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ABSTRACT 

The study explores the seasonal pattern and trend of LST and NDVI in Nepal from 

2000 to 2015. The time series data of temperature (LST) and vegetation (NDVI) were 

derived from MODIS website. Natural cubic spline function, polynomial and logistic 

regression models were used to analyze LST while, natural cubic spline function, 

linear regression and GEE were used in case of NDVI. The data were seasonally 

adjusted in both LST and NDVI. For handling autocorrelation, autoregression of first 

order (AR (1)) was applied and filtered the data in LST and GEE model was used 

during NDVI analysis for this purpose. Here, LST and NDVI represented two parts of 

the study that are summarized as given below. 

The first part involves the temperature change pattern in Nepal. An area of 11,902 

km
2 

within latitudes 26.92°N -28.26°N and longitudes 85.20°E-85.58°E was selected 

in form of 27 regions. Every region was further divided into nine sub regions. 

Therefore there were 243 sub regions which were analyzed one by one. Firstly, the 

seasonal pattern of temperature for 15 years revealed that seasonal changes were not 

basically different in the sub regions. Secondly, the data were fitted to polynomial 

regression of second order to obtain quadratic slopes of LST. The LST slopes 

illustrated the local pattern of temperature change during 15 years period which were 

categorized into five groups: ‘Flat’ pattern (11.5% of grid area), ‘Accelerated-
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increasing’ pattern (25.9% of grid area), ‘Decelerated-increasing’ pattern (20.6% of 

grid area), ‘Decelerated-decreasing’ pattern (22.6% of grid area) and ‘Accelerated-

decreasing’ pattern (19.3% of grid area). The patterns were regrouped into binary 

(accelerating and non accelerating) to model with the altitude (3 categories) and land 

cover (three categories) of the regions. The results showed that accelerating pattern 

had negative association with the altitude and no vegetated land cover. When the 

results were described in terms of ecozones, the area in the temperate Mountain zone 

dominantly showed no change or gradual increase of LST pattern. Low populated, 

low vegetated, snow cladded land on northern Himalaya or alpine zone had 

apparently decreasing LST pattern. The southern high populated, tropical Tarai zone 

had dominant increasing pattern.  

The second part involves the vegetation change and seasonal pattern, using NDVI 

data, in three different regions of Nepal, east - Dhankuta (27.15°N, 87.35°E), center - 

Kathmandu (27.59°N, 85.39°E) and west - Surkhet (28.62°N, 81.88°E). Each region 

had an area of 410 km
2
 with 6,561 grids. The analysis was done separately for 

systematically selected 196 grids at each region. At first, the annual seasonal pattern 

showed the seasonal start (greening) was earlier in east and moved gradually to the 

west. The case of end of season (browning) had similar results. Also, the length of 

season was longer in east than westward. Secondly, NDVI linear trend for 15 years 

showed that, except at the center, east and west suburban regions had dominant 

increasing trend. Lastly, to adjust for autocorrelation and applying overall 196 grids in 

a single model, generalized estimating equations (GEE) were used. The CI plots after 

this model explained, the vegetation was increasing in Nepal during these 15 years, 

except in Kathmandu. The recent declining trend in Kathmandu is alarming.  
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Chapter 1 

Introduction 

 

1.1 Background and rationale 

The natural as well as anthropogenic activities can cause climate change. In this 

regard several environmental factors play key role, particularly the temperature and 

vegetation (Goward et al., 2002; Kaufmann et al., 2003). Globally, the temperature 

issues are vital to understand for controlling its negative consequences. It has been 

predicted that the global surface temperature, from 2009 to 2019, amidst the 

anthropogenic influences, has been through a continuous rise (Lean & Rind, 2009). 

The 5
th

 Assessment Report (AR5) of Intergovernmental Panel on Climate Change 

(IPCC) has shown that average temperature on earth rose at a range of 0.65-1.06°C 

during a period of 1800-2012 (IPCC, 2013). Yet another important climate factor to 

bring about the changes in environment is the vegetation. Quantifying the type and 

extent of vegetation is important for resource management in the context of rapidly 

changing global climate and land cover issues. The worldwide study of vegetation 

shows its decline in many of the places (Evrendilek & Gulbeyaz, 2008; Eckert et al., 

2015), which is being a threat to the climate and ecosystem. 

The rising temperature and declining vegetation is particularly hard hitting for a low 

income countries like Nepal, where the alternates to cope with the changes is still not 

defined and the research for identifying the possible consequences are almost 

negligible. Nepal, extending from latitude 26.22°N to 30.27°N and longitude 80.04°E 

to 88.27°E covers an area of 148,181 km
2
. It is unique for its geographical and 
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ecological variations. The three seasons (summer, winter and rainy) of weather and 

three ecozones (alpine, temperate and tropical) impart more curious about the 

questions, ‘are the climate factors like temperature and vegetation changing their 

pattern and trend by time?’ and ‘is the change uniform by time and locations’. Hence, 

a need for this study was envisioned. However, in Nepal, field or station based time 

series data for temperature and vegetation is either much interrupted or not available 

for a longer period. In this situation, the satellite data are accessible and more reliable 

source than the field based data. Therefore, Land Surface Temperature (LST) and 

Normalized Difference Vegetation Index (NDVI) data derived from Moderate 

Resolution Imaging Spectroradiometer (MODIS) were selected for analysis in this 

research. MODIS is a sensor, fitted aboard the Terra and Aqua satellites by the 

National Aeronautics and Space Administration (NASA). 

A common practice is that, the studies focus on big regions for identifying and 

predicting change of climate and hence the local level effects are almost overlooked. 

However, the changes have local level impacts on human society and environment. 

Therefore it is utmost to address these local level issues. In addition, the developing 

countries cannot afford the cost of post calamity losses. With these views and 

importance this study identifies change of temperature and vegetation by smaller local 

areas of Nepal for 15 years period. 

 

 

 

 



3 
 

  

1.2 Research objectives 

The objectives of this study are: 

1.2.1 To explore the pattern of Land Surface Temperature (LST) change in 3 

different ecological zones of Nepal from 2000-2015. 

1.2.2 To identify the association of LST pattern with altitude and land cover of 

the area 

1.2.3 To explore the seasonal pattern and trend of Normalized Difference 

Vegetation Index (NDVI) in Nepal from 2000–2015. 

1.3 Literature review 

1.3.1 MODIS satellite data 

Use of satellites is an advanced technique of monitoring the earth’s climate. Since 

1950s, NASA satellites have been observing Earth's atmosphere, oceans, land and 

snow from high above the earth’s surface. Satellite based data, like LST and NDVI, 

have been widely utilized in various fields and a number of studies investigate and 

document their applications (Vadasz, 1994; Walther et al., 2002; Johannessen et al., 

2004; O’Donoghuea et al., 2010; Burke et al., 2015). Data from MODIS Terra and 

Aqua sensors are much common for the study purpose in climate and environmental 

science since they efficiently detect the environmental changes due to fire, vegetation, 

temperature, earthquakes, droughts and flood on Earth (NASA, 2015). MODIS 

sensors capture a wider array of the earth's vital signs than any other sensors. For 

instance, the sensors measure the percent of the planet's surface that is covered by 

clouds almost every day, the surface temperature, in every eight day and the 
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vegetation cover in every 16 day (NASA, 2015). Hence, the change of the climatic 

factors, at a larger or smaller area, is obtained through this data which is more reliable 

and with less error. 

1.3.2 LST trend and pattern 

LST, MODIS sensor product for temperature, is evidenced to rise both on land and 

the sea. Trend of temperature throughout the world was found increasing (IPCC, 

2013). The LST is commonly used to find temperature trend at local (Tran et al., 

2006) and regional (Julian et al., 2006) scale. Even though it is not commonly found, 

there are studies that quadratic pattern of temperature change is evident (Schlenkera & 

Robertsb 2009; Wanishsakpong & McNeil 2016) while a lot of works have shown 

evidences about the linear pattern (Julian & Sobrino 2009; Karnieli et al., 2009) as 

they focus on just the trend of change not the pattern. Most climate scientists opined 

that 2°C of rising temperature, than that during preindustrial time, would affect all 

sectors of civilization­ food, water, health, land, national security, energy and 

economy (Mann, 2014). The change in extreme temperature cases such as heat waves, 

severe summer and winter storms, hot and cold days, hot and cold nights can cause 

negative impacts on human society and the nature. Many studies have shown 

temperature rise at different regions of the world such as Southeast Asia (Choprateep 

& McNeil, 2015), Australia (Wanishsakpong & McNeil, 2016), Arctic region 

(Johannesen et al., 2004) and China (Song et al., 2007).  

1.3.3 Temperature change and altitude 

Several studies have shown that the temperature and altitude are statistically 

associated. Their association may be either negative (Lancaster, 2012; Khandelwal et 
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al., 2018) or positive with the rate of temperature rise being progressively higher at 

higher altitudes as found around the glacial regions of Nepal (Shrestha & Aryal, 

2011). The variation in temperature trend was well illustrated in a study in China 

(Dong, 2015), where the trend decreased with altitude below 200 m while it was 

weakly positive from 200 to 2,000 m, and a strongly positive temperature– altitude 

relation was found over 2,000 m. Hence, all these examples refer that, temperature 

change is seen almost everywhere with the rates being different at different places 

depending on other climatic and geographic factors. 

1.3.4 Temperature and land cover 

Tran et al. (2006) have concluded about the consequence of changing temperature, in 

eight megacities of Asia, that surface heat has significant association with urban 

growth, land cover and  population density. A study on 10 megacities of the world 

indicates that, in most of the cities the land surface temperature is negatively 

associated with the vegetated and undisturbed natural areas, however, the cities show 

different trend, both in terms of the size and spatial distribution of urban heat island 

(Maria, 2012). The study of LST, NDVI and land cover (LC) in Shanghai (Yue et at., 

2007) and Guangzhou cities of China (Sun et al., 2012) clear that the LST is 

positively correlated with integrated land cover index while with only NDVI it shows 

negative statistical relationship. Therefore, for a sustainable urban planning the 

knowledge of LST, LC and NDVI for every particular area is essential. 

1.3.5 LST and different ecological zones 

Ecozones or ecological zones are regions which belonged to similar natural 

communities, climate, topography, elevation, soil types, and other physical and 
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geographical characteristics. Every ecological zone has a unique pattern of response 

to the environmental changes. Literatures evidence that altitude and land cover have 

direct influence in the changing temperature change (Sun et al., 2012; Khandelwal et 

al., 2017) while some demonstrate the temperature changes as a process of 

desertification of arid land (Sruthi & Aslam, 2015) and glacial land (Johannessen et 

al., 2004; Clark et al., 2011), while, only a few explain about the effects of changing 

temperature and precipitation in different terrestrial and aquatic ecological zones 

(Walther et al., 2002). In addition, the work explaining the comparative temperature 

change patterns in different ecological zones is still rare.  

1.3.6 NDVI trend and pattern 

NDVI has been a data for analyzing the vegetation status in present, past and predict 

its future. Evrendilek & Gulbeyaz (2008) used NDVI to monitor seasonal pattern and 

inter annual ecosystem dynamics of different vegetation types and climate zones in 

Turkey. It was found that the seasonal variation was almost similar for all ecosystem 

dynamics. It also showed correlation with different ecosystems that is from warmer to 

cooler zones and from forest to barren land. Zhang et al. (2003) determined the intra-

annual vegetation pattern in northeastern side of the USA identifying several of the 

phonological characteristics useful for agricultural and environmental sectors. For 

instance, it detected the transition dates for vegetation activities within annual time 

series of vegetation index. The NDVI has also been successfully used to find the 

vegetation change in Mongolia due to forest fire, deforestation, mining activities and 

urban expansion (Eckert et al., 2015). These studies show the trend of vegetation in 

different parts of the globe has been decreasing and also have negative association 

with the temperature (Bounoua et al., 2000; Feehan et al., 2009).  
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Another indicator of intra annual vegetation pattern (that is, seasonal pattern) is the 

timing of life cycle events, also known as phenology, of the plants. Wang et al. (2016) 

found that in Northern Hemisphere had been facing the early and longer greening 

season during 1982-2012, where rising temperature was the major determinant. 

Similarly, in western USA, during 1990-2002, the onset of greening varied up to eight 

days depending upon the land cover type (Bethany et al., 2007). Moreover, around 

Europe, Feehan et al.,(2009) found that species richness and biodiversity were in 

declining condition during the period, seasonal events were advancing at a rate of 2.5 

days/ decade and it was particularly rapid in Arctic regions. This advancement of 

seasonal phenology was predicted to continue in future as well. Yet another study in 

Iberian Peninsula evidenced that water availability or rainfall was the important driver 

of climate change that initiated a lot of phonological changes which might hit far up 

to biospheric structures and the functions (Penuelas et al., 2004). 

1.3.7 Statistical methods 

The temperature and vegetation changes can be measured using various statistical 

models. There is variation of work such as computer simulation method was applied 

to detect the changes occuring in area of Arctic ice during a 25 years period from 

1978 to 2003 (Johannessen et al., 2004). A piecewise logistic model was used to 

determine intra-annual vegetation changes in Northeastern side of USA (Zang et al., 

2003), and an empirical ortheogonal functions (Semenov, 2007) was used to analyze 

the effect of climatic variability on air temperature in Northern Hemisphere altitudes 

during 1892 to 1999. In addition, least square linear regression method (Hansen & 

Schjoerring, 2003) successfully measured the reflectance of canopy biomass of 

vegetation in Denmark, while multiple linear regression model was used to detect 
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relationship of NDVI and LST (Karnieli et al., 2010) showing that they were 

negatively associated. Yet some studies in Australia used linear regression model, 

factor analysis (for grouping the outcome variable) and polynomial regression model 

of 6
th

 
 
order (Wanishsakpong & McNeil, 2016) and 3

rd
 order (Wanishsakpong et al., 

2015) for finding the future trend of temperature. The polynomial regression order 

was observed to depend on the period and characteristics of the data used. 

Furthermore, the natural cubic spline model was fitted to LST at Phuket Thailand by 

Wongsai et al. (2017) to identify the seasonal patterns of temperature.  

In conclusion, the remote sensing data like LST and NDVI are reliable and accessible 

time series data which can be of significant use for the study of regions, like Nepal for 

example, which do not have systematic archives of long run climate data. The 

climatic changes in terms of temperature and vegetation still require a lot of evidences 

that can be of policy or the academic use. Kathmandu being a fast growing urban city 

needs this kind of study since it is already prone to negative climate effects due to 

changes in vegetation and temperature status. In addition, the studies so far show 

national or regional level of climate change trend and this study tries to find the local 

level trend of LST and NDVI using natural cubic spline function, linear regression 

and polynomial regression model of second order to find the time series trend and 

pattern in Nepal. Therefore the use of natural cubic spline function and regression 

model for trend analysis in a single combination would be unique in this study.  

1.4 Conceptual framework 

Figure 1.1 is the conceptual diagram to show the methodological steps of this study. 

To begin with, the natural cubic spline curve was fitted to the data for finding the 
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seasonal patterns. Then, the data were seasonally adjusted. In LST, after filtering the 

autocorrelation effects by first order autocorrelation (AR(1)) method, the data were 

fitted with polynomial second degree model to find the LST quadratic trend for 15 

years. In NDVI, simple linear regression model followed by generalized estimating 

equations (GEE) was applied to find grid leveled as well as whole area vegetation 

change over 15 years period. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Diagram of data analysis 

1.5 Organization of thesis 

This thesis consists of the four chapters and their organization is described below: 

Chapter 1 comes under the background and the objectives, literature reviews and the 

Natural cubic spline model to find seasonal pattern 

Seasonally adjusted NDVI Seasonally adjusted LST 

Linear regression model to find 

the trend of each grid 
Autoregressive model to 

eliminate autocorrelation of 

data 

Data divided into 3 time subperiods 

(2000-2004, 2005-2009, 2010-

2016). Generalized estimating 

equations, to find the overall trend 

Polynomial regression model to 

find the pattern of LST 

Logistic regression model to find 

association of LST pattern with 

land cover and altitude 

LST and NDVI data of Nepal 2000-2015 

Altitude and 

land cover data 
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conceptual framework of the study. Chapter 2 consists of the description of 

methodology that includes study site, data and the methods used for analysis. In 

chapter 3, the results showing the trend and patterns of NDVI and LST over the study 

area are organized where preliminary results were followed by the model results of 

both LST and NDVI. Finally in chapter 4 details about discussion of findings, 

summary of overall work and conclusion of the outcome of this research together with 

recommendations.  
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Chapter 2 

Methodology 

 

This chapter details about research methodologies used to complete this study. It 

describes about study area, data, data management, and statistical methods.  

2.1 Study area 

The study was done in Nepal. Nepal has three ecological zones (ecozones), alpine, 

temperate and tropical zones, extending from north to south of the country (Figure 

2.1).  

 

Figure 2.1 Study area for LST (in red rectangle) in Nepal  

Alpine zone is snowy, dry with lower rainfall, annual mean temperature from less 

than – 4 to 12°C (Figure 2.2), scanty vegetation in form of coniferous forest or 

grasslands or alpine scrubs in higher altitudes and with snow clad Mountains on  
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Figure 2.2 Mean annual temperature in Nepal (Source: Karki et al., 2016) 

northern extremes. This area has very low density of population, altitude ranging from 

3500 m and above. Temperate Mountain is moderately cold and has summer 

temperature with enough rainfall, annual mean temperature ranging from – 4 to 20°C, 

deciduous vegetation and moderate number of population. The altitude ranges from 

1,500 m to 3,500 m. While, the tropical plain land is comparatively hotter, humid with 

higher temperature ranging from 20 to above 28°C, altitude from 60-1,500 m, higher 

rainfall, tropical evergreen vegetation and dense population with more developmental 

structures like roads, buildings, industries, vehicles etc. Basically, the country has 

three different climates - summer (March to June), rainy (June to August) and winter 

(November to February). The land cover on the area has basically, vegetation 

including tree forests, shrub/ crop and the barren or no vegetated land. The central 

Mountain belt is dominantly covered by tree forest while the shrub/ crop is located 

dominantly in the southern belt. The urban builds, in urban populated areas and bare 

Mountain and snow cover on northern belt represent the no vegetated land in Nepal 

(Figure 2.3). 
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Figure 2.3 Land cover map of Nepal (Source: Wikipedia, 2018)  

This study comprises two parts, they are LST and NDVI. For LST, the study area was 

extended within the latitudes of 26.82°N-28.35°N and longitudes 85.02°E-85.73°E of 

Nepal (Figure 2.1, in red box), that occupies 11,907 km
2
. The study location is near 

about the center of the country in form of 27 regions, named from 1 to 27, located in 

three ecozones, from alpine (black polygons), temperate (red polygons) to tropical 

(blue polygons, Figure 2.4) zones.  
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Figure 2.4 Study area for LST with 27 regions 

For NDVI, the study was carried out in three regions (Figure 2.5-Figure 2.8). 

 

Figure 2.5 Location of three districts in Nepal  
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Figure 2.6 Study area in Dhankuta district 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Study area in Kathmandu district 
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Figure 2.8 Study area in Surkhet district 

All three areas are from temperate Mountain area to avoid the effect of other climate 

variables on different plant species from different ecozones. The area was selected 

randomly form east - Dhankuta (27.15°N, 87.35°E), center - Kathmandu (27.59°N, 

85.39°E) and west - Surkhet (28.62°N, 81.88°E) of Nepal (Figure 2.5 to 2.8). 

Department of Forest Resource and Survey (DFRS, 2015), Department of Hydrology 

and Meteorology (DHM, 2015) and National Population and Housing Survey 2011 

(NPHS 2011, 2012) of government of Nepal have reported that, Dhankuta is an 

eastern suburban area of 892 km
2
 with population density of 183/km

2
. It has an annual 

temperature ranging from 14.6°C (January) to 24.9°C (April), annual rainfall 1,120.8 

mm and have average altitude of 1,192 m. Kathmandu is an urban area located in 

central region, with the area of 899 km
2
 and the population density of 4,416/km

2
. Its 

annual temperature ranges from 6.6°C (January) to 16.6°C (May), annual rainfall 
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1,666.6 mm and have average altitude of 1,337 m. Surkhet is a suburban area located 

in western region, with the area of 2,451 km
2 

and the population density 143/km
2
. The 

annual temperature of this city ranges from 15.1°C (January) to 27.0°C (April), 

rainfall 1,391.9 mm (July) and have average altitude of 875 m. The conventional 

seasons in the country were classified as summer, rainy and winter which falls in the 

months of March to May, June to August and December to February respectively. 

2.2 Data  

This topic includes the detail about data sources, the variables and data management 

processes. 

2.2.1 Data source 

LST and NDVI data are the land product subset from Terra platform. Terra is one of 

the sensors fitted to NASA’s satellite. The data are downloaded from MODIS’s 

website (ORNL DAAC, 2015) for a period of 15 years. These were land surface 

temperature and vegetation products available freely on its website and delivered 

along with its documents. The two predictors, land cover (LC) and altitude, used for 

LST analysis, were also obtained as satellite products. The LC data were obtained 

from the maps received during MODIS data delivery and those raster maps were 

converted to vectors with the help of QGIS software version 2.6.1. A satellite map of 

altitudes, covering whole study area of each region, was downloaded for the United 

States Geological Survey website (USGS, 2017). This map was dragged into the 

QGIS program for digitization and obtained the altitude data. The altitude was 

measured in meter. 
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2.2.2 The variables 

LST 

The LST, a type of temperature data from MODIS remote sensor fitted in Terra 

satellite by NASA, is the skin surface temperature measured by satellite on the basis 

of the thermal reflectance of the objects on earth. The data values are in Kelvin unit. 

For each region, the data had 441 km
2 

area and 441 grids each with the size of 1×1 

km
2
. As LST is a record of 8 day frequency, there are 46 observations in one year and 

690 observations in 15 years. As a data frame, for each region it has a matrix of 441 

grids×690 observations. It has the first six columns (Table 2.1) detailing about data 

characteristics (V1 to V6) and rest all for the LST values (t1 to t441). 

Table 2.1 Structure of LST data for a region as obtained from MODIS website 

Observation 

Variables 

V1 V2 V3 

 

t440 t441 

1 MOD11A2… MOD 11A2 A2000177    294.12 293.02 

2 MOD11A2… MOD 11A2 A2000185    294.84 293.76 

3 MOD11A2… MOD 11A2 A2000193    293.88 293.55 

        
 

    

689 MOD11A2… MOD 11A2 A2015161    291.58 290.86 

690 MOD11A2… MOD 11A2 A2015169    286.92 286.28 
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NDVI 

The NDVI is a type of vegetation index from MODIS remote sensor fitted in Terra 

satellite by NASA and defined in terms of the red and near infra-red (NIR) reflectance 

values. Every green plant characteristically absorbs in the red and blue wavelengths, 

reflects out the green wavelength and strongly reflects in the NIR light waves. Based 

on this principle the data were calculated by given equation (Tucker et al., 2013), 

     
       

       
      (1) 

The data structure for NDVI is not different from that of LST, except that its area is 

20.25×20.25 km
2
. Every region has 6,561 grids each measuring 250×250 m

2
 in area. 

Since the data is 16 day frequent, total observations were structured in 345 rows for 

15 years’ period consecutively. There are 23 observations every year. As a data frame, 

for each region it has a matrix of 6,561 grids×345 observation. The data structure 

shows (Table 2.2) that the first seven columns (A1 to A7) detailing about data 

characteristics and rest all (v1 to v6561) for the NDVI values for all 6,561 grids. The 

missing data were indicated by F. 
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Table 2.2 Structure of NDVI data for a region as obtained from MODIS website 

Observation 

Variables 

A1  v1  v6561 

1 MOD13Q1.A2000177…     0.3843    0.6981 

2 MOD13Q1.A2000193…     0.4144    0.6680 

3 MOD13Q1.A2000209…     0.4827     0.7139 

            

344 MOD13Q1.A20150145…     F    0.2781 

345 MOD13Q1.A20150161…     0.5276    0.3652 

 

Land cover  

Land cover (LC) is a predictor variable for observing association with analyzed LST 

quadratic curves. The data were obtained by calculating the LC codes of raster map, 

obtained along LST data and digitized by using QGIS server program. It exhibits 18 

different color legends with codes from 0 to 17 for land cover types in the area (Table 

2.3). The data were distributed in 441 grids at each of the 27 regions. They were 

further divided into three categories for the convenience of analysis and plots. They 

are, highly dense vegetated land of trees and forest (LC codes 1-5, 8), scanty 

vegetation with crop and grass land (LC codes 6, 7, 9, 10, 12, 14, 16) and no 

vegetation on land (LC codes 0, 11, 13, 15, 17). 
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Table 2.3 Land cover area of 27 regions  

LC codes  

 

LC type Total cover (grids) 

0 Water 12 

1 Evergreen needle leaved 

forest 

60 

2 Evergreen broad leaved 

forest 

8 

3 Deciduous needle leaved 

forest 

1 

4 Deciduous broad leaved 

forest 

0 

5 Mixed forest 5528 

6 Closed shrubland 2 

7 Open shrubland 46 

8 Woody savana 1176 

9 Savanna 10 

10 Grassland 1235 

11 Permanent wet land 3 

12 Cropland 1431 

13 Urban and build up 70 

14 Crop land and natural 

vegetation mosaic 

1498 

15 Snow ice 5528 

16 Barren or sparse 

vegetation 

1 

17 Unclassified 0 

 

Altitude 

Altitude is a predictor variable, similar as LC. The data had 441 rows of mean altitude 

for every grid in each region of study area. The altitude ranged from 71.9 m to 6,866.7 

m in the study area. While analysis, the altitude for whole 27 regions were divided 

into three categories, >3,000 m, 1,500-3,500 m, <1,500 m based on three ecozones. 
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2.2.3 Data management 

LST 

The LST data, for 27 different regions extend from north to south of Nepal (Figure 

2.3). These time series, day time temperature data were for a period of 15 years 

starting from 2000 (25
th

 June) to 2015 (18
th

 June). The missing values ranged up to 

12%. First, the data for each region were divided into nine sub regions (Figure 2.9), 

each with 7×7 = 49 grids, which were named as northwest (NW), north (N), northeast 

(NE), west (W), center (C), east (E), southwest (SW), south (S) and southeast (SE) 

therefore, there were 243 sub regions in the study area. The LST data, originally given 

in Kelvin, was converted into degree Celsius by subtracting 273.5 from the sensor 

recorded raw values. Table 2.4 shows the LST data structure of a region, after 

eliminating the first six columns and grouping 441 grids into nine sub regions. 

 

Figure 2.9 Division of one region into nine sub regions with their respective names 
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Table 2.4 LST data for a region after grouping into sub regions 

Observation 

Variables 

Year Day Sub-reg.1 Sub-reg.2  Sub-reg.9 

1 0 177 12.174349 12.14503    20.48853 

2 0 185 22.742308 23.86926    25.16363 

             

690 15 169 22.794085 21.87362    23.25116 

 

NDVI 

The data for NDVI were extending from east to west of Mountain region of Nepal. 

The data period is the same as LST (27
th

 June 2000 – 11
th

 June 2015). For each grid, 

there were up to 10% of missing data. First of all the data for 196 grids were 

systematically selected from each region for the analysis. Table 2.5 shows the NDVI 

data structure of a region, after eliminating the first seven columns and selecting 196 

grids as data variables. 

Table 2.5 NDVI data for a region  

Observation Year Day VI1  VI 196 

1 0 177 0.566    0.382 

2 0 193 0.787    0.563 

           

345 15 161 0.833    0.871 
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The data from systematically selected 196 grids were plotted separately for each grid. 

There was sparsity at the center of the graph, probably due to cloud or air moisture in 

rainy season (day 160 to 260). This problem was handled in two ways. First, highly 

fluctuating NDVI data in a very short period, with residual values >0.2 and <    0.2 

(example from a grid is shown as cross marks in Figure 2.10). Second, the doubtful 

NDVI values for the observation days which had no LST data when compared. The 

NDVI could be falsified on that particular day, might happen due to weather, cloud or 

other technical reasons, shown as blue dots in Figure 2.10, both were eliminated. For 

the comparison of NDVI and LST grid to grid data values, the appropriate key grid 

was determined that ranged from 1-16. Our area showed grid number 10 as 

appropriate key grid for NDVI and LST data merging (Figure 2.11 and Figure 2.12) 

that is the NDVI grid, one out of 16 that corresponds to a particular LST grid, where 

the central coordinate of a LST grid falls on. The raw data of each NDVI grid were 

ranging from 1 to – 1, where, negative values up to 0 corresponds to snow and water, 

0 to 0.1 meant soil, rock, concrete and barren land. Low positive values (0.2 to 0.5) 

represents grassland and shrubs while above 0.6 meant the forest (Weier & Herring, 

2000).  
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Figure 2.10 Unreliable (crossed ones) and doubtful (cyan dots) values displayed 

  

Figure 2.11 LST and NDVI grid number and size (example of central grids)  

Central 

coordinate 

point 

LST 

Region 

NDVI 

Region 
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Figure 2.12 Merge of LST and NDVI showing key NDVI grid is #10 (example of 

central position grid) 

Land cover and altitude 

The land cover and altitude data were obtained one by one for each of the 27 regions. 

For both these data, there were 441 observations, that is for each grid of a region. 

However, after the division of a region into nine sub regions, there were 243 sub 

regions in whole the study area. The median value of land cover and mean value of 

altitude for each sub region were calculated for analysis. Figure 2.13 and 2.14 show 

the altitude and land cover data distribution in the study area respectively.  

LST region 

NDVI region 
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Figure 2.13 Study area showing altitude distribution  

 

Figure 2.14 Study area showing land cover distribution 
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2.3 Statistical methods 

The statistical methods used for analyzing LST and NDVI are described below. 

2.3.1 Natural cubic spline function 

A spline function is a piecewise cubic polynomial with continuous second derivatives, 

and is the smoothest of all functions because it has minimal integrated squared second 

derivative. Additionally, it can be well fitted using linear least squares regression. For 

fitting the model into a time series data we assume that the end of any year is 

followed by the beginning of the next year, the model should be a smooth periodic 

function with period 1 year (Wongsai et al., 2017). These statements clear that the 

most appropriate model is the natural cubic spline with boundary conditions 

possessing smooth periodicity. Then, by trial and error basis, adequate number of 

knots and their positions were fixed for fitting smooth spline curve in the plot. The 

formula for a cubic spline function is displayed in equation (2). 





p

k

kkt ttcbtS
1

3)(      (2) 

where St is the spline function, α, b and ck  are the parameters in the model. p is the 

total number of knots, t denotes time in Julian day, that is, specified day of year. t1 < 

t2 < ... < tp are specified knots and (t – tk)+ means that (t – tk) is positive for (t > tk) 

and zero otherwise. The boundary conditions require that St for t < t1 equals St for  

t > tp. This method was applied in both LST and NDVI data. 

2.3.2 Seasonal adjustment 

Ideally, the model provides seasonal pattern for a year, and this suggests, it should be 

defined over continuous time, rather than just for 23 (NDVI) or 46 days (LST) of the 
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year indexing the data series. On one hand we observe the seasonal effects on data by 

using the models like natural cubic spline function and on the other hand this seasonal 

component needs to be removed for observing time series trend change. Every 

regression model, in a time series climate data, needs to be decomposed into its 

season and trend components and hence the changing trend during a period of time 

can be clearly explained. This minimizes the seasonal effect to the trend analysis. 

Therefore, for each series of data, seasonally adjusted temperatures or vegetation are 

computed by subtracting the seasonal pattern from the data, and then adding a 

constant (mean) to ensure that the resulting mean is the same as the mean of the data 

over the whole period. The formula took the form as,  

xxxy ttt  ˆ      (3) 

where, ty  is the seasonal adjusted LST or NDVI at observation t , tx  is the observed 

value, tx̂  is the fitted value from natural cubic spline model and  ̅ is the overall mean 

of observed data. 

2.3.3 First order autoregressive process 

Autoregression process (AR) is used in LST data to minimize the auto correlation 

from its residuals (Venables & Ripley, 2002). AR(p) is an autoregressive model of the 

p
th

 order lag and if the autocorrelations of these data were assessed by an 

autoregressive process of the first order lag (Cryer, 1986), the autoregression model is 

AR(1). The data was finally filtered to remove autoregression effects. 
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2.3.4 Second degree polynomial regression model 

Finally, seasonally adjusted and autocorrelation filtered temperature values ( ty ) were 

fitted to polynomial regression model. It is a type of linear regression for quantitative 

independent variables. They are the most frequently used curvilinear response models 

(Neter et al., 1996) where there would be more than one degree of expressions (n
th

 

degree). The general polynomial regression model, as a second degree (n=2) of 

polynomial, takes the following form:  

  2

210
ttyt

    (4) 

where ty  is the seasonally adjusted, filtered temperature at time t , 0 represents the 

mean response of ty when t  = 0, 
21,  are coefficients and   is the error term. 

2.3.5 Logistic regressioin model 

Logistic regression is a model for fitting the data when outcome variable is 

dichotomous (Hosmer & Lemshow, 2000). Multiple logistic regression model is 

commonly used to find out the association between outcome and predictor variables, 

when the predictor is more than one.  

2211
1

ln xx
p

p
 










    (5) 

Here, p  is the probability of expected outcome, that is ‘Accelerated’ LST pattern,   

is the intercept, 
1  and 

2  are the coefficients of the independent variables
1x

(altitude) and 
2x  (land cover) respectively. 
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2.3.6 Linear regression model 

Linear regression is a linear approach to model the relationship between continuous 

outcome and the predicting variables. The association is shown by fitting straight line 

to the seasonally adjusted data that evidently gives the trend in time series plots. 

Therefore, the seasonally adjusted data were fitted to the linear regression model to 

find the 15 years’ changing trend of NDVI. 

2.3.7 Generalized estimating equations 

To access the overall change in study area, trend for the whole study area needs to be 

computed. However, the data in each cell had autocorrelation within the same grid. To 

curb this problem, the generalized estimating equations (GEE) were applied in this 

work (Liang & Ziger, 1986). GEE model allows for the handling of long term pattern 

in the data by adjusting for autocorrelation which needs to be controlled in time series 

data because today’s value is correlated with that of the previous and subsequent days 

if the unit of observation is same (Abi et al., 2003). The GEE function was fitted into 

time series NDVI data, that were divided into three periods of five years each (2000-

2004, 2005-2009 and 2010-2015) , one by one for each time section. The results were 

displayed as a 95% confidence intervals, calculated for each sub period. The plots 

easily show the NDVI changes in three time periods within three regions of Nepal.   
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Chapter 3 

Results 

 

This chapter illustrates the analysis of LST and NDVI showing the pattern and trend 

of changes through 15 years’ time period.  

3.1 Results of LST data 

This part of work explains about the results for seasonal pattern and time series LST 

pattern of its change in Nepal during 15 years’ time. Each of the 27 regions (Figure 

2.3) were analyzed one by one at sub region level. The results are described below. 

3.1.1 Seasonal pattern of LST 

For observing seasonal pattern of temperature between 2000 to 2015, the graph of 

region number 5, 14 and 23 were selected to represent alpine (Figure 3.1), temperate 

(Figure 3.2) and tropical (Figure 3.3) zones respectively. Each panel in Figure 3.1 to 

Figure 3.3 represents a sub region and eight blue positive     signs at the bottom of 

each panel show the knot positions. Each vertical gray line is an observation day and 

the black dots are the temperature plot, consecutively for 15 years. X-axis represents 

the Julian day of year and y-axis indicates the LST day temperature in °C. In each 

panel, a smooth spline curve (red line) is derived from natural cubic spline model. In 

all three zones, the temperature began to rise immediately after winter in February and 

the peak was seen during summer in April (day 97 to 113). By the end of May it 

gradually declined and reached the trough in winter during January (days 1 to 15). 

The R
2
 of the models ranged from 18% to 90% and majority of them had it more than 
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50%. The LST was a bit sparse during rainy season, day 170 to 240. The results 

showed that the seasonal pattern still did not vary much in three ecozones.  

 

Figure 3.1 Seasonal LST pattern in alpine zone, sub region 5 
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Figure 3.2 Seasonal LST pattern in temperate zone, sub region 14 
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Figure 3.3 Seasonal LST pattern in tropical zone, sub region 23 

Comparatively the plots of LST in alpine zone was more scattered than other two 

zones and the graph shows that the peak period of summer is mostly divided into two 

unlike in other two zones. The level of temperature is decreasing from tropical to 

alpine zone.  

3.1.2 LST pattern 

The data were seasonally adjusted after the natural cubic spline function and the 

autocorrelation effects were filtered out. Polynomial regression model was fitted to 

the data to identify the LST pattern of each of 27 regions one by one.  The results of 

these LST pattern were shown in Figure 3.4 to Figure 3.6 which represent region 5 

(alpine zone), region 14 (temperate zone) and region 23 (tropical zone) respectively. 
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The panel on bottom right side of each figure shows all those curves of respective sub 

regions in different colors which stand for NW (black), W (blue), SW (yellow), N 

(red), C (cyan), S (purple), NE (green), E (pink) and SE (gray). The y-axis shows 

seasonally adjusted and autocorrrelation filtered temperature in degree Celsius (°C) 

and x-axis represents the year from 2000 to 2015, n is the number of observations in 

each sub region, a1 is the autocorrelation coefficient, Inc/dec is meant to show increase 

or decrease of temperature per decade and its difference between the period 2000 and 

2015 gives total change of the temperature in 15 years period. The pink dots are the 

unreliably fluctuating LST, which are more frequent in alpine region and are 

eliminated during analysis. 

The results of all 243 sub regions showed the rise of temperature ranging from 0.009 

to 0.430°C and a fall from – 1.047 to – 0.010°C along with the autocorrelations (a1) of 

the data below 0.35. The graphs showed, alpine region had most of the pattern facing 

downward and the temperature variation was highest among three ecozones. Level of 

temperature was much below 20°C in alpine region while in tropical and temperate 

zones it was distinctly above that. The patterns in alpine Himalaya were mostly 

downward facing or the falling type (Figure 3.4). In temperate Mountain the patterns 

looked almost flat with very gentle rising (Figure 3.5). While in tropical Tarai, mostly 

the LST patterns were upward facing or rising type (Figure 3.6). Hence, the rising 

pattern (the positive change during 15 years’ period) was highest in Tarai (74.1% 

grids) than in Mountain (67.9% grids) and Himalaya (22.2% grids) regions. In overall 

study area, the significant rising pattern was prevalent only in 46.5% of grid area.  
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Figure 3.4 LST trend for 15 years in alpine zone, region 5 

 

Figure 3.5 LST trend for 15 years in temperate zone, region 14 
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Figure 3.6 LST trend for 15 years in tropical zone, region 23 

LST pattern and altitude 

The LST pattern plotted over the altitude map of study area showed that the alpine 

zone (Figure 3.7, in black box), with dark green color and representing >3,500 m 

altitude, had mostly downward facing pattern or falling type of pattern. The temperate 

zone (in red box), with brown color and representing 1,500-3,500 m altitude, had 

most of the pattern flat or gently rising. The tropical zone (in blue box), with had 

mostly the upward facing or rising pattern. 
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Figure 3.7 LST pattern and altitude status in the study area 

LST pattern and land cover  

The LST pattern plotted over LC map of study area showed that the alpine zone 

(Figure 3.8, in black box), with red colored patches indicating the non vegetated land 

had mostly downward facing pattern or falling type of pattern. The temperate zone (in 

red box), with brown color indicating the tree forest, had most of the pattern flat or 

gently rising. The tropical zone (in blue box), with mixed form of shrub/ crop and the 

tree forest, represented by yellow color, had mostly the upward facing or rising 

pattern. 
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Figure 3.8 LST pattern and land cover status in the study area 

3.1.3 Grouping of LST pattern into five categories  

The various shapes of pattern when plotted on the study area map for all 243 sub 

regions, we can observe the various pattern distributed in the study site (Figure 3.7 

and 3.8) which were grouped into five categories (Figure 3.9) based on their shape. 

They are, ‘Flat’ pattern (11.5% grid area,  ,  ,  ), ‘Acclerated-increasing’ 

pattern (25.9% of grid area, ,  ), ‘Decelerated-increasing’ pattern (20.6% of grid 

area, ), ‘Decelerated-decreasing’ pattern (22.6% of grid area, ) and 

‘Accelerated-decreasing’ pattern (19.3% of grid area, ).  
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Figure 3.9 Five categories of LST curves within 27 regions 

3.1.4 Association of LST pattern with altitude and land cover  

Those five categories were regrouped into two based on whether the change of LST 

pattern is accelerating or not. Refering to Figure 3.9, ‘Accelerating’ pattern, included 

Accelerated-increasing pattern and Accelerated-decreasing pattern, and ‘Non 

accelerating’ pattern included rest of all LST pattern among five categories. Logistic 

regression model was used to find the association of LST binary pattern with altitude 

and LC of the area. The result showed there was negative association of LST 

Accelerating pattern with altitude and the non vegetated LC. The sum contrasts 

method was used to show 95% confidence intervals of these change. Figure 3.10 

shows the CI plot of the results. Red horizontal line is the overall percentage of 

accelerating pattern (46.5%) and y-axis explains about the probability of accelerating 

pattern. On x-axis three categories of altitude and 3 of LC are observed. The green 

dots are crude mean of each while black dots in CI line represent the adjusted means 

from the whole model. The figure clears that, when the altitude is lower there is 
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higher probability of having accelerating pattern or vice versa. In LC, no vegetated 

land had less probability of having accelerating pattern of LST while the other two 

categories did not show significant difference from the overall acceelrating pattern. 

 

Figure 3.10 CI plots to identify the association of LST pattern with altitude and LC 

3.2 Results of NDVI data 

This part of work focusses on the results for pattern and trend of NDVI changes in 

Nepal during 15 years’ time. Each of the three regions (refer Figure 2.5) were 

analyzed one by one at grid level. Since the different grids show similar ideas, out of 

196 selected grids only some grids of each region were displayed for explanation 

below. 

3.2.1 Seasonal pattern of NDVI 

Each of the three regions were analyzed one by one for observing seasonal pattern of 

temperature between 2000 to 2015. Each panel in Figure 3.11 represents a grid and 

the symbols in figure are same as explained in seasonal LST analysis (refer section 

3.1.1). X-axis represents the Julian day and y-axis indicates the NDVI values. In each 

panel, a smooth spline curve (red line) is derived from cubic spline model. 
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Out of 196, systematically selected grids for analysis of the study, only central grid 

was selected for display representing each of east, center and west regions (Figure 

3.11). The n represents the number of observation of NDVI for each grid. The x-axis 

represents the observation day of year and y-axis represents the NDVI index in the 

selected grid. The red line is the spline fit after removal of unreliable and doubtful 

values and the model R
2
 increased respectively from 11%, 15% and 58% to 86%, 50 

and 82% before and after the data management process, respectively. Spline curve 

does not show much variation of pattern among its nearby grids since they were all 

from same climate zone within a distance less than 700 km. Every region showed that 

the vegetation grew and reached peak in rainy season and gradually declined to trough 

in winter. The NDVI in east region extends from 0.40-0.85 (Figure 3.11 (a)), 

indicating that it has a lot variation of vegetation from crops to trees, while in the 

center, it ranged from 0.70 to 0.90 (Figure 3.11 (b)) indicating that it lacked crops and 

shrubs. In the west, the range of vegetation highly fluctuated from 0.40 to 0.80 

(Figure 3.11 (c)), meaning the range of vegetation is from crops to tree, similar to 

eastern region.  

The greening observed to start in days 81, 97, 129 and browning in 257, 273, 273 in 

those three regions respectively. Here, both greening and browning was earlier in east 

than the other areas. Therefore, the start of season (greening of vegetation) had a trend 

to move from east to the west ward area and same was the case of browning. 
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Figure 3.11 Seasonal NDV pattern in east (a), center (b) and west (c) of Nepal 
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This evidences that vegetation is in peak, from 160 to 290 (June to October) and 

lowest in winter during day 350-75 (December to March). The peak period is called 

greening season and trough period is called browning season. Two phenological 

metrices, the begining of season (start of greeening) and end of season (end of 

browning) were used to identify the changes in seasonal characteristics. Here, in east, 

center and west regions, greening started on day 81 (March 21), 97 (April 7) and 129 

(May 9) while the browning starts in day 257 (September 17), 273 (October 3) and 

273 (October 3) respectively every year. Therefore the greening was earlier and 

longer in east than west region of Nepal. 

3.2.2 NDVI trend 

Linear trend 

Linear regression model was used to observe the trend of NDVI, for 196 grids in each 

of the three regions which were modeled one by one. The data were plotted and the 

annual seasonal fluctuation of NDVI, derived from the natural cubic spline function 

was added back to the plot and shown in red line along with green that explained the 

NDVI trend for 15 years period. In Figure 3.12 to Figure 3.14, black dots are data 

plotted year wise. The increasing or decreasing trend (Inc/dec) per decade and 

respective p-values from linear regression show how much vegetation has been 

changed from 2000 to 2015. Here, n represents the number of observation in each 

plot. In eastern region (Figure 3.12), the statistically significant increase and decrease 

occurred in 59.2% and 6.9% of the area that cleared about the dominant increasing 

trend of vegetation. The central region (Figure 3.13) has mixed form of result. Total 

significant rise was seen in 22.9%  area while 24.5% had significant decline. Finally 
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the western part showed 61.2% grids had the significant increase and 14.8% had 

decreasing (Figure 3.14) trend.  

 

Figure 3.12 Linear trend of NDVI show ing an increase (a) and a decrease (b) in east 

 

Figure 3.13 Linear trend of NDVI showing an increase (a) and a decrease (b) in center 

 

Figure 3.14 Linear trend of NDVI showing an increase (a) and a decrease (b) in west 
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GEE and confidence interval plots  

To derive further conclusion about the overall change of NDVI in each region GEE 

was fitted to 196 grids in combined form but divided the time frame into three 

sections, 2000-2004, 2005-2009 and 2010-2015, due to reason, GEE can fit well in 

the data having correlations in outcome varaible within the cluster. A 95% CI plots 

were drawn from the coefficient values of the model to show vegetation trend in three 

time sections (Figure 3.15). The red horizontal line is the the level of no change of 

NDVI. Vertical lines are the confidence intervals (CI) of each of the five year period 

data. X-axis indicates three sections of time for each region and y-axis represents the 

change of NDVI per decade. The results showed that the NDVI trend was overall 

increasing in east and west regions while it was decreasing in the center. 

 

Figure 3.15 Confidence interval plots of NDVI change in three time sections during 

2000-2015 in east (Dhankuta), center (Kathmandu) and west (Surkhet) of Nepal 
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Chapter 4 

Discussion, summary and conclusion 

 

4.1 Discussion 

4.1.1 Study of LST 

The altitude, in Nepal, ranges from 60 m from the sea level to 8,848 m, the highest 

summit of the world the Mount Everest, while moving from north-south width. 

Therefore, within this altitudinal variation a huge diversity in nature can be obtained. 

The variation of soil type and rainfall are much different even from east to west or 

north to south of Nepal. Moreover, the climate variables are quite sensitive to respond 

the geographical or ecological variations. The previous studies have shown that, at the 

expense of macro-level spatial analysis, the local level climate changes have often 

been overlook. Therefore, this study identified the changing temperature and 

vegetation pattern in Nepal at local levels.  

The study applied a combination of natural cubic spline function and polynomial 

regression model for LST pattern analysis. MODIS LST time series data had 

uncertain and missing values due to cloud cover. Even in that situation, it has been 

suggested that the cubic spline function can be used to detect the seasonality in 

MODIS LST time series (Wongsai et al., 2017). The seasonal temperature pattern 

showed almost similar peaks (in summer) and troughs (in winter) in all sub regions 

suggesting that they do not vary in these locations. In contrast, the study by Portmann 

et al. (2009) in USA showed that annual maximum and minimum temperature trend 

can significantly vary but at a larger distance areas. The local variation in annual 
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temperature pattern might have happened due to the effect of different natural 

(vegetation, altitude and topography) and human factors (land use and urban 

activities). The tropical zone had mostly ‘Accelerating’ pattern and the temperate 

zone dominantly had Flat pattern. Both of these regions had lower altitude and dense 

population. The alpine zone had mostly ‘Non accelerating’ pattern, might be due to 

lower human activities and higher altitude. Hence, this study has revealed a strong 

negative association between temperature pattern and altitude. A work in Malawi 

Africa with the altitude (900-2,400 m) had investigated a coherent result of negative 

association between temperature and altitude (Lancaster, 2012). The temperature 

trend and altitude relationship studied in China by Dong (2014), explored some 

differing results. The temperature was decreasing below altitude 200 m and increasing 

from 200-2,000 m and weakly positive above 2,000 m. Even though the altitude and 

temperature change has a very strong statistical relationship, all these studies revealed 

that it can be either positive or negative, depending on the altitude level, topography 

and land use pattern of the location. Moreover, the association of LST pattern with LC 

showed that significant association of non accelerating pattern was prevalent in the 

non vegetated area. The study of three ecozones show completely distinct results and 

that give a clear picture about how the temperature pattern locally look like and it 

assures that they differ in different ecozones as well. The binary category of LST 

pattern shows that accelerating and ‘Non accelerating’ pattern were in almost 4.5:5.5 

ratio, indicating that more than fifty percent area has non accelerating pattern. The 

interesting part of this result is that most of the accelerating pattern were observed in 

tropical Tarai while in temperate Mountain and alpine Himalaya zones the pattern are 

mostly flat or non accelerating. Hence, accelerating pattern of temperature is seen 
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progressive from north to south of Nepal. The previous studies have shown that the 

accelerating pattern is due to more urban builds and higher population (Sun & 

Kafatos, 2007; Maria 2012; Sun et al., 2012) or the altitude (Aigang, 2009; 

Khandelwal et al., 2017) and both factors are in reversed condition from south to 

north. Additionally, in alpine zone snow clad land is seen as a unique feature. The 

previous studies show a contrasting result that (Johanssen et al., 2004; Chen et al., 

2013; Shrestha et al., 2016) the rate of ice melt in snow clad lands is much higher due 

to the effect of anthropogenic activities and a consequent rising temperature. That has 

alarmed the whole world about the global warming scenario from melting of snow 

caps to rising of sea levels. However, Westergaard-Nielsen et al. (2018) studied that 

the thick snow clad surfaces in Greenland do not show rising LST pattern and that the 

result is coherent with ours. Therefore, all snow clad lands do not have same rising 

pattern of temperature and that might depend on population density, the thickness of 

snow over the ground surface or else.  

All those previous studies differ from ours in that, they show the association of 

temperature itself with the other variables while ours explain the relationship with the 

type of temperature change pattern. Those studies mostly explain gross picture of 

temperature change in a big region that does not give the idea of local pattern. In this 

study it is clear that the local variation of the changing pattern of temperature do exist 

at any particular area. The ecozones were identified as a part that can contribute for an 

important information of pattern of local temperature change in this single study. 

Even though the absolute causes of this kind of differences in temperature pattern in 

three ecozones is out of the scope of this study the associations of these pattern with 

altitude and land cover in the selected area have been observed. However, the detail of 
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the causes of these pattern can be further explained in future work. Also, the trend of 

future pattern can be explored in longer period data by using other appropriate tools 

such as spline curves or polynomial regression with higher degrees. 

4.1.2 Study of NDVI  

Regarding vegetation, the seasonal pattern showed the vegetation increased to highest 

level at the end of rainy season that is during September and eventually declined to 

the minimum level in the winter season during January to March. This result is 

consistent with other studies in tropical or temperate climate zones where seasonal 

fluctuation is commonly exhibited in vegetation (Zhang et al., 2016; Chen et al., 

2014; Suepa et al., 2016; Evrendilek & Gulbeyaz, 2008; Yin et al., 2016). High 

humidity, temperature and rainfall favours, the plant growth and refoliation during 

rainy season. Also, the science has proved that, the growth of plants including its 

metabolic rates is much reduced in cooler air temperature (Fitter & Hay, 2002). The 

grid level regression analysis showed that NDVI was dominantly increasing in east 

and west sub urban areas while it was slightly decreasing in central urban Kathmandu. 

Additionally, the significance of the trend in vegetation changes for overall study area 

was identified by using GEE. The 95% confidence interval plots of vegetation showed 

significant rise in east and west regions while there was overall decline in the central 

regions. The global NDVI trend, including India and Southeast China, was found 

increasing during 1982-2012 (Liu et al., 2015). A coherent result was seen in Tibetan 

plateau during 2000 to 2009 (Zhang et al., 2013). Nepal is located between these two 

countries and can expect a similar pattern in the country. Even though the result was 

consistent in east and west regions, Kathmandu showed declining vegetation, might 

be due to dense population and fast urbanizing city area. In addition, Uddin et al. 
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(2015) have shown a contrasting result that the vegetation is continuously declining 

over the past few years in Nepal. But it was limited to only alpine region which 

represents very small fragment of vegetation in Nepal. However, this is pointing to 

our results with declining tendency of vegetation found in center.  

Further investigation is still required to understand the potential reasons behind this 

seasonal pattern and the trend of vegetation and temperature pattern. Probable climate 

factors that can bring variations in temperature and vegetation change patterns will be 

more relevant to analyze in future.  

4.2 Summary 

This study is about the modeling of LST and NDVI pattern and trend in Nepal during 

2000-2015 by using appropriate statistical methods. Therefore the analysis has two 

parts, LST and NDVI.  

4.2.1 Analysis of LST 

MODIS is a sensor, fitted into the Terra satellite by NASA, that measures 

environmental variables like LST in the whole world at a fixed interval of time. LST 

is measured in every eight day. The LST data were ordered for 27 regions that 

covered ecozones from North to South of Nepal. Each region was 21×21 km
2 

and the 

data are framed into the grids of size 1×1 km
2
 for every region. Hence there were 441 

grids per region. To reduce spatial correlation, every region is divided into nine sub 

regions each covering a total of 7×7 grids. Hence in 27 regions there are 243 sub 

regions altogether. Using natural cubic spline function, polynomial regression and 

logistic regression models as a new combination of method, this study tries to explore 

the changing pattern at local level. 
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The data were accounted for seasonal adjustment and autocorrelation effects so that 

they could be noise and error free and can successfully be applied to find the 

temperature pattern. The natural cubic spline function helped to find the seasonal 

pattern of LST and the polynomial model was used for observing seasonal pattern and 

time series trend at every sub region. The observed patterns of temperature were 

binomially categorized and explored its association with altitude and land cover of the 

area.  

Although the seasonal pattern of LST were comparatively consistent with respect to 

the nearby locations, the temperature trend varied a lot. They were more effective in 

explaining how the actual path (pattern) of temperature change looked like during a 

period of time. The various patterns were first categorized into 5 groups, Accelerated-

increasing (25.9%), Decelerated-increasing (20.6%), Accelerated-decreasing (19.3%), 

Decelerated-decreasing (22.6%) and others showing Flat pattern (11.5%). These 

pattern were further recategorized into two, ‘Accelerating’ or ‘Not accelerating’ type. 

In 27 regions, 46.5% area had ‘Accelerating’ pattern of LST. Ecozone wise, alpine 

region had lowest ‘Accelerating’ pattern (22.2%) than temperate (67.9%) and tropical 

(74.1%). The sum contrast method was used to obtain confidence intervals for 

comparing adjusted mean within each category of both the predictor variables with 

the overall mean. The altitude below 1,500 m (tropical zone) had higher probability of 

‘Accelerating’ LST pattern while altitude 1,500-3,500 m (tropical zone) had no 

significant difference from overall acceleration. However, above 3,500 m altitude 

(alpine zone), there was lower probability of having ‘Accelerating’ LST pattern. 

Moreover, the ‘Accelerating’ pattern was significantly negative with non vegetated 

land cover. The overall results gave an idea of local variation of temperature changing 
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pattern, its relation with altitude and land cover as well as a comparative picture of 

LST in three ecozones. 

4.2.2 Analysis of NDVI  

The NDVI data were measured in every 16 days interval. Data are obtained in form of 

grids of size 250×250 m
2
 for NDVI. The NDVI was ordered for three different 

regions of Nepal covering east, center and west of Nepal, all belonging to temperate 

Mountain zone. The NDVI data were managed for both unreliable (highly fluctuating 

in a short time frame and sparse) and doubtful (when LST for the particular day was 

doubtful) values. The analyses were done at grid level. The studies about NDVI, so 

far had analyzed the data for wider regions while this study attempts to obtain results 

from each grid of the study area. 

Natural cubic spline function with linear regression and GEE models could 

successfully show the seasonal pattern and changing trend of NDVI in three ways, at 

three study sites from east to west of Nepal. Initially, the seasonal pattern in every 

grid was analysed, secondly, the trend of individual grid cells and finally, the trend of 

whole study area in three time sub periods were investigated. In addition comparison 

of rate of changes in those time segments as well as among the study sites were done.  

The results cleared that greening and browning of vegetation were earlier and longer 

in east side than west by more than 15 days, might be due to positive association with 

rainfall towards the eastern area that gets more rainfall by the virtue of its location. 

Finally, GEE model was used to explore the trend of NDVI change in 15 years period 

from 2000 to 2015. It identified that east and west regions, which were sub urban 
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areas, had apparently increasing trend of NDVI in all three periods during 2000 to 

2015, while at central Kathmandu, a growing urban city showed a decreasing trend.  

4.3 Conclusion 

These studies illustrate the simple and effective approaches to time series data for 

assessing spatial and temporal changes of climate variables like LST and NDVI at a 

local scale. The LST showed similar seasonal pattern, a peak around April and trough 

around January every year for each ecozone in the study area. Also, LST pattern is 

found accelerating in southward area which is more populated. Five different types of 

LST pattern were identified: Flat, Accelerated-increasing, Accelerated-decreasing, 

Decelerated-decreasing and Decelerated-increasing. The binomial forms of those LST 

pattern showed that Accelerating pattern had negative association with altitude and no 

vegetated land cover. Regarding NDVI, the seasonal pattern did not show much 

variation among three districts from east to west of Nepal and the phenology (time for 

seasonal greening and browning of vegetation) was found to shift from east to west 

every year.  However the time series change in overall region showed a significant 

rise of vegetation in east and west sub urban areas, while, a serious decline was 

observed in central urban area. The methods can be generalized and also provide a 

basis for climate change information at a local level that can help local stakeholders in 

their long or short run development affairs. 

4.4 Limitations 

Some limitations do exist in the study. The cause of change and pattern is not 

adequately studied here and therefore the association with NDVI and LST with 

different climate variables is required to answer why a particular pattern of NDVI or 
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LST do occur at specific regions in Nepal. This question would guide us for the 

further continuation of the research.  

4.5 Implication and Recommendation 

The local level temperature or vegetation change in Nepal is essential to monitor for a 

proper control of negative consequences. The idea of seasonal as well as time series 

variation of temperature and vegetation at a local scale is of importance to local 

government and stakeholders to get idea for successful formulation of plans before 

starting any developmental, social and economic activities. Furthermore, the study 

can extend to a wider area, covering whole of the country and apply much simpler 

method for instance, only the spline function for both seasonal pattern and trend. 
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Abstract 
 

Normalised difference vegetation index (NDVI) data were analysed to identify the 

seasonal patterns and the time series trends of vegetation in Kathmandu. The data were 

managed in three steps: reordering, removal of unreliable values and validating. A cubic 

spline function was used to examine annual seasonal patterns that revealed regular 

seasonal peaks (day 225 to 280) and troughs (day 50 to 81) of vegetation and start of 

greening from April and of browning from November. Linear regression models were 

fitted to seasonally adjusted NDVI, which statistically showed 40.70% of the grid cells  had 

a significant increase and 24.71% of it had decreasing trends. To adjust for 

autocorrelation, generalized estimating equations (GEE) were fitted to the data for whole 

area that showed, the overall vegetation has been significantly declining at a rate of -

0.005 ̊C and -0.006 ̊C per decade for 2000-2004 and 2010-2015 respectively. The recent 

period of decline is alarming for a growing city like Kathmandu. 

 

Keywords: Satellite data, normalised difference vegetation index, cubic spline function, 

linear model, generalized estimating equations 
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1.0  INTRODUCTION 
 

Vegetation is a general term for plant life, referring to 

the ground cover, and is the most abundant biotic 

element on Earth. It is essential for sustaining the 

ecological system of the Earth and serves critical 

functions at all possible spatial scales [1]. Therefore, 

quantifying the time trends of types, extents and 

characteristics of vegetation is of utmost importance 

for resource management, addressing the climatic 

issues among others. The worldwide studies of 

vegetation show that it has been changing in 

location dependent manners [2, 3]. The changes in 

vegetation on the land surface affect climates at 

both regional and global regions from short to 

extended periods of time [4]. Most of the factors that 

cause climate change are correlated with 

vegetation [3, 5, 6]. Therefore, a study of quantitative 

changes of vegetation is important for assessing 

climate change related issues. However, reliable and 

complete data are challenging to obtain, especially 

in low-income countries where the field data 

inventory system is not yet properly in place. In this 

situation, the remote sensing or satellite data provide 

the best alternative, and one of the most common 

types of satellite based data is the Normalised 

Difference Vegetation Index (NDVI) from Moderate 

Resolution Imaging Spectro-radiometer (MODIS) [2, 7, 

8, 9, 10].  

MODIS is a sensor, fitted aboard the Terra and 

Aqua satellites by the National Aeronautics and 

Space Administration (NASA), and it monitors 

environmental changes due to fire, vegetation, 

temperature, earthquakes, droughts and floods ot 
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Earth [10]. Normalised Difference Vegetation Index 

(NDVI) is created based on MODIS remote sensors 

capturing the spectral behaviour of vegetation. The 

theory behind these sensing data is that vegetation 

reacts differently to different parts of the 

electromagnetic spectrum (including visible light). 

The electromagnetic waves are typically absorbed in 

the red and blue wavelengths, so reflected light 

retains the green wavelengths, with strong reflection 

also in the near infrared (NIR) wavelengths [11]. 

Based on this, the NDVI is calculated as a normalised 

ratio of the NIR and red bands. In every grid, each 

observation time is 16-day period. Therefore, in every 

year, the number of observation times is 23 and, 

consequently, a total of 345 times for 15 years period. 

NDVI for each observation time can be computed as 

follows,  

 

           
   iiiii REDNIRREDNIRNDVI  /    (1) 

 

where i  denotes an observation time (1, 2, 3, …, 

345). iNDVI  is the NDVI value of the observation  i , 

while iNIR is the NIR reflectance and iRED  is the 

RED reflectance of the observation i , respectively. 

NDVI has been found more reliable [12] than 

other data types and equally useful for study 

purposes in either local [13] regional [7] or global 

scales [3]. The analysis of large areas is common in 

prior research studies [2, 6, 9, 13] in which NDVI has 

been applied for detecting changes. The local 

changes need to be analysed in a relatively small 

area for benefit of the local government or the local 

people. In a macro-level spatial variation analysis, 

often the local level changes have been overlooked. 

Additionally, an analysis of remote sensing data over 

a smaller area for understanding the seasonal 

patterns and trends in detail is still seldom pursued. 

A country where the vegetation data are 

considered fairly significant for environmental issues is 

Nepal, as the Department of Forest Research and 

Survey has reported that 40.36% of its total land areas 

is still covered by forests [14]. Regarding the 

vegetation in Nepal, most studies have been 

regional [15, 16] or on the national level [17, 18]. 

Studies have been carried out using remote sensing 

data to investigate the changes in land covers [16, 

18, 19] and farming or grazing areas [15, 17] and the 

associated factors. However, assessment of changes 

in vegetation as a natural resource, in particular for 

Nepal, is still lacking. Moreover, the current and 

accurate data on vegetation index, especially 

including historic time series has not been widely 

available. It is also difficult to survey the vegetation in 

Nepal because of complications in its geography. 

This lack of vegetation studies and relevant data is 

also evident for Kathmandu valley, a part of the 

mountain range in middle Nepal. Because 

Kathmandu valley is the fastest growing urban 

region, the vegetation changes are necessary to 

assess for urban planning and environmental 

concerns. Therefore, a preliminary step is to 

understand the interactions of vegetation and other 

factors, and to identify the patterns and trends 

through temporal and spatial analysis techniques. 

This study was aimed to identify the inter-annual 

temporal trends and intra-annual seasonal patterns 

using NDVI as remote sensing data for Kathmandu 

valley from 2000 to 2015 by using appropriate 

statistical methods. 

 

 

2.0  METHODOLOGY 
 

2.1  The Data 

 

The Kathmandu valley, covering an area of 900 km2, 

consists of the three major districts, Kathmandu, 

Bhaktapur and Lalitpur, with the highest population 

density (>4000/ km2) in Nepal. Kathmandu valley has 

a warm temperate climate with dry and cold winters 

[14]. The temperature is highest (>30°C) in April and 

May, and the lowest (<1°C) in December and 

January. There is a heavy monsoon period in middle 

of the year. It has three main annual seasons, 

summer, rainy fall and winter. Regarding vegetation, 

the valley consists of mostly the temperate varieties. 

The plants shed off their leaves during winter, give 

sprout from March, and become fully canopy 

loaded in June [20]. 

 

  
 

Figure 1 Study area in Kathmandu (demarked as 

parallelogram at the center) 

 

 

The NDVI data were downloaded from MODIS’s 

website for data subset [21] for the study area around 

Kathmandu valley as shown in Figure 1. The 

coordinates of the central point of the study area are 

27.595°N and 85.394°E. Regarding the format of NDVI 

data from MODIS, the area around the central point 

was obtained with 250×250 m2 grid as spatial 
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resolution. The covered area extended on all four sides 

10 km away from the center (East, West, North and 

South). As a result, the study area was automatically 

generated to cover 20.25×20.25 or 410.0625 km2, with 

6561 grid cells (81×81) of 250×250 m2 each. The 

downloaded data were specified for a period from 

2000, the starting point of MODIS service, to 2015. The 

NDVI data were recorded once every 16 days. For 

each grid cell, there were around 23 observations per 

year, accumulating to maximally 345 observations over 

the 15 years. Some observations were missing due to 

the sensor’s technical problems, and the actual total 

count of observations for each grid cell was typically 

below this maximum. 

The raw data for each selected NDVI grid cell 

were divided by 10000 to adjust the values to the 

range from −1 to 1. The negative values up to 0 

correspond to water. The values from 0 to 0.1 

indicate soil, rocks or concrete, snow land and 

barren land. The low positive values (0.2 to 0.4) mean 

shrubs and grass land. Values close to 1 (0.6 and 

above) are detected for forests [22]. Therefore, the 

greater the NDVI value is, the denser the vegetation 

is in the area. 

 
 

Figure 2 The plot of NDVI from the central grid cell showing 

unreliable low indices 

 

 

As an example, the total scatter plot of NDVI data 

across the central grid is displayed in Figure 2. Here, n 

represents the total number of observations and 

every dot on each vertical grid line represents one 

observation value on the same recording period (23 

periods). Therefore, every vertical line on the x-axis 

displays 15 NDVI values corresponding to a particular 

day in each of the 15 years, in a consecutive 

manner. This plot starts from Julian day 1 and ends on 

day 365. However, the data needed to be further 

organized before going to analysis due to three 

problems. Firstly, during the raining season or 

between days 160 and 260, sparse NDVI values could 

be seen. This scarcity could affect the analysis for 

determining seasonal patterns, which needs 

uncensored data. The second problem was rapid 

increases in NDVI within a short time periods (within a 

few weeks or months), which was virtually impossible. 

This was attributed to growth of plants and these 

NDVI observations were considered unreliable (an 

example is illustrated by an arrow between two 

encircled dots in Figure 2). The final problem for these 

data was that, on a heavily clouded or wet day, 

NDVI might be perturbed by obstruction of the sensor 

by clouds or water vapour, and the data would 

need to be validated. The NDVI data then needed 

to be cross compared with another MODIS signal at 

the same location and time, to confirm it. 

 
 

Figure 3 The plot showing unreliable (cross marks) and 

doubtful (blue dots) data for the central grid cell 

 

 

To solve the aforementioned problems, the data 

were cleaned in the following steps. First, the data 

were reordered to start from day 190 and end on 

day 189 as shown in Figure 4 to move scarcity to 

beginning and end of the period. This made the data 

more continuous for further analysis. Second, the 

data points were deemed unreliable if they were 

greater than 0.02 or lower than −0.02, and 

consequently were removed to reduce the level of 

fluctuation, while still maintaining the normality 

assumption of residuals in data. Those data points are 

shown with cross marks in Figure 3. Finally, to check 

NDVI’s validity, Land Surface Temperature (LST) was 

selected to confirm that all the signals were valid. For 

the same location and the same observation day, if 

LST was not realistic, for example the LST went missing 

or the temperature could not be detected, it 

confirmed the MODIS did not work properly. Thus, 

other measured signals of that day, including NDVI, 

were doubtful. On these grounds, 23 NDVI values 

were identified as doubtful and were duly removed. 

These doubtful data are depicted as bigger dots in 

Figure 3. In total 59 unreliable and doubtful NDVI 

values were detected and removed. The remaining 

238 NDVI observations for this grid after removal of 

doubtful and unreliable values were used for the 

analysis. The same procedure was carried out for 

each grid cell of the study area. R Statistical 

Programming version 3.2.1 [23] was implemented for 

data management and graphical displays. 
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2.2  The Statistical Methods 

 

There were three main steps of data analysis in this 

study. First, the NDVI data, at individual grid cell level, 

were used for analysing the intra-annual seasonal 

patterns. The second step was trend analysis for each 

grid cell, for which, the data were seasonally 

adjusted and linear models were fitted to identify 

trends of individual grid cells. Finally, the data for the 

whole area were divided into three 5-year periods 

(2000 to 2004, 2005 to 2009 and 2010 to 2015) for 

analysis and comparison of the overall NDVI changes 

in a smaller time frame. To clarify the data structure in 

this study, the three main notations of the data are 

defined. Firstly, j  denotes an observation time after 

omitting the observations of unreliable and doubtful 

data for each grid cell. Therefore, it varies among 

different grid cells and takes the maximum of 345, 

but usually has the value below the maximum ( j  

1, 2, 3, ...,, n, where n =< 345). Secondly, q denotes 

an observation time after omitting unreliable and 

doubtful data for 5-year period for each grid cell with 

the maximum of 115 observations, so q  1, 2, 3, …, 

m, where m =< 115. Lastly, r denotes a grid cell, 

considered a cluster for the analysis. In this study, 

then, r  1, 2, 3, …, N, where N = 49. 

This study used the cubic spline function to find 

the seasonal pattern of NDVI. This pattern is 

calculated by fitting a cubic spline function to the 15-

year data combined and plotted in one-year format. 

This enables the extraction of the seasonal pattern in 

a year without concerning the long-term trend.  

Furthermore, the function satisfies a special boundary 

condition where the functions beyond the first and 

last knot points are linear with the same slope. Thus, 

the cubic spline function is a combination of cubic 

and linear terms. In this study, the cubic spline took 

the form,  

 

3

1

)( 


 kk

p

k

ttcbtS     (2) 

 

where, S
 
is the spline function, t  is time in Julian day,

 
and  , b and 

kc  are the coefficients of the model. 

kt  
is the location of a knot, while pttt  ...21

 
are 

the specified knots and   ktt is the positive part 

of  ktt 
 
or max   ktt ,0 . 

The data were, then, seasonally adjusted to 

stabilize the mean. Because of the additive form of 

the seasonal component retrieved from the cubic 

spline function, the seasonal adjustment can be 

realized by subtracting the original values from 

seasonal component and then adding the 

difference between the means of seasonal 

component and seasonally adjusted NDVI [24], 

which is presented as,    

 

xSxSxy jjjjj  )()(
  

(3) 

 

here, jy
 

is the seasonally adjusted NDVI at 

observation j , while jx
 

is NDVI and jS  is the 

seasonal component value extracted from cubic 

spline function at observation j , respectively. 

)( jj Sx   and x  are the means of )( jj Sx   and 

jx , respectively.   

The seasonally adjusted NDVI data were further 

used for detecting the time series trend over the 15 

year period. Therefore, linear models were fitted 

separately to the seasonally adjusted data at every 

grid cell, to extract the trends.  The form of a linear 

model is, 

  

jjj ty   10    (4) 

 

here, jy   is the seasonally adjusted NDVI, jt  is the 

time at each observation and j  is the error term of 

the data,  for each observation j , respectively. 0  

is the intercept of the linear equation and 1   is the 

coefficient of the time jt . 

To account for the overall change in the study 

area, trends for the whole study area were 

computed. However, the data for a linear trend in 

each grid cell had spatial correlation within the cell. 

To tackle this problem, the Generalized Estimation 

Equations (GEE) were applied in this study. GEE is an 

extension of linear model that is specially designed 

for correlated data [25]. Furthermore, from the fitted 

models explaining the NDVI changes for all 15 years, 

it was difficult to distinguish the details of trends within 

this period. Therefore, the data were divided into 

three periods of 5 years each (2000-2004, 2005-2009 

and 2010-2015) and fitted with GEE models 

separately. To display the results, 95% confidence 

intervals were calculated for each sub-period and 

plots were produced to show the changes in three 

time frames for NDVI in Kathmandu valley. The 

equations for GEE and related equations [25, 26] can 

be explained as follows. The generalized linear model 

can take the form of, 

 

 
                

)(,)( 1  
qrqrqrqr TgYE 

             

(5) 

 

where qrY  is a vector of seasonally adjusted NDVI at 

observation time q  in a grid cell  r . )( qrYE  or qr  

is an expected value of qrY , 
1g  is an inverse link 

function of qrT , a matrix of observation days and  ,  

a vector of regression coefficients. 
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Taking into account of all 49 grid cells together for 

the data of 5-year period, the GEE or quasi-score 

equation to estimate   is as follows, 

  

                     



 


N

r

rrr
T
r

r yV
B1

1 0)()( 
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   (6) 

 

here, 
T
r

r

B
)(




 is a transposed matrix of partial 

derivatives, where r  is a vector of expected values 

of NDVI at a grid cell  r . ry  is a vector of NDVI 

data at a grid cell a grid cell  r  and 
1

mV  is the 

inverse of the variance-covariance matrix of NDVI. 

All data analysis and graphical displays were in R 

Statistical Programming version 3.2.1 [23]. 

 

 

3.0  RESULT AND DISCUSSION 

 
3.1  Result 

 

3.1.1  Seasonal Pattern from Cubic Spline Function 

 

Eight knots were selected to fit the cubic spline 

function, shown as plus signs at the bottom of  Figure 

4, at the position of  15, 40, 70, 120, 150, 200, 230 and 

350 days. The model gave the coefficient of 

determination (R2) equal to 50%. The thin line in Figure 

4 is the spline fitted before removal of unreliable and 

doubtful values, while thick line is the spline fit after 

rearrangement of data and removal of unreliable 

and doubtful values. 

  

3.1.2  Trends for Individual Grid Cells from Linear 

Model 

 

For each grid cell, a linear regression model was 

fitted for the whole 15-year seasonally adjusted data. 

To illustrate the result, 12 grid cells were selected as 

representatives of three types of changes- an 

increase (e.g. grid cells, 242, 2086, 2574, 2580, 4942, 

4948 and 5430), a decrease (e.g. grid cells, 248, 730, 

736 and 2092) and a no-change (e.g. grid cell 5436), 

which are shown in Figure 5(a) to 5(l). The annual 

seasonal fluctuation cycle of NDVI, obtained from 

the spline function was added back for plotting and 

is shown as a wavy red line, along with a straight 

green line depicting the NDVI patterns and trends 

over 15 years. The dots in the figure are year-wise 

data points. The crosses are unreliable and doubtful 

data, removed before the cubic spline fit. The 

increasing or decreasing trend (Inc/dec) per decade  

and respective p-values from linear regression are 

shown in each picture. Here, n represents the number 

of observations in each plot. 

 

 
 
Figure 4 Spline curves before (thin line) and after (thick line) 

removing unreliable and doubtful values 

 

 

The results from all grid cells showed NDVI ranging 

from 0.3 to 0.9. The seasonal pattern was roughly 

unchanged for every year as shown in Figure 5. The 

linear trends illustrated a distinct variation between 

different years and locations among the grid cells. 

Moreover, 40.7% of the cells had statistically 

significant rise, while significantly declining trends 

were seen in 24.7% of the cells. Out of all grid cells, 

only 1.2% of the cells did not show any change in 

NDVI while rest 33.4% grid cells had changes but 

were not significant at all. Hence, the results showed 

a mixed picture of increasing and decreasing trends 

in NDVI, by grid cell location in the study area. 

 
3.1.3  Trend for the Whole Area and Confidence 

Interval Plots from GEE 
 

Finally, the GEE were fitted to the data divided into 

three time periods. The time series plots were drawn 

to illustrate the trend from GEE in each period. The 

rates per decade change are -0.005, -0.003 and  

-0.006 during 2000-2004, 2005-2009 and 2010-2015, 

respectively. The rate of change showed statistically 

significant association in only the first and the last 

periods (p values 0.050 and 0.018 respectively) and 

the overall decline throughout 15 years period is 

evident in the graph (Figure 6 (a), (b) and (c)). 
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As the results from GEE models, 95% CI plots of NDVI 

for all 49 grids were drawn to observe the confidence 

levels of the change. In Figure 7, the CI for the period 

of 2005-2009 is crossing a zero value. Therefore, NDVI 

can be considered statistically unchanged, 

coinciding with the p value. However, in other two 

periods of 2000-2004 and 2010-2015, NDVI showed a 

statistically declining trend with negative CIs. As 

shown in Figure 7, the rate of change for the years 

2000 to 2004 is ranging from -0.010 to 0 per decade, 

while that for the years 2010 to 2015 is ranging from -

0.011 to -0.001 per decade.  

Regarding the distribution of the data, NDVI is 

found slightly left skewed. However, this distribution is 

acceptable in this study because GEE can be used 

with the condition of the distribution assumption 

being relaxed [27]. 

 

Figure 5 Time series plot of vegetation showing increasing, decreasing and no-change trends in 12 different grids 

 

 

3.2  Discussion 

 

In this study, the seasonal pattern of vegetation 

showed the highest level in the rainy season during 

days 241 to 257 (September) and gradually declined 

to the lowest level in the winter season during days 50 

to 97 (February to April). Actually the winter begins 

from December, but the vegetation declines from 

the end of the rainy season to the end of January. 

This time variation of NDVI (decline) by season might 

be due to the time taken for plant defoliation till the 

minimum temperature day. The greening of 

vegetation started from day 97 (April) to the time 

when the atmospheric temperature adequately 

warmed up in the summer, while the rising of 

temperature began from mid of February (after day 

45). The seasonal pattern of NDVI growth, however, 

presented a slight gap between seasons and the 

vegetation growth, can be another inherent topic for 

further study. 

During the rainy season, the plant growth and 

refoliation is much favoured by high humidity, 

temperature and rainfall. Later the growth ceases 

with heavy defoliation and physiological dormancy 

after the onset of dry and cold winter season. 

Therefore, the seasonal pattern of NDVI, as seen in 

the results, fluctuated driven by these phenomena. 

This result is particularly helpful in agricultural sector to 

understand the annual climate response of 

vegetation or crops, especially to understand the 
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existing phenological characteristics of the area. This 

summer-winter vegetation character is well 

supported by the previous studies where there is 

higher growth of vegetation in warmer seasons than 

in winter [8, 12]. Also, it is scientifically proved that, a 

relatively cooler air temperature reduces the plant 

metabolic rates including its growth [27]. These prior 

reports corroborate the results in this study. 

 
 
Figure 6 The trend of overall NDVI (from GEE model) during 

2000-2004 (a), 2005-2009 (b) and 2010-2015 (c) 

 

 

In the trend analysis, the statistical results showed 

that significantly increasing or decreasing grid cells 

were numerically close to each other and the rest 

were insignificant on the level of individual grid cells. 

After GEE, the trends in vegetation changes for the 

whole study area could be assessed. The 95% 

confidence interval plots of vegetation showed 

significant declines in the periods 2000-2004 and 

2010-2015, while the mid period showed no change 

and the rate of decline was the highest in recent 

years. The Global NDVI trend studied during 1982-

2012 showed an increasing trend in many parts of the 

world including India and Southeast China [3]. The 

similar result was seen in Tibetan plateau of China 

during 2000 to 2009 [13]. Nepal lies in between these 

land blocks and may have similar pattern overall. 

However, as Kathmandu is a growing densely 

populated city, it may have been locally affected by 

several other factors, such as high density of 

population, resource exploitation, pollution and 

unplanned urbanization causing the decline of 

vegetation. In addition, Uddin et al. [28] have 

explained that the overall vegetation in Nepal is in a 

state of decline over the past few years. This is 

consistent with the declining pattern of vegetation 

found in this current study. Additionally, the method 

of data rearrangement and cleaning significantly 

contributed to obtaining much improved results from 

cubic spline fitting, to get the seasonal patterns. 

Otherwise, the same spline fitting technique before 

data management showed a lower NDVI scale even 

in the rainy season. This method of managing data 

can also be applicable to other types of noisy data 

with periodic censoring. 

Hence it was found that the overall vegetation 

around Kathmandu valley is declining in recent 

years, at different rates by time period, while the 

seasonal patterns show no remarkable changes. 

Further investigation is still required to understand the 

potential reasons behind this seasonal pattern and 

the trend.  

The limitation of this study is that it covers only a 

part of Nepal. With extended study areas, a 

complete picture of the vegetation changes for the 

country could be revealed. Also, this study includes 

only one indicator from a variety of remote sensing 

data. Therefore, the inclusion of more indices of 

satellite data can provide more information 

regarding changes in vegetation and other related 

factors in the region. 

 
 
Figure 7 Confidence Interval plots of the overall NDVI trends 

in three time frames 
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4.0  CONCLUSION 
 

This study showed the changing pattern and trend of 

NDVI in three ways. Firstly, the seasonal pattern at 

grid cell level showed the local level annual 

changes, and secondly, the trend of individual grid 

cells indicated the changes in small, grid level areas 

and the proportions of each change. Finally, the 

detail of trends for the whole study area in three time 

periods were investigated. In addition, a comparison 

of rates of changes in those time segments was 

carried out. Hence, it was clear that the vegetation 

in this study site had different rates of decline in 

different time frames, since 2000. 

The spatio-temporal changes of vegetation are a 

serious threat to ecosystems today. Therefore, this is 

an alarming signal for the policy makers around 

Kathmandu valley and measures to prevent a further 

vegetation decline should be taken. Technically, the 

study concludes that applying spline function fit and 

linear models along with GEE help successfully 

analyse the seasonal patterns and time profiles of 

changes in NDVI. Some other environmental factors 

could be added to predict probable causes of 

vegetation decline. This study indicates that simple 

yet effective approaches to time series data for 

assessing spatial and temporal changes in urban 

vegetation at a local scale can provide basic 

information for urban planners and anthropogenic 

studies.  
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Appendix II 

Paper II 

Modeling of LST to Determine Temperature Patterns and Detect their Association with 

Altitude in Kathmandu Valley of Nepal 

ABSTRACT 

Land Surface Temperature (LST) data, around Kathmandu Valley of Nepal from 2000 to 2015, 

were analyzed to determine the temperature patterns. The cubic spline function was used to show seasonal 

patterns which were similar for all sub regions, with a single summer peak and a winter trough. The data 

were then seasonally adjusted to remove seasonal effects and then filtered with the first order 

autocorrelation. The second degree polynomial regression model identified fifteen different patterns 

revealing that 65.43% of the area had ‘accelerating’ pattern while ‘non accelerating’ pattern was seen in 

34.57% of the area. The logistic regression confirmed that the patterns have significant association with the 

altitude (p-value= 0.006). Hence a varying pattern of temperature by location and time was identified in 

this study and the methods can be generalized to larger areas.  

 

Keywords: Land Surface Temperature, cubic spline function, polynomial regression model and 

temperature patterns.  

 

Introduction  

The temperature change, a crucial environmental problem, is particularly hard-hitting for low 

income countries which rely on natural resources for the economy and livelihood. The most important 

problem is the warming of land surface that imparts a direct influence on the surrounding ecosystem. The 

land surface temperature is related to both the natural and human activities, such as agriculture (Schlenker 

and Roberts, 2009; Smith et al., 2009), health-care and life (Dhimal et al., 2015; Xu et al., 2015), 

environment (Jones et al., 1999; Johannssen et al., 2004) and energy (Paniagua-Tineo et al., 2011; Jaglom 

et al., 2014) and hence affects every sphere of human life.  

Amidst the anthropogenic influences, global surface air temperature, from 2009 to 2019, was 

predicted to show a continuous rise (Lean and Rind, 2009). The average temperature of the earth had been 

increasing at a range of 0.65-1.06°C over a period of 1880-2012 and it was getting more serious and steeper 

on land surface due to combined effect of natural and human forces (Intergovernmental Panel on Climate 

Change [IPCC], 2013). Despite its wide scope and importance, many questions regarding the trend and 

pattern of temperature change mechanisms are yet to be properly addressed. The literatures so far have 

identified temperature change through annual seasonal patterns (Portmann et al., 2009) and the trends 

(Hughes et al., 2006; Devkota, 2014) but the analysis of annual temperature patterns that explain about the 

characteristics of the change is rare. This is also needful for local government and the people to imply an 

effective strategy for mitigating its negative consequences in situ. However, a reliable and complete data is 

challenging to obtain, especially in low-income countries where the field data inventory system is not yet 

properly in place. In this situation, the remote sensing or satellite data provide the best alternative, and one 

of the common satellite based data is the Land Surface Temperature (LST) from Moderate Resolution 

Imaging Spectro-radiometer (MODIS) (Wan et al., 2004). 
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Many studies have used several ways of analysis of temperature data including simulation model 

(Johannessen et al., 2003), remote sensing algorithm (Li et al., 2013), and various statistical techniques 

(Hughes et al., 2006; Dong et al., 2014; Me-ead and McNeil 2016). Wanishsakpong and McNeil (2016) 

used a polynomial regression model to investigate trend and pattern of Australian temperature. More 

recently, Wongsai et al. (2017) used cubic spline to investigate annual seasonal pattern and decadal trend of 

LST data.  

Nepal is more vulnerable to climate change impacts because the country has ecologically, 

biologically, and geographically diverse regions (KC and Ghimire, 2015). It was facing a maximum 

temperature increase of 0.03°C in summer and 0.05°C in winter, every year during 1978 and 2008 (Joshi et 

al., 2011). The growing urban region around Kathmandu Valley is suffering from unmanaged human 

encroachment and excessive pollution (United Nations [UN]-Habitat, 2015), which has consequent impact 

on the environmental temperature. Although, temperature variations and trends were studied in Nepal 

(Sano et al., 2005; Shrestha and Aryal, 2011; Devkota, 2014), the study to find the annual temperature 

patterns around the valley probably, is a different attempt. In fact, the global or regional climate change 

analyses usually average away the local variability and hence cannot represent the local variations of 

temperature (IPCC, 2013). Therefore, this study aims to identify comprehensive patterns of temperature 

change and analyze their association with altitude at local regions in Kathmandu over 15 year period. It is 

assumed that altitude has some relationship with the temperature change pattern in general (Stroppiana et 

al., 2014; Shrestha and Aryal, 2011; Lancaster, 2012). 

 

2. Materials and Methods 

The study area extends around the central coordinate of 27.595°N and 85.394°E, covering a total 

of 3969 km
2
 area around the Kathmandu Valley of Nepal (Figure 1). It is a hilly region with temperate 

climate and has three distinct annual seasons- winter, summer and rainy fall. Nepal Population and Housing 

Census 2011 (NPHC 2011, 2012) reveals that Kathmandu valley is the fastest growing and most populated 

city of Nepal having a population density of 2731/km
2
 while around the valley the density is below 

275/km
2
. The physiography of Nepal shows that there is hot plain land on southern belt and as we move 

towards north the altitude gradually increases while the temperature declines with land elevation (United 

Nations Environment Program [UNEP], 2001).  
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Figure 1. Map of Nepal showing study area (shaded box) 

 

The Land Surface Temperature data  

The Land Surface Temperature (LST) data, for nine regions representing the total study area, were 

retrieved from MODIS website (Oak Ridge National Laboratory Distributed Active Archive Center [ORNL 

DAAC], 2015). MODIS is a sensor, fitted aboard the Terra and Aqua satellites by the National Aeronautics 

and Space Administration (NASA). It monitors environmental changes due to fire, vegetation, temperature, 

earthquake, drought and flood on the earth (NASA, 2015). LST, one of the products of MODIS, has 

dynamic ranges, high radiometric resolutions and accurate calibrations (Wan et al., 2004).  Regarding the 

format of LST data from MODIS, for each region, the area around the central point was obtained with 1×1 

km
2
 grid as a spatial resolution. The covered area extended from all four sides 10 km away from the center 

(i.e., East, West, North and South). As a result, the study area was automatically generated to cover 21×21 

km
2
 with 441 grids of 1 km

2
 each. The data were retrieved one by one for each of the nine regions for a 

period from May 2000 to June 2015.  

The data were recorded in every eight days interval, that resulted into 46 observations per year 

approximately and accumulating to maximally 690 over 15 years. Some observations were missing 

(average 9.68% in nine regions) due to the sensor’s technical problem, and the actual total count of 

observations for each grid cell was typically below the maximum. Figure 2 shows the area for nine regions, 

each region was divided further into nine sub regions to ensure more details of changing patterns in a 

smaller area, of approximately 7×7 km
2
 that is equal to 49 grids in every sub region. The LST data for each 

sub region were taken as an average of 49 grids for every observation so as to reduce spatial correlation and 

to represent temperature for each sub region. The average LST were analyzed for each of the 81 sub 

regions. The central region is served as an example for sub regions (Figure 2) which were named as North-

East (NE), North (N), North-West (NW), West (W), Central (C), East (E), South-West (SW), South (S) and 

South-East (SE) based on their locations.  
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Figure 2. Study area of nine regions and the sub regional division in center 

Altitude Data 

The altitude data for 81 sub regions were obtained from Google Earth. First, nine different location points 

or their coordinates were calculated systematically, as a three by three matrix in each sub region. The 

altitudes of all these points were retrieved from Google Earth Images. These nine altitudes from each sub 

region were averaged to get a single altitude to represent a particular sub region. The altitudes ranged from 

435 m to 2245 m., which were grouped into two categories - the altitudes below 1500 m and higher than 

that and hence the variable of altitude became binary. 

 

Statistical methods 

Cubic spline function was fitted with selected number of knots to find the seasonal temperature 

patterns. The function took the form: 







p

k

ttcbts kkt

1

)( 3

                                   

  (1) 

Where, α, b and ck are the parameters in the model. t denotes time in Julian days, that is,  specified 

day of year. pttt  ...21  are specified knots and  


 ktt  is ktt   for ktt  and 0 otherwise. 
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The temperature data were seasonally adjusted by subtracting the spline fitted values  

( spy ) from the temperature ( y ) and then adding back the mean of the temperature ( y ) of each sub 

region. The formula took the form:  

yyyy spsa    (2) 

 The dependencies among the seasonally adjusted temperature data were reduced by removing the 

auto-correlations at lag 1 term (equivalent to 8 day period). The auto-correlation at lag 1 term ( 1a ) was 

shown in Figure 5. The data were then filtered (Wanishsakpong and McNeil, 2016; Me-ead & McNeil, 

2016). The filtered temperature data were finally fitted with polynomial regression model of second degree 

(quadratic model). The model took the form: 

 2

210 tbtbby fsa
  (3) 

Here, 0b  is the constant and
 1b , 2b  are the coefficients. The time of observation was 

represented by   and   is the error term. The estimated temperature increase or decrease was calculated 

based on the first derivative of the quadratic function.  

All the temperature patterns obtained from equation 4 are then categorized into a binary form 

(accelerating or nonaccelerating pattern). The association between the temperature patterns and altitude of 

the study area was identified using logistic regression model which took the form: 

x
p

p
 















1
ln      (4) 

where p  denotes the expected probabilities of the accelerating temperature pattern,   is intercept, x  is the 

determinant variable that is altitude and   is regression coefficient. The data used to construct the model 

comprised of 81 observations.  

R Statistical Programming (R Core Team, 2015) was used for overall data analysis and graphical 

displays. 

 

3. Results  

The LST data for all the sub regions were plotted. The annual seasonal patterns of LST are quite 

similar and the cubic spine does not show much variation across the nine regions. As an example, the 

central region was shown in Figure 3 that explains seasonal temperature pattern of every sub region. Nine 

panels represent the sub regions and eight positive     signs at the bottom of each panel show the knot 

positions. Each vertical gray line represents an observation day and the black dots are the temperature 

plotted consecutively for 15 years. In each panel, a smooth spline curve (gray line) is derived from cubic 

spline model with r
2
 ranging from 0.50 to 0.81. The temperature began to rise immediately after winter in 

February and the peak was seen during summer in March, April and May (day 80 to 140). By the end of 
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May it gradually declined and reached the trough in winter during December, January and February (days 

350 to 40).  

 

Figure 3. Cubic spline function showing seasonal patterns of temperature changes in nine sub regions of 

central region during days 1 to 365 

 Figure 4 is the illustration of 81 seasonal temperature patterns. Each panel represents nine sub 

regions of the respective region represented by different types of lines. Each line type stands for a particular 

location of the sub region, that is, black solid for NW, black dashed for N, black dotted for NE, black 

dotdash for W, gray solid for C, gray dashed for E,  gray dotted for SW, gray dotdash for S and light gray 

for SE sub regions. The figure shows that the seasonal patterns do not have remarkable difference by 

location except slight variations in temperature levels in regions two, eight and nine.  
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Figure 4. Seasonal temperature patterns of 81sub regions within respective nine regions 

 Seasonally adjusted, filtered temperature data, for every sub region, were subjected to the 

quadratic model and an example was shown in Figure 5, for central region. It illustrates the quadratic 

curves of nine sub regions in nine different panels. The tenth panel, on bottom right side, shows all those 

curves in 9 different types of lines, one for each sub region. The y-axis shows seasonally adjusted 

temperature in degree Celsius (°C) and x-axis represents the year from 2000 to 2015, n is the number of 

observations in each sub region, 
1a  is the autocorrelation of sub region level data, Inc/dec is meant to 

show increase or decrease of temperature per decade and its difference between the period 2000 and 2015 

gives total linear change of the temperature in 15 years period. The p-values of the quadratic model in each 

sub region are also shown. During 15 years period the study area showed net rise of temperature ranging 

from 0.009 to 0.430 °C and the fall from -1.047 to -0.010 °C along with the auto-correlations (a1) of the 

data below 0.35. 

Ira
Text Box
82



75 
 

 

Figure 5. Temperature patterns of nine sub regions of central region 

 The quadratic curves of the temperatures in 81 sub regions, plotted altogether in the map of study 

area (Figure 6), showed 15 different patterns which were categorized into two groups based on their shape. 

The first one is ‘accelerating’ pattern with 65.43% of the area coverage, the other one is ‘non accelerating’ 

with 34.57% coverage. The accelerating pattern included all the patterns that were in rising tendency ( , 

) while the next one included rest of all, like, thorough declining ( ), recently declining ( ) or 

the one showing no changes ( ). All of them were supposed to impart no risk effects to environment.  

 

Figure 6. Temperature patterns of 81 sub regions with altitude levels 
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Along with the temperature patterns, Figure 6 also shows the altitudes (shaded area) in the region. 

Here, 60.49% of sub regions had the altitudes lower than 1500 m and the rest of the area has higher 

altitudes. The core center, that is Kathmandu valley, was surrounded by high altitude while rest of the part 

has lower altitude. The logistic model applied to these variables showed that the temperature patterns was 

negatively associated (regression coefficient= -1.36, p-value=0.006) with the altitude of the site. It means, 

the accelerating temperature slopes were found to associate mostly with the lower altitudes and vice versa 

(Figure 6). Figure 7 illustrates the 95% confidence interval plot after the logistic model and it reveals that 

the accelerating temperature pattern is more likely to associate with lower altitude area.  

 

Figure 7 Confidence intervals plot showing association between temperature pattern and altitude 

 

4. Discussion 

This study applied a combination of cubic spline function and polynomial regression model for 

temperature pattern analysis. The data were MODIS LST time series for Kathmandu Valley of Nepal. 

Cloud cover and rainy seasons cause uncertain and missing values in LST time series. It has been suggested 

that the cubic spline function can be used to detect the seasonality in MODIS LST time series. The cubic 

spline function helped in annual seasonality extraction, even when there were missing values in time series 

(Wongsai et al., 2017). Since MODIS provides LST time series data for each grid (1×1 km
2
) the cubic 

spline can be applied to each LST time series (of every grid). In this study, the LST data for each sub 

region were aggregated and analyzed. Moreover, the sub region level results can be obtained for any extent 

of area coverage (each region can be bigger than 21x21 km
2
) and any length of time we need.  

The seasonal temperature patterns showed almost similar peaks (in summer) and troughs (in 

winter) in all sub regions suggesting that they did not vary in those locations. A contrasting result was 

observed by Portmann et al. (2009) who studied the distribution of temperature pattern in USA and showed 
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that annual maximum and minimum temperature trends could significantly vary at different sites but at a 

larger distance areas. They also pointed out that this variation was associated with the rainfall. The 

temperature can be higher or lower depending on topography (Fu and Rich, 2002) or land cover (Yue et al., 

2007) as well. However, the seasonal patterns in our study detected only the variation of temperature level 

for the panels 2 and 8. Here, the difference seen in the level of temperature might have caused due to the 

climate factors like topography, rainfall, altitude or land cover. 

 Previous study had shown that the trend of LST could be explained by a simple linear regression 

model (Stroppiana et al., 2014). Nonetheless, the linear model might not be the appropriate way to estimate 

trends for shorter periods. A polynomial pattern of temperature was identified in Australia from 1970 to 

2012 (Wanishsakpong and McNeil 2016) where the 6
th

 degree polynomial regression model had been used 

because the data were for more than 40 years. It could be seen that, within 40 years, a 15 year periodic 

temperature pattern were well explained and hence in our study, having shorter time frame data, a 

polynomial with lower degree (2
nd

) was used. Hence, the annual temperature patterns illustrated in 15 

groups are more interesting in this study. The patterns suggested the local variation of temperature change 

in the study area, that might be due to the effect of different natural (vegetation, altitude and topography) 

and human factors (land use and urban activities). The southern and the central sub regions have 

accelerating pattern. Both of these regions had lower altitude and dense population. The north and west 

area, both having higher altitude, had ‘non accelerating’ pattern. The literatures had showed that the 

analysis of regional or global scale data is very common to determine trends (Hughes et al., 2006; Devkota, 

2014) and patterns (Zhou et al., 2009; Wanishasakpong and McNeil, 2016) of temperature but the results 

do not illustrate the pattern at a particular locality in a huge study area. At the expense of macro-level 

spatial analysis, often, the local level changes have been overlooked. However, this study not only 

improves the understanding of temperature patterns in Kathmandu but also provides a basis for urban 

planning and environmental management at local level.  

 Some authors have pointed out that there is association between temperature and elevation (Fu and 

Rich, 2002; Pouteau et al., 2011; Stroppiana et al., 2014). The correlation is greater in winter and lower in 

summer and also known not to be consistent throughout the year as well as the study period while in our 

study, the logistic model aimed to explain the higher probability of having accelerating temperature pattern 

with respect to the lower altitude. The results were found consistent with the study by Stroppiana et al. 

(2014) that temperature change and patterns have negative association with altitude. Shrestha and Aryal 

(2011) showed that the rising temperature change was progressive towards the higher altitudes in 

Himalayan glacial region of Nepal where the area had mostly the altitude more than 4000 m and that might 

be the cause of the contrast with our results. However, in Malawi Africa with the altitude (900m -2400m) 

of similar range showed a coherent result of negative association between temperature and altitude 

(Lancaster, 2012). The temperature trend and altitude relationship studied in China by Dong (2014), 

explored some differing results that, the temperature was decreasing below altitude 200m and increasing 

from 200-2000m and weakly positive above 2000m. Even though the altitude and temperature change has a 

very strong statistical relationship, all these studies revealed that it can be either positive or negative 

depending on the altitude level, topography and land use pattern of the location.  

 This research helps understanding the distribution of LST pattern in a local area which is 

important since it can further help in either land use planning for developmental activities or make 

environmental policies to save it from excess thermal effects locally. Since people of Nepal are highly 

dependent on natural resources and agriculture, slight changes in temperature and rainfall pattern make 

people more vulnerable to climate change (KC, 2014). Finding the causal factors of variation in the pattern 

of LST change, needs a very detailed micro level analysis and probably, the reason of these 15 temperature 

patterns might be local biotic or abiotic factors. Nonetheless, the reasons behind different temperature 

patterns are out of the scope of this paper.  
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5. Conclusions 

 The method of cubic spline function and polynomial regression model, accounting for seasonal 

adjustment and autocorrelation effects in data, can be applied to find the temperature patterns a local level 

area. Although the seasonal patterns (intra annual) are comparatively consistent with respect to the nearby 

locations, the annual temperature patterns vary a lot. An evidence of 15 different patterns of temperature 

change, identified in this study, are more effective in explaining how the actual path (pattern) of 

temperature change looks like. This is the characteristics of temperature change that linear trends can never 

explain about. The methods can be useful not only in identifying the patterns of temperature change in a 

local area but it can also be generalized to a large scale area. It provides a base for climate change 

information at a local level and can be used by local stakeholders for managing and planning their cities 

and villages. 
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Abstract 

The aim of this study was to determine a pattern of Land Surface Temperature (LST) in Kathmandu, 

Nepal from 2000 to 2016 using appropriate statistical methods. The data, recorded every eight day with 

1 km2 spatial resolutions, were obtained from Moderate Resolutions Imaging Spectro-radiometer. The 

study area had 9 regions of 21×21 km2 area, each of which was further divided into 9 sub regions. The 

data for all sub regions were separately used for time series pattern analysis. First, the data were 

seasonally adjusted and auto correlation was detected by autoregressive method. Then, the data were 

filtered to eliminate correlation effects. Finally, polynomial regression model of second degree was 

applied to find the temperature patterns. The results showed that 27% of the area were found to have the 

temperature patterns of steep rising, while the patterns in another 27% had increasing then decreasing 

shape. Moreover, 25% of the area had decreasing then increasing pattern and the remaining 21% of the 

area showed no change appreciably. This method can be applied in other climatic factors that have 

influence on ecosystem. 

 

Keywords: LST, auto-regression method, polynomial regression model 

JEL classification: Q54 

 

 

Introduction 

The changes in climate parameters due to global warming have been creating negative impacts on human 

society and the natural environment. The local, regional or global warming of air is connected to the 

destruction of ecosystem. It has impacts on different spheres of public life as well. In Asia, hot days and 

hot nights are predictedly increasing as compared to the cold days and the cold nights in the period from 

2011 to 2099 (e.g. Mahmood and Babel, 2014). The corn yield, in USA, increases as temperature rises 

but only upto 29°C and after that, the production decreases (e.g. Schlenker and Roberts, 2009). A similar 

result was seen for rice and wheat production in Nepal (e.g. Malla, 2008). Climate change can be 

particularly hard-hitting for the developing countries, including Nepal, which rely on natural resources 

for the economy and livelihoods.  

A difficult task is to detect the pattern of temperature change in an area using appropriate statistical 

method. Climate scientists have found temperature change by using different methods such as 

observation and computer simulation modeling (e.g. Johannessen et al., 2003), annual average method 

(Jones et al., 1999), empirical orthogonal functions (e.g. Semenov, 2007), factor analysis (e.g. 

Chooprateep and McNeil, 2015) and Pearson correlation analysis (e.g. Griffiths et al., 2005). In addition, 

majority of the studies rely on the linear regression model to find the variation of temperature in different 

parts of the world (e.g. Lean and Rind, 2009; Chooprateep and McNeil, 2016; Wanishsakpong and 

McNeil, 2016; Hughes et al., 2006). However, the linear regression can show only the change between 

the beginning and end of study period. Therefore, in this study, the temperature patterns were obtained 

by using polynomial regression model after adjusting the seasonal effects and auto correlation of the 

http://www.sciencedirect.com/science/article/pii/S221209471400070X
http://www.sciencedirect.com/science/article/pii/S221209471400070X
http://www.pnas.org/search?author1=Wolfram+Schlenker&sortspec=date&submit=Submit
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data to show the pattern of change varying within the study period. Additionally, the trend of temperature 

is analysed using linear regression model to see the net temperature change in 15 years period. 

 

Methodology 

The study was carried out around Kathmandu valley of Nepal in an area of 3969 km2. The area extends 

to a total of 8 districts: Kathmandu, Bhaktapur, Lalitpur, Sindhupalchok, Ramechhap, Makwanpur, 

Nuwakot and Dhading. The first three districts make up the Kathmandu valley, and other five surround 

the valley. The average maximum temperature of the Valley is more than 30°C in summer and the 

minimum is  less than 1°C in winter. There is a heavy monsoon period in the mid of the year. 

 

The data  

Land Surface Temperature (LST) is a remote sensing data from Moderate Imaging Spectro-radiometer 

(MODIS) sensor fitted in Terra satellite of National Aeronautics and Space Administration (NASA). It 

can monitor the various environmental changes like temperature, rainfall, vegetation, draught, fire, flood 

(see NASA, 2015). First, the LST data of 1 km2 pixel resolutions with an area of 21×21 km2 for 9 

different regions were ordered for a period of March 2000 to June 2016. The data can be retrieved from 

MODIS website (see ORNL DAAC, 2016). Nine different regions were selected at coordinates 27.761E/ 

85.206N,27.761E/ 85.394N,27.761E/ 85.582N, 27.595E/ 85.207N, 27.595E/ 85.394N, 27.595E/ 

85.581N, 27.429E/ 85.207N, 27.429E/ 85.394N and 27.429E/ 85.581N. Figure 1 shows that eight 

regions surrounding the centrally located region, the number 5. 

 

 

Figure 1 Study area around the valley, showing 9 regions and the sub regions 

 

The coordinates for making polygons around each region were obtained from Modland Tile Calculator 

by forward and backward mapping procedure and the tool is available freely at its website (see Modland 

tile calculator, 2016). For each region, a time series of 742 successive observations at 8 days time 

intervals were available. The data were truncated to 690 by eliminating some from the beginning and 

the end period of the data set to adjust it for just the 15 years time frame. Then the data of each region 

were aggregated within a smaller sub regions, approximately 7×7 km2 in area as shown for region 5 in 

Figure 2. These sub regions were named as North-East (NE), North (N), North-West (NW), West (W), 

Central (C), East (E), South-West (SW), South (S) and South-East (SE). There are total 81 sub regions 

in study area. 
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The coordinates for the plots of slopes within 81 sub regions were obtained from the same Modland 

Calculator. In each region, eight co-ordinates surrounded the central one in a pattern of 3×3 matrix. The 

process was repeated for all 9 regions. 

 

Methods for analysis 

The statistical methods and plots are created for each of the 81 sub regions separately. First of all, the 

data are seasonally adjusted with the use of spline function, that helps to stabilize the mean of the data 

at each sub region. The autocorrelation of these data is detected by an autoregressive process of the first 

order lag (AR1). The model takes the form, 

ttt zyy   )1(1  (3) 

Here, 𝑦𝑡  is the seasonal adjusted temperatures at observation 𝑡,  
1
 is the constant and 𝑦(𝑡−1) is the first 

order lag phase ( 1t ) of seasonally adjusted data, tz  the value not explained by the past values. 

Finally, the correlation free data were obtained by moving auto correlation component by convolution 

method of filtration, from equation (3), and the form of equation is,  

)1(1  ttt yyz   (4) 

Now, tz  is the filtered temperature at observation 𝑡, and all other components are explained as above.  

Furthermore, simple linear regression model was fitted to the filtered data. The model takes the form, 

  tt yz 10            (5) 

Here, tz  is the filtered data, 0 is the intercept and 1is the coefficient, while 𝑦𝑡 is seasonal adjusted 

temperature and   is the error term. Finally, the predicted temperature from this linear model was fitted 

to polynomial regression model of second degree (quadratic model). The form of model is, 

ettx  2
210   (6) 

Here, x  is the fitted temperature derived from the linear model, 0 is the intercept and 2,1 ,  are the 

coefficients, t  is  the observation day of each sub region and e is the error term.  

 

All data analysis and graphical displays were carried out using R Statistical Programming (see R Core 

Team 2015). 

 

Results 

The data, seasonally adjusted and auto correlation filtered, were fitted with linear regression model. 

Figure 2 shows a total 10 panels for Region 5. Nine of them show the linear trends of the temperature 

at nine sub-regions. The plots for all the regions indicated that, 46% of the sub region had decreasing 

trend, 53% had increasing and one sub region showed no temperature change during the study period. 

Moreover, none of them had significant p-value. During 15 years period, the net linear rise of vegetation 

ranged from 0.009 to 0.430 and the fall from -1.047 to -0.010, along with overall auto correlations (a1) 

below 0.30, in the study area. 
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Figure 2. Linear trends of nine sub regions of region 5 and the respective quadratic slopes 

 

Figure 3 Temperature patterns in nine regions 

The fitted values were obtained from liner model and the polynomial model was fitted to them. The 

quadratic slopes of the temperature were obtained for each sub region. The last panel in Figure 2 shows 

the quadratic slopes of all those nine sub regions, of region 5, in a single panel. These slopes, plotted 

separately for 81 sub regions in Figure 3, showed various patterns which were categorized into 4 

different groups as per their shapes- ‘steep rising’ (27%), ‘increasing then decreasing’ (27%), 

‘decreasing then increasing’ (25%) and finally the ‘no change’ (21%) group. 

 

Discussions 

This study analyses the linear trend of vegetation in 81 sub regions and that does not show statistically 

significant results. Therefore the quadratic slopes were used, that could serve the purpose to show the 

patterned changes of temperature. The study detects four different patterns, steep rising, increase then 

decrease, decrease then increasing and the final group having no change in 15 years period. The linear 

model has been used by most of the previous research works to find temperature change (e.g. Hughes 

et al., 2006; Griffiths et al., 2005; Choprateep and McNeil, 2015)  in a specified period of time. They 
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have shown, just the net change from initial to end time of study period. No pattern could be seen in the 

period between the two time points. It can be explained that the net temperature change between 

beginning and end of the study time cannot describe temperature patterns on how it has been changing 

during the specified period. 

This study has applied a combination of linear regression followed by polynomial regression models, 

which is an effective technique for modeling the temperature. This method also adjusts for spatial 

correlation and seasonal variations of the data. Therefore, the results are more accurate as compared to 

the other pervious methods.  

 

Conclusions 

The combination of autoregressive process, linear regression and polynomial regression model can be 

successfully applied to find time series patterns and the trends of temperature. The time series patterns 

show that there are a lot of variations of temperature change, even in adjacent sub regions, during 15 

years period. The methodological approach used in this study can be applied to similar studies at local, 

regional and global scale. Also, it is applicable to model the other factors, for example  vegetation, 

precipitation and wind in future and the method can be applicable to find the analysis of temperature 

pattern of any other areas, both regionally and globally. 
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