0108173. The maximum of testing MSE 

is 0.0125557. The minimum of testing MSE is 0.0085762. 

Table 3.15: The MSE of testing data for subject 4 

Subject 4 The testing MSE 

Average 0.0108173 

Maximum 0.0125557 

Minimum 0.0085762 
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Fig. 3.52   The MSE for subject 5 

The MSE of training data of subject 5 is shown in Fig. 3.52. The best 

training MSE is 0.0099794 when the classifier is trained 503 times. After the classifier 

of subject 5 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.16. The average of testing MSE is 0.0103682. The maximum of testing MSE 

is 0.0110569. The minimum of testing MSE is 0.0091951. 

Table 3.16: The MSE of testing data for subject 5 

Subject 5 The testing MSE 

Average 0.0103682 

Maximum 0.0110569 

Minimum 0.0091951 
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Fig. 3.53   The MSE for subject 6 

The MSE of training data of subject 6 is shown in Fig. 3.53. The best 

training MSE is 0.0099632 when the classifier is trained 317 times. After the classifier 

of subject 6 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.17. The average of testing MSE is 0.0113420. The maximum of testing MSE 

is 0.0149940. The minimum of testing MSE is 0.0096542. 

Table 3.17: The MSE of testing data for subject 6 

Subject 6 The testing MSE 

Average 0.0113420 

Maximum 0.0149940 

Minimum 0.0096542 
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Fig. 3.54   The MSE for subject 7 

The MSE of training data of subject 7 is shown in Fig. 3.54. The best 

training MSE is 0.0099255 when the classifier is trained 163 times. After the classifier 

of subject 7 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.18. The average of testing MSE is 0.0108846. The maximum of testing MSE 

is 0.0126408. The minimum of testing MSE is 0.0090235. 

Table 3.18: The MSE of testing data for subject 7 

Subject 7 The testing MSE 

Average 0.0108846 

Maximum 0.0126408 

Minimum 0.0090235 
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Fig. 3.55   The MSE for subject 8 

The MSE of training data of subject 8 is shown in Fig. 3.55. The best 

training MSE is 0.0099308 when the classifier is trained 144 times. After the classifier 

of subject 8 is trained, it is tested by the testing data. The testing result is shown in 

Table 3.19. The average of testing MSE is 0.0102909. The maximum of testing MSE 

is 0.0116894. The minimum of testing MSE is 0.0087863. 

Table 3.19: The MSE of testing data for subject 8 

Subject 8 The testing MSE 

Average 0.0102909 

Maximum 0.0116894 

Minimum 0.0087863 
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In addition, the numbers of windows for test data based on the sampling 

window size of 256 samples are shown in Table 3.20. 

Table 3.20: The numbers of windows for test data 

based on the sampling window size of 256 samples 

Subject 
No 

movement 

Elbow 

joint of 

flexion 

Elbow 

joint of 

extension 

Forearm 

pronation 

Forearm 

supination 

1 480 36 24 36 56 

2 554 68 42 46 50 

3 606 34 28 40 52 

4 725 53 42 46 77 

5 551 101 105 73 90 

6 569 85 93 71 102 

7 717 43 65 51 44 

8 520 111 101 90 98 

Total 4722 531 500 453 569 

In the Table 3.20, the total test data for no movement are 4722 windows 

based on the window size of 256 samples. The total test data for elbow joint of flexion 

are 531 windows. The total test data for elbow joint of extension are 500 windows. The 

total test data for forearm pronation are 453 windows. The total test data for forearm 

supination are 569 windows.  
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After the test, an example of the output from BP network based on 

subject 8 is shown in Fig. 3.56. The output results are approximated values based on 

the training output of motions. Hence, the final step of the K-means clustering method 

is needed to calculate the final output. The K-means clustering is a method of vector 

quantization in signal processing area, which is very effective to the cluster analysis of 

data mining. This method is used to divide the output results into each cluster by which 

distance between data and mean of cluster is smallest. The distance is calculated by the 

Euclidean distance shown in Eq. (3.43), 

𝐷𝑖 = √(𝑦𝑖1̂ − 𝑦𝑖1)
2
+ (𝑦𝑖2̂ − 𝑦𝑖2)

2
+ (𝑦𝑖3̂ − 𝑦𝑖3)

2
,                  (3.43) 

where 𝑦𝑖1̂ is the average of first number for output 𝑦𝑖1, 𝑦𝑖2̂ is the average of second 

number for output 𝑦𝑖2, 𝑦𝑖3̂ is the average of third number for output 𝑦𝑖3. The means 

of cluster for each motion are shown in Table 3.21 to Table 3.25. 

 

Fig. 3.56   The output from BP network based on subject 8 
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Table 3.21: The mean of cluster for no movement 

Subject 
Training output 

0 0 1 

1 -0.00098 0.00049 1.00666 

2 -0.04910 0.05306 0.94482 

3 -0.00733 -0.00125 0.98059 

4 -0.00012 0.03661 0.98126 

5 0.00388 0.00494 1.00177 

6 0.00761 -0.00091 1.01563 

7 0.00830 -0.00291 1.00218 

8 -0.00081 -0.00976 0.99647 

 

 

Table 3.22: The mean of cluster for elbow joint of flexion 

Subject 
Training output 

1 1 0 

1 0.04119 0.95791 0.01481 

2 0.26284 0.14247 0.66625 

3 0.03260 0.93757 -0.04039 

4 0.08327 1.04136 0.00943 

5 0.45318 0.49310 -0.04871 

6 0.56800 0.72131 -0.03152 

7 0.02152 1.04585 0.20318 

8 0.03557 1.00361 -0.03595 
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Table 3.23: The mean of cluster for elbow joint of extension 

Subject 
Training output 

1 0 0 

1 0.85230 0.56969 0.09600 

2 0.85515 0.33881 0.09539 

3 0.94509 0.57344, 0.17949 

4 1.15177 0.48781 0.70858 

5 0.56312 0.58277 0.04031 

6 0.74277 0.73967 0.26387 

7 0.91698 0.49453 0.32727 

8 0.99866 0.12818 -0.06937 

 

 

Table 3.24: The mean of cluster for forearm pronation 

Subject 
Training output 

1 1 0 

1 1.03203 0.52022 0.00546 

2 0.94331 0.90580 -0.00950 

3 1.01039 0.60328 0.05722 

4 0.88267 0.92578 0.26311 

5 0.99846 0.93381 0.20171 

6 0.51591 0.64055 0.09619 

7 1.11634 0.60952 0.17699 

8 0.87820 0.70585 0.29507 
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Table 3.25: The mean of cluster for forearm supination 

Subject 
Training output 

1 1 1 

1 0.98422 0.95842 0.94397 

2 0.89227 0.89491 0.89709 

3 0.91794 0.66331 0.81684 

4 0.98445 0.65835 0.52696 

5 1.06016 0.96558 0.89047 

6 1.01550 0.74000 0.81543 

7 0.78180 0.70887 0.21994 

8 1.02063 1.00579 0.66821 

The final outputs are calculated by the K-means clustering method. 

Specially, the other results except the 5 training outputs for each motion are recognized 

as no movement. For example, the (0, 0, 0) is recognized as no movement. After that, 

the final outputs can be used to control an artificial prosthesis. In this thesis, the servo 

motors are used to simulate the artificial prosthesis. 
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3.3.7 Control system 

In this thesis, the final results are recognized by classification system in 

Matlab. It means that the user motion intents are realized. Thus, the next component is 

motor drive to control prosthesis. In this thesis, the robot arm is used to demonstrate 

the motion recognition of classifier. 

In addition, the final results need a controller to connect the 6 degrees 

of freedom (DOF) robot arm clamp kit shown in Fig. 3.57 for generating the robot arm 

motions. The Arduino MEGA 2560 shown in Fig. 3.58 is a low cost open-source 

hardware available designed with a simple microcontroller that is used to control the 

prosthesis [55]. Its physical computing platform is easy to read and write. This 

controller has 54 digital input and output pins, 16 analog inputs, 4 hardware serial ports, 

a 16 MHz crystal oscillator, a power jack, an ICSP header, a USB connection and a 

reset button. The USB cable simply connects this controller to a computer. 

 

Fig. 3.57   The 6 degrees of freedom (DOF) robot arm clamp kit 

Motor 1 

Motor 5 

Motor 2 Motor 4 

Motor 6 

Motor 3 



97 
 

 

Fig. 3.58   The Arduino MEGA 2560 

Moreover, the 6 DOF robot arm clamp has 6 the Towardpro MG 996R 

servo motors shown in Table 3.26. The servo motor provides the precise control of 

angular or linear position, velocity and acceleration. It shown in Fig. 3.59 consists of 3 

lines: (1) power line, (2) ground, (3) control line. The motor functions of prosthesis are: 

(1) the servo motor 1 is used for upper limb medial rotation or lateral rotation on 

shoulder, (2) the servo motor 2 is used for arm of abduction or adduction, (3) the servo 

motor 3 is used for elbow joint of flexion or extension, (4) the servo motor 4 is used for 

wrist of flexion or extension, (5) the servo motor 5 is used for forearm of pronation or 

supination, (6) the servo motor 6 is used for holding the hand.  

  



98 
 

Table 3.26: The information of Towardpro MG 996R servo motor 

Modulation Digital 

Torque (4.8 V) 130.54 oz-in (9.40 kg-cm) 

Torque (6.0 V) 152.76 oz-in (11.00 kg-cm) 

Speed (4.8 V) 0.19 sec/60° 

Speed (6.0 V) 0.15 sec/60° 

Weight 1.94 oz (55.0 g) 

Length 1.60 in (40.7 mm) 

Width 0.78 in (19.7 mm) 

Height 1.69 in (42.9 mm) 

Pulse width 1 ms 

Connector type JR 

According to the 4 detected motions in this thesis, the servo motor 3 and 

5 are used to control the prosthesis. On the one hand, the servo motor 3 is controlled by 

final results of elbow joint of flexion and extension. On the other hand, the servo motor 

5 is controlled by final results of forearm pronation and supination. The ranges of servo 

motor 3 and 5 are shown in Table 3.27. 

 

Fig. 3.59   Towardpro MG 996R servo motor 
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Table 3.27: The range of servo motors 

Motor 3 Initial position Termination of the position 

Elbow joint of flexion 0° 150° 

Elbow joint of extension 150° 0° 

Motor 5 Initial position Termination of the position 

Forearm pronation 0° 225° 

Forearm supination 180° 0° 

Therefore, two devices are used in control system. The control scheme 

shown in Fig. 3.60 has 2 steps. At the first step, the final results of numbers of windows 

for each motion shown in Table 3.28 are sent to Arduino device by the Matlab support 

package for Arduino hardware. Currently the Matlab enables the computer to 

communicate the external devices such as sensors, motors, Arduino and so on. In 

addition, the Matlab Support Package for Arduino Hardware communicates with 

Arduino devices via Matlab command line interface. This support package provides the 

ability to set the device communication information and drive the devices function 

attached to Arduino hardware. 

Table 3.28: The final results of numbers of windows for each motion 

Test data Number of windows 

No movement 10 

Elbow joint of flexion 10 

Elbow joint of extension 10 

Forearm pronation 10 

Forearm supination 10 
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Start

If final result = no movement (0,0,1) No movement for robot arm 

If final result = elbow joint of flexion (0,1,0)

If final result = elbow joint of extension (1,0,0)

If final result = forearm pronation (1,1,0)

If final result = forearm supination (1,1,1)

Elbow joint of flexion for 
robot arm

Elbow joint of extension for 
robot arm

Forearm pronation for 
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robot arm
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No

No

No

No movement for 
robot arm

No

End

 

Fig. 3.60 The control scheme 

At the second step, the controller will move the robot arm accordingly. 

It means that if the final result is no movement (0,0,1), the controller generates the no 

movement to robot arm. If the final result is not no movement (0,0,1), the final result is 

sent to the next judgment layer. The second judgment layer controls the robot arm to 

do elbow joint of flexion if the final result is elbow joint of flexion (0,1,0) and so on, 

the robot arm of elbow joint of extension is activated by the final result which is elbow 
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joint of extension (1,0,0) in third judgment layer, the final result which is forearm 

pronation (1,1,0) controls the robot arm to activate forearm pronation in fourth 

judgment layer, the robot arm of forearm supination is generated with final result which 

is forearm supination (1,1,1) in the fifth judgment layer. After that, the other results 

except the 5 final results for each motion are recognized as no movement. For example, 

the (0, 0, 0) is recognized as no movement. Moreover, the robot arm follows the range 

of each motion in Table 3.25: (1) the robot arm of elbow joint of flexion is activated 

from 0° to 150°, (2) the robot arm of elbow joint of extension is activated from 150° to 

0°, (3) the robot arm of forearm pronation is activated from 225° to 0°, (4) the robot 

arm of forearm supination is activated from 180° to 0°. 

In addition, the control panel shown in Fig. 3.61 is generated by Matlab 

with guide graphical user interface. It is a self-contained function in Matlab applications 

with GUI front ends that automate a task or calculation and it typically contains many 

controls, including buttons, toolbars, menus and sliders. This function builds many 

Matlab products with custom user interfaces.  
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Fig. 3.61   The control panel 

The function of the button named ‘Load system’ in Fig. 3.61 is 

initialization of the classification system and control system. It means that the NNT is 

trained and the control system is loaded. Next, the button named ‘The random signal 

for each motion’ in Fig. 3.61 is used to process the random case of sEMG signals with 

the whole system. Initially, the random case of sEMG signals of 3 channels are passed 

through the band-pass filter and processed by the denoised system. Then, all five 

features are extracted. After that, the five features are used to train and test BP network 

and the final result is calculated by k-means clustering algorithm. Hence, the final result 

is shown in the monitor 2. The user intent motion is shown in the monitor 3 at the same 

time. If the results between final result and user intent motion are equal, the monitor 1 

displays ‘Correct recognition’ shown in Fig. 3.61. The monitor 1 displays ‘Wrong 

recognition’ when the results are not equal. In addition, an example of the control panel 

is shown in Fig. 3.62. 
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Fig. 3.62   An example of the control panel 

In the Fig. 3.62, the user intent motion is the forearm pronation. The test 

result outputs the forearm pronation by the system. Hence, the middle top area of the 

control panel shows the ‘Correct recognition’. 
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CHAPTER 4 

Result 

4.1  The result for the electrical noise reduction in the signal measurement and 

the pre-processing system 

As the methodology describes, the electrical noise is reduced by the 

band-pass filter in signal measurement system and the denoised system in the pre-

processing system. The benefits of the band-pass filter shown in Table 4.1 are 

calculated by Eq. (4.1) based on 8 subjects in channel 1. 

N𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 =
𝑛𝑟𝑎𝑤̅̅ ̅̅ ̅̅ − 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑟𝑎𝑤̅̅ ̅̅ ̅̅
× 100%,                                   (4.1) 

where the 𝑛𝑟𝑎𝑤̅̅ ̅̅ ̅̅  is the average electrical noise in the raw sEMG signal of channel 1 for 

each motion, 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average electrical noise in the filtered sEMG signal of 

channel 1 for each motion. 

Moreover, the benefits of the denoised system shown in Table 4.1 are 

calculated by Eq. (4.2) based on 8 subjects in channel 1. 

N𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =
𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑛𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
× 100%,                          (4.2) 

where the 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average electrical noise in the filtered sEMG signal of 

channel 1 for each motion, 𝑛𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average electrical noise in the denoised 

sEMG signal of channel 1 for each motion. 
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Table 4.1: The benefits of the band-pass filter and the denoised system 

based on 8 subjects in channel 1 

Motion 
The electrical noise 

at 50 Hz in raw 

sEMG signal (dB) 

The electrical noise 

at 50 Hz in filtered 

sEMG signal (dB) 

The electrical noise 

at 50 Hz in denoised 

sEMG signal (dB) 

No 

movement 
29.75 14.28 12.91 

Elbow joint 

of flexion 
31.91 15.63 13.57 

Elbow joint 

of extension 
29.88 14.63 13.22 

Forearm 

pronation 
29.85 14.61 13.15 

Forearm 

supination 
31.73 15.34 13.45 

In the Table 4.1, the benefits of band-pass filter and denoised system are 

calculated based on 8 subjects in channel 1. The electrical noise of no movement in the 

raw sEMG signal of channel 1 is reduced 52% by the band-pass filter. The electrical 

noise of elbow joint of flexion is reduced 51.02% by the band-pass filter. The electrical 

noise of elbow joint of extension is reduced 51.04% by the band-pass filter. The 

electrical noise of forearm pronation is reduced 51.06% by the band-pass filter. The 

electrical noise of forearm supination is reduced 51.65% by the band-pass filter. 

Moreover, the electrical noise of no movement in the filtered sEMG 

signal of channel 1 is reduced 9.59% by the denoised system. The electrical noise of 

elbow joint of flexion is reduced 13.18% by the denoised system. The electrical noise 

of elbow joint of extension is reduced 9.64% by the denoised system. The electrical 
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noise of forearm pronation is reduced 9.99% by the denoised system. The electrical 

noise of forearm supination is reduced 12.32% by the denoised system. 

In conclusion, the electrical noise of no movement in the raw sEMG 

signal of channel 1 is reduced 56.61% by the band-pass filter and the denoised system. 

The electrical noise of elbow joint of flexion is reduced 57.47%. The electrical noise of 

elbow joint of extension is reduced 55.76%. The electrical noise of forearm pronation 

is removed 55.95%. The electrical noise of forearm supination is removed 57.61%. 

Therefore, the band-pass filter and the denoised system cause 56.68% reduction of 

electrical noise in channel 1. It also achieves the electrical noise reduction in other 2 

channels. 
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4.2  The result for the classifier of 2 channels 

According to the methodology, this thesis has four systems: (1) the 

signal measurement system, (2) the pre-processing system, (3) the classification 

system, (4) the control system. Moreover, the structure of the classifier of 2 channels is 

shown in Fig. 4.1. The difference between the classifier of 2 channels and 3 channels 

is only the input layer nodes shown in Fig. 4.2. The classifier of 2 channels removes 

the channel of triceps of long head.  

 

Fig. 4.1   The structure of the classifier of 2 channels 

 

Fig. 4.2   The structure of input layer for the classifier of 2 channels 

After the classifier of 2 channels is tested, the result for sampling 

window size comparison is shown in Fig. 4.3. The sampling window size of 1024 
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samples, 512 samples, 256 samples and 128 samples are compared. The numbers of 

window for training data and test datasets measured in the experiment are based on each 

sampling window size shown in Table 4.2. Moreover, the test datasets of each motion 

are different, because the classifier is user-dependent. It means that the test results have 

reference value to the daily use. 

Table 4.2: The numbers of window for training data and test data based on each 

sampling window size of 8 subjects 

The numbers of window for training data 

The sampling window size 1024 

samples 

512 

samples 

256 

samples 

128 

samples 

No movement 3431 6865 13737 27473 

Elbow joint of flexion 379 758 1519 3037 

Elbow joint of extension 372 746 1495 2990 

Forearm pronation 346 695 1390 2779 

Forearm supination 413 826 1654 3308 

The numbers of window for test data 

The sampling window size 1024 

samples 

512 

samples 

256 

samples 

128 

samples 

No movement 1180 2361 4722 9444 

Elbow joint of flexion 132 265 531 1063 

Elbow joint of extension 125 250 500 1001 

Forearm pronation 113 226 453 906 

Forearm supination 142 284 569 1138 

In the Table 4.2, the numbers of window for training data and test data 

based on the window size of 1024 samples, 512 samples, 256 samples and 128 samples 

are shown. In the test data based on window size of 1024 samples, the test data for no 
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movement are 1180 windows based on the window size of 1024 samples. The test data 

for elbow joint of flexion are 132 windows based on the window size of 1024 samples. 

The test data for elbow joint of extension are 125 windows based on the window size 

of 1024 samples. The test data for forearm pronation are 113 windows based on the 

window size of 1024 samples. The test data for forearm supination are 142 windows 

based on the window size of 1024 samples. The details for the window sizes of 512 

samples, 256 samples and 128 samples are shown in Table 4.2. 

Moreover, the sEMG signal is processed based on the sampling window 

basis. The total delay time and the average accuracy of 8 healthy subjects in each 

window size are shown in Fig. 4.3. All of results are calculated by the average of the 

10 identical experiments and the classification is done on each window independently. 
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Fig. 4.3   The result for sampling window size comparison  

based on the classifier of 2 channels 

In the Fig. 4.3, the sampling window size of 1024 samples outputs the 

accuracy of 80.56% for the classifier of 2 channels. The sampling window size of 512 

samples gives the accuracy of 82.37%. The sampling window size of 256 samples 

achieves the best accuracy that is 89.46. The sampling window size of 128 samples 

provides the accuracy of 88.66%. As a result, the sampling window size of 256 samples 

is the best for the accuracy of the motion detection in the classifier of 2 channels. 

Furthermore, the sampling window size of 1024 samples has the total 

delay time of 323.291 milliseconds. The sampling window size of 512 samples gives 

the total delay time of 238.010 milliseconds. The sampling window size of 256 samples 

provides the total delay time of 185.392 milliseconds. The sampling window size of 

128 samples outputs the shortest total delay time of 173.544 milliseconds. In addition, 

the user can accept the total delay time up to 300 milliseconds to 400 milliseconds, so 

that the sampling window size of 256 samples achieves not only the acceptable delay 
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time, but also the best accuracy. The sampling window size of 256 samples in classifier 

of 2 channels is better than other sampling window sizes for disable people to use.  

Total delay 
time for 
system

Total delay 
time for 

system

Total delay 
time for 

system

43

1

Data Collection

Processing

Prosthesis motion No movement

No data

 

Fig. 4.4   The system timeline for classifier of 2 channels 

The system timeline for the classifier of 2 channels is shown in Fig. 4.4. 

The complete system requires raw sEMG signal to enter into the signal measurement 

system first, then the pre-processing system, classification system and control system 

are used to drive the prosthesis. It means that the users have to wait 441.392 

milliseconds to drive the artificial robot arm. The delay time in each component of 

system is shown in Table 4.3 to Table 4.6. All of results are calculated by the average 

of the 10 identical experiments. 
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Table 4.3: The delay time based on window size of 1024 samples 

Component Delay time (ms)   Std. (ms) 

Pre-processing (denoised system) 149.199 3.580 

Pre-processing (features extraction) 119.656 14.437 

Classification 54.437 1.297 

Total 323.291 15.725 

In the Table 4.3, the delay time based on window size of 1024 samples 

in each component of system is shown. The delay time in the denoised system is 

149.199 milliseconds and the standard deviation is 3.580 milliseconds. The delay time 

in the features extraction system is 119.656 milliseconds and the standard deviation is 

14.437 milliseconds. The delay time in the classification system is 54.437 milliseconds 

and the standard deviation is 1.297 milliseconds. Hence, the total delay time in the pre-

processing system and the classification system is 323.291 milliseconds and the 

standard deviation is 15.725 milliseconds. It is not suitable to use, because the users 

have to wait 1347.291 milliseconds to drive the artificial robot arm. 
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Table 4.4: The delay time based on window size of 512 samples 

Component Delay time (ms)   Std. 

Pre-processing (denoised system) 131.304 57.324 

Pre-processing (features extraction) 53.579 2.142 

Classification 53.126 0.794 

Total 238.010 58.052 

In the Table 4.4, the delay time based on window size of 512 samples in 

each component of system is shown. The delay time in the denoised system is 131.304 

milliseconds and the standard deviation is 57.324 milliseconds. The delay time in the 

features extraction system is 53.579 milliseconds and the standard deviation is 2.142 

milliseconds. The delay time in the classification system is 53.126 milliseconds and the 

standard deviation is 0.794 milliseconds. Hence, the total delay time in the pre-

processing system and the classification system is 238.010 milliseconds and the 

standard deviation is 58.052 milliseconds. It is not suitable to use, because the users 

have to wait 750.010 milliseconds to drive the artificial robot arm. 
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Table 4.5: The delay time based on window size of 256 samples 

Component Delay time (ms)   Std. 

Pre-processing (denoised system) 108.695 52.008 

Pre-processing (features extraction) 23.564 1.574 

Classification 53.134 2.585 

Total 185.392 53.284 

In the Table 4.5, the delay time based on window size of 256 samples in 

each component of system is shown. The delay time in the denoised system is 108.695 

milliseconds and the standard deviation is 52.008 milliseconds. The delay time in the 

features extraction system is 23.564 milliseconds and the standard deviation is 1.574 

milliseconds. The delay time in the classification system is 53.134 milliseconds and the 

standard deviation is 2.585 milliseconds. Hence, the total delay time in the pre-

processing system and the classification system is 185.392 milliseconds and the 

standard deviation is 53.284 milliseconds. It is suitable to use, because the users have 

to wait 441.392 milliseconds to drive the artificial robot arm and the sampling window 

size of 256 samples provides the best accuracy in the classifier of 2 channels. 
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Table 4.6: The delay time based on window size of 128 samples 

Component Delay time (ms)   Std. 

Pre-processing (denoised system) 106.782 35.531 

Pre-processing (features extraction) 13.313 0.718 

Classification 53.148 1.799 

Total 173.244 35.063 

In the Table 4.6, the delay time based on window size of 128 samples in 

each component of system is shown. The delay time in the denoised system is 106.782 

milliseconds and the standard deviation is 35.531 milliseconds. The delay time in the 

features extraction system is 13.313 milliseconds and the standard deviation is 0.718 

milliseconds. The delay time in the classification system is 53.148 milliseconds and the 

standard deviation is 1.799 milliseconds. Hence, the total delay time in the pre-

processing system and the classification system is 173.244 milliseconds and the 

standard deviation is 35.063 milliseconds. Therefore, the users have to wait 301.244 

milliseconds to drive the artificial robot arm. It is not suitable to use, because and the 

sampling window size of 128 samples provides the lower accuracy than the sampling 

window size of 256 samples in the classifier of 2 channels. 

In conclusion, the sampling window size of 256 samples achieves the 

best accuracy 89.46% and the acceptable delay time 441.392 milliseconds in the 

classifier of 2 channels based on 8 healthy subjects. 

  



116 
 

4.3 The comparison for the classifier of 2 channels 

In order to detect the best accuracy in classifier of 2 channels, the 

channel 1 of biceps of long head and the channel 3 of triceps of long head are compared. 

Because the proposed method utilizes the channel 2 of triceps of lateral head to activate 

the forearm pronation in section 3.1. In this comparison, the classifier of the channel 1 

of biceps of long head and the channel 2 of triceps of lateral head shown in Fig. 4.5 is 

defined as A. The classifier of the channel 2 of triceps of lateral head and the channel 

3 of triceps of long head shown in Fig. 4.6 is defined as B. The comparison of classifier 

A and the classifier B is shown in Fig. 4.7. All of results are calculated by the average 

of the 10 identical experiments. 

 

Fig. 4.5   The structure of the classifier A 
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Fig. 4.6   The structure of the classifier B 

 

Fig. 4.7   The comparison of classifier A and the classifier B 

In the Fig. 4.7, the accuracy of the classifier A is 4.12% higher than the 

classifier B in the no movement. The accuracy of the classifier A is 36.69% higher than 

the classifier B in the elbow joint of flexion. The accuracy of the classifier A is 36.69% 

higher than the classifier B in the elbow joint of flexion. The accuracy of the classifier 

A is 1.12% higher than the classifier B in the elbow joint of extension. The accuracy of 

the classifier A is 2.83% lower than the classifier B in the forearm pronation. The 
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accuracy of the classifier A is 47.44% higher than the classifier B in the forearm 

supination. The total accuracy of the classifier A is 10.14% higher than the classifier B 

in five motions. 

In conclusion, the classifier A is more accurate than the classifier B. 

Hence, the biceps of long head and the triceps of lateral head are used in the classifier, 

which achieves the higher accuracy.  
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4.4 The result for the classifier of 3 channels 

In addition, the classifier of 3 channels shown in methodology is an 

extend model based on the classifier of 2 channels. The datasets are same as the 

classifier of 2 channels in Table 4.2.  

 

4.4.1 The comparison for 1 hidden layer node to 17 hidden layer nodes in the 

classifier of 3 channels 

Moreover, the numbers of hidden layer nodes affect the performance of 

classifier. If the numbers are too small, the correlation of data that the BP network 

needed is not enough to estimate the motions accurately. If the numbers are too large, 

it leads to the classifier in overfitting and the training time is increased. In order to 

achieve the best accuracy, the 1 hidden layer node to 17 hidden layer nodes are 

compared shown in Fig. 4.8. In fact, the 15 hidden layer nodes are used into the 

classifier of 2 channels and 3 channels. All of results are calculated by the average of 

the 10 identical experiments. 
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Fig. 4.8   The comparison for hidden layer nodes 

In the Fig. 4.8, the 15 hidden layer nodes provide the best training MSE 

which is 0.009967. However, the training MSE of the 1 hidden layer node to the 4 

hidden layer nodes outputs the correlation of data for classifier that is not enough, so it 

does not match the performance goal 0.01 and it does not show in the Fig. 4.8.  

In conclusion, the 15 hidden layer nodes provide the best training MSE 

and it is applied into the classifier of 3 channels. 
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4.4.2 The comparison for training output of each motion 

The section 4.4.1 compares the 1 hidden layer node to 17 hidden layers 

nodes in the classifier of 3 channels. The 2 numbers to 4 numbers for training output 

shown in Table 4.8 are compared in this section. In addition, the 0, 1 and -1 are used 

for the training output, experientially. The tan-sigmoid is used into the classifier of 3 

channels and the range of training output is -1 to 1 which is used for 2 numbers of the 

training output, because the classifier recognizes five motions. The range of 0 to 1 is 

used for 3 numbers and 4 numbers of training output, which is enough to detect five 

motions. 

Table 4.7: The 2 numbers to 4 numbers for training output 

Motion 2 numbers for 

training output 

3 numbers for 

training output 

4 numbers for 

training output 

No movement (0,1) (0,0,1) (0,0,0,0) 

Elbow joint of 

flexion 
(1,0) (0,1,0) (1,0,0,0) 

Elbow joint of 

extension 
(1,1) (1,0,0) (0,1,0,0) 

Forearm 

pronation 
(-1,1) (1,1,0) (0,0,1,0) 

Forearm 

supination 
(-1,-1) (1,1,1) (0,0,0,1) 
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The accuracies of the 2 numbers to 4 numbers training output in the 

classifier of 3 channels are compared based on the subject 8 and it is shown in Table 

4.9. All of results are calculated by the average of the 10 identical experiments. 

Table 4.8: The result for the 2 numbers to 4 numbers training output based on subject 8 

Motion 2 numbers for 

training output 

3 numbers for 

training output 

4 numbers for 

training output 

No movement 94.78% 99.91% 91.90% 

Elbow joint of 

flexion 
91.35% 99.18% 95.00% 

Elbow joint of 

extension 
78.33% 98.65% 79.25% 

Forearm 

pronation 
86.82% 97.62% 82.16% 

Forearm 

supination 
93.45% 98.70% 95.80% 

Average 

accuracy 
92.47% 99.54% 91.45% 

In the Table 4.9, the training output of 3 numbers provides the best 

accuracy. The training output of 4 numbers gives the worst accuracy. The elbow joint 

of extension and forearm pronation are not detected well by the training output of 2 

numbers and 4 numbers. 

In conclusion, the best accuracy is achieved by the classifier of 3 

channels. The input data is based on the sampling window size of 256 samples. The 

classifier has 1 input layer, 1 hidden layer and 1 output layer. 15 input layer nodes, 3 

hidden layer nodes and 3 output layer nodes are utilized into the classifier of 3 channels. 
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An example of the classifier of 3 channels for subject 8 is shown in Fig. 4.10 and the 

structure for the classifier of 3 channels is shown in Fig. 4.11. 

 

Fig. 4.9   The classifier of 3 channels for subject 8 

 

Fig. 4.10   The structure of BP network for the classifier of 3 channels 
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4.4.3 The delay time for the classifier of 3 channels 

The total delay time shown in Fig. 4.11 and Table 4.9 only increases 

18.904 milliseconds that is 460.296 milliseconds.  
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Fig. 4.11   The system timeline for classifier of 3 channels based on the sampling 

window size of 256 samples 

 

Table 4.9: The delay time based on classifier of 3 channels 

Component Delay time (ms)   Std. 

Pre-processing (denoised system) 114.481 46.150 

Pre-processing (features extraction) 37.182 2.021 

Classification 52.634 1.378 

Total 204.296 45.573 

In the Table 4.9, the delay time based on window size of 256 samples in 

each component of system is shown. The delay time in the denoised system is 114.481 

milliseconds and the standard deviation is 46.150 milliseconds. The delay time in the 

features extraction system is 37.182 milliseconds and the standard deviation is 2.021 
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milliseconds. The delay time in the classification system is 52.634 milliseconds and the 

standard deviation is 1.378 milliseconds. Hence, the total delay time in the pre-

processing system and the classification system is 204.296 milliseconds and the 

standard deviation is 45.573 milliseconds. It is suitable to use. Because the users have 

to wait 460.296 milliseconds to drive the artificial robot arm. 
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4.5 The comparisons for the classifier of 2 channels and 3 channels 

In the section 4.2, the sampling window size of 256 samples achieves 

the best accuracy for the classifier of 2 channels. Therefore, the comparison between 

classifier of 2 channels and 3 channels is based on the sampling window size of 256 

samples. Furthermore, the accuracy of classifier is tested on a subject-by-subject basis. 

The test result of each subject for the classifier of 3 channels is shown in Fig. 4.12 to 

Fig. 4.19. 

 

Fig. 4.12   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 1 
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channels in the elbow joint of flexion. The accuracy of the classifier of 3 channels is 

73.33% higher than the classifier of 2 channels in the elbow joint of extension. The 

classifier of 2 channels does not detect the elbow joint of extension accurately. The 

accuracy of the classifier of 3 channels is 11.11% higher than the classifier of 2 channels 

in the forearm pronation. The classifier of 2 channels does not detect the forearm 

pronation accurately. The accuracy of the classifier of 3 channels is 0.18% lower than 

the classifier of 2 channels in the forearm supination. The total accuracy of the classifier 

of 3 channels is 3.75% higher than the classifier of 2 channels in 5 motions. Therefore, 

the classifier of 3 channels is more accurate than the classifier of 2 channels in the 5 

motions of subject 1. 
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Fig. 4.13   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 2 

In the Fig. 4.13, the accuracy is tested based on subject 2. The accuracy 

of the classifier of 3 channels is 66.24% higher than the classifier of 2 channels in the 

no movement. The classifier of 2 channels does not detect the no movement accurately. 

The accuracy of the classifier of 3 channels is equal the classifier of 2 channels in the 

elbow joint of flexion. The accuracy of the classifier of 3 channels is 0.95% higher than 

the classifier of 2 channels in the elbow joint of extension. The accuracy of the classifier 

of 3 channels is 6.7% higher than the classifier of 2 channels in the forearm pronation. 

The accuracy of the classifier of 3 channels is 46.85% lower than the classifier of 2 

channels in the forearm supination. The classifier of 2 channels does not detect the 

forearm supination accurately. The total accuracy of the classifier of 3 channels is 

51.86% higher than the classifier of 2 channels in 5 motions. Therefore, the classifier 
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of 3 channels is more accurate than the classifier of 2 channels in the 5 motions of 

subject 2. 

 

Fig. 4.14   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 3 

In the Fig. 4.14, the accuracy is tested based on subject 3. The accuracy 

of the classifier of 3 channels is 3.13% higher than the classifier of 2 channels in the no 

movement. The accuracy of the classifier of 3 channels is 2.94% higher than the 

classifier of 2 channels in the elbow joint of flexion. The accuracy of the classifier of 3 

channels is 23.57% higher than the classifier of 2 channels in the elbow joint of 

extension. The classifier of 2 channels does not detect the elbow joint of extension 

accurately. The accuracy of the classifier of 3 channels is 2.5% lower than the classifier 

of 2 channels in the forearm pronation. The accuracy of the classifier of 3 channels is 
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21.54% higher than the classifier of 2 channels in the forearm supination. The classifier 

of 2 channels does not detect the forearm supination accurately. The total accuracy of 

the classifier of 3 channels is 4.84% higher than the classifier of 2 channels in 5 motions. 

Therefore, the classifier of 3 channels is more accurate than the classifier of 2 channels 

in the 5 motions of subject 3. 

 

Fig. 4.15   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 4 

In the Fig. 4.15, the accuracy is tested based on subject 4. The accuracy 

of the classifier of 3 channels is 0.24% lower than the classifier of 2 channels in the no 

movement. The accuracy of the classifier of 3 channels is 3.59% higher than the 

classifier of 2 channels in the elbow joint of flexion. The accuracy of the classifier of 3 

channels is 7.85% higher than the classifier of 2 channels in the elbow joint of 
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extension. The accuracy of the classifier of 3 channels is 4.56% higher than the 

classifier of 2 channels in the forearm pronation. The accuracy of the classifier of 3 

channels is 0.91% higher than the classifier of 2 channels in the forearm supination. 

The total accuracy of the classifier of 3 channels is 0.67% higher than the classifier of 

2 channels in 5 motions. Therefore, the classifier of 3 channels is more accurate than 

the classifier of 2 channels in the 5 motions of subject 4. 
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Fig. 4.16   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 5 

In the Fig. 4.16, the accuracy is tested based on subject 5. The accuracy 

of the classifier of 3 channels is 0.25% higher than the classifier of 2 channels in the no 

movement. The accuracy of the classifier of 3 channels is equal the classifier of 2 

channels in the elbow joint of flexion. The accuracy of the classifier of 3 channels is 

24.76% higher than the classifier of 2 channels in the elbow joint of extension. The 

classifier of 2 channels does not detect the elbow joint of extension accurately. The 

accuracy of the classifier of 3 channels is 23.29% higher than the classifier of 2 channels 

in the forearm pronation. The classifier of 2 channels does not detect the forearm 

pronation accurately. The accuracy of the classifier of 3 channels is 5.56% higher than 

the classifier of 2 channels in the forearm supination. The total accuracy of the classifier 

of 3 channels is 5.37% higher than the classifier of 2 channels in 5 motions. Therefore, 
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the classifier of 3 channels is more accurate than the classifier of 2 channels in the 5 

motions of subject 5. 

 

Fig. 4.17   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 6 

In the Fig. 4.17, the accuracy is tested based on subject 6. The accuracy 

of the classifier of 3 channels is equal the classifier of 2 channels in the no movement. 

The accuracy of the classifier of 3 channels is 8.12% higher than the classifier of 2 

channels in the elbow joint of flexion. The accuracy of the classifier of 3 channels is 

0.22% higher than the classifier of 2 channels in the elbow joint of extension. The 

accuracy of the classifier of 3 channels is 21.13% higher than the classifier of 2 channels 

in the forearm pronation. The classifier of 2 channels does not detect the forearm 

pronation accurately. The accuracy of the classifier of 3 channels is 5.68% higher than 
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the classifier of 2 channels in the forearm supination. The total accuracy of the classifier 

of 3 channels is 3.03% higher than the classifier of 2 channels in 5 motions. Therefore, 

the classifier of 3 channels is more accurate than the classifier of 2 channels in the 5 

motions of subject 6. 

 

Fig. 4.18   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 7 

In the Fig. 4.18, the accuracy is tested based on subject 7. The accuracy 

of the classifier of 3 channels is equal the classifier of 2 channels in the no movement. 

The accuracy of the classifier of 3 channels is 23.03% higher than the classifier of 2 

channels in the elbow joint of flexion. The classifier of 2 channels does not detect the 

elbow joint of flexion accurately. The accuracy of the classifier of 3 channels is 27.08% 

higher than the classifier of 2 channels in the elbow joint of extension. The classifier of 

100.00%

76.74%
72.31% 70.59%

88.64%
94.78%

100.00%
99.77% 99.39%

96.08%

100.00% 99.73%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

No movement Elbow joint of
flexion

Elbow joint of
extension

Forearm
pronation

Forearm
supination

Total

A
cc

u
ra

cy

The classifier of 2 channels The classifier of 3 channels



135 
 

2 channels does not detect the elbow joint of extension accurately. The accuracy of the 

classifier of 3 channels is 25.49% higher than the classifier of 2 channels in the forearm 

pronation. The classifier of 2 channels does not detect the forearm pronation accurately. 

The accuracy of the classifier of 3 channels is 11.36% higher than the classifier of 2 

channels in the forearm supination. The classifier of 2 channels does not detect the 

forearm supination accurately. The total accuracy of the classifier of 3 channels is 

4.95% higher than the classifier of 2 channels in 5 motions. Therefore, the classifier of 

3 channels is more accurate than the classifier of 2 channels in the 5 motions of subject 

7. 
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Fig. 4.19   The comparison for the classifier of 2 channels and 3 channels  

based the sampling window size of 256 samples from subject 8 

In the Fig. 4.19, the accuracy is tested based on subject 8. The accuracy 

of the classifier of 3 channels is equal the classifier of 2 channels in the no movement. 

The accuracy of the classifier of 3 channels is 1.08% higher than the classifier of 2 

channels in the elbow joint of flexion. The accuracy of the classifier of 3 channels is 

4.95% higher than the classifier of 2 channels in the elbow joint of extension. The 

accuracy of the classifier of 3 channels is 50.78% higher than the classifier of 2 channels 

in the forearm pronation. The classifier of 2 channels does not detect the forearm 

pronation accurately. The accuracy of the classifier of 3 channels is 4.49% higher than 

the classifier of 2 channels in the forearm supination. The total accuracy of the classifier 

of 3 channels is 6.12% higher than the classifier of 2 channels in 5 motions. Therefore, 

100.00% 98.20%
94.06%

48.89%

94.90% 93.59%

100.00% 99.28%
99.01% 99.67%

99.39% 99.71%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

No movement Elbow joint of
flexion

Elbow joint of
extension

Forearm
pronation

Forearm
supination

Total

A
cc

u
ra

cy

The classifier of 2 channels The classifier of 3 channels



137 
 

the classifier of 3 channels is more accurate than the classifier of 2 channels in the 5 

motions of subject 8. 

In conclusion, the sampling window size of 256 samples achieves the 

average accuracy 89.46% in the classifier of 2 channels based on 8 healthy subjects, 

but the classifier of 2 channels does not detect each motion accurately. The no 

movement for subject 2 is not detected accurately, the elbow joint of flexion for subject 

7 is not detected accurately, the elbow joint of extension for subject 1, subject 3, subject 

5 and subject 7 is not detected accurately, the forearm pronation for subject 1, subject 

5, subject 6, subject 7 and subject 8 is not measured accurately, the forearm supination 

for subject 2, subject 3 and subject 7 is not measured accurately. Moreover, the 

classifier of 3 channels achieves the average accuracy of five motions up to 99.54% and 

it detects each motion accurately. Hence, the classifier of 3 channels is used in the 

thesis. 

In the Fig. 4.12 to Fig. 4.19, the accuracy of the classifier of 3 channels 

in each motion is better than 90% for each subject. Compared to classifier of 2 channels, 

the 5 motions are detected accurately by the classifier of 3 channels. The comparison 

for the test result is shown in Fig. 4.20. 
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Fig. 4.20   The comparison of average accuracy for the classifier of 2 channels and 3 

channels based the sampling window size of 256 samples from 8 healthy subjects 

In the Fig. 4.20, the result shows that the classifier of 3 channels based 

on 8 healthy subjects is better than the classifier of 2 channels. Firstly, the average 

accuracy of no movement increases 8.68% in the classifier of 3 channels. Secondly, the 

average accuracy of elbow joint of flexion increases 5.61%. Thirdly, the average 

accuracy of elbow joint of extension increases 20.34%. Fourthly, the average accuracy 

of forearm pronation increases 17.57%. Fifthly, the average accuracy of forearm 

supination increases 12.02%. At the end, the average accuracy of 5 motions increases 

10.08%. But the total delay time only increases 18.904 milliseconds that is 460.296 

milliseconds. Hence, the classifier of 3 channels gives better overall accuracy than the 

classifier of 2 channels. 
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4.6 The comparisons for the experiment of the weight-bearing motions 

In order to improve the system usability, the 3 healthy subjects wear the 

weight to test the effect of the weight for the system. All of the tests are based on the 

training data of the subjects without weight in the classifier of 3 channels. It means that 

the trained system is used to test the experiment without the weight and the experiment 

with the weight of 1.5 kg. The 1.5 kilogram (kg), which is the common maximum of 

the weight for artificial robot arm, is used in this comparison. Moreover, the 

comparisons shown in Table 4.10 to Table 4.12 are based on 3 subjects: subject 1, 

subject 5 and subject 6. In addition, the setups of system are kept in the same conditions. 

All results are calculated by the average of the 10 identical experiments. 
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Table 4.10: The result for the experiment of the weight-bearing motions from subject 1 

Motion The experiment 

without the weight 

The experiment with 

the weight of 1.5 kg 
%Δ accuracy 

No movement 100.00% 99.58% -0.42% 

Elbow joint of 

flexion 
97.78% 100% 2.22% 

Elbow joint of 

extension 
98.33% 91.67% -6.66% 

Forearm 

pronation 
94.44% 88.89% -5.55% 

Forearm 

supination 
99.82% 98.21% -1.61% 

Average 

accuracy 
99.48% 95.67% -3.81% 

In the Table 4.10, the result for subject 1 is shown. The no movement 

with the weight of 1.5 kg is 0.42% lower than the motion without the weight. The elbow 

joint of flexion with the weight of 1.5 kg increases 2.22% based on the elbow joint of 

flexion without the weight. The elbow joint of extension with the weight of 1.5 kg is 

6.66% lower than this motion without the weight. The forearm pronation with the 

weight of 1.5 kg is 5.55% lower than the motion without the weight. The forearm 

supination with the weight of 1.5 kg reduces 1.61% based on the forearm supination 

without the weight. At the end, the average accuracy for 5 motions with the weight of 

1.5 kg is 3.81% lower than the 5 motions without the weight. 
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Table 4.11: The result for the experiment of the weight-bearing motions from subject 5 

Motion The experiment 

without the weight 

The experiment with 

the weight of 1.5 kg 
%Δ accuracy 

No movement 99.89% 99.64% -0.25% 

Elbow joint of 

flexion 
100.00% 99.01% -0.99% 

Elbow joint of 

extension 
100.00% 91.43% -8.57% 

Forearm 

pronation 
97.26% 98.63% 1.37% 

Forearm 

supination 
98.89% 96.67% -2.22% 

Average 

accuracy 
99.61% 97.07% -2.54% 

In the Table 4.11, the result for subject 5 is shown. The no movement 

with the weight of 1.5 kg is 0.25% lower than the motion without the weight. The elbow 

joint of flexion with the weight of 1.5 kg reduces 0.99% based on the elbow joint of 

flexion without the weight. The elbow joint of extension with the weight of 1.5 kg is 

8.57 % lower than this motion without the weight. The forearm pronation with the 

weight of 1.5 kg is 1.37% higher than the motion without the weight. The forearm 

supination with the weight of 1.5 kg reduces 2.22% based on the forearm supination 

without the weight. At the end, the average accuracy for 5 motions with the weight of 

1.5 kg is 2.54% lower than the 5 motions without the weight. 
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Table 4.12: The result for the experiment of the weight-bearing motions from subject 6 

Motion The experiment 

without the weight 

The experiment with 

the weight of 1.5 kg 
%Δ accuracy 

No movement 100% 99.65% -0.35% 

Elbow joint of 

flexion 
98.71% 97.65% -1.03% 

Elbow joint of 

extension 
96.99% 96.77% -0.22% 

Forearm 

pronation 
100.00% 95.77% -4.23% 

Forearm 

supination 
99.80% 96.08% -3.72% 

Average 

accuracy 
99.55% 97.18% -2.37% 

In the Table 4.12, the result for subject 6 is shown. The no movement 

with the weight of 1.5 kg is 0.35%, lower than the motion without the weight. The 

elbow joint of flexion with the weight of 1.5 kg reduces 1.03% based on the elbow joint 

of flexion without the weight. The elbow joint of extension with the weight of 1.5 kg is 

0.22%, lower than this motion without the weight. The forearm pronation with the 

weight of 1.5 kg is 4.23%, lower than the motion without the weight. The forearm 

supination with the weight of 1.5 kg reduces 3.72% based on the forearm supination 

without the weight. At the end, the average accuracy for 5 motions with the weight of 

1.5 kg is 2.37%, lower than the 5 motions without the weight. 
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In conclusion, the average accuracy for 5 motions of subject 1 with the 

weight of 1.5 kg is 3.81% lower than the 5 motions without the weight. The average 

accuracy for 5 motions of subject 5 with the weight of 1.5 kg is 2.54% lower than the 

5 motions of subject 6 without the weight. The average accuracy for 5 motions with the 

weight of 1.5 kg is 2.37% lower than the 5 motions without the weight. Therefore, the 

weight of artificial robot arm does not exert the influence over the classification system. 
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4.7 The demonstration of the artificial robot arm for each motion detection 

According to the section 3.3.7, the 10 windows of sEMG signals shown 

in Table 4.13 from each motion of 8 healthy subjects are used to test and the recognition 

results are demonstrated by the artificial robot arm. In addition, the recognition results 

sent to Arduino device by the Matlab support package for Arduino hardware. This 

support package provides the ability to set the device communication information and 

drive the devices function attached to Arduino hardware. Each motion of artificial robot 

arm is shown in Fig. 4.21 to Fig. 4.24.  

Moreover, the robot arm only demonstrates that the recognition result 

from the classifier of 3 channels is sent to the controller correctly. Therefore, the 

accuracy should be the same as the previous result. 

Table 4.13: The number of windows from each subject based on the sampling window 

size of 256 samples for system test and artificial robot arm demonstration 

Test data Number of windows 

No movement 10 

Elbow joint of flexion 10 

Elbow joint of extension 10 

Forearm pronation 10 

Forearm supination 10 

In the Table 4.13, the 10 windows of sEMG signals of each motion from 

subject 1 based on the sampling window size of 256 samples are used to test and the 
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recognition results are demonstrated by the artificial robot arm. Moreover, the same 

number of windows are used for the other subjects. 

The no movement of artificial robot arm is shown in Fig. 4.21 (c). The 

elbow joint of flexion of artificial robot arm is shown in Fig. 4.22 (c). The elbow joint 

of extension of artificial robot arm is shown in Fig. 4.23 (c). The forearm pronation of 

artificial robot arm is shown in Fig. 4.24 (c). The forearm supination of artificial robot 

arm is shown in Fig. 4.25 (c). 
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Fig. 4.21   The denoised sEMG signals of 3 channels for no movement based on the 

sampling window size of 256 samples (a), the recognition result of no movement  

on the control panel (b) and the no movement of artificial robot arm (c) 

In the Fig. 4.21, an example for the no movement of denoised sEMG 

signals of 3 channels based on the sampling window size of 256 samples is shown in 

the Fig. 4.21 (a). The system processes the sEMG signals based on a window basis. 

After that, the recognition result of no movement on the control panel is shown in the 

Fig. 4.21 (b). At the end, the no movement is demonstrated by artificial robot arm and 

it is shown in the Fig. 4.21 (c). 

(a) 

(b) 

(c) 
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Fig. 4.22   The denoised sEMG signals of 3 channels for elbow joint of flexion based on the 

sampling window size of 256 samples (a), the recognition result of elbow joint of flexion  

on the control panel (b) and the elbow joint of flexion of artificial robot arm (c) 

In the Fig. 4.22, an example for the elbow joint of flexion of denoised 

sEMG signals of 3 channels based on the sampling window size of 256 samples is 

shown in the Fig. 4.22 (a). The system processes the sEMG signals based on a window 

basis. After that, the recognition result of elbow joint of flexion on the control panel is 

shown in the Fig. 4.22 (b). At the end, the elbow joint of flexion is demonstrated by 

artificial robot arm and it is shown in the Fig. 4.22 (c). 

(a) 

(b) 

(c) 
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Fig. 4.23   The denoised sEMG signals of 3 channels for elbow joint of extension based on 

the sampling window size of 256 samples (a), the recognition result of elbow joint of 

extension on the control panel (b) and the elbow joint of extension of  

artificial robot arm (c) 

In the Fig. 4.23, an example for the elbow joint of extension of denoised 

sEMG signals of 3 channels based on the sampling window size of 256 samples is 

shown in the Fig. 4.23 (a). The system processes the sEMG signals based on a window 

basis. After that, the recognition result of elbow joint of extension on the control panel 

is shown in the Fig. 4.23 (b). At the end, the elbow joint of extension is demonstrated 

by artificial robot arm and it is shown in the Fig. 4.23 (c). 

(a) 

(b) 

(c) 
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Fig. 4.24   The denoised sEMG signals of 3 channels for forearm pronation based on the 

sampling window size of 256 samples (a), the recognition result of forearm pronation  

on the control panel (b) and the forearm pronation of artificial robot arm (c) 

In the Fig. 4.24, an example for the forearm pronation of denoised sEMG 

signals of 3 channels based on the sampling window size of 256 samples is shown in 

the Fig. 4.24 (a). The system processes the sEMG signals based on a window basis. 

After that, the recognition result of forearm pronation on the control panel is shown in 

the Fig. 4.24 (b). At the end, the forearm pronation is demonstrated by artificial robot 

arm and it is shown in the Fig. 4.24 (c). 

(a) 

(b) 

(c) 
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Fig. 4.25   The denoised sEMG signals of 3 channels for forearm supination based on the 

sampling window size of 256 samples (a), the recognition result of forearm supination  

on the control panel (b) and the forearm supination of artificial robot arm (c) 

In the Fig. 4.25, an example for the forearm supination of denoised 

sEMG signals of 3 channels based on the sampling window size of 256 samples is 

shown in the Fig. 4.25 (a). The system processes the sEMG signals based on a window 

basis. After that, the recognition result of forearm supination on the control panel is 

shown in the Fig. 4.25 (b). At the end, the forearm supination is demonstrated by 

artificial robot arm and it is shown in the Fig. 4.25 (c). 

(a) 

(b) 

(c) 
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CHAPTER 5 

Conclusion 

5.1  Conclusion 

In this thesis, the proposed method solves forearm without muscle to 

control forearm pronation based on sEMG signal. The proposed method is friendlier, 

cheaper and safer than the mechanical prostheses and the targeted muscle reinnervation 

transform. In addition, the proposed systems which are the band-pass filter in the signal 

measurement system and the denoised system in the pre-processing system reduce the 

electrical noise by 56.68%.  

After that, the class of motions is analyzed utilizing 5 features in the 

classification system based on BP network. Moreover, the best accuracy is produced by 

the sampling window size of 256 samples. The total delay time which is the time of 

system process and robot arm response in sampling window size of 256 samples is 

460.296ms that is acceptable to use. Besides, the processing time processed on 

computer is reduced with the increasing of computer performance. As the result shown, 

the classifier of 3 channels better than the classifier of 2 channels achieves 99.54% 

accuracy through testing 8 healthy subjects. Moreover, the system is tested by 8 healthy 

subjects, including 4 males and 4 females. Hence, the system can be used for different 

gender. The accuracy of classifier is tested on a subject-by-subject basis. The classifier 

of 3 channels is that: (1) the input data is based on the sampling window size of 256 
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samples, (2) the classifier has 1 input layer, 1 hidden layer and 1 output layer, (3) 15 

input layer nodes, 3 hidden layer nodes and 3 output layer nodes are utilized into the 

classifier. At the end, the 1.5 kg weight that the users wear does not exert the influence 

over the system accuracy.  
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5.2  Recommendation to the future study 

In this thesis, all of the subjects are healthy. The high accuracy is 

achieved by the 8 healthy subjects. The disable people whose osteotomy sites for 

supracondylar above-elbow amputation or below-elbow amputation do not attend the 

experiment. In order to improve the system to be a robust, the more datasets of real 

patients are needed to test into this system. 

Moreover, the total delay time is reduced by more powerful processer. 

The processer is computer in this thesis, it can be changed to the mobile processer that 

makes the system wearable.  

In addition, the control system does not consider the torque of artificial 

robot arm. It is changed by the users’ requirement. Moreover, the elbow joint is usually 

used to activate the weight-bearing motions. According to the researches, the elbow 

supports about 300 N (67 lb) to activate the daily motions such as wearing and eating. 

When people stand up with arm from the seat, 1700 N (382 lb) is used. The people use 

1900 N (427 lb) to do the weight-bearing motions such as push-up [56]. So the motor 

needs about 300N of total torque. However, the control system does not discuss so 

much about the mechanical artificial robot arm, it will be considered for the mechanical 

study. 
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