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Abstract 

 This thesis aimed to develop an optosensor based on the fluorescence quenching of 

quantum dots composited with molecularly imprinted polymer and carboxylic 

functionalized multiwall carbon nanotubes (COOH@MWCNT-MIP-QDs) for the 

detection of ciprofloxacin. The quantum dots composited with MIP provided a good 

selectivity and stability. The carboxylic functionalized multiwall carbon nanotubes helped 

to enhance the adsorption ability which can reduce the analysis time for ciprofloxacin 

detection.  The effect of various parameters were optimized i.e. pH of buffer solution, 

incubation time, concentration of COOH-functionalized multiwall carbon nanotubes and 

ratio of template to monomer to cross-linker. Under the optimum conditions, the calibration 

curves were linear over the concentration range of 0.10 to 1.0 µg L−1 and 1.0 to 100.0 µg 

L−1. The limit of detection was 0.066 µg L−1. The developed method was successfully 

applied for the determination of ciprofloxacin in chicken muscle and milk samples. The 

satisfactory recoveries were obtained in the range of 82.6 to 98.4 % and the relative 

standard deviations were less than 8 %. The developed method was compared with HPLC 

method and the results were in good agreement with HPLC. The advantages of this method 

including high sensitivity, good selectivity, simple to use, cost-effective and rapid. 
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molecularly imprinted polymer for ciprofloxacin detection. 

This developed optosensor is high sensitivity, good selectivity, simple to use 

and can be applied for the determination of ciprofloxacin in chicken muscle and milk 

samples. The developed method in this thesis can help to reduce analysis cost, analysis 

time and several government organizations in Thailand can use the outcome of this 

work include the Ministry of Public Health, Ministry of Industry, Ministry of 
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1. Introduction 

1.1 Background and the rationale 

 Ciprofloxacin is a fluoroquinolone antibiotic which is extensively used for the 

treatment of urinary, respiratory and digestive infections in humans and livestock (Gayen 

and Chaplin, 2016). It is also misused in the livestock industry since treating animals with 

these agents can increase productivity. However this can become a serious problem, since 

the antibiotics can be expressed in meat and milk leading to potential toxicity or allergic 

hypersensitivity reactions in humans. There is also a serious issue in that this practice may 

lead to the generation of antibiotic resistant human pathogens. For food safety and to 

protect human health, the European Union (EU) has set the maximum residue limit (MRL) 

for ciprofloxacin at 100 µg kg-1 in milk, chicken and pig muscle. Thus, it is of great 

importance to develop a convenient, rapid and reliable method for the determination of 

ciprofloxacin in food samples. Several methods have been reported for the determination 

of ciprofloxacin such as high-performance liquid chromatography (HPLC) (Chen et al., 

2014; Locatelli et al., 2015; Vella et al., 2015) capillary electrophoresis (Moreno-González 

et al., 2017) and electrochemical techniques (Bagheri et al., 2016; Shan et al., 2016). 

However, these techniques can be complicated, require expensive instrument and highly 

skilled personnel and are time consuming. To overcome these problems, 

spectrofluorimetry has attracted interest as an alternative method due to its simplicity, 

rapidity and low cost. To improve the sensitivity of the method, quantum dots (QDs) 

nanoparticles have been used as a sensitive fluorescence probes for the determination of 

traces of various target analytes such as salicylic acid (Bunkoed and Kanatharana, 2015), 

glucose (Yu et al., 2017), H2O2 (Gong et al., 2017), 6-mercaptopurine (Jin et al., 2017), 

ochratoxin A (Yao et al., 2017), kaempferol (Tan et al., 2014) and copper (II) ion (Geng 

et al., 2017). Compared with organic fluorescent dyes, QDs have many unique optical 

properties, high fluorescence intensity, tunable size-dependent photoluminescence, good 

photostability and narrow symmetric emission (Amin et al., 2017; Zhu et al., 2017).                             

For the determination of trace target analytes in real samples with high matrix interferences 

normally requires highly selective methods. To improve the further selectivity of these 
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methods, molecularly imprinted polymers (MIPs) have received considerable attention                           

in recent years because of their high specificity and easy preparation (Wackerlig and 

Lieberzeit, 2015). MIPs are normally prepared by co-polymerization process of cross-

linkers with functional monomers that form complexes with template molecules (analytes) 

prior to polymerization. After removal of the template molecules from the polymer                               

the specific cavities which are complementary to the template molecule by size, shape and 

functional group can be obtained leading to the ability to rebind template molecule with 

high specificity (Piletsky et al., 2012). MIPs not only provide high selectivity binding 

material but also have high stability meaning they can be used under extreme condition 

such as high pressure, temperature, extreme pH and in organic solvents. Since MIPs are 

cost-effective and robust materials they have been widely used in many fields such as solid 

phase extraction (Theodoridis et al., 2006), solid phase microextraction (Zhao et al., 2015; 

Asiabi et al., 2016; Terzopoulou et al., 2016), chemosensor and biosensor (Ji et al., 2015; 

Kumar Singh and Singh, 2015; Zhou et al., 2017), capillary electrophoresis (Zack et al., 

2010), enantiomeric separations (Yong et al., 2010) and drug delivery systems (DDS) 

(Abdollahi et al., 2018). For sensor applications, the composite fluorescence probes using 

QDs incorporating into MIPs have been developed as highly selective fluorescence probes 

for the determination of some target compounds such as salbutamol (Raksawong et al., 

2017), patulin (Zhang et al., 2017), sulfadiazine (Ding et al., 2017), sulfadimidine (Zhou 

et al., 2017), malachite green (Wu et al., 2017), tetracycline (Zhang and Chen, 2016), 

cocaine (Chantada-Vázquez et al., 2016) and amoxicillin (Chullasat et al., 2018). To 

improve the kinetic adsorption or affinity binding of ciprofloxacin, addition of carboxylic 

functionalized multiwall carbon nanotubes is an interesting alternative approach since they 

contain π structure which can adsorb aromatic compounds via π-π interactions (Xu et al., 

2017). The carboxylic functionalisation of multiwall carbon nanotubes can improve their 

dispersibility in aqueous media and it is easy to achieve further covalent functionalisation 

with other materials (Barabás et al., 2015). 

 In this work, a nanocomposite optosensor containing COOH functionalized 

MWCNT and CdTe quantum dots embedded into a molecularly imprinted polymer was 
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developed for the determination of trace ciprofloxacin. The determination of ciprofloxacin 

is based on the fluorescence quenching when target analyte is bound to the specific 

recognition sites on the developed fluorescence probes. This combined the good 

fluorescence properties of QDs, with the high selectivity of MIPs and high adsorption 

affinity of COOH@MWCNT to produce a rapid, highly sensitive optosensor and for the 

determination of ciprofloxacin with good selectivity. The developed optosensor was 

applied to determine ciprofloxacin in chicken muscle and milk samples and also compared 

with a HPLC method. 

 

1.2 Objective  

 To develop an optosensor using a nanocomposite of the carboxylic functionalized 

multiwall carbon nanotubes and quantum dots embedded into a molecularly imprinted 

polymer for the determination of trace ciprofloxacin in food samples. 

 

1.3 Quantum dots nanoparticles  

 Quantum dots (QDs) are a semiconductor nanocrystal with diameters in the range 

of 1-10 nanometers (10-50 atoms). It can be made from an element consist of group                 

II-VI, III-V, or IV-VI (Murray et al., 1993), such as cadmium sulfide (CdS) (Ngamdee et 

al., 2017), cadmium selenide (CdSe) (Sajwan et al., 2017), cadmium telluride (CdTe) 

(Chullasat et al., 2018), zinc sulfide (ZnS) (Safitri et al., 2017), gallium phosphide (GaP) 

(Yue et al., 2006), lead sulfide (PbS) (Deng et al., 2012). The structure of QDs as a point 

in nanometer-scale of semiconductor particles that it displays behavior within the atom or 

the quantum molecule based on principles of quantum physics. In addition, QDs possessing 

unique optical, chemical and electronic properties due to quantum confinement effects 

(Nsibande and Forbes, 2016). QDs typically have a narrow emission spectra, high 

photochemical stability, and tunable size. QDs can differ in the emission color or the color 

of QDs to be influenced by changing the size. A smaller size leads to lower wavelengths 
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(blueshift) and a larger size show the redshift in the fluorescence emission peak (Figure 

1.1) (Frasco and Chaniotakis, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The size-dependent fluorescence emission spectra of QDs (A) and  

              different relative particle sizes (B) (Girma et al., 2017). 

 

 Structurally, QDs consist of a core, shell and capping molecule (Figure 1.2).                          

The core of QDs is the crystalline element of group II-VI, III-V or IV-VI element.                              

The QDs’ core responsible for the fundamental optical properties include light absorption 

and emission. The core type can define approximately the wavelength of QDs such as 

cadmium selenide (CdSe) had emissive visible under visible excitation (Wang et al., 2017) 

and cadmium telluride (CdTe) had emissive visible under near-infrared excitation (Smyder 

and Krauss, 2011). CdSe and CdTe QDs exhibit the wavelength emission spectra range 

between 450 to 650 and 500 to 700 nm respectively (Mashinchian et al., 2014). However, 

the particle size is a fine adjustment of the light wavelength such as CdS core with diameter 

around 6 nm emits fluorescent wavelength at 525 nm, CdTe core with diameter around                     

2 nm emits fluorescent wavelength at 545 nm (Sai and Kong, 2011).                                           
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 The shell is used to improve the optical properties of the QDs and to protect the 

core from surrounding medium such as ZnS in order to enhance the quantum yield. (Fontes 

et al., 2012).  

 The capping molecules or stabilizer through modification of QDs surface. It can 

provide QDs stability and solubility in buffer solution. To maintain a high resistance to 

photophysical properties in aqueous media (Vasudevan et al., 2015). QDs are typically 

stabilized by thioglycolic acid (TGA), mercaptopropionic acid (MPA), glutathione (GSH) 

and mercaptosuccinic acid (MSA) (Masab et al., 2018). 

 The QDs are fluorescent nanoparticles with the size-controlled and shape-

controlled absorption in the electronic states. QDs have bandgap energy that must be 

promotes an electron from the valence band (VB) to the conduction band (CB) leaving a 

hole in the VB and forming an exciton to produce light with energy equal to the bandgap 

energy. This effect refers to the quantum confinement. The bandgap increases as the size 

of the QDs decreases that the bandgap energy of QDs that vary as a size. Thus, the larger 

size is red-shifted to lower energy. It makes possible to tune the optical spectra by changing 

their size (Figure 1.3) (Freeman and Willner, 2012). 

 

 

 

 

 

 

 

 

 

Figure 1.2 The structure of a functionalized core-shell QDs. 
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Figure 1.3 The energy band structure of the QDs (A) and the colloidal solutions of QDs 

with different sizes under UV light (B) (Rabouw and de Mello Donega, 

2016). 

 

 This work focused on the CdTe QDs stabilized by thioglycolic acid (TGA) as a 

capping agent due to it is easily synthesized under mild conditions and water-soluble.                        

The structure of TGA-capped CdTe QDs as showed in Figure 1.4. 

 

 

 

 

 

 

Figure 1.4 The thioglycolic acid-capped CdTe QDs. 
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1.4 Molecularly imprinted polymers  

 The molecularly imprinted polymers (MIPs) is a technique to create the 

molecular recognition site for specific with the template, which is called the lock and key 

model. This technique involves of a functional monomer, cross−linker and molecular 

template by the co-polymerization process. The functional monomers are responsible for 

the binding interactions in the imprinted binding sites. The function of the cross-linker in 

the polymer network is to arrange the monomer into specific sites and directions around 

the template molecules and thereby maintain the binding site structure (specific cavities). 

After template removal, the polymer contain specific cavities like template molecules in 

size, shape and functional group (Alexander et al., 2006). The molecular imprinting 

process as described in Figure 1.5. 

 Molecularly imprinted polymers is becoming increasingly popular due to its 

stability, ease of preparation and low cost. It can be used to prepare highly selective 

fluorescence probe for the detection of target analytes. MIPs were composited with QDs 

and used as sensitive and selective optosensor. In this work, MIP composited with quantum 

dots nanoparticles and COOH@MWCNT are synthesized using 3-aminopropyl 

triethoxysilane (APTES) as functional monomer, tetraethoxysilane (TEOS) as cross-linker 

and ciprofloxacin (CIP) as template molecule. The functional monomer provides the amino 

groups on the surface to attract template molecules by hydrogen bonding. 

 

 

 

 

 

 

Figure 1.5 The molecular imprinting process (Sarafraz-Yazdi and Razavi, 2015). 



9 

 

1.5 Carboxylic functionalized multiwall carbon nanotubes (COOH@MWCNT) 

 Carboxylic functionalized multiwall carbon nanotubes (COOH@MWCNT) have 

a large surface areas, good chemical stability, good electrical conductivities and contain                     

π structure (Arıer and Uysal, 2017). The combination of MIP-QDs with COOH@MWCNT 

as the composite materials to improve the kinetic adsorption or affinity binding of 

ciprofloxacin which can adsorb aromatic compounds via π-π interactions. The carboxylic 

acid functionalisation of multiwall carbon nanotubes can improve their dispersibility in 

aqueous media (Xu et al., 2017) (Figure 1.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 The carboxylic functionalized multiwall carbon nanotubes (COOH@MWCNT). 
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2. Results and discussion 

2.1 Synthesis of thioglycolic acid-capped CdTe quantum dots 

 Thioglycolic acid-capped CdTe QDs were synthesized according to previous work 

with some modification as shown in Figure 2.1 (Bunkoed and Kanatharana, 2015). Briefly, 

a NaHTe solution was prepared by dissolved 0.050 g of Te powder and 0.045 g of NaBH4 

in 2.0 mL of deionised water. Separately, 0.046 g of CdCl2·H2O and 30 L of thioglycolic 

acid were mixed with 100 mL of deionised water in a beaker to form the cadmium 

precursor. The mixture was adjusted to pH 11.50 with 1.0 M NaOH and then transferred 

to a three-necked flask followed by bubbling with nitrogen gas for 10 min. The solution 

was refluxed under nitrogen atmosphere until the temperature was 90 °C and then 0.50 mL 

of the NaHTe aqueous solution was injected into the solution under vigorous stirring and 

continually refluxed for 10 min and then cooled to room temperature (272 C).                             

The thioglycolic acid-capped CdTe QDs were precipitated with ethanol and centrifuged                

at 5000 rpm for 10 min to eliminate the excess reagents. The TGA-capped CdTe QDs were 

dried in an oven at 50 C for 4 h and stored in a desiccator at room temperature (25 C) 

until used. 

 

Figure 2.1 The synthesis of thioglycolic acid-capped CdTe QDs. 
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2.2 Characterization of TGA capped-CdTe QDs 

 Fluorescence spectrum and UV-Vis spectrum of TGA-capped CdTe QDs are 

shown in Figure 2.2. TGA-capped CdTe QDs showed a narrow and symmetric 

fluorescence spectrum with the maximum emission wavelength being 540 nm. The 

calculated particle size of CdTe QDs was 2.10 nm using the method described in previous 

work ) (Yu et al., 2003). The particle sizes of CdTe QDs were determined from the 

absorption maximum of the UV-vis spectra according to equation (1) (Yu et al., 2003): 

                   D = (9.8127 × 10-7)3 − (1.7147 × 10-3) 2 + (1.0094) − 194.84             (1) 

 Where D (nm) is the size of the CdTe QDs, and  (nm) is the wavelength of the 

first excitonic absorption peak. The concentrations of the CdTe QDs were calculated by 

Lambert-Beer’s law; A = CL. Where, A is the absorbance of the first excitonic absorption 

peak, C is the concentration (mol/L) of the CdTe QDs, L is the path length (cm) of the 

radiation beam used for recording the absorption spectrum, and  is the extinction 

coefficient per mole of CdTe QDs which could be obtained with formula  = 10043 (D)2.12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 UV-Vis spectrum (dot line) and fluorescence emission spectrum (solid          

    line) of TGA-capped CdTe QDs. 
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2.3 Synthesis of nanocomposite the carboxylic functionalized multiwall carbon 

nanotubes based on quantum dots coated molecularly imprinted polymer 

(COOH@MWCNT-MIP-QDs) 

The carboxylic functionalized multiwall carbon nanotubes and QDs were 

incorporated into MIP (COOH@MWCNT-MIP-QDs) via a sol-gel copolymerization 

process. Briefly, 8.3 mg of ciprofloxacin (template) was dissolved in 10 mL of deionised 

water and then 0.005 g of COOH@MWCNT was added to the solution. Then 47.8 μL of 

APTES (functional monomer) and 5.0 mL of CdTe QDs were sequentially added in the 

mixture solution and stirred for 1 h. Then, 112 μL of TEOS (cross-linker) and 150 µL of 

ammonia solution (25 wt %) were added to the solution which was then continuously 

stirred for 5 h. After polymerization, the nanocomposite COOH@MWCNT-MIP-QDs 

were obtained and the template removed by washing with three portions of 10 mL of 

ethanol, the washing process of template was investigated by measuring the washings 

solution absorption at 260 nm. The nanocomposite COOH@MWCNT-MIP-OQs were 

collected by centrifugation at 5000 rpm for 15 min and dried at 50ºC for 4 h.                                        

The nanocomposite non-imprinted polymer (COOH@MWCNT-NIP-QDs) was also 

synthesized under the identical conditions but without the addition of ciprofloxacin 

(template). 

The nanocomposite COOH@MWCNT-MIP-QDs optosensor were synthesized via 

copolymerization process in the presence of COOH@MWCNT, TGA-capped CdTe QDs, 

APTES as functional monomer, TEOS as cross-linker, ciprofloxacin as template and NH3 

as a catalyst. As shown in Figure 2.3, a carboxylic group of TGA-capped CdTe QDs and 

COOH@MWCNT can interact with amino groups (-NH2) of APTES to facilitate formation 

of sol-gel layer via hydrogen bonding. While, non-covalent interaction between APTES 

and ciprofloxacin (template) occurred during the molecularly imprinting process, for 

example the amino group can interact with the carboxylic group of ciprofloxacin through 

hydrogen bonding. COOH@MWCNT can interact with ciprofloxacin via - interaction 

and also hydrogen bonding. 
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Figure 2.3 The synthesis of nanocomposite COOH@MWCNT-MIP-QDs   

              optosensors for the specific recognition of ciprofloxacin.  

 

  The synthesized nanocomposite COOH@MWCNT-MIP-QDs optosensor showed 

a high symmetric emission at 544 nm. Figure 2.4 shows the fluorescence spectra of 

COOH@MWCNT-NIP-QDs (spectrum a), COOH@MWCNT-MIP-QDs after washing 

during which template was removed (spectrum b) and COOH@MWCNT-MIP-QDs before 

removal of template (spectrum c). Prior to the removal of the template, the fluorescence 

intensity of COOH@MWCNT-MIP-QDs was relatively low about 50 % of that the NIP, 

while after removal of template molecule its fluorescence intensity was restored to almost 

the same level as found for NIP-QDs (97.0 %). This result confirms that the template was 

completely removed from the MIP layer. This facile synthesis method can be performed 

under mind condition at room temperature (27 C). The photographs of nanocomposite 

COOH@MWCNT-MIP-QDs in the presence (Figure 2.4d) and absence (Figure 2.4e) of 

ciprofloxacin under UV light.   

 

 

 



14 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.4 Fluorescence spectra of nanocomposite COOH@MWCNT-NIP-QDs (a),      

       COOH@MWCNT-MIP-QDs after removal of template molecule (b),              

       COOH@MWCNT-MIP-QDs before removal of template molecule (c),    

       photographs of COOH@MWCNT-MIP-QDs in Tris-HCl buffer solution (d)   

       and COOH@MWCNT-MIP-QDs + 1.0 mg L−1 of ciprofloxacin (e) under UV   

       light. 

 

2.4 Characterization of nanocomposite COOH@MWCNT-MIP-QDs optosensor  

 TEM images of TGA-capped CdTe QDs and nanocomposite MIP-QDs are 

shown in Figure 2.5A and 2.5B. The QDs nanoparticles were distributed within the MIP 

layer of the nanocomposite fluorescence probe. The results of TEM image confirm that 

QDs were embedded into the molecularly imprinted polymer matrix. The morphological 

structures of nanocomposite COOH@MWCNT-MIP-QDs were also investigated by the 

SEM technique. As can be seen from Figure 2.5C, they exhibit a spherical morphology and 
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a rough surface which indicated that specific recognition sites remained in the 

nanocomposite fluorescence probe.   

 

Figure 2.5 TEM images of (A) TGA-capped CdTe QDs, (B) nanocomposite MIP-QDs 

    and (C) SEM image of the nanocomposite COOH@MWCNT-MIP-QDs       

    fluorescence probe. 

 

 FT-IR spectroscopy was performed to investigate the functional group of 

nanocomposite optosensor. The characteristic peak of TGA-capped CdTe QDs as shown 

in Fig. Figure 2.6a, the absorption peak at 1375 and 1582 cm-1 due to the C=O symmetric 

and asymmetric stretching of the carboxylate. The bands at 1224 and 3448 were the 

stretching vibration of C-O and O-H, respectively. FT-IR spectrum of ciprofloxacin (Figure 

2.6b) showed characteristic peaks at 1050 cm-1 corresponding to C-F stretching. The peaks 

at 1410 cm-1 and 1620 cm-1 corresponded to C=O stretching and N-H bending of the 

quinolone ring, respectively. The absorption peak at 2900 cm-1 was due to C-H stretching 

of cyclopropyl group. Figure 2.6c shows the FT-IR spectrum of hybrid nanocomposite 

COOH@MWCNT-MIP-QDs optosensor before removal of template (ciprofloxacin).                    

The absorption peak at 1060 cm-1 was due to Si-O-Si asymmetric stretching. The peaks 

around at about 460 and 760 cm-1 are assigned to the Si-O vibration band. The broad 

absorption band about at 3440 cm-1 corresponding to N-H stretching vibration of 

aminopropyl group. After removal of template the absorption peaks which related to 
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ciprofloxacin were absent (Figure 2.6d). The band around 1628 cm-1 was due to the C=C 

stretching of the carbon nanotubes backbone (Figure 2.6e). These results indicated that a 

hybrid nanocomposite COOH@MWCNT-MIP-QDs was successfully synthesized for 

selective recognition for ciprofloxacin. 

 

Figure 2.6 FT-IR spectra of (a) TGA-capped CdTe QDs, (b) ciprofloxacin, (c)      

    COOH@MWCNT-MIP-QDs with template molecule (ciprofloxacin), (d)   

    COOH@MWCNT-MIP-QDs without template molecule (ciprofloxacin) and    

    (e) COOH@MWCNT. 



17 

 

 The fluorescence quantum yield of CdTe QDs, MIP-QDs and COOH@MWCNT-

MIP-QDs were 0.89 and 0.62 and 0.48 respectively, using Rhodamine 6G as a reference.                         

The fluorescence quantum yields (Φ) were determined according to equation (2) (Masilela 

and Nyokong, 2011):  

        ΦF = ΦF(Std) • 
𝐹⋅𝐴𝑆𝑡𝑑⋅𝑛

2

𝐹𝑆𝑡𝑑⋅𝐴⋅𝑛𝑆𝑡𝑑
2           (2) 

Where F and FStd are the fluorescence areas under the fluorescence curves of the 

ciprofloxacin in the sample and the reference, respectively. A and AStd are the absorbance 

of the sample and the reference, and n and nstd are the refraction index of solvents used for 

the sample and reference, respectively. The BET surface areas of COOH@MWCNT-NIP-

QDs and COOH@MWCNT-MIP-QDs were 46.10 and 50.25 m2g-1, respectively. The 

nanocomposite COOH@MWCNT-MIP-QDs optosensor showed higher surface area than 

NIP-QDs, possibly because of the imprinted cavity of the template molecule.  

 

2.5 Optimization of the analysis system 

 Several parameters influencing the fluorescence quenching of nanocomposite 

COOH@MWCNT-MIP-QDs optosensors for the determination of ciprofloxacin                                

i.e. incubation time, pH, amount of COOH@MWCNT, ratio of template to cross-linker 

and ratio of template to monomer were optimized. The highest quenching efficiency 

(sensitivity) and the shortest analysis time were considered to be the optimum values. 

 

2.5.1 Effect of the incubation time 

 To investigate the binding performances of nanocomposite COOH@MWCNT-

MIP-QDs and MIP-QDs with ciprofloxacin, the adsorption time was studied. As can be 

seen from Figure 2.7, the fluorescence intensity of COOH@MWCNT-MIP-QDs and MIP-

QDs showed significant increases up to 15 min and 22 min, respectively. Above these 

times, the fluorescence intensity remained almost constant with the rise of adsorption time. 
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The equilibrium binding of COOH@MWCNT-MIP-QDs was faster than MIP-QDs by 

about 7 min which indicated that COOH@MWCNT can help to improve mass-transfer 

speed between the ciprofloxacin and recognition sites. Thus, nanocomposite 

COOH@MWCNT-MIP-QDs was used as a rapid fluorescence probe for ciprofloxacin 

detection and an equilibrium time of 15 min was sufficient to obtain complete ciprofloxacin 

adsorption.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 The effect of incubation time on the fluorescence quenching of   

        COOH@MWCNT-MIP-QDs and MIP-QDs for the determination of      

        ciprofloxacin (n=3). 
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2.5.2 Effect of pH 

 It was reported that the pH value had a significant effect on the fluorescence 

quenching of QDs due to their sensitivity to chemicals in the surrounding environment 

such as acids, bases, metal ions and organic molecules (Ren and Chen, 2015; Geng et al., 

2017). In this work, the effect of pH in the range of 6.0 to 9.0 was investigated for the 

determination of ciprofloxacin. The results as shown in Figure 2.8, the highest fluorescence 

quenching was obtained at a pH of 7.0. Since, the template molecule and MIP are bound 

through hydrogen bonding, the binding efficiency was decreased by hydrogen ion under 

acidic medium (pH<7) which causes a decrease in the interaction between template 

molecule and binding site. The fluorescence quenching was also decreased at pH higher 

than 7.0 due to the degradation or ionization of the template molecule under the alkaline 

condition. Moreover, the silica layer was unstable and will ionise under highly alkaline 

solution which can cause damage to the binding site of nanocomposite COOH@MWCNT-

MIP-QDs probe thereby affecting the interaction between template and optosensing probe 

(Figure 2.9) (Li et al., 2017). Therefore, a Tris-HCl buffer solution at pH 7.0 was chosen 

as optimum value for binding media and used for the further experiments. 
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Figure 2.8 The effect of pH value on the fluorescence quenching of the nanocomposite     

        COOH@MWCNT-MIP-QDs fluorescence probe for ciprofloxacin detection. 

 

 

 

Figure 2.9 Speciation of ciprofloxacin under different pH conditions. 
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2.5.3 Amount of carboxylic functionalized multiwall carbon nanotubes 

(COOH@MWCNT) 

 The effect of amount of COOH@MWCNT in nanocomposite fluorescence probe 

was also optimized to obtain the high sensitivity for the determination of ciprofloxacin. 

The results as shown in Figure 2.10, the highest sensitivity was obtained an amount of 

COOH@MWCNT of 0.0005 % w/v. At lower amount of COOH@MWCNT, the composites 

showed lower sensitivity, possibly the adsorption was not complete with an incubation time 

of 15 min. However, the sensitivity was also decreased at higher amount of 

COOH@MWCNT, this could be possibly due the COOH@MWCNT disrupting the 

polymer structure, leading to the decrease of the number of binding sites in the MIP layer. 

Therefore, 0.0005 % w/v of COOH@MWCNT was selected for further experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 The effect of amount of COOH@MWCNT on the fluorescence quenching of 

        the nanocomposite COOH@MWCNT-MIP-QDs fluorescence probe for     

        ciprofloxacin detection. 
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2.5.4 Ratio of template to cross-linker 

 TEOS is normally used as cross-linker to prepare MIP and it effect to the 

recognition ability of the MIP (Wu et al., 2017; Zhou et al., 2017). Thus, the effect of molar 

ratio of template to cross-linker was investigated to obtain the highest sensitivity for the 

determination of ciprofloxacin. As shown in Figure 2.11, the molar ratio of template to 

cross-linker of 1:20 provided the highest sensitivity. The sensitivity was decreased at lower 

amount of cross-linker (1:10) due to lower levels of crosslinking movement leading to the 

MIP-QDs structure being physically weaker and allowing an increase of molecular 

movement causing the formation of recognition sites to be less effective. The sensitivity 

was also decreased at higher amount of cross-linker (1:30 and 1:40) because of large 

amount of cross-linker results in a highly rigid polymer, providing highly rigid recognition 

sites. Also, excessive cross-linking can block the movement of functional monomer which 

reduces the interaction between target analyte and functional monomer (Xu et al., 2013). 

Therefore, the molar ratio of template to cross-linker of 1:20 was chosen for further 

experiment.  
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Figure 2.11 The effect of molar ratio of template to cross-linker on the fluorescence    

          quenching of the nanocomposite COOH@MWCNT-MIP-QDs fluorescence   

          probe for ciprofloxacin detection. 

 

2.5.5 Ratio of template to monomer 

 The nanocomposite COOH@MWCNT-MIP-QDs fluorescence probe was 

synthesized using APTES as functional monomer and it was reported that the molar ratio 

of the template to monomer is an important factors on the specific recognition sites of MIP 

layer (Feng et al., 2015). To obtain the highest sensitivity for the determination of 

ciprofloxacin the molar ratio of template to monomer was investigated. As shown in Figure 

2.12, the highest sensitivity was obtained when the molar ratio of template to functional 

monomer (APTES) was 1:8. The lower amount of functional monomer (1:4 and 1:6) would 

produce a low number of recognition site (–NH2 group) to interact with target analyte via 

hydrogen bonding. Also, the sensitivity was decreased at a higher amount of function 

monomer (1:10) due to the excess functional monomer forming non-imprinted layers 
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within the polymer which might inhibit the binding between target analyte and recognition 

sites. Thus, the molar ratio of template to monomer of 1:8 was selected for subsequent 

experiment.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 The effect of molar ratio of template to monomer on the fluorescence   

         quenching of the nanocomposite COOH@MWCNT-MIP-QDs fluorescence   

         probe for ciprofloxacin detection. 

 

2.6 Comparison of different fluorescence probes 

 The sensitivity of different fluorescence probes were investigated for the 

determination of ciprofloxacin including NIP-QDs, COOH@MWCNT-NIP-QDs, MIP-

QDs and COOH@MWCNT-MIP-QDs. As shown in Table 2.1 and Figure 2.13. NIP-QDs 

showed the lowest sensitivity for ciprofloxacin detection due to they have no specific 

imprinted cavities for ciprofloxacin, the functional monomers were randomly orientated in 

the particles leading to low adsorption ability. The sensitivity was increased when 

incorporated COOH@MWCNT in NIP-QDs, this is because ciprofloxacin could adsorb on 
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the surface of COOH@MWCNT via - interaction leading to an increase in the quenching 

efficiency for ciprofloxacin detection. The nanocomposite MIP-QDs showed higher 

sensitivity than both NIP-QDs and COOH@MWCNT-NIP-QDs due to many specific 

binding sites being present in the fluorescence probes which can selectively interact with 

template molecule. The highest sensitivity was obtained for a nanocomposite 

COOH@MWCNT-MIP-QDs due to the integration of high affinity of COOH@MWCNT 

with ciprofloxacin and specific recognition cavities of MIP. These results confirm that the 

combination of COOH@MWCNT, MIP and QDs could improve the sensitivity, specificity 

and adsorption speed.  

 

Table 2.1 Comparison of different fluorescence probes for the determination of 

ciprofloxacin 

Fluorescence probes Sensitivity (L µg-1) 

NIP-QDs 0.001450 ± 0.000092 

COOH@MWCNT-NIP-QDs 0.003130 ± 0.000080 

MIP-QDs 0.00430 ± 0.00016 

COOH@MWCNT-MIP-QDs 0.00482 ± 0.00029 

 

 

mailto:COOH@MWCNTs-NIP-QDs
mailto:COOH@MWCNTs-MIP-QDs
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Figure 2.13 The sensitivity of different fluorescence probe for ciprofloxacin detection with 

      incubation time was 15 min. 

 

2.7 Fluorescence quenching mechanism 

 The fluorescence quenching mechanism of nanocomposite COOH@MWCNT-

MIP-QDs by ciprofloxacin was described. In the presence of ciprofloxacin, hydrogen 

bonding could occur between ciprofloxacin and the amino groups of functional monomer 

on the surface of QDs. This led to the possibility that the electrons of the conduction bands 

of the QDs could transfer to the lowest unoccupied molecular orbital of ciprofloxacin, 

which would lead to the fluorescence quenching (The Huy et al., 2014). Thus, the 

fluorescence quenching of nanocomposite COOH@MWCNT-MIP-QDs is due to an 

electron transfer mechanism from QDs to ciprofloxacin. In addition, energy transfer was 

not considered to be a possible mechanism due to there being no spectral overlap between 
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the absorption spectrum of ciprofloxacin and the emission spectrum of COOH@MWCNT-

MIP-QDs (Zhang and Chen, 2016; Lu et al., 2017) (Figure 2.14).  

The fluorescence quenching of the system could be described by the Stern-Volmer 

equation (3): 

                                                   F0/F= 1+ Ksv[C]                                                            (3) 

 Where F0 and F are the fluorescence intensity of nanocomposite COOH@MWCNT-

MIP-QDs fluorescence probe in the absence and presence of ciprofloxacin (quencher), 

respectively. Ksv is the quenching constant of the quencher and [C] is the concentration of 

quencher (ciprofloxacin). The ratio of KSV,MIP to KSV,NIP was defined as the imprinting 

factor (IF).  

Figure 2.14 Absorption spectrum of ciprofloxacin (a) and emission spectrum of the  

                     nanocomposite COOH@MWCNT-MIP-QDs (b). 
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2.8 Selectivity of nanocomposite COOH@MWCNT-MIP-QDs fluorescence probe for 

the determination of ciprofloxacin 

 

 The fluorescence quenchingof nanocomposite COOH@MWCNT-MIP-QDs 

toward other ciprofloxacin structural analogs (danofloxacin, difloxacin, enrofloxacin, 

norfloxacin, sarafloxacin) were investigated to study its selectivity due to hydrogen bonds 

can form between the structural analogs and the functional monomer in imprinting site.                     

As shown in Figure 2.15 and 2.16, the nanocomposite COOH@MWCNT-MIP-QDs had 

higher fluorescence quenching than other compounds. This is because during the synthesis 

process of nanocomposite COOH@MWCNT-MIP-QDs, many specific imprinting sites 

which act as a memory of the size, shape and functional groups of ciprofloxacin were 

generated. However, the nanocomposite COOH@MWCNT-NIP-QDs showed low 

fluorescence quenching to ciprofloxacin and other compounds due to no recognition sites 

existing in the NIP layer and the molecules were adsorbped on the surface of NIP only 

through non-specific binding. The competitive binding experiment was also performed by 

fixing the concentration of ciprofloxacin and increasing the concentration of danofloxacin. 

As shown in Figure 2.17, the sensitivity were not significantly changed by the increase of 

the ratio of CDanofloxacin/CCiprofloxacinwhich indicating that the recognition sites created by 

ciprofloxacin in the polymer are specific to the template molecule.  
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Figure 2.15 The selectivity of the nanocomposite COOH@MWCNT-MIP-QDs,     

             COOH@MWCNT-NIP-QDs and NIP-QDs for ciprofloxacin, danofloxacin,   

             difloxacin, enrofloxacin, norfloxacin and sarafloxacin. 

Figure 2.16 The structures of ciprofloxacin, danofloxacin, enrofloxacin, difloxacin,    

       norfloxacin and sarafloxacin. 
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Figure 2.17 The effect of competitive analog danofloxacin on the binding of ciprofloxacin 

      to the nanocomposite COOH@MWCNT-MIP-QDs. 

 

2.9 Analytical performance of nanocomposite COOH@MWCNT-MIP-QDs for the 

determination of ciprofloxacin 

 Under the optimal conditions, the analytical performances of the developed 

nanocomposite COOH@MWCNT-MIP-QDs optosensor were investigated including 

linearity, limit of detection and limit of quantification. As shown in Figure 2.18A,                               

two linear relationships of calibration curve were found in the range of 0.1-1.0 g L-1;                            

F0/F = (0.1590.008) + (1.0380.005) (Figure 2.18B) and 1.0-100.0 g L-1;                                

F0/F = (0.00600.0002) + (1.2060.009) (Figure 2.18C). The fact that two linear 

calibration curves were obtained might be due to the inhomogeneity of the specific 

imprinting cavities on the surface of the MIP. The imprinting factors were 17.67 and 4.28, 

respectively. The imprinting factor (IF) was calculated according to the following equation 

(4) (Ren and Chen, 2015): 
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        IF = 
𝐾𝑠𝑣,𝑀𝐼𝑃

𝐾𝑠𝑣,𝑁𝐼𝑃
                (4) 

 Where IF is the imprinting factor, while KSV,MIP and KSV,NIP is the Stern-Volmer 

constant of MIP and NIP, respectively. The fluorescence spectra of nanocomposite 

COOH@MWCNT-MIP-QDs after mixing with various concentrations of ciprofloxacin 

were shown in Figure 2.19, the fluorescence intensities were significantly quenched by 

ciprofloxacin. The limit of detection (LOD) and limit of quantification (LOQ) were 

calculated following the IUPAC criteria; 3/S and 10/S, respectively, where  is the 

standard deviation of blank signal (n=20) and S is the slope of the calibration curve. The 

LOD and LOQ were 0.066 g L-1 and 0.22 g L-1, respectively. 
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Figure 2.18 The calibration curve in the presence of ciprofloxacin in the concentration 

       range of 0.1-100.0 µg L−1 (A), 0.1-1.0 µg L−1 (B) and 1.0-100.0 µg L−1(C). 
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Figure 2.19 Fluorescence spectra of the nanocomposite COOH@MWCNT-MIP-QDs in 

       the presence of ciprofloxacin. 

 

2.10 Reproducibility and stability of COOH@MWCNT-MIP-QDs 

 The reproducibility of the nanocomposite COOH@MWCNT-MIP-QDs 

optosensors were investigated by preparing six different batches of nanocomposite 

COOH@MWCNT-MIP-QDs under the optimum condition at different times.                                     

The developed optosensors were used to determine ciprofloxacin in the concentration range 

of 1.0-50.0 g L-1 and the sensitivity was used to evaluate the reproducibility. The relative 

standard deviation (RSD) of the six optosensing systems was 1.5 %, indicating good batch-

to-batch reproducibility.  

 The stability of nanocomposite COOH@MWCNT-MIP-QDs and CdTe QDs were 

also studied under the optimized conditions by the repeated measurement of the 
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fluorescence intensity every 30 min at room temperature (25 C). As shown in Figure 2.20, 

the fluorescence intensity of nanocomposite COOH@MWCNT-MIP-QDs did not 

significantly change within 300 min, while the fluorescence intensity of CdTe QDs was 

decreased after 90 min. It could be explained that the MIP layer helps to protect the 

photostability of QDs. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 The fluorescence stability of the nanocomposite COOH@MWCNT-MIP-QDs 

      fluorescence probes and CdTe QDs in 0.01 M Tris-HCl buffer solution     

      (pH 7.0). 

 

2.11 Application of nanocomposite COOH@MWCNT-MIP-QDs optosensors for the 

determination of ciprofloxacin in food sample 

 The chicken muscle and milk samples were purchased from local markets in Hat 

Yai city, Songkhla, Thailand. The extraction procedures of ciprofloxacin in chicken muscle 

was adapted from a previous report (Yorke and Froc, 2000). Briefly, 300 μL of Tris buffer 
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solution (pH 7.0) was added to 0.50 g of homogenized chicken muscle and vortexed for                 

1 min. Then, 1.0mL of acetonitrile was added into the mixture which was vortexed for                     

1 min and then centrifuge for 10 min. The supernatant was transferred into a 15 mL 

centrifuge tube and 300 μL of hexane was added and vortexed for 1 min. The extract was 

centrifuged at 6000 rpm and the degreasing phase was removed. The acetonitrile phase was 

then evaporated to dryness at 50 C and the residue was redissolved with 10 mL deionised 

water and filtered through a 0.22 m syringe filter before analysis with the developed 

method. The extraction procedure of ciprofloxacin from milk was adapted from previous 

work (Jin et al., 2016). Briefly, 10 mL of the milk was transferred into a 50 mL centrifuge 

tube and 10 mL of acetonitrile was added followed by vortexing for 5 min. The sample 

was then centrifuged at 6000 rpm for 30 min. The supernatant was evaporated to dryness 

at 50 C and the dried extract was then dissolved in 10 mL deionised water before mixing 

with the developed fluorescence probe for analysis.  

 The developed nanocomposite COOH@MWCNT-MIP-QDs fluorescence probe 

was applied to determine ciprofloxacin in chicken muscle and milk (Table 2.2).                                

Low concentrations of ciprofloxacin was found in chicken muscle (0.19 g kg-1) and milk 

(0.22-0.35 g kg-1) which were lower than the MRL value set by European Union, 100 g 

kg-1 for chicken muscle and milk. The accuracy of the developed optosensor was also 

investigated by spiking standard ciprofloxacin into real samples at different concentrations. 

Satisfactory recoveries were obtained in the range of 82.6-98.4 % with the relative standard 

deviation being lower than 8 %.   

 The developed optosensor was also compared with a HPLC method. The HPLC 

condition for the analysis of ciprofloxacin as shown in Table 2.3. The spiked samples were 

extracted and analyzed by both the developed optosensing system and HPLC methods. 

Figure 2.21A shows HPLC chromatograms of spiked samples at different concentration of 

ciprofloxacin. The correlation between the developed optosensors and HPLC is shown in 

Figure 2.21B. The coefficient of determination and slope reach 1.0 and indicated that the 

developed optosensors agreed with the HPLC methods. Therefore, this developed method 
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can be used as a simple, rapid and sensitive method for the determination of trace 

ciprofloxacin in milk and chicken muscle.  
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Table 2.2 The determination of ciprofloxacin in chicken muscle and milk (n=5). 

Sample Added (µg kg−1) Found (µg kg−1) Recovery (%) RSD (%) 

Chicken muscle I 0.0 

1.0 

5.0 

10.0 

50.0 

0.19 

1.16±0.02 

4.45±0.21 

9.54±0.42 

48.35±1.34 

- 

96.2 

85.1 

93.4 

96.3 

- 

2.4 

4.9 

4.5 

2.8 

Chicken muscle II 0.0 

1.0 

5.0 

10.0 

50.0 

0.19 

1.08±0.02 

4.80±0.34 

9.69±0.25 

48.02±1.31 

- 

89.0 

92.3 

95.0 

95.7 

- 

3.1 

7.4 

2.7 

2.7 

Chicken muscle III 0.0 

1.0 

5.0 

10.0 

50.0 

n.d. 

0.95±0.04 

4.82±0.13 

9.80±0.18 

49.03±0.98 

- 

95.4 

96.5 

98.0 

98.1 

- 

3.8 

2.7 

1.9 

2.0 

Milk I 0.0 

1.0 

5.0 

10.0 

50.0 

n.d. 

0.85±0.05 

4.52±0.20 

9.44±0.22 

49.20±0.46 

- 

85.4 

90.3 

94.4 

98.4 

- 

5.4 

4.4 

2.3 

0.9 

Milk II 0.0 

1.0 

5.0 

10.0 

50.0 

0.35 

1.18±0.01 

4.87±0.18 

9.88±0.20 

48.69±0.64 

- 

82.6 

90.6 

95.2 

96.7 

- 

1.2 

4.0 

2.0 

1.3 

Milk III 0.0 

1.0 

5.0 

10.0 

50.0 

0.22 

1.12±0.03 

4.58±0.24 

9.58±0.31 

48.20±0.83 

- 

90.6 

87.3 

93.6 

96.0 

- 

2.9 

5.4 

3.3 

1.7 

n.d. = not detectable 
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Table 2.3 HPLC conditions for the analysis of ciprofloxacin. 

Parameters Conditions 

Column  VertiSep™ UPS C18   

column (4.6 × 150 mm, 5 μm) 

Flow rate 0.90 mL min−1 

Mobile phase Acetonitrile:25 mM H3PO4 (18:82 % v/v) 

Detector Fluorescence detector (λex = 272 nm and 

λem = 448 nm) 

Injection volume 20 µL 
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Figure 2.21 HPLC chromatograms of spiked milk samples at different concentration of       

         ciprofloxacin; (a) 10 µg kg-1, (b) 50 µg kg-1, (c) 300 µg kg-1 and (d) 500 µg       

         kg-1(A). Correlation between nanocomposite COOH@MWCNT-MIP-QDs       

         optosensor and the HPLC method for the determination of ciprofloxacin in       

         chicken muscle and milk samples (B). 
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2.12 Comparison of the developed hybrid nanocomposite COOH@MWCNT-MIP-

QDs optosensor with other methods 

 The analytical performance of the developed optosensor for the determination of 

ciprofloxacin was compared with other previous works. As summarized in Table 2.4, the 

developed method provided a wide linear range and the detection limits are much lower 

than other work which demonstrates that the nanocomposite COOH@MWCNT-MIP-QDs 

are highly sensitive and selective for the determination of ciprofloxacin. The recovery 

(82.6-98.4 %) and precision (<8 %) of this method was comparable to other methods. This 

developed optosensor is simple, rapid and cost effective when compared to 

chromatographic techniques which required expensive instrumentation and used large 

amount of organic solvents as mobile phase. In addition, the selectivity of this sensor was 

improved with the using of MIP, without requiring complicated separation processes like 

chromatographic methods. 
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Table 2.4 Comparison of the developed optosensor with other methods for the 

determination of ciprofloxacin. 

Analytical technique Samples 

Linear 

range 

(g L-1) 

LOD 

(g L-1) 

Recovery 

(%) 

RSD 

(%) 
References 

HPLC-FLD Human plasma 20-4,000 10.0 73.0-95.0 
3.0-

17.0 

(Muchohi et 

al., 2011) 

HPLC–UV Human plasma 50-8,000 10.0 90.0-96.0 <4.0 
(Vella et 

al., 2015) 

HPLC–PDA Sputum samples 50-2,000 17.0 80.0 <15.0 
(Locatelli et 

al., 2015) 

HPLC-FLD Surface water 200-2,000 100 
102.5-

122.2 
9.2 

(Prutthiwan

asan et al., 

2016) 

Electrochemical  

Pharmaceutical 

samples and 

biological 

fluids 

1.6-281.6 0.56 
98.0-

103.0 
3.0 

(Bagheri et 

al., 2016) 

Fluorescent 

siderophorepyoverdine 

Pharmaceutical 

tablet 
- 2,362 98.6 1.3 

(Pawar et 

al., 2016) 

Electrochemical  Wastewater 
3,313-

26,507 
16.6 

98.2-

107.0 
< 5.0 

(Garrido et 

al., 2017) 

Electrochemical Urine samples 33-3,313 7.3 
99.1-

109.6 

1.0-

1.4 

(Shan et al., 

2016) 

Electrochemical Urine samples 
0.15 - 

2.11  
0.05 

97.0-

102.0 
2.4 

(Radičová 

et al., 2017) 

Electrochemical 
Physiological 

Fluids 

3,313-

3,310,000 
2618 

98.7-

104.5 

0.7-

0.9 

(Abdel-

Haleem et 

al., 2017) 

MIP based 

micromechanical 

cantilever sensor 

- 
497-

50,000 
265 94.0 1.4 

(Okan et 

al., 2017) 

COOH@MWCNT-

MIP-QDs optosensor 

Milk and 

chicken  

0.1-1.0 

1.0-100 
0.066 82.6-98.4 < 8.0 This work 

 

HPLC= high performance liquid chromatography; FLD= fluorescence detector; UV=Ultraviolet-

Visible detector; PAD= photodiode array detector; MIP = molecularly imprinted polymer; QDs = 

quantum dots; COOH@MWCNT = carboxylic functionalized multiwall carbon nanotubes 
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3 Concluding remarks 

 A nanocomposite COOH@MWCNT-MIP-QDs optosensor was developed for 

the determination of ciprofloxacin on the basis of electron transfer induced fluorescence 

quenching. The developed optosensor integrated the high specificity of MIP, excellent 

fluorescence property of QDs and high affinity of COOH@MWCNT to ciprofloxacin, 

demonstrating a highly selective, sensitive and rapid method for the determination of trace 

ciprofloxacin. This rapid, convenient and cost-effective hybrid nanocomposite optosensor 

was successfully applied to determine ciprofloxacin in milk and chicken muscle with a 

satisfactory recovery and also demonstrated excellent agreement with HPLC. This facile 

and versatile process for the optosensor fabrication provides an alternative method for the 

specific recognition of the others organic compounds. 
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Fig. S1 UV-Vis spectrum (dot line) and fluorescence emission spectrum (solid line) of 

TGA-capped CdTe QDs. 

 

 

 

 

 

 

 

Fig. S2 Effect of incubation time on the fluorescence quenching of COOH@MWCNT-

MIP-QDs and MIP-QDs for the determination of ciprofloxacin (n=3). 
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Fig. S3 Absorption spectrum of ciprofloxacin (a) and emission spectrum of nanocomposite 

COOH@MWCNT-MIP-QDs (b). 

 

 

 

 

 

 

 

 

 

 

Fig. S4 The fluorescence stability of nanocomposite COOH@MWCNT-MIP-QDs 

fluorescence probes and CdTe QDs in 0.01 M Tris-HCl buffer solution (pH 7.0) (n=3). 
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