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ABSTRACT 

This work proposed a distributed storage (DSePHR) system for storing 

encrypted personal health record data (PHR) by identifying properties of the 

encrypted PHR data and using the properties to create an index for the encrypted 

PHR data. The encrypted PHR data contain health related information of an 

individual. Both HDFS and HBase are used as a fundamental storage framework. The 

DSePHR provides a set of APIs for storing and retrieving the encrypted PHR data. The 

DSePHR eliminates a high memory consumption issue on the cloud storage caused 

by storing a lot of small files. The experimental results showed that the DSePHR still 

preserve the scalable feature while consuming less memory. Furthermore, DSePHR 

can deliver similar upload / download time performance when the mixture of file 

size and the ratio of read and write activities change. 
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ชื่อวิทยานิพนธ์ ส่วนต่อประสานโปรแกรมประยุกต์ที่เก็บข้อมูลแบบกระจาย โดย เฮชเบส และ 

เฮชดีเอฟเอส ส าหรับข้อมูลสุขภาพส่วนบุคคลซึ่งถูกเข้ารหัส 

ผู้เขียน นายเมธา หวังธรรมมั่ง 

สาขาวิชา วิศวกรรมคอมพิวเตอร์ 

ปีการศึกษา 2559 

บทคัดย่อ 

งานวิจัยชิ้นนี้ (DSePHR) ออกแบบและพัฒนาระบบการเก็บข้อมูลแบบกระจาย

ส าหรับข้อมูลสุขภาพส่วนบุคคลซึ่งถูกเข้ารหัส (Encrypted PHR data) โดยการระบุคุณลักษณะของ

ข้อมูลซึ่งถูกเข้ารหัสและใช้คุณลักษณะดังกล่าวในการสร้างดัชนีส าหรับข้อมูลสุขภาพที่ถูกเข้ารหัส 

ข้อมูลสุขภาพส่วนบุคคลที่ถูกเข้ารหัสประกอบไปด้วยข้อมูลที่เกี่ยวข้องกับสุขภาพส่วนบุคคล เฮชเบส 

(HBase) และเฮชดีเอฟเอส (HDFS) ถูกใช้ในงานวิจัยนี้ส าหรับเป็นกรอบงานการเก็บข้อมูลพ้ืนฐาน

(Storage framework) งานวิจัยนี้จัดเตรียมชุดของส่วนต่อประสานโปรแกรมประยุกต์ (APIs) ส าหรับ

จัดเก็บและดึงข้อมูลสุขภาพที่เข้ารหัสที่ถูกจัดเก็บไว้ในพ้ืนที่เก็บข้อมูลแบบกระจาย  งานวิจัยนี้ได้

ปรับปรุงประเด็นการใช้หน่วยความจ าเยอะ (High memory consumption) อันเนื่องมาจากการ

จัดเก็บไฟล์ขนาดเล็กจ านวนมากลงบนพ้ืนที่เก็บข้อมูลแบบกระจาย ผลลัพธ์การทดลองแสดงให้เห็นว่า

ระบบที่ได้พัฒนาขึ้นยังคงรักษาคุณสมบัติการขยายตัวเอาไว้ได้ในขณะที่ใช้หน่วยความจ าที่น้อย 

นอกจากนี้ ระบบที่ได้พัฒนาขึ้นสามารถให้ประสิทธิภาพเวลาที่ใกล้เคียงในการอัพโหลดและดาวน์

โหลด (upload /download) เมื่อมีการผสมกันของขนาดไฟล์ และอัตราส่วนของกิจกรรมการอ่าน

และการเขียนได้เปลี่ยนไป 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

Preventive care such as exercise, enough relaxation, health check can 

lead people to gain healthy life. Healthcare professional or doctor can use personal 

health related data to provide a suggestion to the data owner in order to decrease 

the risk of disease that can be occurred in the future [1], [2]. Therefore, storing 

personal health data is essential for the preventive care. The health data of person 

are typically stored at a hospital and controlled by the hospital [3]. The health data 

owner cannot access his/her data directly because of the hospital security and 

policy. Most hospitals use a private storage system because the risk of patient’s data 

leaking from an external attacker can be reduced. In a situation of changing a 

hospital, the health data do not automatically transfer to the new hospital. 

Requesting the health data to be transferred to a new hospital can be complicated 

because the private storage system usually does not support exported operation. 

Therefore, a concept that the health data owner can store his/her health data is 

promoted. The concept is called personal health records (PHRs).  

The PHRs concept allows the PHR owner to fully control his/ her 

health data. The owner can create, edit, and share his /her health data. The owner 

can store his/her PHR data to a PHR provider of his/her choice. The PHR data can be 

grouped into 11 types such as problem list, allergy data, home-monitored data, 

medication [3]. The PHR data also have a few properties that are different from that 

of regular data type.  For example, the PHR data has only one actual owner and 
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belongs to the owner only; the PHR data consist of various data sizes and types; the 

PHR data can cover all data of the PHR owner life time [4 ] . The PHR data can be 

everything that is related to health information and the amount of the PHR data is 

increasing every day. Therefore, the volume of the PHR data will be large. Thus, the 

PHR storage requires a big storage to store all PHR data from many PHR users. 

Moreover, the security of the health data will be critical because the health data are 

now outside the hospital and no longer protected by the hospital. 

The PHR data are high volume, high variety and high velocity. The PHR 

contain the life-time data of a person (high volume). The PHR data can be document 

file, audio file, video file and image file (high variety). The PHR data can slowly occur 

such as medication data or quickly occur such as monitor device data (high velocity). 

So the PHR data can be considered as big data [5]. Storing the PHR data into a cloud 

storage is an appropriate solution to deal with the PHR big data characteristic. The 

cloud storage can scale its capacity when the PHR system requires more capacity. 

The PHR data that are on the cloud storage, require a security to be protected from 

an unauthorized access. Thus, the PHR data must be encrypted. Related works [6]–

[10] introduced the methodology to encrypt the PHR data and stored the data into a 

general cloud storage. However, these works do not address a method to store the 

PHR data on a general cloud storage.  Typically, the general cloud storages are not 

designed for storing and retrieving the encrypted PHR data because they do not 

provide any particular features to access the encrypted PHR data in their storage. 

Since the storage system cannot read the content of encrypted PHR 

data in order to classify or create an index of the data for convenient retrieving, the 

encrypted PHR data need a particular access pattern such as sorted by time, owner 
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that the access pattern is different from general binary files. The general binary files 

such as image file, audio file or document file in other system have access pattern 

by using its properties or content. For example, the access pattern of the image file 

can be using its resolution, type of images to determine specify image.  The access 

pattern of video file can be using its length, resolution to determine specify video. 

While encrypted PHR data do not provide any properties, the access pattern can be 

using only time and owner of the data. General cloud storages such as Dropbox and 

Google drive, storage on software as a service (SaaS) , are directory based storage. 

Amazon S3 and CACSS [1 1 ] , storages on platform as a service (PaaS) , are buckets 

style storage. Although both storage types can store encrypted PHR data, it is difficult 

to access the encrypted PHR data with the PHR user requirement.  The PHR users 

mostly access their data with sorted by the owner and time patterns because the 

encrypted PHR data belongs to only one owner and relates to the life of the owner. 

Moreover, the encrypted PHR data lacks of information related to its data because 

the data must be protected in an encrypted form. These general cloud storages do 

not support creating metadata to indicate the encrypted PHR data for retrieving by 

owner and time.  Metadata is important to create an index of the encrypted PHR 

data.  Therefore, the encrypted PHR data storage should pre-process the data to 

identify its properties and bring its properties to create an index by following PHR 

user access pattern for convenient retrieving. 

This thesis focused on designing and developing application 

programming interface (API)  in order to design the schema and create the index 

mechanism for convenient retrieving of the encrypted PHR data on a distributed 

storage, called DSePHR which stands for “Distributed Storage APIs using HBASE and 
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HDFS for Encrypted Personal Health Records”. General cloud storage [11] can suffer 

the high consumption memory problem due to storing a lot of small files.  Hence, 

our proposed distributed storage eliminates such problem. The proposed distributed 

storage supports both small size file and large size because most of PHR data is a 

document file (small file) and some PHR data can be video (large file). Moreover, the 

encrypted PHR data should be sorted by the encrypted PHR data properties: owner 

and time. The user can conveniently access his/her data by specifying the owner and 

time.  The storage supports storing massive encrypted PHR data.  The design of the 

proposed DSePHR is presented in chapter 3 while the performance of proposed 

DSePHR is demonstrated in the experimental section. The evaluation and discussion 

of the experiment are also presented in chapter 4. 

1.2 Objectives 

1. Design a schema and a structure for indexing and storing the 

encrypted PHR data. 

2. Develop the API for storing and retrieving the encrypted PHR data. 

3. Evaluate the developed APIs on synthetic PHR workloads. 

1.3 Scopes 

1. This work uses python 2. 7. 10, Flask framework, Flask-RESTful, 

Hadoop 2.7.1, HBase 1.0 to develop the DSePHR API. 

2. Storing and retrieving encrypted PHR data are provided by DSePHR 

API. 

3. A number of incoming simultaneous requests is limited by CPU, 

memory and LAN interface of DSePHR web service. 
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4. Synthetic workloads with mixture of read and write requests are 

used for evaluating the DSePHR. 

1.4 Contributions 

1. An API set for storing encrypted PHR data to a cloud storage. 

2. A set of HBASE configuration tuning for performance. 

3. A performance result of the prototype DSePHR developed as a 

test platform including memory consumption, storing and 

retrieving time of various file type distribution and mixture of read 

and write requests. 

4. A synthetic PHR workload 
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CHAPTER 2  

LITERATURE REVIEW 

Background and related works are presented in this chapter including 

personal health records, PHR storage requirements, big data, Hadoop Distributed File 

System (HDFS), Apache HBase, Ganglia which is a  cluster monitor tool and CryptDB. 

2.1 Personal Health Records 

Personal Health Record ( PHR)  is a system that allows a person to 

store, manage, and share his/her health related information. PHRs are different from 

Electronic Health Record ( EHR)  [ 3 ] .  The EHR is the health data owned by the 

healthcare institutes and the data are collected or created by the physician or 

healthcare institute staffs.  Thus, the access to EHR data is controlled by the 

healthcare institute according to the institute’s policy and the legal regulation of that 

country. The PHRs, on the other hand, is the data that is owned and controlled by its 

owner. The PHR owner has a full control on who can access his/her data, how the 

data can be accessed, and when the access can occur.  

The Markle foundation defines PHRs as “an Internet-based set of tools 

that allows people to access and coordinate their lifelong health information and 

make appropriate parts of it available to those who need it”  [4] .  According to the 

definition, the PHR system can contain many kind of health related information such 

as weight, height, blood type, blood pressure, symptoms, medication usage, 

information from doctor, allergy data and demographic data.  

Currently, there is no standard for PHR data.  However, the PHR data 

can be grouped in to 11 types [3], including problem list, procedures, major illnesses, 
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provider list, allergy data, home-monitored data, family history, social history and 

lifestyle, immunizations, medications, laboratory tests.  The detail of each PHR data 

type will be explain. 

• The problem list is a document that contains an important health problem of 

the patient or individual such as current disease, injuries from an accident. 

The problem list can be in a  form of the document file type such as word-

processing file, pdf, CCD file and CCR file. The source of the problem list can 

be patient or the PHR owner, EHR or doctor. 

• The procedure is a description of a step or an action to achieve a treatment. 

The procedure can exist in both a document file format and a media file 

format such as a guide line of medication (word processing file, pdf file) and a 

step of operation or surgery (video file). The source of the procedure can be 

the PHR owner, EHR or a medicare claim 

• The major illness is the information that describes the illness or surgery of a 

patient such as congenital disease or current disease. The Major illness can 

exist in a form of a document file format such as CCD file, CCR file, word-

processing file and pdf file. The source of the major illnesses can be the PHR 

owner, EHR or a medicare claims 

• The provider list is a list of health care providers or institutions that the PHR 

owner gets his/her treatment. The provider list is a document file in a form of 

CCD file, CCR file, word-processing file or pdf file. The source of the provider 

list includes the PHR owner and the EHR. 

• The allergy data is the document that describes the allergy symptom of 

patient such as food allergy, skin allergy and respiratory allergy. The allergy 
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data can be in a form of a document file such as CCD file, CCR file, word-

processing file or pdf file.  The source of the allergy data includes the PHR 

owner and the EHR. 

• The home-monitored data is the data from any home health care device 

such as sensor data from heart rate instrument or stethoscope.  The home-

monitored data can be in a form of text files such as txt file, csv file and 

spreadsheet file. The source of the home-monitored data includes the PHR 

owner and the equipment. 

• The family history is the document that describes the history of the disease 

or symptom of member in the PHR owner family in the past. The doctor can 

use the family history to diagnose a current disease of the patient. The family 

history can be in a form of document file type such as CCD file, CCR file, 

word-processing and pdf file. The source of the family history data includes 

the PHR owner and EHR. 

• The social history and lifestyle is the document that describes the personal 

life, occupation, favorite activity of the PHR owner.  The doctor can use the 

information to improve the treatment. The social history and lifestyle can be 

in a form of document file such as CCD file, CCR file, word-processing or pdf 

file.  The source of the social history and lifestyle data includes the PHR 

owner and EHR. 

• The immunizations are a history list of immunizations that the PHR owner had 

received in the past such as polio, rubella and tetanus. The can be in a form 

of a document file such as a CCD file, CCR file, spreadsheet file or word-
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processing file. The source of the immunization data includes the PHR owner, 

EHR and the immunization registry (if any) 

• The medications are the document that contains a list of medication that the 

patient is currently using, including the amount and schedule to take each 

medicine. The medication can be in a form of a document file such CCD file, 

CCR file, pdf file and word-processing file.  The source of medication data 

include the PHR owner, EHR and medicare claim. 

• The laboratory tests are the result or discussion of laboratory processes such 

as medical check-up.  The laboratory data can be in a form of text, table, 

image and exist as both document file format (word-processing file, CCD file, 

CCR file) and media file format (image file). 

Besides the 11 PHR data types, the users can store other information 

such as nutrition, exercise and sleeping habits in their PHRs.  Moreover, the PHR 

owner can allow the physician to add some health related information to his/ her 

PHRs.  Therefore, the PHRs can be viewed as a lifelong health related information 

storage of all its members. At this point, the PHR system must support various data 

type and a large amount of data.  

Existing PHR systems including My health record [12], Google Fit [13], 

Microsoft HealthVault [14]. My health record is a national digital health record system 

of Australia. My Health Record allows the related people such as an authorized 

person or provider to view, upload, download the clinical information of a person. In 

2015-2016, there are 90 million document files with various file types were uploaded 

to My Health Record system [15]. Google Fit is a fitness activity tracking system 

installed on a mobile phone to track the daily life or the fitness activity such as 
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walking, running and cycling of its owner. The activity tracking data from the mobile 

phone is then sent to Google server to be stored. The stored data can be later 

visualized as an overall activity. There is a lot of data that needs to be stored. 

Microsoft HealthVault is a web-based PHR system that allows the user to directly 

input his/her health data or upload various health document such as CCD file, CCR 

file, image file, word-processing file and pdf file. Microsoft HealthVault also supports 

a connectivity with the smart health device such as weight scales, blood pressure 

monitors and heart rate monitors. Thus, there is a various data type and a lot of data 

to be stored in the system. It can be seem from various existing PHR system that the 

PHR system must be able to store and manage such large volume of data. Thus, the 

storage requirements of such system are interesting. 

2.2 PHR Storage Requirements 

An important component for a PHR system is the PHR storage. Since 

the entire life-time health related information of a person can be stored on the PHR 

system.  The PHR storage must support everyday life health data, high availability, 

scalability and security. 

The PHR data storage must provide a high write throughput 

performance to support everyday life health data. The data from each member can 

be of various varieties daily. The nature of the data input process in the PHRs is that 

each user will record his/ her personal health related information from various 

sources. The data will be viewed less often and the data will usually be analyzed 

during the viewing process. Therefore, a high volume of data from various sources is 

expected so that the storage must be able to receive all data into the storage. Thus, 
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the PHR data storage must be evaluated when the mixture of requests contains a 

large number of write requests than that of the read requests. 

The high availability and fast response of the storage system are also 

expected from the PHR system. The PHR data contains the information that will be 

helpful to the physicians or caregivers in order to save or to treat the PHR owner 

during life-threatening situations such as the emergency staffs during a car accident. 

The victim of the accident might require an immediate healthcare at the crime 

scene.  The basic health information such as blood type and a history of allergic 

reactions must be available to these people. Also, the request for further information 

of the victim from the system must be provided immediately. Thus, the time it takes 

to store the data and retrieve the data must be evaluated. 

The PHR storage must be able to scale up in order to cope with the 

amount of data from its members. Furthermore, a good management of the system 

must be able to satisfy several levels of requirement needs. Some sets of data may 

not be accessed real-time or some data may be outdated. With the usage patterns 

of some information such as the old health checkup records or the old x-ray images 

in the PHRs, such information may be moved or switched to slow-response storages 

in order to save spaces. Thus, the during-operation adding of more physical storages 

and a good management of data storage are a challenge for designing the PHR data 

storage. Thus, the PHR storage must be evaluate when the storage node is added in 

order to show the response time during such operation. 

The last requirement for the PHR data storage is the security and 

privacy issues. The PHRs may contain some sensitive information, thus the PHR data 

must be protected and controlled.  Typically, the access control of any data is 
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achieved by applying an access policy to either the data and/or the user, while the 

confidentiality of data is achieved by applying an encryption technique to the data. 

With big data property and the nature of the system usages, the data may be resided 

on a cloud-based storage and available to the users. Thus, the security aspect of the 

system must be considered as the fifth requirement. To accomplice such goals, the 

PHR system must support some forms of data privacy and security implementations. 

2.3 PHR and Big Data 

Big data is defined in [16] as  

Three components to classify big data are variety, velocity and 

volume.  For the variety component, the data can be of various formats such as 

unstructured or structured data.  With structured data, it is easy to stored and 

analyzed because the data are tagged and organized.  The unstructured data, 

however, is difficult to stored, analyzed and virtualized.  The velocity component 

refers to the data that can be submitted to the system in various forms such as 

stream, real-time or batch.  The volume can scale from terabytes to zettabytes. 

Potential applications of big data are identified in five domains including healthcare, 

public sector, retail, manufacturing and telecommunications. PHRs can be classified 

“ data that exceeds the processing capacity of 

conventional database systems.  The data is too 

big, moves too fast, or does not fit the structures 

of your database architectures. To gain value from 

this data, you must choose an alternative way to 

process it”. 
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in the healthcare domain.  In order to classify PHRs as a big data application, three 

components (i.e., variety, velocity and volume) are analyzed and discussed.  

For the variety component of the PHRs, everything concerning health 

related information of an individual can be collected and stored. Each user utilizes 

the system differently. The data can be from various sources such as the PHR owner, 

the physician of the PHR owner, or the caregiver of the PHR owner. For example, the 

PHR owner might want to store his daily exercise; a physician might want to store x-

ray images, laboratory results and medical treatments; the caregiver might want to 

store the data recorded from the wearable sensors. Thus, the variety of data types 

must be handled by the PHR system. Some data are structured data such as medical 

treatments and laboratory results, while some data are un-structured or semi-

structured such as the signal recorded from wearable sensors and daily exercise 

information.  

For the velocity component of the PHRs, the data from various 

sources create various data transfer rates.  According to the example given earlier, 

real-time streaming data can be collected from the PHR owner’s wearable sensors. 

The physician, on the other hand, may upload a batch of medical health checkup 

results into the PHR database on behalf of the PHR owner.  Furthermore, some 

information in the PHR system may be accessed in real-time fashion such as the 

personal caregiver may want to monitor the PHR owner’ s vital sign signal which is 

stored on the PHR system.  

To handle lifelong health related information of its members, the 

amount of data to be stored in the PHR system is gigantic.  To illustrate the point, 

assuming a big city with one million people use the PHR system and each member 
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generates approximately 300 KB of data daily. Thus, there are 300 GB of data stored 

in the system daily and 109 TB of data yearly. This calculation is based on one entry 

of a single record per day of each user.  However, the data of each user can be 

generated from various sources and several times per day. Thus, the stored data of 

each user can scale up very fast similar to the personal data on the Facebook 

account of each user. 

2.3.1 Cloud Storage 

The PHR data requires a scalable storage to store its data because the 

volume of the data always increases.  Traditional storage may face a problem that 

cannot scale up to support high volume of data.  A cloud storage comes to be a 

solution for a big data storage because the cloud storage is a scalable storage. The 

cloud storage can be software as a service (SaaS)  such as Dropbox, Google Drive, 

iCloud or platform as a service (PaaS)  such as Hadoop (HDFS) , OpenStack (Swift) . 

However, the SaaS is not appropriate to use as fundamental framework because the 

mechanism of the storage cannot be easily adjustable in order to support any 

specific requirement of the data.  For instance, the encrypted PHR data require a 

special metadata for searching, identifying and accessing the data. Therefore, PaaS is 

more appropriate than SaaS because it is adjustable. OpenStack is a cloud computing 

framework containing swift as an object storage.  However, OpenStack does not 

include the database. Hadoop is a big data computing framework containing HDFS as 

a distributed storage.  HBase is a non-relational database with column family 

database type.  HBase can use HDFS for storing the actual data files.  HBase also 

inherits features of HDFS such as distributed storage, replication and fault-tolerance. 

Hadoop and HBase are selected as a fundamental framework in this thesis.  
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2.3.2 Cloud Storage for Health Care 

Because the volume of health care data is huge, many works apply 

the cloud storage or big data framework due to its scalable feature. The related 

works of a cloud storage for health care data is explained next. 

MedCloud [17] is a health care system which designs to follow Health 

Insurance Portability and Accountability Act (HIPAA) policy. The objective of 

MedCloud is to exchange health related information between providers. Cloud 

computing and storage are adopted in the work for sharing health related 

information. Using cloud solution, the user can store their EMR or PHR data on the 

system. Hadoop and HBase are selected for basic framework of MedCloud. 

The improvement of CACSS [11] has developed to be a generic cloud 

storage for demonstration purposes in order to show any organization or institution 

who wants to establish a private cloud storage. Hadoop and HBase are used as a 

fundamental framework for the development. The actual data are stored on HDFS 

while the metadata are stored on HBase. The main advantage is to store 

unstructured data on a cloud storage. However, the design for a metadata retrieval 

especially by the owner of the data had not been addressed. Retrieving the data by 

its owner may take long time because the system must search the whole database 

to filter the data and display the result. 

CHISTAR [18] has developed to handle scalability issue facing by 

traditional EHR in hospital in United States. Traditional EHR system (VistA) is designed 

in term of client- server connection. There is a scalable limitation in traditional EHR 

system. Thus, CHISTAR transforms the traditional EHR system to cloud computing to 
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solve scalability issue. HDFS is adopted as a part of the storage and MapReduce is 

applied for data processing before the data is sent to HBase. 

Wiki health [19] is a cloud storage system which is designed to store 

health care sensor data. Wiki health was developed on top of [11] and used Hadoop 

and HBase as its fundamental framework. Health sensor data such as 

Electroencephalography or Electrocardiography can be stored on the Wiki health 

directly. Health sensor data are stored on HBase. Wiki health allows the user to 

attach unstructured data to the sensor data. However, to retrieve any unstructured 

data file is complicated because the user does not have a direct access to the data. 

2.3.3 Other PHR Systems 

Patient-centric and fine-grained data access control to the personal 

health records system with multiple PHR owner on a cloud storage environment was 

provided in [6]. The multi-authority attribute based encryption (MA-ABE) was adopted 

in the work to provide security and multiple owner feature. The work mainly focuses 

on how the data is encrypted while preserving fine-grained access control on the 

data. The explanations on how to store the encrypted data in a storage are not 

mentioned.  

Cipher-policy attribute based encryption (CP-ABE) was adopts in [7] to 

traditional existing PHR system named Indio X, and moved to cloud computing. The 

objective of the work was to preserve the privacy sharing model and fine-grained 

access control on cloud computing. However, the design and approach to store the 

encrypted PHR data to a cloud storage are not mention. 

The work in [8] was extended from [6] and also adopted MA-ABE. The 

scalability of storage and communication cost are calculated and explained in this 
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work. However, the approach to store the encrypted PHR data in the cloud storage is 

not mentioned. 

The work in [9] designs the EHR system on cloud computing. The main 

aim of the work is that the users can select some parts of their PHR data to share to 

physician while the PHR data is still encrypted. The three features including 

searchability, physician revocation and local decryption are provided in the work. 

Although the designed EHR system work on the cloud computing environment. The 

design and explanation on how to store the encrypted PHR data in cloud storage is 

not mentioned. 

The work in [10] extends the original secure PHR system to handle an 

emergency situation when dealing with untrustworthy players. The work also applies 

cipher text policy attribute based encryption and access control on the PHR data. An 

emergency stuff can access the patient PHR data from cloud storage. However, the 

cloud storage is used for storing the encrypted PHR data without any modification. 

2.4 Hadoop Distributed File System (HDFS) 

Hadoop distribution file system (HDFS) [20] is a storage part of Hadoop 

[21] which is developed by apache to support big data for storing and processing. 

Hadoop is designed for parallel processing, high availability, fault tolerance and 

scalability. Hadoop has 2 main parts including distributed storage (HDFS) and parallel 

processing (MapReduce). In this work, the distributed storage is considered and 

parallel processing part is ignored because this work mainly focuses on how to store 

and retrieve the encrypted data on a cloud storage. Thus, HDFS is applied as the 

fundamental storage framework.  
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HDFS is the part of a distributed file system of Hadoop. There are two 

HDFS node types: Namenode and Datanode. Namenode maintains metadata of all 

files in HDFS such as a location of blocks, a number of replication. The metadata is 

stored in the memory of Namenode for fast retrieval. Another Namenode is 

Secondary Namenode which is a backup node of Namenode. Datanode is 

responsible for storing the actual data in HDFS. With HDFS, a client can directly 

contact to the Datanode which stores the actual data. For a write request, the client 

sends a request to ask the Namenode in order to get a list of available nodes. After 

that, the client can upload the data directly to any available Datanode. When the 

data uploading is complete, the Datanode will send its’ data to another Datanode 

until the number of data replication is reached. For a read request, the client sends a 

request to inquire Namenode for the requested file information. The Namenode will 

reply with a list of Datanode containing the requested data. After that, the client will 

download the data from the Datanode directly. The HDFS architecture is shown in 

Figure 2.1. 

 

Figure 2.1 HDFS Architecture 
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When the data arrives at the HDFS, the data will be split into blocks. 

Each block is stored in the Datanode (default block size is 128 MB). The Metadata of 

all blocks are stored in the Namenode. The number of default replication blocks is 

three and these blocks are sent to be stored on a different Datanode. Three 

replication blocks are the key of the high availability and the fault tolerance. If some 

Datanode fail, HDFS can use the replicated data from other Datanode. Moreover, 

more capacity can be added to HDFS without the need to shutdown the system. 

The major issue of HDFS is the memory consumption of the small file 

size. Basically, the HDFS can store any file size. Although the default HDFS block size 

is 128 MB and the data that is smaller than the block size will use 1 block, the actual 

size of each block depends on the actual size of the data. Storing a lot of small size 

files can cause a high memory consumption issue. For a fast access, HDFS stores the 

metadata of the whole data set in the memory using the Namenode. A volume of 

memory consumption directly depends on a number of files in the HDFS. A file in 

HDFS takes approximately 1354 bytes of the Namenode memory. The Metadata of a 

single file takes 250 bytes and three replicated blocks take 368*3 bytes. Storing a lot 

of small files consumes the Namenode memory more than storing large files.  

Although both situations use the same storage capacity. To store a lot of small file, 

HDFS requires an approach to handle the memory consumption issue. 

The discussion in [22] provided a method to store image files in HBase 

by an engineer from ImageShack [23]. The HBase cluster is applied to store image 

files for 2 years without the memory issue. The image file is considered as BLOB 

(large binary object) and stored in HBase. However, the HBase tuning configuration is 
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necessary. The advantage of the approach is that HBase will pack these small files to 

a large file and send the packed file to HDFS automatically. 

Medoop [24] is a health care platform which supports health 

information exchange (HIE) in China because of the health data growing. Medoop 

selects Hadoop and HBase as its developing framework. Medoop solves storing small 

size file issue by merging the small file to large file and creating index metadata file 

for the large file. Both large files and index metadata files are stored into HDFS. 

HBase is used to store the user information. 

The optimize approach for storing small file [25] analyzes and finds 

the cutoff point between small file and large file when both files are stored to HDFS. 

A result of cutoff point file is 4.35MB. Moreover, the work also introduces the 

methodology to handle a small file by merging many small files to a single large file 

and creating an index file. Both large file and an index file are stored into HDFS. The 

work solves only a lot of small files storing problem and acts a like general cloud 

storage. The work does not provide any mechanism for easy retrieving the encrypted 

PHR data.  

2.5 Apache HBase 

Apache HBase is a non-relational database which designs to support a 

large data set. HBase can use HDFS as a storage and inherit the advantage of HDFS 

such as replication, scalability and fault tolerance. HBase is a column oriented 

database type but it is different from a traditional database like MySQL. There is no 

relation between the column in each table. HBase cannot use a join operation to 

query the summarized data. HBase schema component includes table, column-

family, column-qualifier, row-key and cell. Figure 2.2 shows the HBase schema. Both 
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“person” and “information” are column family (CF). The “person” CF includes 

“name”, “sname” and “age” column qualify (CQ). Accessing the data stored in 

HBase can perform by specifying some components. Table is a group of row-key and 

contain column-families. Column-family is a group of column-qualifiers. Cell is a 

place that can store the actual data. Call can store multi-version of the data. All row-

keys in HBase are always sorted by lexicography.  

 

Figure 2.2 HBase schema 

HBase is able to use HDFS or a local file system for storing its 

database files. To achieve a fully distributed mode, HBase must use HDFS as its file 

system. HBase has three types of services including master, region server and 

zookeeper. Master is responsible for administrator operations such as creating a table 

and deleting a table. Region server is responsible for storing the data which arrives to 

HBase. Zookeeper stores global metadata of every table in HBase. Figure 2.3 shows 

HBase architecture. One RegionServer can handle more than one Region. A number 

of Regions depends on RegionServer memory. Each Region can contain more than 

one store. Each store has one MemStore. When the data arrives to HBase, the data 

will be saved to Memstore first. After the size of Memstore reaches the maximum 

threshold, HBase will flush the data in Memstore to Hfile. When HBase has many 
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Hfiles, HBase will merge them together into StoreFile. The StoreFile is the actual data 

file of HBase. HBase can store the StoreFile in HDFS through DFS client to HDFS 

Datanode. 

 

Figure 2.3 HBase Architecture 

In this thesis, HBase is used for storing both metadata and small 

encrypted PHR data. In case of small encrypted PHR data, HBase store the data as a 

binary large object (BLOB). BLOB is considered to be a large file size for storing into 

the database because the database is designed for storing text which is smaller than 

BLOB. So, HBase configuration tuning can provide a better performance in 

comparison with the default configuration. 

Hconfig [26] analyzes HBase when facing a massive data loading. 

Hconfig can improve HBase performance in handling a massive data loading by tuning 

the HBase configuration. Hconfig also suggests the good configuration for practical 

situations. A result shows that a good configuration can improves HBase throughput 

around 2-3 times. This thesis follows the suggested configurations in the work. 

A driven policy configuration [27] is a continuous work from Hconfig 

[26]. The work provides a practical configuration for various situation such as write 
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only, mostly write and mostly read. The result shows that the good configuration can 

improve HBase performance in handling massive data. The suggested configurations 

in the work are adopted in this thesis to gain more throughput. 

2.6 Cluster Monitor (Ganglia) 

To measure the proposed system performance, monitoring tool is 

necessary. Ganglia monitor [28] is a monitoring tool for a distributed system such as 

Hadoop or HBase. Both Hadoop and HBase support a direct exporting of their status 

to Ganglia. Ganglia can also monitor the status of the node in the cluster although 

there are no Hadoop and HBase are installed. Ganglia has 3 types of services 

including ganglia-monitor, gmetad and ganglia-web. Ganglia-monitor is responsible for 

monitoring a machine status such as cpu usage and network throughput. Ganglia-

monitor will send the machine status to the gmetad continuously. Gmetad is a 

service collecting the metadata from the ganglia-monitor and saving the data to a 

round robin database (RRD). The RRD is a time series database that is suitable for 

storing the time series data such as network throughput, CPU load, HDD capacity. 

Ganglia-web is a PHP web application which visualizes the monitored data in RRD in a 

graph format. Ganglia-web also supports a exporting of the monitored data to a CSV 

or JSON file format. Therefore, Ganglia is used for collecting the status of Hadoop, 

HBase and nodes in all experiments, conducted in this thesis. The CSV exported 

monitored data is used to analyze the performance of DSePHR, which is given in 

chapter 4. 
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2.7 CryptDB 

CryptDB [29] is a system that provides security for the data in a 

traditional relational database system such as MySQL and PostgreSQL. CryptDB 

claims that the system can keep the confidentiality of the data in the database even 

when the database and the application server are fully controlled by an attacker. 

Both data in the database and user’s query are encrypted by CryptDB proxy server 

that situates between application server and database server. The user’s password is 

used to generate a key that uses to encrypt the data at the proxy server. If the 

attacker does not know the user’s password, the attacker cannot decrypt the data in 

the database. Therefore, CryptDB focuses on the method to encrypt the data in the 

traditional relational database and it also has limitation when handling big data due 

to the nature of relational database. CryptDB does not provide the storage to store 

the actual data. The PHR storage should also support storing a large amount of data 

due to its size. The proposed system in this thesis provides the storage that can be 

scale to store a large amount of PHR data. With the proposed system design in this 

thesis, although the attacker can fully access the DSePHR storage, the attacker 

cannot read the data because the data is already encrypted from the source before 

being uploaded to the storage. The proposed system in this thesis is only designed 

for storing encrypted PHR data, and does not store any key for decrypting the data. 
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CHAPTER 3  

METHODOLOGY 

In this chapter, the features of the proposed system namely, 

Distributed Storage for Encrypted Personal Health Record ( DSePHR)  data API are 

explained.  The DSePHR has been written in python under flask micro-framework. 

Both Hadoop and HBase are used as the underlying framework. The DSePHR interface 

applies REST style architecture.  The overview, design and implementation of the 

DSePHR are described and the experimental design of DSePHR is in the last of the 

chapter. 

3.1 PHR System Overview 

The PHR system must allow an authorized user to upload and 

download the authorized PHR to and from the system. An authorized user can either 

uses the PHR system directly or access the PHR system via other application.   The 

DSePHR must allow its users to store the encrypted PHR data on a distributed 

storage.  The PHR data must be encrypted from the source.  Thus, the PHR system 

overview is shown in Figure 3. 1.  The DSePHR is shown in the red square box, 

including a set of APIs and a distributed storage. The DSePHR API is an interface of 

the DSePHR. The PHR can be stored to the DSePHR via the uses of the DSePHR API. 

The distributed storage of the DSePHR is used for storing the encrypted PHR data.  
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Figure 3.1 PHR System Overview 

The dataflow on a write operation is shown in Figure 3.2, the PHR user 

must pass an authentication process first.  If the authentication is successful, the 

DSePHR will return a token key. The token key is a string containing information to 

identify the user.  When the user requests to upload the data, the user need to 

attach the token key with the encrypted PHR data to the DSePHR. The DSePHR will 

verify the token key and deny if the token key is not valid. If the token key is valid, 

the DSePHR will classify the data, create the metadata of the data and send both 

metadata and the data to be stored on the distributed storage.  

The DSePHR prototype currently returns the data id of the uploaded 

PHR data as the metadata. This design aims for a fast experimental setting. However, 

the returning metadata can be kept as a part of the PHR user information on the 

system only for a later access. 
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Figure 3.2 Dataflow on a write operation or PHR upload process 

The dataflow on a read operation is shown in Figure 3.3. Similarity, the 

user must pass the authentication process first.  To download the PHR, the user must 

provide the token key and the data id as the download request.  The DSePHR verifies 

the token key.  If the token key is valid, the DSePHR will send a request to the 

distributed storage and download the data from the distributed storage and send the 

data back to the PHR user. 

For experimental purpose, the current DSePHR prototype requires the 

data id inside the request.  In the real usage, a process for the user to select a 

request PHR must be done in order to retrieve the correct data ID of the request. 

This step can be done using the DSePHR APIs provided. 
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Figure 3.3 Dataflow on read operation 

3.2 DSePHR API 

DSePHR API is developed for users, PHR systems and applications that 

require to store encrypted PHR data to a distributed storage. DSePHR provides ability 

to store the data, to index the data and to create metadata of the encrypted PHR 

data automatically. The users of the DSePHR do not require to know how the data is 

stored in the distributed storage. The users use the API to upload their health data to 

the distributed storage and the DSePHR will return a data id and information of its 

data to the user. The data id is used to indicate and retrieve the data when the user 

requires. For more system feature details, will be described in next section. 

3.2.1 Encrypted Communication and Authentication 

The communication between a user and DSePHR is secured and only 

authorized user can access the data. DSePHR enables https with TLS 1.2 to perform 

the communication. Token based authentication is adopted in DSePHR. The DSePHR 
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forces all incoming requests to be done according to https mechanisms and token 

based authentication.  Therefore, the encrypted PHR data and its metadata will not 

be revealed or accessed by any unauthorized user, assuming all mechanisms are not 

compromise. 

3.2.2 Retrieving and Storing Data 

Users can store and retrieve their data from the distributed storage 

using DSePHR.  DSePHR does not limit the exact size of files to be stored on the 

distributed storage.  The distributed storage is optimized for storing both small size 

files and large size files without any memory issue, that is a concern in other 

distributed storage as discussed in Section 2.3. When the user uploads the data using 

the DSePHR, the API will return the data id to the user.  The data id is used to 

indicate the required data in the DSePHR and to download the data from the 

DSePHR. 

3.2.3 Data Accuracy 

The user can ensure the data accuracy which are downloaded from 

the distributed storage using DSePHR.  If the data in the distributed storage is 

incorrect, the distributed storage has a mechanism to recovery the data. When the 

user downloads the data from the distributed storage, DSePHR provides a data 

accuracy verification to check the downloaded data by means of a hash value. Since 

there is at least 3 replicates on the system, the DSePHR can retrieve and recover the 

data from another replicate. 

3.2.4 Fast Search the Encrypted PHR Data 

Search any encrypted PHR data is difficult because the data is lack of 

any related information.  However, the proposed system, DSePHR, provides some 



30 

 

related metadata of the encrypted PHR data for searching. Section 3.3.2 provides the 

details of all metadata stored by the DSePHR. 

3.2.5 Editing the Uploaded Data 

In order to update or edit any existing PHR data in the DSePHR, there 

are two cases.  The first case is to update the data.  The second case is to update 

only some description of the existing data.  For updating the data, the user must 

replace the existing data by specify the data id. For updating the metadata, the data 

will not be touched. Only the metadata will be updated. 

3.3 DSePHR Design 

The architecture of the DSePHR will be described in this section 

including architecture and metadata design while the storage design is presented in 

Section 3.4. 

3.3.1 DSePHR Architecture 

The DSePHR architecture is shown in Figure 3.4, consisting of two main 

parts including my proposed API and Hadoop as a framework for our distributed 

storage. My proposed API contains four components, including access interface (AcI), 

authentication (AUTH), encrypted data manager (EDM) and metadata manager (MM). 

Hadoop contains two components, including Hadoop distributed file system (HDFS) 

and HBase.  For the connection path, the user of the DSePHR will connect to the 

system via AcI. The encrypted PHR data will be sent over the HTTPS (HTTP with TLS) 

to the AcI and the AUTH will verify the request permission.  The AcI classifies the 

request.  If the request is to upload the data, the AcI make a call to MM for 

generating a metadata and writing the metadata to HBase. EDM is also called by the 

AcI for storing the data on HDFS.  For a download request, the MM is used for 
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searching the data corresponding to the requested metadata.  The EDM pulls the 

data from Hadoop and sends the data to the requester. 

 

 
Figure 3.4 DSePHR Architecture 

The flowchart of the DSePHR operations is shown in Figure 3.5. First, 

DSePHR receives an incoming request from a client.  DSePHR will classify a type of 

the incoming request. For an incoming upload request, DSePHR will (1) receive the 

data from the incoming request and write the data to its DSePHR disk, (2) generate 

the metadata of the data, (3) add the data to the uploading queue to wait for storing 

to the distribution storage and (4) send the metadata back to the client. When the 

uploading queue is not empty, the uploading queue checks the data size. The data 

will be stored on HDFS if the data is large and stored on HBase otherwise. However, 

the metadata of the data will be stored on HBase. After storing the data, DSePHR will 

delete the data from its disk and check the data in the uploading queue again. For 

an incoming download request, DSePHR will retrieve the metadata of the incoming 
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download request from HBase first to indicate the location of the request data. If the 

requested data is on HDFS, DSePHR will retrieve the data from HDFS. If the requested 

data is on HBase, DSePHR will retrieve the data from HBase. After retrieving the data, 

DSePHR will store the requested data to its disk first, then send the data back to the 

client. 
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Figure 3.5 DSePHR working flowchart 

Another design challenge is that the encrypted PHR data is hard to 

preprocess or categorize. The DSePHR does not understand the encrypted PHR data 

because the information concerning the data is hidden. There are three properties of 
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the encrypted data that are explicit:  owner of the data, size, incoming time of the 

data. The DSePHR uses those explicit properties to design the database schema and 

the distributed storage for conveniently accessing the data by its members. 

The design of the distributed storage for storing encrypted PHR data 

contains 2 parts including metadata design and storage design. The part of metadata 

design describes how to adopt the encrypted PHR data properties to index the data 

for convenient accesses. The part of storage describes how to store small and large 

files by avoiding a high memory consumption issue of distribution storage (HDFS). 

3.3.2 Metadata Design 

In this part, the necessary metadata for the encrypted PHR data are 

identified. HBase is used for storing the whole metadata of the DSePHR. The list of 

metadata includes user id, system id, timestamp, data id, name of the data, 

checksum value, size of the data, HDFSpath and description. The user id, system id, 

timestamp and data id are gathered and it is used as a rowkey.  The remaining 

metadata are used as the column qualifier that persists in the column family named 

properties.  The metadata schema is shown in Table 3.1 and the details of each 

metadata are described in Table 3.2. 

Table 3.1 MetaTable Schema 

Rowkey properties 
<UserId-SysId-

Timestamp-DataId> 
name checksum size HDFSpath description 
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Table 3.2 MetaTable Description 

ColumnFamily:ColumnQualifier Description 
UserId (Rowkey) The user id of the data uploader 
SysId (Rowkey) The system id used by the data uploader 
Timestamp (Rowkey) Timestamp when the data arrive at the DSePHR 
DataId (Rowkey) Data id is a random gernerated by uuid4 
properties:name The name of the data file 
properties:checksum Checksum (SHA-3) value of the data  
properties:size Size of the data file 
properties:HDFSpath Location of the data file in HDFS (only large file) 
properties:description Description of the data file 
 

The rowkey design is the important part of the distributed storage, 

because the data in HBase can be accessed by using the rowkey only. The rowkey 

must be designed in corresponding to the PHR access pattern. The owner of the PHR 

data can access the encrypted PHR data in the distributed storage by specifying time 

range of the data. The rowkey is composed of user id, system id, timestamp and data 

id respectively. The design of the rowkey is shown in Figure 3.6. The rowkey in HBase 

is in lexicographical order. Thus, the data in HBase are sorted by first the user id and 

then the system id. The data of the same user and the same system id are resided 

close to each other and sorted by time.  The advantage of this design is when the 

user requires to access his/her data, the user can access it from one place. Accessing 

the data using a range of time is convenient because the data are already sorted by 

time. 
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Figure 3.6 Rowkey Design 

3.4 Storage Design 

In the part of the storage design, the storage is divided to 2 parts 

including HDFS and HBase. Large files are stored on HDFS and small files are stored 

on HBase.  The reason to store the small files on HBase is to eliminate the high 

memory consumption of Namenode as discussed earlier in Section 2.4. By the storing 

small files on HBase, the HBase optimization is required to achieve the performance. 

3.4.1 HDFS Storage 

The HDFS storage will store only large file.  That is, the data that is 

larger than the cut-point between small and large file is directly saved to HDFS. The 

cut-point in this work is 10MB (10MB is the default maximum HBase cell). The value 

can be configured. This metadata is stored in HBase using the same schema as the 

metadata design shown in Table 3.1. 
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3.4.2 HBase Storage 

Storing a lot of small files in HDFS can cause the high memory 

consumption problem.  For instance, 10 million of 1 KB files take memory around 

4GB while 128 MB of 800 files take memory around 320 KB, Although both situations 

take an equal capacity of the disk space. Storing small files in HBase is an appropriate 

solution because HBase has a compaction operation to merge many small files to a 

large file to be stored on HDFS automatically. The schema to store small files using 

HBase is shown in Table 3.3.  A binary large object (BLOB)  technique is adopted in 

HBase.  The DSePHR stores a binary file in column qualifier named “ data”  and 

column family named “EncryptedData”. The rowkey used is as same as that of the 

metadata design. 

Another advantage of storing small files in HBase is saving time to 

implement the file merging operation and a CRUD operation, which stands for create, 

read, update and delete operations. Merging files is needed for gathering small files 

to a large file. The less number of files can reduce the Namenode memory. Storing 

small files on HDFS without HBase, merging method and CRUD operations are 

needed because accessing the small file in merging file cannot be performed without 

CRUD operations.  By using HBase method, HBase merges small files automatically 

and also provides CRUD operation to access the data. 

Table 3.3 EncTable Schema 

Rowkey EncryptedData 
<UserId-SysId-

Timestamp-DataId> 
Data 
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3.4.3 HBase Optimization 

HBase does not mainly design for BLOB storage but HBase is able to 

store the data in binary form. HBase can store both text data and binary data. Binary 

data such as the encrypted PHR data is large when it is compared with text data. 

Storing the data as BLOB can be considered a high data loading operation. Therefore, 

the HBase optimization is necessary.  There are 2 parts of optimization including 

HBase configuration tuning and presplit table. 

The HBase configuration tuning is an easy operation to support high 

write throughput. Most configurations are in hbase-dir/conf/hbase-site.xml and some 

configurations are in hbase/conf/hbase-env.sh. The explanation of each configuration 

is shown in Table 3.4. 
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Table 3.4 HBase Configuration Description 

Configuration Name Description Default Adjust 
Heapsize* Memory size of the JVM that can be 

used by HBase. 
1 GB 5.5 GB 

hbase.regionserver.global. 
memstore.size 

Size of the whole memstores (write 
cache) 

0.4 
(40%) 

0.6 

hfile.block.cache.size Size of the block cache (read cache) 0.4 
(40%) 

0.2 

hbase.hregion.memstore. 
flush.size 

Size of the memstore 128 
MB 

256 
MB 

memstore.block. 
multiplier 

Block the data when size of the 
whole memstore exceed 
(memstore.block. multiplier x 
hbase.hregion.memstore. 
flush.size) 

2 4 

compactionThreshold Number of hfiles to perform 
compaction operation 

3 15 

blockingStoreFiles Block the data when the number of 
hfiles exceed the threshold. 

10 25 

-XX:CMSInitiating-

OccupancyFraction* 
Amount of the data in the heapsize 
that encourage the garbage 
collector to work. 

92 % 70 % 

* configurations are in hbase-env.sh 

Pre-split table is an important technique to spread the incoming data 

to every node. Basically, HBase starts with a single region as a table. When the size of 

the data in the table increases and reaches the threshold, HBase will split the region 

to two regions. At the start, the whole incoming requests to HBase will go to a single 

machine which can cause a bottle neck problem.  A presplit table can provide a 

solution to such problem. The pre-split mechanism divides regions to distribute the 

data among machines from the start.  The presplit table can perform using HBase 

shell command when the table is created.  For instance, “ create 'MetaTable', 
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'properties', {SPLITS => ['u1','u4', 'u7']} ; create 'EncTable', 'EncryptedData', {SPLITS => 

['u1','u4', 'u7']}”. A text “ 'u1','u4', 'u7'” is a split point. The recommended number of 

split point is a number of region server minus one. 

3.5 Synthetic PHR Workloads 

Since there is no standard for PHR workloads, this thesis also proposes 

a set of synthetic PHR workload based on real data files downloaded and collected 

from various sources.  According to 11 types of PHR originally given in [ 3]  and 

discussed again in Section 2.1, most PHR data are in the form of a document file 

such as continuity of care document (CCD) file, continuity of care record (CCR) file, 

and a document file type. In addition, the PHR data can exist in a form of a media 

file such as an image file (e.g. , MRI, X-ray or ECG image file) , an audio file (e.g. , a 

doctor visit conversation) and a video file (e.g. , an operation video or a healthcare 

instruction video). As a result, various document and media file sizes and types are 

downloaded as a PHR workload collection.  

In this thesis, there are a total of 12 files including document files and 

media files, collected as a set of synthetic PHR workload as a representative of the 

PHR data types discussed above. Each data is explained below: 

• A MRI image file: a 20KB jpeg file collected from imaging.cancer.gov as a 

representative of the patient information as an overview, while the large image 

file size will also be stored in the PHR system for details information. This file 

also represents other small size image files to be stored on the PHR system. 

• A CCD file: a 27KB xml file collected from www.ehrdoctors.com as a 

representative of the several PHR data type discussed in Section 2.1 such as 
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problem list, procedure, major illness, provider list, family history, medications, 

immunizations, and laboratory test. This file represents a small size CCD file. 

• A patient information file: a 30KB xlsx file created as a representative of several 

PHR data type. This file represents a small size document file. 

• A heartbeat sound file: a 154KB ogg file collected from commons.wikimedia.org 

as a representative of a media file type such as the home-monitored data, the 

laboratory data and the family history data. 

• An ECG picture file: a 393KB jpg file collected from en.ecgpedia.org as a 

representative of a media file type such as the home-monitored data, the 

laboratory data and the family history data. 

• A patient information file: a 431KB docx file created as a representative of several 

PHR data type. This file represents a medium size document file. 

• A CCD file: a 617KB xml file collected from www.myhealth.va.gov as a 

representative of a CCD file of different size and type. 

• A CCD file: a 679KB pdf file collected from www.myhealth.va.gov as a 

representative of a CCD file of different size and type. 

• A X-ray file: a 4MB png file collected from commons.wikimedia.org as a 

representative of a large image file. 

• An audio file: a 8.65MB mp3 file created as a representative of a voice 

conversation file. 

• A video file: a 27MB mp4 file of a standard-definition video collected form 

youtube.com as a representative of a small video file. 



42 

 

• A video file: a 232MB mp4 file of a high-definition video collected form 

youtube.com as a representative of a large video file. 

Table 3.5 shows a summary of all twelve file including the size, the 

type for the source of each file.  Since the PHR in this thesis is assumed to be 

encrypted from the source, all files are encrypted using the encryption presented in 

[ 10] .  The first column shows the size of the original file (before the encryption 

process). The second column shows the size of the encrypted file. The third column 

shows the overhead produced by the encryption process on each file.  The fourth 

column shows the type of files.  The last column shows the description of the file 

including the detail of the file and the source of the file.  
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Table 3.5 Workload Files 

Original 
filesize 

Encrypted 
filesize 

Increased 
size from 
original size 

File 
type 

Description 

20 KB 30 KB 10 KB JPG MRI image 
Source: 
imaging.cancer.gov 

27 KB 31 KB 4 KB XML CCD example 
Source: 
www.ehrdoctors.com 

30 KB 41 KB 11 KB XLSX Patient information 
154 KB 160 KB 6 KB OGG Heartbeat 66bpm sound 

Source: 
commons.wikimedia.org 

393 KB 400 KB 7 KB JPG ECG picture graph 
Source: en.ecgpedia.org 

431 KB 440 KB 9 KB DOCX Patient information 
617 KB 620 KB 3 KB XML Large CCD example 

Source: 
www.myhealth.va.gov 

679 KB 690 KB 11 KB PDF CCD PDF example 
Source: 
www.myhealth.va.gov 

4.00 MB 4.01 MB 11 KB PNG Chest X-ray PA image 
(4.7MP) 
Source: 
commons.wikimedia.org 

8.65 MB 8.65 MB 7 KB MP3 Conversation sound 9 
minute 

27 MB 27 MB 9 KB MP4 SD Video of operation 9 
minute 
Source: youtube.com 

232 MB 232 MB 11 KB MP4 HD Video of operation 
17 minute 
Source: youtube.com 
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All files can be classified into 4 types by its size including very small 

size ( less than 100 KB) , small size (100KB -1MB) , moderate size (1MB – 10MB)  and 

large size (more than 10MB) . Base on the collection above, the size distribution of 

the synthetic PHR workload is shown in the Figure 3.7 

 
Figure 3.7 PHR workload size distribution 

The discussion above only gives the details of the PHR data of the 

proposed synthetic workloads.  To conduct an experiment in this thesis, the user 

must perform a download or a download of a file in the PHR workload. Therefore, 

the mixture of read and write requests on each file in the PHR workload is another 

parameter to be considered.  According to the discussion in Section 2.2, the PHR 

requests contain a large number of write requests than that of the read requests. 

Therefore, the ratio of write to read requests in the experiment includes 100:0, 75:25 

and 50:50. 

3.6 Experimental Design 

DSePHR is developed for storing and retrieving encrypted PHR data by 

designing an index from the data attributes and solving the memory issue of the 

distributed storage when storing a lot of small size files. The experiments are 
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designed to (1) evaluate the memory consumption of the DSePHR and (2) to 

evaluate the DSePHR performance on various situations. The detail of experiments 

will be described in the next section. 

3.6.1 Memory Consumption Issue 

Although, HDFS has no limitation on the file size for storing but storing 

a lot of small size files can cause a memory consumption on the Namenode as 

discussed in Section 2.4.  The DSePHR is mainly designed for storing the PHR data 

which contains both small files and large files. The result of DSePHR approach will 

show the DSePHR can solve the high memory consumption of HDFS when it stores a 

lot of small files.  In this experiment, the memory consumption of the Namenode 

between traditional HDFS and DSePHR will be compared.  A number of 25,000 to 

100,000 files will be fed to both traditional HDFS and DSePHR.  

The experiment is conducted on 13 machines.  The detail of the 

experimental setup is shown in Table 3.6. 
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Table 3.6 Setup Detail in Memory Issue Experiment 

Machine Name Service Specification 
Namenode (1 machine) Namenode of HDFS 

HQuorumpeer (Zookeeper) 
OS: Ubuntu 14.04.3 LTS 
CPU: Core-i5 3740s 
2.9Ghz 
HDD: 320 GB (7200 
RPM, 64MB cached) 
RAM:DDR3 8 GB 
 
All machines are 
physical machine and 
connected via a local 
area network 100 Mbps 
on Cisco Catalyst 2960-
48TT-L Switch. 
 
Total: 13 machines 

Datanode (9 machines) DataNode 
HRegionServer (Region 
Server) 

Master2 (1 machine) Hmaster 
HQuorumpeer 
SecondaryNameNode 

WebService The DSePHR Service API 
Measurement Machine DSePHR client 

 

The PHR workload shown in Table 3.5 is used in this experiment. The 

PHR workload is uploaded to the traditional HDFS and the DSePHR at the same time. 

When the number of files reach 25,000, 50,000, 75,000 and 100,000, the memory 

usage at the Namenode of the traditional HDFS and the DSePHR is calculated based 

on the number of files in the system.  

3.6.2 DSePHR Performance 

In this experiment, DSePHR will be evaluated during operations.  The 

experiments are divided into four parts including baseline experiment, effect of 

limited storage space, effect of write-read request ratio and effect of the file type 

mixture.  The objective of baseline experiment is to measure the performance of 

DSePHR to perform an upload and a download operation on an empty system. That 
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is, the DSePHR will only service the request command alone.  This way, the 

performance of this part can be used as a reference point for other situations. The 

remaining three experiments are conducted to evaluate the effect of other factors 

on the DSePHR performance. The details of each experiment are given next. 

3.6.2.1 Baseline Experiment 

Under the baseline experiment, each PHR file of the synthetic 

workload described in Section 3.5 is uploaded to and download from the DSePHR. 

The process is done when the DSePHR is empty. Thus, the DSePHR will only service 

the request. As a result, the performance observed here can be used for comparison 

with the result of the remaining experiments.  

There are 3 storage nodes, 1 web service and 1 client to conduct the 

experiment.  Every machine is connected by LAN 100 Mbps fast Ethernet.  The 

number of storage nodes is 3 because HDFS makes 3 replicas of its data. The client 

uploads to or downloads from the single web service, then a web service will store 

to or retrieve from storage nodes. The overview of the baseline experiment is shown 

in Figure 3.8 and more detail of each machine is shown in Table 3.7. 

The workload used in this experiment is the PHR workload presented 

in Section 3.5. For the file size less than 1 MB, the file will be repeatedly uploaded 

or downloaded for 10 times.  For the 3xray.png which is a 4.01 MB, the file will be 

repeatedly uploaded or downloaded twice.  Other files will be uploaded or 

downloaded only 1 time. The repeating number is considered by the multiplication 

of repeating number and file size that is not over 10 MB due to transmission rate of 

LAN 100 Mbps fast Ethernet. For the repeated files, the average value will be used 

for the result of each file instead of the single value. 



48 

 

The experiment will be repeated for 3 times and the average value is 

calculated. The storage nodes will be formatted, then each file will be uploaded to 

the storage.  If the repeating number is 10, the file will be continually uploaded to 

the storage 10 times. For the download measurement, each file will be uploaded to 

the storage first for repeating number times, then each file will be randomly selected 

to download for repeating number times. 

 

Figure 3.8 Overview experiment setup for workload baseline experiment 
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Table 3.7 Experiment setup detail of workload baseline experiment 

Machine Name Service Specification 
Namenode (1 machine) Namenode of HDFS 

 
OS: Ubuntu 14.04.3 LTS 
CPU: Core-i5 3740s 
2.9Ghz 
HDD: 60 GB (7200 RPM, 
64MB cached) 
RAM: DDR3 8 GB 
 
All machines are 
physical machine and 
connected via Lan 100 
Mbps with Cisco 
Catalyst 2960-48TT-L 
Switch. 
 
Total: 10 machines 

Storage Nodes  
(3 machines) 

DataNode 
HRegionServer (Region 
Server) 

Zookeeper Node 
(1 machine) 

HQuorumpeer 

SecondaryNameNode 
(1 machine) 

SecondaryNameNode 

Master2 (1 machine) Hmaster 
 

DSePHR web services  
 

The DSePHR Service API 

DNS server Bind9 
Client The client to write or read 

the data to DSePHR 
 

3.6.2.2 Effect of the Limited Storage Space 

In this experiment, the DSePHR performance are measured when the 

storage space is running out. This experiment is conducted on a small size cluster (3 

storage nodes). 

The experiment setup is shown in Figure 3.9. According to Figure 3.9, a 

number of clients, a number of DSePHR web services and a number of storage nodes 

are presented by N, X and Y respectively.  Clients will upload the data to or 

download the data from DSePHR web services. The DSePHR web services will store 

the data to or retrieve the data from the distributed storage.  The detail of each 

machine is shown in Table 3.8 
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Figure 3.9 Effect of limited storage space and effect of the write-read request ratio 
experimental setup 

Table 3.8 Effect of limited storage experimental setup details 

Machine Name Service Specification 
Namenode (1 machine) Namenode of HDFS 

HQuorumpeer (Zookeeper) 
OS: Ubuntu 14.04.3 LTS 
CPU: Core-i5 3740s 
2.9Ghz 
HDD: 60 GB GB (7200 
RPM, 64MB cached) 
RAM:DDR3 8 GB 
 
All machines are 
physical machine and 
connected via Lan 100 
Mbps with Cisco 
Catalyst 2960-48TT-L 
Switch. 
 
Total: 20 machines 

Storage Nodes  
(3 machines) 

DataNode 
HRegionServer (Region 
Server) 

Master2 (1 machine) Hmaster 
HQuorumpeer 
SecondaryNameNode 

DSePHR web services  
(6 machines) 

The DSePHR Service API 

DNS server (1 machine) Bind9 
Clients (8 machines) The client to write or read 

the data to DSePHR 
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The synthetic PHR workload described in Section 3.5 is used as the 

workload in this experiment. The mixture of the file type is as described in Section 

3.5 while the ratio of write-read request is 100:0, 75:25 and 50:50. The workload in 

this study consist of 6,000 files for each client. Therefore, there are 48,000 files total 

from 8 clients. 

The workload will be fed to the DSePHR until the system is almost 

running out of resources.  After that, the capacity will be added to the system 

afterward. The workload is fed continually to the DSePHR until the system runs out 

of resource. The measurements during this experiment include the amount of data 

on each client and each storage node.  The measurement points are the system 

resource usage at 75% , 80% , 85% , 90% and 95%. The response time of the DSePHR 

in using the additional storage nodes is also measured.  

3.6.2.3 Effect of the Write-read Request Ratio 

In this experiment, DSePHR will be tested on a larger scale with a 

warm-up and cool-down period in order to simulate the background work and the 

measured work. Since the PHR data source can be wearable devices, mobile phones 

and users from PHR system [30 ] , [3 1 ] , there is a lot of data that can be exported 

from sensors of such device. Resulting in a higher number of write-request than that 

of read-request.  Three situations are mimicked such situations by using a ratio of 

write to read request of the workload as 100:0, 75:25 and 50:50. 

The large cluster is used to measure the DSePHR performance when 

the DSePHR handles both upload and download requests from clients.  The large 

cluster has a number of storage nodes more than the small cluster. A high number 

of storage nodes means that the DSePHR can support high amount of throughput 
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because there are many nodes to support a lot of incoming requests. The incoming 

requests can be distributed to all storage nodes. The detail of machines used in the 

experiment shows in Table 3.9. 

The overall picture of the experimental setup is shown in Figure 3.9 as 

same as the effect of limited storage space experiment. There are three main parties 

including client, DSePHR web service and distributed storage.  Assuming the clients 

are real users who want to store or retrieve the data from DSePHR. The clients are 

used for accessing the DSePHR web service including write-operations and read-

operations. All clients will know a list of DSePHR web service by getting it from the 

DNS Server. The client can directly send the request to each DSePHR with the DNS 

round robin mechanism. Each DSePHR web service processes the incoming requests 

and saves the data to the distributed storage. The distributed storage contains many 

machines for supporting the data from DSePHR web service.  
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Table 3.9 Effect of the write-read ratio and the mixture of file type 

Machine Name Service Specification 
Namenode (1 machine) Namenode of HDFS 

HQuorumpeer 
(Zookeeper) 

OS: Ubuntu 14.04.3 LTS 
CPU: Core-i5 3740s 
2.9Ghz 
HDD: 460 GB (7200 RPM, 
64MB cached)  
RAM:DDR3 8 GB 
 
All machines are 
connected via Lan 100 
Mbps. 
 
Total: 32 machines 

Storage Nodes 
 (15 machines) 

Datanode 
HRegionServer (Region 
Server) 
HQuorumpeer 
(Zookeeper)* 
*only machine#1, #5, #9 

Master2 (1 machine) Hmaster 
HQuorumpeer 
SecondaryNameNode 

DSePHR Web service 
(6 machines) 

The DSePHR Service API 

DNS Server (1 machine) BIND9 
Clients  
(8 machines) 

The client to write or read 
the data to DSePHR 

 

The workload described in Section 3.5 is used in this experiment. Each 

client has 6,000 files and there are 8 clients. Resulting in 48,000 files. However, the 

first 500 files of each client will be used as the warm-up files.  That is, the 

performance of these files is not included in the result. Each file in the set of 6,000 

files will be set as either read or write according to the write-read ratio. For example, 

the 100:0 ratio will result in 6,000 write requests. That is, all files are write requests. 

For the 75:25 ratio, there are 4500 write requests and 1,500 read requests. Since the 

first 500 files are the warm-up files and the last 500 files are the cool-down files. The 

measurement files are the 5,000 files in the middle. A throughput of each client is 



54 

 

measured in megabyte per second.  The throughput of each storage node will also 

be measured. The throughput results will show on both write and read operation. 

3.6.2.4 Effect of File Type Mixture 

The synthetic PHR workload described in Section 3.5 consists of 73% 

small files ( i.e. , the file size is less than 1 MB) and only 9%  of files have the size 

larger than 10 MB. Thus, 91% of the files will be stored on HBase while only 9% of 

the files will be stored on HDFS due to the DSePHR design. In the future, however, 

the data source may be able to generate more large files.  Thus, this experiment 

changes the mixtures of the PHR file type to increase the number of large files in 

order to evaluate the DSePHR performance.  

All experiment settings are exactly the same as that of section 3.6.2.3 

with the exception of the workload. The workload in this experiment contains 75% 

of small files and 25%  of large files. While, the write-read ratio of the workloads is 

100:0, 75:25 and 50:50. 
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

This chapter presents the details of the DSePHR APIs and the 

experimental results including DSePHR Namenode memory usage, the workload 

baseline performance, the effect of limited storage space, the effect of varying write-

read request ratio of the workload, and the effects of file type mixture of the 

workload. 

4.1 DSePHR API Description 

The DSePHR API is developed using REST style architecture on HTTP. 

The use of DSePHR API is described in Table 4.1. Column “method”  shows a HTTP 

method, “URI” stand for Uniform Resource Identifier to the API operation, Parameter 

and description explain the detail of the URI.  Every request requires to attach a 

token key for authentication by determining HTTP request as 

“header={‘Authentication-Token’:token_key}”. The token key can be found from the 

login URI. 

Table 4.1 DSePHR API Description 

Method URI Parameter and description 
POST /login 

 
 
 

Description : sign in to the system and get a 
token key to be attached with the request. 
Send data by JSON style 
Parameter : email, password 
email : registered email 
password : used password 
example {“email”:“system1@example.com”, 
“password”: “system1”} 
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Table 4.1 DSePHR API Description (cont.)  
Method URI Parameter and description 
GET /logout Description : sign out from the system 
POST /upload 

 
Description : use to store the data to a 
distributed storage. If uploading success, the 
system will return the metadata using JSON  
Send data by FORMDATA style 
Parameter : sysid, userid, file, timestamp, 
description 
sysid : registered system id such as “s1” 
userid : registered user id such as “u1252” 
file : the health data to store 
timestamp : time of the data. If does not specify, 
time is current uploaded data time. 
description : description of the data 

GET /download/<rowkey> 
 

Description : use to retrive the data from the 
distributed storage. 
Parameter : rowkey 
*The rowkey get from /upload when the upload 
operation is successful 

POST /search Description : use to search the data in the 
distributed storage. 
Send data by FORMDATA 
Parameter : sysid, userid, filename, starttime, 
endtime, description 
sysid: specify system id of the data to search 
userid: specify user id of the data to search 
starttime: specify start of time of the data 
endtime: specify end of time of the data   
* Both starttime and endtime can specify 
together. 

GET /infor/<rowkey> Description : Show information concerning the 
data. 
Parameter : rowkey 
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4.2 Memory Consumption Issue 

This experiment is conducted to observe the DSePHR memory 

behavior when the DSePHR handles a lot of data. A number of files in the system is 

100,000 files with 1,200 GB of disk capacity. Encrypted PHR data with a lot of small 

files especially the document file type can cause a high memory consumption on 

the Namenode of the HDFS system. The proposed DSePHR, however, can reduce the 

memory consumption problem. 

This experiment is performed to measure the memory consumption 

of the Namenode when stores a lot of files.  Table 4. 2 shows the memory 

consumption of the proposed DSePHR and the HDFS system when the number of 

input files is at 25,000, 50,000, 75,000 and 100,000 files.  

Table 4.2 Memory comparison between DSePHR and traditional HDFS 

A number of files in 
the system 

Systems 

DSePHR (MB) Original HDFS (MB) 
0 56.00 56.00 

25,000 57.60 72.20 
50,000 59.10 83.40 
75,000 60.58 104.59 

100,000 61.16 120.79 
 

The memory consumption is calculated using the formula given in 

[25]. At 0 file point, HDFS takes an initial memory of 56 MB. According to the results 

shown in Table 4.2, 100,000 files in the system, the proposed DSePHR consumes the 

amount of memory similar to the initial amount while the HDFS consumes almost 

twice the initial amount. The key solution of the proposed DSePHR is to store a lot 

of small files using the HBase compaction mechanism.  Thus, HDFS can avoid the 
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memory consumption issue because a lot of small files are packed in order to 

reduce the number of files. Without this approach, the original HDFS suffers a high 

memory consumption problem and lead to a state of unavailable if a large number 

of small files is sent to be stored, which is an important point because the encrypted 

PHR data is mostly a small file type such as document. 

In conclusion, the experimental results show that the DSePHR can 

store and retrieve the data without a Namenode memory issue observed under the 

original HDFS system.  

4.3 DSePHR Performance 

To observe the DSePHR system performance, four experiments are 

conducted.  The first experiment is to measure the real performance of DSePHR 

(baseline), the second experiment is the effect of limited storage space performance, 

the third experiment is the effect of write-read ratio and fourth experiment is the 

effect of file type mixture. The results of the baseline experiment, effect of limited 

storage space, effect of write-read ratio and effect of file type mixture are presented 

in Section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 respectively. 

4.3.1 DSePHR Workload Baseline 

According to the DSePHR policy, small files will be stored in HBase 

and large files will be stored in HDFS. However, the small file can be stored in HDFS 

directly.  To measure the performance between DSePHR policy and the storing in 

HDFS only, DSePHR system under DSePHR policy and storing in HDFS only are 

conducted.  Both baseline performances use DSePHR system with different 

configuration. For the DSePHR policy, the small file is stored in HBase and large file is 

stored in HDFS. For the HDFS only, every file is stored in HDFS. Table 4.3 and Table 
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4.4 show the upload and download time baseline using both DSePHR policy and 

HDFS only.  Every value in both upload and download baseline table is an average 

value of 3 repeating experiments. For the upload time table, the column “CL-WS” is 

the amount of time in seconds that it takes for the client to upload the data to the 

web service. The column “WS-SN” is the amount of time in seconds that it takes for 

the web service stores the data to the storage nodes.  Due to the DSePHR policy, 

11videosmall.mp4 and 12videobig.mp4 are stored in HDFS. Other files are stored in 

HBase. The “Gen Meta” column is the amount of time to generate a metadata. The 

“Repeat” column means that the file is continually upload for a number of repeat 

times in order to calculate the average values in CL-WS and WS-SN. The number to 

repeat depends on the multiplication result of the number of repeat and the file 

size. The multiplication result must not be over 10MB due to the transmission rate. 

The small file must be repeated because the small file can be easily affected by the 

network latency or OS service. For the download time baseline table, the “SN-WS” 

column is the amount of time that the storage nodes send the requested data to a 

web service in responding to the client request. The “WS-CL” column is amount of 

time that web service send the requested data to client. The “Repeat”  column is 

times to repeatedly download similar to upload time baseline table.  

According to the results shown in Table 4.3, the time values in CL-WS 

column are always less than that of the WS-SN column for both DSePHR policy and 

HDFS only. That can be explained by the fact that storing the data in a storage node 

requires more operations than storing the data in the web service. For example, in 

case of storing in HBase, the web service must retrieve a list of available region 

servers from the Zookeeper, then the web service will send the data to a specified 
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region server.  In case of storing in HDFS, the web service must retrieve a list of 

available Datanodes from the Namenode first, then the web service will send the 

data to a specified Datanode. The column WS-SN in HDFS only is clearly larger than 

that of the DSePHR policy for all small files (less than 10 MB). To store the data in a 

storage node, the system under the DSePHR policy spends time at least 0.7 seconds 

while the system under the HDFS only spends time at least 2.4 seconds. It can be 

concluded that storing data in HDFS takes more time than storing data in HBase for 

small files. Because HBase stores the data in the memory first while the HDFS stores 

the data in disk immediately, the DSePHR policy can reduce the time for storing the 

data. This supports the idea that storing the small files in HBase and storing the large 

files in HDFS can improve the performance of the upload time.  The metadata 

generating time is increased with the file size because the metadata generating 

process must create the hash value of the file (SHA-3). To generate the hash value, 

the hash function must read the whole file and the time to create the hash value 

increases with the file size. 

According to Table 4.4, the time values of SN-WS and WS-CL column 

in DSePHR policy are slightly different while that in HDFS only are clearly different for 

the file size less than 1 MB. The SN-WS of DSePHR policy is less than that of HDFS 

only for the file size less than 1 MB because the data will be retrieved from the 

memory of the storage node for the DSePHR case while, the data will be retrieved 

from disk of storage node. The retrieving time from the memory is smaller than the 

retrieving time from the disk.  However, the retrieving time of the DSePHR policy is 

larger than that of the HDFS only when the file size is larger than 4 MB. 
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Table 4.3 Upload time baseline (DSePHR policy and HDFS only) 

Filename Size Repeat DSePHR policy HDFS Only 
CL-

WS(s) 
WS-SN 
(s) 

Gen 
Meta 
(s) 

CL-
WS(s) 

WS-SN 
(s) 

Gen 
Meta 
(s) 

2mri.jpg 30KB 10 0.016 0.788 0.001 0.018 2.426 0.001 
4ccd.xml 31KB 10 0.016 0.786 0.001 0.018 2.432 0.001 
8excel.xlsx 41KB 10 0.017 0.800 0.001 0.020 2.477 0.001 
9sound.ogg 160KB 10 0.027 0.823 0.002 0.030 2.413 0.002 
1ecg.jpg 400KB 10 0.049 0.947 0.003 0.053 2.517 0.004 
7word.docx 440KB 10 0.063 0.979 0.003 0.056 2.482 0.004 
5ccd.xml 620KB 10 0.070 0.893 0.004 0.073 2.623 0.005 
6ccd.pdf 690KB 10 0.078 1.011 0.004 0.081 2.559 0.005 
3xray.png 4.01MB 2 0.386 1.610 0.028 0.394 3.026 0.033 
10sound.mp3 8.65MB 1 0.808 2.619 0.065 0.846 3.370 0.068 
11videosmall.mp4 27MB 1 2.481 5.267 0.172 2.594 5.322 0.166 
12videobig.mp4 232MB 1 21.006 24.482 1.066 21.897 24.838 1.065 

Table 4.4 Download time baseline (DSePHR policy and HDFS only) 

Filename Size Repeat DSePHR policy HDFS Only 
SN-WS(s) WS-CL(s) SN-WS(s) WS-CL(s) 

2mri.jpg 30KB 10 0.007 0.005 0.030 0.005 
4ccd.xml 31KB 10 0.007 0.004 0.018 0.005 
8excel.xlsx 41KB 10 0.006 0.006 0.018 0.006 
9sound.ogg 160KB 10 0.017 0.016 0.030 0.017 
1ecg.jpg 400KB 10 0.038 0.038 0.051 0.053 
7word.docx 440KB 10 0.042 0.042 0.053 0.042 
5ccd.xml 620KB 10 0.058 0.058 0.069 0.059 
6ccd.pdf 690KB 10 0.064 0.065 0.074 0.065 
3xray.png 4.01MB 2 0.375 0.375 0.376 0.376 
10sound.mp3 8.65MB 1 0.837 0.805 0.791 0.806 
11videosmall.mp4 27MB 1 2.580 2.506 2.440 2.507 
12videobig.mp4 232MB 1 20.949 21.248 20.816 21.257 

 

Table 4.5 shows the upload and download time baseline from the 

client perspective. The time is measured from the point when the request is sent by 

the client until the client gets the response from the DSePHR web service on the 
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request.  For the small files, the upload time is less than 1 second while the 

download time is less than 2 seconds. There is a linear relationship shown from the 

file size larger than 4MB. For example, the size of 10sound.mp3 is 2.16 times that of 

3xray.png. The upload time of 10sound.mp3 is also 2.11 times that of 3xray.png. The 

download time of 10sound.mp3 is 2.16 times that of 3xray.png. The download time 

is almost twice the upload time because the web service must retrieve the data 

from storage node first, then the web service sends the data to the client and no 

metadata generating process. For the largest files, 12videobig.mp4, the upload time is 

less than half a minute and the download time is not over 1 minute.  Both the 

upload and download time also show the linear relationship similar to that of the 

file size larger than 4 MB of the small files. 

Table 4.5 Upload and download time baseline from client perspective view 

Filename Size Upload time (s) Download time (s) Repeat 
2mri.jpg 30KB 0.017 0.031 10 
4ccd.xml 31KB 0.018 0.026 10 
8excel.xlsx 41KB 0.019 0.025 10 
9sound.ogg 160KB 0.029 0.047 10 
1ecg.jpg 400KB 0.054 0.091 10 
7word.docx 440KB 0.067 0.099 10 
5ccd.xml 620KB 0.076 0.131 10 
6ccd.pdf 690KB 0.084 0.144 10 
3xray.png 4.01MB 0.416 0.766 2 
10sound.mp3 8.65MB 0.876 1.658 1 
11videosmall.mp4 27MB 2.661 5.102 1 
12videobig.mp4 232MB 22.100 42.214 1 

 

4.3.2 Effect of the Limited Storage Space 

The objective of this experiment is to observe the DSePHR behavior 

when the DSePHR storage is almost filling up.  Two issues are studied in this 
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experiment including the limited resource performance and the DSePHR performance 

during limited resource. 

4.3.2.1 Limited Resource Performance 

This experiment aims to investigate the behavior of DSePHR when the 

capacity of the storage is limited, because extra capacity can be added to the system 

without shutting down the system. This feature provides the availability feature for 

the DSePHR system. Although this feature is already achieved by HDFS. To ensure 

the continuous operation of the system, the amount of time each extra storage is 

filled up and the amount of data to the DSePHR web service, the amount of data 

sent to each storage nodes are measured. The workload in this experiments consist 

of three scenarios, including 100:0, 75:25, and 50:50 write-read request ratio 

workloads of the file type mixture as described in Figure 3.7. 

The initial capacity of the system is 60 GB of 3 storage nodes. There 

are eight clients feeding into the system until the system capacity is at 95% . Then, 

three storage nodes will be added to the system. 

 The experimental results show that the time for all three extra 

storage nodes are filled up with the data after the storage nodes are added are 

shown in Table 4.6. According to the results shown in Table 4.6, the system uses 1 to 

3 minutes to fill up all three extra nodes. 

Table 4.6 Time to fill up all three extra storage nodes 

Workload Time to fill up 
(minutes) 

100:0-write:read 2 
75:25-write:read 1 
50:50-write:read 3 



64 

 

Another advantage of adding extra storage nodes is that the system 

can handle more data. Initially, there are only 3 storage nodes to support the data. 

After adding 3 extra storage nodes, the data can be distributed among six storage 

nodes. Table 4.7 and Table 4.8 show the amount of data sent to each DSePHR web 

service before and after the extra storage nodes are added respectively. The amount 

of data is measured over an hour of the experiments with 30 minutes prior to the 

addition of the storage node and 30 minutes after that. Column “WebService” refers 

to a name of the web service, “MAX” refers to maximum, “AVG” refers to average, 

“MIN” refers to minimum, “STD” refers to standard division, “VAR” refers to variance, 

“95th” and “99th” refer to 95 and 99 percentiles respectively. The average amount 

of data to each web services increases after the extra storage addition, except on the 

LAB_DS6. However, the data transmission rate of all 6 web services are increased 

after the extra storage addition. 

Table 4.7 Amount of data to all six DSePHR web services  

on 100:0-write:read on original PHR mixture before the extra storage addition 

WebService 
Amount of data (MB/s) 

MAX AVG MIN STD VAR 95th 99th 
LAB_DS1 2.421 1.032 0.049 0.741 0.548 2.219 2.393 
LAB_DS2 3.308 1.408 0.380 0.966 0.934 3.081 3.251 
LAB_DS3 2.717 1.689 0.432 0.667 0.445 2.538 2.670 
LAB_DS4 4.063 2.057 0.426 1.039 1.080 3.887 4.041 
LAB_DS5 3.343 1.884 0.580 0.694 0.482 2.881 3.220 
LAB_DS6 6.540 2.969 0.545 1.361 1.852 5.561 6.371 
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Table 4.8 Amount of data to all six DSePHR web services  

on 100:0-write:read on real PHR usage after the extra storage addition 

WebService 
Amount of data (MB/s) 

MAX AVG MIN STD VAR 95th 99th 
LAB_DS1 3.686 1.533 0.398 0.758 0.575 2.504 3.339 
LAB_DS2 6.006 2.719 0.155 1.441 2.076 5.046 5.934 
LAB_DS3 5.466 2.108 0.431 1.157 1.339 4.350 5.244 
LAB_DS4 4.462 2.252 0.221 1.079 1.164 3.976 4.389 
LAB_DS5 6.085 2.004 0.362 1.174 1.378 3.582 5.465 
LAB_DS6 5.100 1.957 0.473 1.112 1.236 4.322 5.008 

 

Table 4.9 The amount of data sending to each storage node on 100:0-write:read with 
original PHR mixture before the extra storage addition 

Storage 
Nodes 

Amount of data (MB/s) 
MAX AVG MIN STD VAR 95th 99th 

LAB_RS1 11.551 10.943 10.061 0.402 0.162 11.455 11.529 
LAB_RS2 11.669 11.371 10.802 0.235 0.055 11.649 11.665 
LAB_RS3 11.663 10.866 8.934 0.746 0.556 11.661 11.663 
LAB_RS4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
LAB_RS5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
LAB_RS6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  

Table 4.10 The amount of data sending to each storage node on 100:0-write:read 
with original PHR mixture after the extra storage addition 

Storage 
Nodes 

Amount of data (MB/s) 
MAX AVG MIN STD VAR 95th 99th 

LAB_RS1 11.210 5.038 0.694 2.573 6.622 10.025 10.995 
LAB_RS2 11.418 4.999 1.805 2.584 6.678 10.617 11.306 
LAB_RS3 11.639 5.914 2.886 2.792 7.797 11.322 11.612 
LAB_RS4 11.689 9.966 0.000 2.739 7.500 11.682 11.687 
LAB_RS5 11.699 9.447 0.093 2.444 5.972 11.575 11.696 
LAB_RS6 11.705 9.381 0.000 2.835 8.035 11.670 11.698 
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Table 4.9 and Table 4.10 show the amount of data sending to each 

storage node each second.  The measurement is captured at the input of each 

storage node over the same one hour period.  The data is measured every second 

and the statistical calculation is done over the period of one hour. 

According to the results in Table 4.9, the amount of data sending to 

each storage node (LAB_RS1, LAB_RS2, LAB_RS3) is almost at the full capacity before 

the extra storage nodes are added, while the extra storage nodes (LAB_RS4, LAB_RS5, 

LAB_RS6)  have no incoming data.  Table 4.10 shows that the extra storage nodes 

( LAB_RS4, LAB_RS5, LAB_RS6)  receive the incoming data with the higher average 

value meaning that shows most new incoming data are sent the new storage nodes. 

It can be concluded that the DSePHR can handle the storage capacity 

addition. Next, the performance of the system in terms of the retrieving time will be 

investigate to demonstrate the performance during the limited storage. 

4.3.2.2 DSePHR Performance during Limited Resources 

In this section, the performance of the data upload to and download 

from the DSePHR is investigated. The time to upload and download the data to the 

DSePHR at 75%, 80%, 85%, 90% and 95% system resource usage is analyzed. The 

overall performance of all files in the experiments are also presented for comparison 

purposes. The data at each system usage situation is collected from all active files 

during the two-minute period over the time when the system resource usage reaches 

the defined level. For example, at 1:04 time is when the system resource reaches 

75%, the active files during the two-minute period from 1:03-1:05 will be used as the 

performance during the 75% system resource usage situation. In some cases, 
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however, there is no file of the measured type during the two-minute period such as 

the read-operation requests of the 75:25-write:read operation workload. Thus, the 

two-minute period is changed to be the ten-minute period in order to cover a longer 

period.  

Figure 4.1 and Figure 4.2 show the time to upload the data to the 

DSePHR system, where Figure 4.1 shows the upload time performance of the small 

files stored on the HBase part of the DSePHR while Figure 4.2 shows the upload time 

performance of the large files stored on the HDFS part of the DSePHR. The graphs 

show the maximum (Max), the average (Mean) and the minimum (Min) upload time 

of each situation including the overall performance (AVG) of the whole experiment, 

and the performance when the system resource usage is at 75%, 80%, 85%, 90%, 

and 95%. Once, the system resource usage reaches 95%, three extra storage nodes 

are added to the system. The workload in this experiment is the 100:0-write:read. 

According to the results shown in Figure 4.1, the upload time to the HBase part of 

the DSePHR does not show any significant difference among each other even when 

the system resource usage is high. Similar trend is observed from Figure 4.2 which 

shows the upload time to the HDFS part of the DSePHR.  

To investigate further, Figure 4.3 and Figure 4.4 show the upload time 

of two small files in the 100:0-write:read workload. Figure 4.3 shows the upload time 

of 3xray.png which is an x-ray image file of 4.01MB. Figure 4.4 shows the upload time 

of 10sound.mp3 which is an audio file of 8.65MB. The results of each individual file 
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types show similar trend as that of the small files shown in Figure 4.1. Other 

remaining file types in the small file category is also showing the same trend. The 

complete results of other 8 file types of small files are presented in the APPENDIX 

section.  

 
Figure 4.1 Upload time of small files in 100:0-write:read workload 
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Figure 4.2 Upload time of large files in 100:0-write:read workload 

 
Figure 4.3 Upload time of an X-ray image file which is a small file in 100:0-write:read 

workload 
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Figure 4.4 Upload time of an audio file which is a small file in 100:0-write:read 

workload 

Figure 4.5 and Figure 4.6 show the upload time of all two-large files in 

the 100:0-write:read workload. Figure 4.5 shows the upload time of 

11Videosmall.mp4 which is a video file of 27MB while Figure 4.6 shows the upload 

time of 12Videobig.mp4 which is also a video file of 232MB. According to the results 

shown in Figure 4.5, the upload time performance at each state of the system 

resource usage shows no significant difference. However, the average upload time at 

90% and 95% system resource usage situations seem to be slightly larger than that of 

the overall performance. However, the similar average upload time at 75% system 

resource usage situation is observed. According to the results shown in Figure 4.6, the 

upload time performance at each state of the system resource usage show no 
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significant difference. However, the minimum upload time at 90% and 95% system 

resource usage situations seem to be slightly larger than other situations.  

 
Figure 4.5 Upload time of a video file (a larger file) in 100:0-write:read workload 

 
Figure 4.6 Upload time of a large video file (a larger file) in 100:0-write:read workload 
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It can be concluded that the system resource usage does not have 

any significant effect on the write operations of both large files and small files on the 

proposed DSePHR when the workload consists of only write operations.  Next, the 

analysis on the 75:25-write:read operation workload is presented.  

Figure 4.7 and Figure 4.8 show the time to upload the data to the 

DSePHR system, where Figure 4.7 shows the upload time performance of the small 

files stored on the HBase part of the DSePHR while Figure 4.8 shows the upload time 

performance of the large files stored on the HDFS part of the DSePHR. Figure 4.9 and 

Figure 4.10 show the time to download the data from the DSePHR system, where 

Figure 4.9 shows the download time performance of the small files stored on the 

HBase part of the DSePHR while Figure 4.10 shows the download time performance 

of the large files stored on the HDFS part of the DSePHR. The workloads in this 

experiment is the 75:25-write:read with original PHR file types mixture, meaning 75% 

of the requests in the workload are write operations while 25% of the requests in the 

workload are read operations. Due to the less number of read operation in the 

workload, the Figure 4.9 and Figure 4.10 use a ten-minute period to collect the data 

at each system usage situation. 

The upload time results shown in Figure 4.7 and Figure 4.8 show 

similar trend as those in Figure 4.1 and Figure 4.2. In comparison, however, the 

average and the maximum upload time of both small and large files in 75:25-

write:read workload are better than those of small and large files in 100:0-write:read 

workload. The detail performance of each file types is shown in APPENDIX section. 
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Figure 4.7 Upload time of small files in 75:25-write:read workload 

 
Figure 4.8 Upload time of large files in 75:25-write:read workload 

The download time of small files shown in Figure 4.9 are larger than 

the upload time of small files shown in Figure 4.7. This situation occurs because the 



74 

 

files will be downloaded from the distributed storage to the DSePHR web service 

before sending to the client. Thus, the download time in this experiment includes all 

the queue time at the DSePHR web service, and the download time from the 

distributed storage to the DSePHR web service. Since, the data must be completely 

downloaded to the DSePHR web service before it can be sent to the client, the 

download time is longer than that of the upload time for the same file type.  

According to the download time of small files shown in Figure 4.9, the 

average download time increases with the increasing of the system resource usage. 

Similar trend also shows in Figure 4.10. This trend does not significantly show up in 

any previous result. The maximum download time of small files (Figure 4.9) occurs at 

the 95% system resource usage situation which is also does not show up in any 

previous result discussed. However, the maximum download time of the large files 

(Figure 4.10) does not occur at the 95% system resource usage situation.  
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Figure 4.9 Download time of small files in 75:25-write:read workload 

 
Figure 4.10 Download time of large files in 75:25-write:read workload 

Unexpectedly, the maximum download time performance of the large 

file occurs on the small video file (Figure 4.9) with the file size of only 27MB in 



76 

 

comparison with that of the large video file (Figure 4.10) with the file size of 232MB. 

The maximum download time occurs during the very early in the experiment. The 

situation occurs because the request of the file occurs right after the file upload 

request. Thus, the file is not completely uploaded to the system. As a result, the 

download request must be waiting until the file is completely upload to the system. 

This situation can be consider as a rare case. To reduce the effects of the rare cases, 

Figure 4.11 and Figure 4.12 show the download information by replacing the 

maximum value with the 95th-percentile value of Figure 4.9 and Figure 4.10, 

respectively. According to the results shown in Figure 4.11, the 95th-percentile 

download time increases with the increasing of the system resource usage. This result 

is clearly shown when comparing the 95th-percentile values. The same trend is not 

clearly shown in Figure 4.12. 
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Figure 4.11 Download time of small files in 75:25-write:read workload 

 
Figure 4.12 Download time of large files in 75:25-write:read workload 

To investigate into the detail performance of each file types, Figure 

4.13 and Figure 4.14 show the download time performance of an x-ray image file and 
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an audio file of small files in 75:25-write:read workload, respectively. To reduce the 

effect of the rare cases, the maximum values will be replaced by the 95th-percentile 

values. According to the download time performance shown in Figure 4.13, the 

average and the 95th-percentile download time values do not clearly increase with 

the increasing of the system resource usages. However, the average and the 95th-

percentile download time values at 90% and 95% system resource usage situations 

are clearly larger than other situations. According to the download time performance 

shown in Figure 4.14, the average and the 95th-percentile download time does not 

clearly increasing. However, the average and the 95th-percentile download time 

values at the 95% system resource usage situation are the highest among all. 

Furthermore, the maximum upload time of the audio file occurs at the 95% system 

resource usage as shown in Figure 4.15. This result also confirms that the download 

time performance of small files is affected by the system resource usage in the 

75:25-write:read workload. 
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Figure 4.13 Download time of an X-ray image file which is a small file in 75:25-

write:read workload 

 
Figure 4.14 Download time of an audio file which is a small file in 75:25-write:read 

workload 
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Figure 4.15 Download time of an audio file which is a small file in 75:25-write:read 

workload 

Figure 4.16 and Figure 4.17 show the download time performance of a 

small video file and a large video file of large files in 75:25-write:read workload, 

respectively. According to the download time performance shown in Figure 4.16, the 

average and the 95th-percentile download time values do not clearly increase with 

the increasing of the system resource usage. However, the average and the 95th-

percentile download time values at the 95% system resource usage are the highest 

values among all cases. According to the results shown in Figure 4.17, there is no 

significant trend to show the effect of the system resource usage on the download 

time performance of the large video files.  
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Figure 4.16 Download time of a video file which is a large file in 75:25-write:read 

workload 

 
Figure 4.17 Download time of a large video file which is a large file in 75:25-write:read 

workload 
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In conclusion, the system resource usage has an effect on the 

download time performance of both small files and large files, specially the effects 

at the 90% and 95% system resource usage are clearly visible in many cases for the 

75:25-write:read workload. However, the effect does not clearly show in the upload 

time performance of both file types. 

Next, the performance of the DSePHR when the workload contains 

50% write operations and 50% read operations. Figure 4.18 and Figure 4.19 show the 

upload time performance of small files and large files to the DSePHR, respectively. 

Figure 4.20 and Figure 4.21 show the download time performance of small files and 

large files from the DSePHR, respectively. The workload used in these figures is the 

50:50-write:read workload, meaning half of the requests are write operations and the 

other half of the requests are read operations.  

The upload time results shown in Figure 4.18 and Figure 4.19 show 

similar trend as the upload time performance of the 100:0-write:read workload and 

the 75:25-write:read workload. In comparison, however, the average and the 

maximum upload time of both small and large file types in 50:50-write:read 

workload are smaller than their counterpart in 75:25-write:read workload and 100:0-

write:read workload. The detail performance of each file types is shown in APPENDIX 

section. 
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Figure 4.18 Upload time of small files in 50:50-write:read workload 

 
Figure 4.19 Upload time of large files in 50:50-write:read workload 

According to the download time of small file types shown in Figure 

4.20 are smaller than that shown in Figure 4.11. In contrast, the download time of 
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large file types shown in Figure 4.21 are larger than that shown in Figure 4.12. The 

effect of the system resource usages on the read operation is now not clearly visible. 

To further investigate the results of each file types, Figure 4.22 and Figure 4.23 show 

the download time performance of an x-ray image file and an audio file, respectively. 

While, Figure 4.24 and Figure 4.25 show the download time performance of a small 

video file and a large video file, respectively.  

According to the results shown in Figure 4.22, the download time 

performance of the x-ray image file does not clearly show the increasing trend with 

the increasing system resource usages. However, the average and 95th-percentile 

download time values at the 95% system resource usage situation are the highest 

among all cases. According to the results shown in Figure 4.23, the download time 

performance of the audio file does not clearly show the increasing trend with the 

increasing system resource usages. In addition, the performance values at the 95% 

system resource usage are not clearly larger than other values. 
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Figure 4.20 Download time of small files in 50:50-write:read workload 

 
Figure 4.21 Download time of large files in 50:50-write:read workload 
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Figure 4.22 Download time of an X-ray image file which is a small file in 50:50-

write:read workload 

 
Figure 4.23 Download time of an audio file which is a small file in 50:50-write:read 

workload 
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Figure 4.24 Download time of a small video file which is a small file in 50:50-

write:read workload 

 
Figure 4.25 Download time of a large video file which is a small file in 50:50-

write:read workload 
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According to the results shown in Figure 4.24 and Figure 4.25, the 

download time performance of the small and large video files does not clearly show 

the increasing trend with the increasing system resource usages. In addition, the 

performance values at the 95% system resource usage are not clearly larger than 

other values.  

In conclusion, the performances of the DSePHR during the system 

resource usages at 75%, 80%, 85%, 90% and 95% are analyzed. According to Table 

4.11, the results show that the upload time performance values are not clearly 

affected by the system resource usage level. However, the download time 

performance values can be affected by the system resource usage level, especially 

when the read-requests are smaller than the write-requests as shown in the results 

of 75:25-write:read workload. However, the effects are clearly visible at 95% system 

resource usages. Thus, the DSePHR is suggested to monitor the system resource 

usage at 90% in order to start adding more resources to the system. This way, the 

effects on the read-requests can be minimized. 

Table 4.11 Performance effect on each situation when system resource is high 

Situation/ 
File types 

100:0-
write:read 

75:25-write:read 50:50-write:read 

Upload Upload Download Upload Download 
HBase files Not effect Not effect Effect Not effect Not effect 
HDFS files Not effect Not effect Effect Not effect Not effect 

 

In the next section, the DSePHR will be further investigated the 

system resource is smaller than the clients and the workload are larger. Moreover, 
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the system will be pre-load with the data before any measurement will be taken. 

Also, the data will continue to arrive to the system even when the measured data 

requests are completely sent to the system. This method will make sure that the 

system performance will be measured when the system is not empty and there are 

requests that are not parts of the measurement data. This way, the real-world 

situation will be mimicked in the experiment.  

4.3.3 Effect of the Write-read Request Ratio 

In the realistic environment, the ratio between write and read 

requests can be changed. In the first state of the system, there are a lot of write 

requests, then a number of read requests can also increase. To evaluate the DSePHR 

system in a realistic environment, a cluster with 15 storage nodes are constructed in 

this experiment. The environment consists of 8 clients that will upload the data to 

and download the data from the DSePHR system. To enforce the limited resources in 

the real world environment, only 6 DSePHR web services are activated in this 

experiment. Thus, the number of DSePHR web services will be less than that of the 

number of clients. To measure the performance of the DSePHR, three workloads are 

created in this experiment including a 100:0-write:read, a 75:25-write:read and a 

50:50-write:read workloads. The number of files in each workload is 6,000. The first 

500 files and the last 500 files are used as the warm-up and the cool-down of the 

DSePHR system. Therefore, the total number of measurable files is 5,000 submitted 

from each client. Since there are 8 clients, the total number of measurable files in 

each situation is 40,000 files. The mixture of the file types is that presented in 
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Section 3.5 and the uniform mixture of file types. The upload and download time 

performances of the DSePHR system is analyzed and discussed.  

In order to mimic the real environment, the DSePHR system will be 

warmed up with the data so that the DSePHR system will have some activities and 

the data inside the system before the measured workload is sent to the system. 

Similarly, the system will be continuously receiving the data to the system after the 

measured workload are completely submitted to the system. This way, the 

performance during the measured workload can be a representative of that in the 

real world situation. In this experiment, all clients will upload their data to the 

DSePHR web services first, then the DSePHR web services will create the metadata 

and later upload the data to the distributed storage. At this point, there is a 2-step 

operation, including the client-to-DSePHR and the DSePHR-to-storage operations. The 

client-to-DSePHR operation is considered an operation from the client to the DSePHR 

system while the DSePHR-to-storage operation is considered an inside operation of 

the DSePHR system.  

4.3.3.1 Performance on the 100:0-write:read Workload 

Table 4.12 shows the overall upload time performance of both small 

files and large files of 100:0-write:read workload. According to the results shown in 

Table 4.12, the upload time of small files are smaller than that of the large files in 

all measured values. The data presented in Table 4.12 include the maximum (Max), 

the 95th-percentile (95th-), the 99th-percentile (99th-), the average (Mean), and the 
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minimum (Min) upload time of each file type.  This is expected because the HBase 

files are consisting of small files while the HDFS files are consisting of large files (i.e., 

larger than 10MB). Thus, the upload time of the HBase files are smaller as the results.  

Table 4.12 Overall upload time of 100:0-write:read workload 

File types 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase files 7.257 3.298 1.852 0.373 0.013 

HDFS files 147.917 110.310 82.868 26.202 2.625 

 

To analyze the details information, Table 4.13 shows the upload time 

performance of each file in the workload sorted by the file size. As expected, the 

maximum upload time of HBase files is from the 10sound.mp3 which is the largest 

file in the HBase files while the maximum upload time of HDFS files is from the 

12videobig.mp4 which is also the largest file in the HDFS files.  

In HBase file group, there are three small files including an MRI image 

file of 30KB, a CCD xml file of 31KB and a spreadsheet data file of 41KB. The upload 

time of these small files takes approximately 0.5 seconds on average. There are 5 

medium files in the HBase file group including a heartbeat sound file of 160KB, an 

ECG graph image file of 400KB, a patient document file of 440KB, a patient 

spreadsheet file of 620KB, and a CCD document file of 690KB. The upload time of 

the heartbeat sound file of 160KB is less than 0.1 second on average, while the 

upload time of the 400KB and 440KB files is approximately 0.14-0.15 seconds on 

average. The upload time of the 620KB and 690KB is approximately 0.2 seconds on 
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average. The increment of the upload time of these files is expected because of the 

amount of data in each file. More data to be uploaded will result in the longer 

upload time. However, the increasing is not linear.  

The average performance of the two large files in the HBase file group, 

on the other hand, shows the linear performance relationship between the file size 

and the average upload time. That is, the average upload time of the x-ray image file 

of 4.01MB takes 0.951 seconds while the upload time of the recorded sound 

conversation file of 8.65MB takes 1.849 seconds. Since the conversation file is 

approximately twice the size of the x-ray image file, the average upload time of the 

conversation file (1.849s) is also approximately twice the upload time of the x-ray 

image file (0.951s). Similar trend also shows in the HDFS file group. That is, the size of 

the large video file (232MB) is approximately 8.5 times of the size of the small video 

file (27MB). And, the average upload time of the large video file (46.65s) is also 

approximately 8.2 times of the average upload time of the small video file (5.687s).  

The maximum upload time of the smallest file (i.e., the MRI image file 

of 30KB) is 3.069 seconds which is larger than the maximum upload time of all files 

that are smaller than 620KB. This is an unexpected event. However, a detail analysis 

found that the maximum upload time performance occurs due to the backlog at the 

DSePHR web service because there are several video files are queuing to be 

processed. Thus, the small MRI image files must wait in the queue. Further 

investigation shows that a few MRI image files are delayed because of the memory 
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clearing process inside the DSePHR system. This inside operation occurs only on the 

HBase file group because the recently used data will be resided in the memory. 

However, the memory will be clear once the space is needed. Unfortunately, a few 

MRI image files are uploaded to the DSePHR during the memory clearing process. As 

a result, the upload time of this set of files takes longer than others. The evident is 

showing up on the 99th-percentile upload time performance of 0.793 seconds which 

is also larger than that of all files that are smaller than 620KB. 

Table 4.13 Upload time of each file type of 100:0-write:read workload 

File 
types 

Filename Size 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 3.069 0.793 0.086 0.058 0.013 

4ccd.xml 31KB 1.750 0.630 0.084 0.054 0.015 

8excel.xlsx 41KB 2.411 0.745 0.082 0.056 0.013 

9sound.ogg 160KB 2.384 0.732 0.156 0.085 0.023 

1ecg.jpg 400KB 2.639 0.777 0.298 0.146 0.047 

7word.docx 440KB 2.547 0.751 0.306 0.151 0.050 

5ccd.xml 620KB 4.181 1.263 0.484 0.236 0.071 

6ccd.pdf 690KB 3.100 1.169 0.472 0.223 0.073 

3xray.png 4.01MB 4.421 2.818 2.101 0.951 0.398 

10sound.mp3 8.65MB 7.257 5.035 3.885 1.849 0.843 

HDFS 
files 

11videosmall.mp4 27MB 19.819 15.965 12.609 5.687 2.625 

12videobig.mp4 232MB 147.917 116.734 93.745 46.650 22.114 
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4.3.3.2 Performance on the 75:25-write:read Workload 

Table 4.14 shows the overall upload time performance of both small 

files and large files of 75:25-write:read workload while Table 4.15 shows the overall 

download time performance of the same workload.  

For the upload time performance, a similar tread as that of the overall 

upload time performance of the 100:0-write:read workload shown in Table 4.12 is 

observed. That is, the upload time performance of small files (HBase files) are also 

smaller than that of the large files (HDFS files) in all measured values for the 75:25-

write:read workload shown in Table 4.14. Moreover, the overall upload time 

performance of the 75:25-write:read workload are also smaller than that of the 

100:0-write:read workload in all measured values, except the minimum upload time 

of the HBase files which is 0.001 second faster than that observed under the 100:0-

write:read workload. This can be explained by the fact that the write-operations of 

the 75:25-write:read workload is only 75% of that under the 100:0-write:read 

workload because 25% of the operations are the read operations. Thus, the write-

operation workload is reduced from 531.56GB to 396.35GB. 

Table 4.14 Overall upload time of 75:25-write:read workload 

File types 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase files 6.457 2.811 1.548 0.326 0.014 

HDFS files 112.936 87.301 67.177 21.890 2.612 
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Table 4.15 Overall download time of 75:25-write:read workload 

File types 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase files 15.468 7.972 4.443 0.933 0.019 

HDFS files 288.480 200.608 154.752 57.260 4.971 

 

Table 4.16 Upload time of each file type of 75:25-write:read workload 

File 
types 

Filename Size 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 3.066 0.367 0.075 0.047 0.014 

4ccd.xml 31KB 1.559 0.456 0.082 0.049 0.014 

8excel.xlsx 41KB 1.673 0.684 0.078 0.049 0.014 

9sound.ogg 160KB 1.304 0.539 0.146 0.072 0.023 

1ecg.jpg 400KB 1.643 0.639 0.265 0.125 0.046 

7word.docx 440KB 2.627 0.453 0.281 0.130 0.051 

5ccd.xml 620KB 2.279 0.825 0.420 0.205 0.074 

6ccd.pdf 690KB 2.433 0.884 0.424 0.199 0.074 

3xray.png 4.01MB 4.286 2.390 1.790 0.817 0.401 

10sound.mp3 8.65MB 6.457 4.326 3.295 1.566 0.834 

HDFS 
files 

11videosmall.mp4 27MB 17.524 12.190 10.076 4.688 2.612 

12videobig.mp4 232MB 112.936 93.881 76.993 38.691 22.086 

 

To further analyze the detail upload time performance, Table 4.16 

shows the upload time performance of each file in the workload sorted by the file 

size. Like the upload time performance of the 100:0-write:read workload, the 

maximum upload time of HBase files is from the 10sound.mp3 which is the largest 

file in the HBase files while the maximum upload time of HDFS files is from the 

12videobig.mp4 which is the largest file in the HDFS files.  
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According to the results shown in Table 4.16, the upload time 

performance trend observed from the 75:25-write:read workload is similar to the 

trend observed from the 100:0-write:read workload. That is, the performance of all 

files smaller than 4.01MB is less than 0.3 seconds and the increasing of the average 

upload time does not shows any linear relationship with the file size. However, the 

linear relationship between the average upload time and the file size shows on two 

large files in the HBase file group and the two files in the HDFS file group. That is, the 

average upload time of the 8.65MB file is 1.566 seconds which is approximately twice 

the average upload time of the 4.01MB file which is 0.817 seconds, while the average 

upload time of the 232MB file is 38.691 seconds which is still 8.2 times that of the 

average upload time of the 27MB file which is 4.688 seconds.   

For the comparison details, the average upload time of the three 

small files (i.e., the MRI image file of 30KB, the CCD file of 31KB and the spreadsheet 

file of 41KB) is approximately slightly less than 0.5 seconds which is observed under 

the 100:0-write:read workload. The average upload time of the heartbeat sound file 

of 160KB is 0.072 second which is 0.01 second less than that observed under the 

100:0-write:read workload. The average upload time of the 400KB and 440KB files is 

approximately 0.12-0.13 seconds which is also 0.02 seconds less than that observed 

under the 100:0-write:read workload.  The average upload time of the 620KB and 

690KB is still approximately 0.2 seconds. The average upload time of the x-ray image 

file of 4.01 MB is 0.817 seconds which is 0.1 second less than that observed under 
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the 100:0-write:read workload. And, the average upload time of the audio file of 8.65 

MB is 1.566 seconds which is approximately 0.3 seconds less than that observed 

under to 100:0-write:read workload. The average upload time of the 27 MB file is 

4.688 seconds which is 1 second less than that observed under the 100:0-write:read 

workload. The average upload time of the 232MB file is 38.691 seconds which is 8 

seconds less than that observed under the 100:0-write:read workload.  

Also, the maximum upload time performance of the MRI file at 3.066 

seconds is occurring at the DSePHR memory clearly process time. As a result, the file 

experiences the worst upload time among all files with a size smaller than 620KB.  

For the download time performance, the download time of the small 

files (HBase files) is also smaller than that of the large files (HDFS files) for the 75:25-

write:read workload. However, the download time of each file type is larger than the 

upload time of the same type for all measured values. For the overall HBase file 

performance, the average download time is 0.933 seconds which is approximately 

2.8 times of the average upload time which is 0.326 seconds. For the overall HDFS 

file performance, the average download time is 57.26 seconds which is 

approximately 2.6 times of the average upload time which is 21.89 seconds. This 

result can be explained by the fact that the data must be completely downloaded 

from the DSePHR storage to the DSePHR web services in order to be sent to the 

client. Thus, the download time will include the time that the read request is made 

at the client until the time that the data is completely sent to the client via the 
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DSePHR web service. Thus, the data transmission is occurring twice including the 

transmission time from the DSePHR storage node to the DSePHR web service and the 

transmission time from the DSePHR web service to the client. Therefore, the average 

download time is expected to be approximately twice the average upload time.  

To further analyze the download time performance of the 75:25-

write:read workload, Table 4.17 shows the download time performance of each file 

in the workload sorted by the file size. The average download time performance of 

the 75:25-write:read workload shows the similar trend as that of the average upload 

time. That is, the average download time of the three small files in the HBase file 

group is similar. The linear relationship between the file size and the average 

download time is not clearly shown in the files that are smaller than 4.01 MB. On the 

other hand, the linear relationship between the file size and the average download 

time of the two large files of the HBase file group is observed. That is, the average 

download time of the 8.65 MB file is 4.584 seconds which is approximately twice the 

average download time of the 4.01 MB file which is 2.328 seconds. Moreover, the 

average download time of the 232 MB video file is 97.871 seconds which is 

approximately 7.5 times of the average download time of the 27 MB video file which 

is 13.069 seconds.  
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Table 4.17 Download time of each file type of 75:25-write:read workload 

File 
types 

Filename Size 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 5.428 2.319 0.490 0.154 0.019 

4ccd.xml 31KB 7.142 2.355 0.391 0.153 0.021 

8excel.xlsx 41KB 7.907 1.686 0.494 0.156 0.023 

9sound.ogg 160KB 9.217 3.076 0.678 0.259 0.046 

1ecg.jpg 400KB 6.790 1.801 0.745 0.363 0.089 

7word.docx 440KB 7.484 2.771 0.951 0.433 0.095 

5ccd.xml 620KB 8.644 2.254 1.036 0.504 0.129 

6ccd.pdf 690KB 15.468 2.362 1.195 0.554 0.140 

3xray.png 4.01MB 8.886 6.196 4.696 2.328 0.760 

10sound.mp3 8.65MB 14.285 10.484 8.973 4.584 1.620 

HDFS 
files 

11videosmall.mp4 27MB 47.212 32.743 25.158 13.069 4.971 

12videobig.mp4 232MB 288.48 212.486 174.317 97.871 42.738 

 

4.3.3.3 Performance on the 50:50-write:read Workload 

Table 4.18 shows the overall upload time performance of both small 

files and large files of 50:50-write:read workload while Table 4.19 shows the overall 

download time performance of the same workload.  

Table 4.18 Overall upload time of 50:50-write:read workload 

File types 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase files 5.813 2.602 1.349 0.299 0.014 

HDFS files 115.492 78.808 59.064 20.505 2.617 
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Table 4.19 Overall download time of 50:50-write:read workload 

File types 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase files 15.070 7.649 4.102 0.834 0.016 

HDFS files 240.318 166.344 125.848 46.542 4.953 

 

Similar tread as that of the overall upload time performance of the 

100:0-write:read and 75:25-write:read workload shown in Table 4.12 and Table 4.14, 

the upload time performance of small files (HBase files) are also smaller than that of 

the large files (HDFS files) in all measured values for the 50:50-write:read workload 

shown in Table 4.18. Moreover, the average upload time performance of the 50:50-

write:read workload are also smaller than that of the 75:25-write:read and that of the 

100:0-write:read workload. This can be explained by the fact that the write-

operations of the 50:50-write:read workload is only a half of the number of 

operations under the 100:0-write:read workload because 50% of the operations are 

the read operations. Thus, the write-operation workload is reduced from 531.56GB 

(100:0-write:read workload) to 273.47GB (50:50-write:read workload). 

To further analyze the upload time performance of the 50:50-

write:read workload, Table 4.20 shows the upload time performance of each file in 

the workload sorted by the file size. Similar with the upload time performance of the 

two previous workload, the maximum upload time of HBase files (i.e., 5.813 seconds) 

is form the 10sound.mp3 which is the largest file in the HBase files while the 

maximum upload time of HDFS files (i.e., 115.492 seconds) is from the 
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12videobig.mp4 which is the largest file in the HDFS files. The upload time 

performance trend observed from the 50:50-write:read workload is similar to the 

trend observed from the two previous workloads. That is, the linear relationship 

between the size of the files and the average upload time does not show for all files 

smaller than 4.01 MB. However, the relationship is clearly visible for the two large 

files in the HBase file group and the two files in the HDFS file group. The average 

upload time of the 8.65MB file is 1.455 seconds which is approximately twice the 

average upload time of the 4.01MB file which is 0.748 seconds. The average upload 

time of the 232MB file is 36.082 seconds which is approximately 8.3 times of the 

average upload time of the 27MB file which is 4.317 seconds. 

Table 4.20 Upload time of each file type of 50:50-write:read workload 

File 
types 

Filename Size 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 1.273 0.284 0.075 0.042 0.015 

4ccd.xml 31KB 1.185 0.285 0.078 0.042 0.016 

8excel.xlsx 41KB 1.743 0.292 0.076 0.042 0.014 

9sound.ogg 160KB 1.132 0.267 0.132 0.061 0.023 

1ecg.jpg 400KB 2.117 0.488 0.266 0.117 0.048 

7word.docx 440KB 1.170 0.542 0.280 0.122 0.051 

5ccd.xml 620KB 1.634 0.536 0.392 0.182 0.081 

6ccd.pdf 690KB 1.292 0.641 0.388 0.177 0.077 

3xray.png 4.01MB 2.716 2.175 1.632 0.748 0.406 

10sound.mp3 8.65MB 5.813 4.203 3.110 1.455 0.854 

HDFS 
files 

11videosmall.mp4 27MB 15.258 11.610 9.202 4.317 2.617 

12videobig.mp4 232MB 115.492 85.093 68.376 36.082 22.064 
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Similar with the overall upload time performance results shown in 

Table 4.18, the average upload time performance of all files in the 50:50-write:read 

workload shown in Table 4.20 is also smaller than that of its counterpart in the two 

previous workloads. That is, the average upload time performance of all files smaller 

than 4.01MB is less than 0.2 seconds which is 0.1 second smaller than that observed 

from the two previous workloads. The average upload time performance of the two 

large files in the HBase file group is also approximately 0.1 second smaller than that 

observed from its counterpart in the two previous workloads. The average upload 

time performance of the 11videosmall.mp4 and the 12videobig.mp4 is approximately 

0.2 seconds and 2 seconds smaller than that observed from its counterpart in the 

two previous workloads.  

Similarly, the download time of the small files (HBase files) is also 

smaller than that of the large files (HDFS files) for the 50:50-write:read workload, and 

the download time of each file type under the 50:50-write:read workload is larger 

than that of its counterpart in all measured values. Unexpectedly, the average 

download time performance of the 50:50-write:read workload is smaller than that of 

the 75:25-write:read workload in all cases even though the number of read 

operations under the 50:50-write:read workload (267.85GB) is twice the number of 

read operations under the 75:25-write:read workload (134.00GB).  

This unexpected results can be explained by the fact that the DSePHR 

storage nodes must perform the memory flushing process in order to move the 

HBase files out of the memory and store the data on the HDFS storages. Thus, the 
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DSePHR will spend some times to perform this activity. This activity can affect the 

download time performance. During the DSePHR memory flushing activity, the 

DSePHR storage nodes will pause for approximately 0.3 seconds. The number of 

memory flushing activities is increasing with the number of write-operations in the 

workload because the number of write-operations can be referred to the amount of 

data in the system. In this experiment, there are 15 storage nodes and the DSePHR 

memory activity happens approximately 10, 5, and 3 times every minute at one of 

the storage node for the 100:0-write:read, 75:25-write:read, and 50:50-write:read 

workloads, respectively. Therefore, the number of DSePHR memory activities of the 

75:25-write:read workload is larger than that of the 50:50-write:read workload.  

Moreover, every 15 DSePHR memory flushing activities will create 1 

HDFS file packing process of the 15 data blocks resulting from the 15 DSePHR 

memory flushing activities. This way, the 15 data blocks of 256MB or 3.84GB of data 

will be packed into a HDFS file. Thus, there are 40, 20, and 12 HDFS file packing 

process activities in 1 hour for 100:0-write:read, 75:25-write:read and 50:50-write:read 

workloads, respectively. Both DSePHR memory flushing activity and DSePHR HDFS file 

packing activity can result in the slightly high download time performance of the 

75:25-write:read workload in comparison with that of the 50:50-write:read workload. 

The ratio of DSePHR memory flushing and HDFS packing activities of the 75:25-

write:read workload to that of the 50:50-write:read workload is 5 to 3.   
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Table 4.21 Download time of each file type of 50:50-write:read workload 

File 
types 

Filename Size 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 5.960 1.269 0.294 0.102 0.016 

4ccd.xml 31KB 5.771 1.624 0.203 0.110 0.020 

8excel.xlsx 41KB 4.615 1.120 0.292 0.099 0.021 

9sound.ogg 160KB 7.785 1.239 0.294 0.174 0.042 

1ecg.jpg 400KB 6.298 1.452 0.552 0.291 0.088 

7word.docx 440KB 5.942 1.513 0.627 0.321 0.095 

5ccd.xml 620KB 9.898 1.601 0.820 0.420 0.128 

6ccd.pdf 690KB 6.600 1.887 0.938 0.459 0.139 

3xray.png 4.01MB 10.384 5.634 4.281 2.086 0.758 

10sound.mp3 8.65MB 15.070 10.730 8.633 4.227 1.620 

HDFS 
files 

11videosmall.mp4 27MB 49.537 30.840 23.840 12.038 4.953 

12videobig.mp4 232MB 240.318 199.861 143.312 80.638 42.462 

 

Table 4.22 shows the ratio of the average download time observed 

from the 75:25-write:read workload to that of the 50:50-write:read workload. 

According to the ratio values in Table 4.22, the average download time observed 

from the 75:25-write:read workload is 1.08 to 1.58 times of the average download 

time observed from the 50:50-write:read workload. Furthermore, the effect on the 

small file size is larger than that of the large file size in HBase file group. That is, the 

ratio of the four small file sizes (i.e., the MRI image file, the CCD metadata file, the 

spreadsheet file, and the heartbeat sound file) is 1.51, 1.39, 1.58, and 1.49. The ratio 

of the four medium file sizes (i.e., 400KB to 680KB) is 1.25, 1.35, 1.20, and 1.21. The 

ratio of the two large file sizes (i.e., 4.01MB and 8.65MB) is 1.12 and 1.08. For the 
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HDFS file group, the ratio is 1.09 and 1.21, which is larger than that of the two large 

HBase files but it is smaller than that of other HBase files. The effect on the small 

size files is larger than that of the large size files because the average download time 

of the small size files (i.e., smaller than 400KB) is less than 0.3 seconds for both 

75:25-write:read and 50:50-write:read workloads. The DSePHR memory flushing 

activity takes approximately 280 milliseconds or 0.28 seconds. Therefore, if the 

DSePHR memory flushing activity occurs during the download processing of the small 

size files (i.e., smaller than 400KB), the download time of the files will be greatly 

affected.  

Because every 15 DSePHR memory flushing activities can create a 

DSePHR HDFS file packing activity, the download time of the large files (i.e., the HDFS 

file group) is also affected by the DSePHR memory flushing activities. However, the 

effect is not as high as that of the small size files because the DSePHR HDFS file 

packing activity can be done in parallel with other activities. Meaning, the DSePHR 

HDFS file packing activity will not stop any other DSePHR HDFS file storing or 

retrieving processes.   
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Table 4.22 The ratio of the average download time of the 75:25-write:read to that of 
the 50:50-write:read workload 

File types Filenames Size 
Average download time (s) 

Ratio 75:25-
write:read 

50:50-
write:read 

HBase files 

2mri.jpg 30KB 0.154 0.102 1.51 

4ccd.xml 31KB 0.153 0.110 1.39 

8excel.xlsx 41KB 0.156 0.099 1.58 

9sound.ogg 160KB 0.259 0.174 1.49 

1ecg.jpg 400KB 0.363 0.291 1.25 

7word.docx 440KB 0.433 0.321 1.35 

5ccd.xml 620KB 0.504 0.420 1.20 

6ccd.pdf 690KB 0.554 0.459 1.21 

3xray.png 4.01MB 2.328 2.086 1.12 

10sound.mp3 8.65MB 4.584 4.227 1.08 

HDFS files 
11videosmall.mp4 27MB 13.069 12.038 1.09 

12videobig.mp4 232MB 97.871 80.638 1.21 

 

In conclusion, the upload and download time performance of the 

DSePHR system are studied in this section. Both the upload and download time 

performance of the HBase files is smaller than that of the HDFS files because the 

HBase files are smaller in size than that of the HDFS files. The linear relationship 

between the size of the files and the average performance does not clearly show for 

all files smaller than 4.01MB. However, the relationship is clearly visible for the two 

large files in the HBase file group and the two files in the HDFS file group. That is, the 

larger the file size the larger the upload/download time. The linear relationship is 
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clearly visible for all three workloads (i.e., 100:0-write:read, 75:25-write:read, and 

50:50-write:read).  

The download time performance is larger than that of the upload 

time performance because the data must be completely downloaded from the 

DSePHR storage to the DSePHR web services in order to be sent to the client. Thus, 

the download time will include the time that the read request is made at the client 

until the time that the data is completely sent to the client via the DSePHR web 

service. Thus, the data transmission is occurring twice including the transmission time 

from the DSePHR storage node to the DSePHR web service and the transmission time 

from the DSePHR web service to the client. Therefore, the average download time is 

expected to be approximately twice the average upload time. 

The DSePHR storage nodes must perform the memory flushing 

process in order to move the HBase files out of the memory and store the data on 

the HDFS storages. Thus, the DSePHR will spend some times to perform this activity. 

This activity can affect the download time performance. During the DSePHR memory 

flushing activity, the DSePHR storage nodes will pause for approximately 0.3 seconds. 

The number of memory flushing activities is increasing with the number of write-

operations in the workload because the number of write-operations can be referred 

to the amount of data in the system. Thus, the amount of DSePHR memory flushing 

activity occurs in the 75:25-write:read workload is larger than that of the 50:50-

write:read workload. The effect of the DSePHR memory flushing activity is clearly 
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shown in the average download time of the 75:25-write:read workload which is larger 

than that of the 50:50-write:read workload in all cases.  

Moreover, the DSePHR memory flushing activity can create a DSePHR 

HDFS file packing activity which will affect the download time of the large files (i.e., 

the HDFS file group). However, the DSePHR HDFS file packing activity can be done in 

parallel with other DSePHR HDFS file storing or retrieving activities. Thus, the effect 

on the HDFS file group download time performance is not as large as the effect on 

the download time performance of the small size files in the HBase file group. 

4.3.3.4 Baseline performance comparison 

The DSePHR performance in the realistic environment shown in 

Section 4.3.3.1 - 4.3.3.3, is comparing with the DSePHR baseline performance. Table 

4.23 shows the comparison of the overall upload time of each situation and the 

baseline. The “Base(mean)” column is an average value of every files in HBase or 

HDFS files type. For the HBase files, the average upload times of 100:0, 75:25 and 

50:50-write:read are 2.25, 1.96 and 1.80 times of the baseline, respectively. For the 

HDFS files, the average upload times of 100:0, 75:25 and 50:50-write:read are 2.12, 

1.77 and 1.66 times of the baseline, respectively. Table 4.24 shows the upload time 

comparison of each file type with the baseline. The “Base” column is the baseline 

performance of the file. Most baseline performance is slightly larger than the 

minimum value of each file for each situation, except 5ccd.xml in 50:50-write:read 

and 12videobig.mp4 in 100:0-write:read. 
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Table 4.23 Overall upload time of each situation and baseline  

File types 

Upload time (s) 

100:0-write:read 75:25-write:read 50:50-write:read Base(mean) 
Mean Min Mean Min Mean Min 

HBase files 0.373 0.013 0.326 0.014 0.299 0.014 0.166 

HDFS files 26.202 2.625 21.890 2.612 20.505 2.617 12.381 

 

Table 4.24 Upload time of each file type of each situation and baseline 

File 
types 

Filename Size 

Upload time (s) 

100:0-write:read 
75:25-

write:read 
50:50-

write:read Base 
Mean Min Mean Min Mean Min 

HBase 
files 

2mri.jpg 30KB 0.058 0.013 0.047 0.014 0.042 0.015 0.017 
4ccd.xml 31KB 0.054 0.015 0.049 0.014 0.042 0.016 0.018 
8excel.xlsx 41KB 0.056 0.013 0.049 0.014 0.042 0.014 0.019 
9sound.ogg 160KB 0.085 0.023 0.072 0.023 0.061 0.023 0.029 
1ecg.jpg 400KB 0.146 0.047 0.125 0.046 0.117 0.048 0.054 
7word 
.docx 

440KB 0.151 0.050 0.130 0.051 0.122 0.051 0.067 

5ccd.xml 620KB 0.236 0.071 0.205 0.074 0.182 0.081 0.076 
6ccd.pdf 690KB 0.223 0.073 0.199 0.074 0.177 0.077 0.084 
3xray.png 4.01MB 0.951 0.398 0.817 0.401 0.748 0.406 0.416 
10sound 
.mp3 

8.65MB 1.849 0.843 1.566 0.834 1.455 0.854 0.876 

HDFS 
files 

11videosm
all.mp4 

27MB 5.687 2.625 4.688 2.612 4.317 2.617 2.661 

12videobig. 
mp4 

232MB 46.650 22.114 38.691 22.086 36.082 22.064 22.100 

 

Table 4.25 shows the comparison of overall download time of each 

situation and the baseline. The “Base(mean)” column represents the average value. 

For the HBase files, the average download times of 75:25 and 50:50-write:read are 

3.09, 2.76 times of the baseline, respectively. For the HDFS files, the average 

download times of 75:25 and 50:50-write:read are 2.42 and 1.97 times of the 
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baseline, respectively. Table 4.26 shows the download time comparison of each file 

type and the baseline. The “Base” column is the baseline performance. Most 

baseline performance is slightly larger than the minimum value of each file for most 

situations, except 11videosmall.mp4 in both 75:25 and 50:50-write:read situations. 

Table 4.25 Overall download time of each situation and baseline 

File types 
Download time (s) 

75:25-write:read 50:50-write:read 
Base(mean) 

Mean Min Mean Min 
HBase files 0.933 0.019 0.834 0.016 0.302 
HDFS files 57.260 4.971 46.542 4.953 23.658 

Table 4.26 Download time of each file type of each situation and baseline 

File 
types 

Filename Size 
Download time (s) 

75:25-write:read 50:50-write:read Base 
Mean Min Mean Min 

HBase 
files 

2mri.jpg 30KB 0.154 0.019 0.102 0.016 0.031 
4ccd.xml 31KB 0.153 0.021 0.110 0.020 0.026 
8excel.xlsx 41KB 0.156 0.023 0.099 0.021 0.025 
9sound.ogg 160KB 0.259 0.046 0.174 0.042 0.047 
1ecg.jpg 400KB 0.363 0.089 0.291 0.088 0.091 
7word.docx 440KB 0.433 0.095 0.321 0.095 0.099 
5ccd.xml 620KB 0.504 0.129 0.420 0.128 0.131 
6ccd.pdf 690KB 0.554 0.140 0.459 0.139 0.144 
3xray.png 4.01MB 2.328 0.760 2.086 0.758 0.766 
10sound.mp3 8.65MB 4.584 1.620 4.227 1.620 1.658 

HDFS 
files 

11videosmall.mp4 27MB 13.069 4.971 12.038 4.953 5.102 

12videobig.mp4 232MB 97.871 42.738 80.638 42.462 42.214 

 

Table 4.25 and Table 4.26 show the ratio upload and download time 

between the average value of each file and the baseline under 100:0, 75:25 and 

50:50-write:read. The trend of ratio decreases when the file size increases for all 

situations because the small file uses less time to upload and download and it is 
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easily affects by large files or network latency. The ratio in 50:50-write:read situation 

is less than other situations for both the upload and download time. It can be 

explained that the 50:50-write:read has less write operation than other situations. 

The more write operations can affect the DSePHR performance because of a small 

number of clean memory and  flushing activities. 

Table 4.27 Upload time and baseline ratio of each situation 

File 
types 

Filename Size 

Upload time (Ratio) 

100:0-
write:read 

75:25-
write:read 

50:50-
write:read 

HBase 
files 

2mri.jpg 30KB 3.412 2.765 2.471 
4ccd.xml 31KB 3.000 2.722 2.333 
8excel.xlsx 41KB 2.947 2.579 2.211 
9sound.ogg 160KB 2.931 2.483 2.103 
1ecg.jpg 400KB 2.704 2.315 2.167 
7word.docx 440KB 2.254 1.940 1.821 
5ccd.xml 620KB 3.105 2.697 2.395 
6ccd.pdf 690KB 2.655 2.369 2.107 
3xray.png 4.01MB 2.286 1.964 1.798 
10sound.mp3 8.65MB 2.111 1.788 1.661 

HDFS 
files 

11videosmall.mp4 27MB 2.137 1.762 1.622 
12videobig.mp4 232MB 2.111 1.751 1.633 
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Table 4.28 Download and baseline ratio of each situation 

File types Filename Size 
Upload time (Ratio) 

75:25-write:read 50:50-write:read 

HBase files 

2mri.jpg 30KB 4.968 3.290 
4ccd.xml 31KB 5.885 4.231 
8excel.xlsx 41KB 6.240 3.960 
9sound.ogg 160KB 5.511 3.702 
1ecg.jpg 400KB 3.989 3.198 
7word.docx 440KB 4.374 3.242 
5ccd.xml 620KB 3.847 3.206 
6ccd.pdf 690KB 3.847 3.188 
3xray.png 4.01MB 3.039 2.723 
10sound.mp3 8.65MB 2.765 2.549 

HDFS files 
11videosmall.mp4 27MB 2.562 2.359 
12videobig.mp4 232MB 2.318 1.910 

 

4.3.4 Effect of File Type Mixture 

Previous results show the DSePHR performance on the original PHR 

file type mixture as described in Section 3.5 of 3 situations including 100:0-write:read, 

75:25-write:read and 50:50-write:read. In this section, the PHR file type mixture is 

changed such that the amount of large files increase from 9% to 25% in all three 

workloads (i.e., 100:0-write:read, 75:25-write:read, 50:50-write:read). Table 4.29 shows 

the main differences between the original PHR data file type mixture and the uniform 

PHR data file type mixture. According to the data shown in Table 4.29, the number 

of small size files (i.e., smaller than 1MB) will be reduced from 73% to 50% while the 

number of large size files (i.e., larger than 1MB) will be increased from 27% to 50%.  

As a result, the amount of work on the HDFS file group will be increased from the 

workloads used in the previous three sections (i.e., Section 4.2.1-4.2.3). The number 
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of DSePHR memory flushing activities must be increased from that of the workloads 

used in the previous three sections (i.e., Section 4.2.1-4.2.3). Moreover, the amount 

of data in the workload increases from 531.561GB to 1,363.356GB because the 

number of files in the workload is set to 40,000 files. Thus, the amount of data of the 

uniform file type mixture will be larger than that of the original PHR type mixture. 

Therefore, the total time to conduct the experiment on the 100:0-write:read uniform 

file type mixture workload (i.e., 9.8 hours) is longer than that of the 100:0-write:read 

original file type mixture workload (i.e., 3.8 hours). 

Table 4.29 The number of files in each type of the two mixtures 

File size Original Uniform Effects 
Larger than 100KB 27% 25% Reduce  
100KB to 1MB 46% 25% Reduce 
1MB to 10MB 18% 25% Increase 
Larger than 10MB 9% 25% Increase 

 
Table 4.30 shows the overall upload time performance of both small 

files (i.e., HBase files) and large files (i.e., HDFS files) of the 100:0-write:read uniform 

file type mixture workload. As expected, the maximum upload time of the HBase file 

group is from the 10sound.mp3 which is the largest file in the group while the 

maximum upload time of the HDFS file group is from the 12videobig.mp4 which is 

the largest file in the group. The upload time performance of the 100:0-write:read 

workload of the uniform file type mixture shown in Table 4.30 is larger than the 

upload time performance of the 100:0-write:read workload of the original file type 

mixture shown in Table 4.12 in all cases. This can be caused by the fact that the 
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amount of 100:0-write:read workload of the uniform file type mixture workload data 

is 2.56 times the amount of 100:0-write:read workload of the original PHR file type 

mixture workload data. To analyze the detail performance of each file type, Table 

4.31 shows the upload time performance of each file in the 100:0-write:read uniform 

file type mixture workload sorted by the file size. 

According to the performance of each file type shown in Table 4.31, 

the trend of the average upload time performance of each file type is similar to that 

observed from the 100:0-write:read workload with original PHR file type mixture 

shown in Table 4.13. That is, the linear relationship between the file size and the 

upload time is starting to show on the files of size 4.01MB or larger. The upload time 

of all files of size smaller or equal to 4.01MB is less than 1 second. The average 

upload time performance of each file type shown in Table 4.31 is either similar to or 

slightly larger than that of the 100:0-write:read workload with original file type 

mixture shown in Table 4.13, except the MRI image file. However, the average upload 

time performance improvement of the original file type mixture over the uniform file 

type mixture is less than 1 second. That is, the average upload time performance 

improvement of the original file type mixture over the uniform file type mixture is 

smaller than 0.07, and 0.8 seconds for the files smaller than 232MB and the 232MB 

files, respectively.  
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Table 4.30 Overall upload time of 100:0-write:read uniform file type mixture 
workload 

File types 
Upload time (s) 

Max 99th- 95th- Mean Min 
HBase files 10.321 4.171 2.502 0.566 0.013 
HDFS files 148.622 117.638 84.242 26.542 2.598 

 

Table 4.31 Upload time of each file type of 100:0-write:read uniform file type mixture 
workload 

File 
types 

Filename Size 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 4.164 0.693 0.103 0.057 0.013 
4ccd.xml 31KB 2.966 0.801 0.086 0.059 0.015 

8excel.xlsx 41KB 3.702 0.653 0.092 0.058 0.014 
9sound.ogg 160KB 2.295 0.768 0.158 0.087 0.023 

1ecg.jpg 400KB 1.539 0.923 0.306 0.152 0.046 
7word.docx 440KB 2.681 0.870 0.308 0.155 0.050 
5ccd.xml 620KB 4.975 1.428 0.515 0.251 0.072 
6ccd.pdf 690KB 2.121 1.267 0.521 0.240 0.075 
3xray.png 4.01MB 6.985 3.133 2.208 0.985 0.400 

10sound.mp3 8.65MB 10.321 5.490 4.282 1.913 0.843 

HDFS 
files 

11videosmall.mp4 27MB 20.470 16.305 12.740 5.743 2.598 

12videobig.mp4 232MB 148.622 127.220 101.740 47.420 22.080 

 
In conclusion, the increasing amount of data in the workload does not 

significantly affect the upload time performance of the files in the DSePHR system for 

the 100:0-write:read workload situation.  

Next, Table 4.32 shows the overall upload time performance of both 

small files (i.e., HBase files) and large files (i.e., HDFS files) of the 75:25-write:read 

uniform file type mixture workload. As expected, the maximum upload time of the 
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HBase file group is from the 10sound.mp3 which is the largest file in the group while 

the maximum upload time of the HDFS file group is from the 12videobig.mp4 which 

is the largest file in the group. The upload time performance of the small files is 

smaller than that of the upload time performance of the large files. The upload time 

performance of the 75:25-write:read workload of the uniform file type mixture shown 

in Table 4.32 is larger than the upload time performance of the 75:25-write:read 

workload of the original PHR file type mixture shown in Table 4.14 in all cases, 

except the 95th-percentile and the average values of the HDFS files. The increasing in 

the upload time can be caused by the increasing amount of data between the two 

workloads. That is, the amount of write operations of the 75:25-write:read workload 

of the uniform file type mixture workload data is 2.6 times the amount of write 

operations of the 75:25-write:read workload of the original PHR file type mixture 

workload data. However, the average upload time performance of the HDFS files is 

not increasing. To analyze the detail performance of each file type, Table 4.33 shows 

the upload time performance of each file in the 75:25-write:read uniform file type 

mixture workload sorted by the file size. 

Table 4.32 Overall upload time of 75:25-write:read uniform file type mixture 
workload 

File types 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase files 8.207 3.213 2.062 0.470 0.014 

HDFS files 125.737 87.477 63.834 21.847 2.613 
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Table 4.33 Upload time of each file type of 75:25-write:read uniform file type mixture 
workload 

File 
types 

Filename Size 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 1.781 0.361 0.080 0.047 0.014 

4ccd.xml 31KB 2.676 0.478 0.083 0.051 0.014 

8excel.xlsx 41KB 1.717 0.491 0.086 0.050 0.014 

9sound.ogg 160KB 1.151 0.474 0.138 0.071 0.023 

1ecg.jpg 400KB 2.361 0.809 0.272 0.132 0.047 

7word.docx 440KB 2.091 0.519 0.282 0.133 0.051 

5ccd.xml 620KB 3.463 0.908 0.408 0.208 0.073 

6ccd.pdf 690KB 1.998 1.150 0.431 0.207 0.073 

3xray.png 4.01MB 4.820 2.405 1.709 0.825 0.393 

10sound.mp3 8.65MB 8.207 4.172 3.302 1.602 0.853 

HDFS 
files 

11videosmall.mp4 27MB 19.415 12.963 10.041 4.771 2.613 

12videobig.mp4 232MB 125.737 95.856 75.111 38.994 22.075 

 
As expected, the performance trend of the upload time performance 

shown in Table 4.33 is similar to that of other three previously shown workloads. 

That is, the performance of all files smaller than 4.01MB is less than 0.3 seconds and 

the increasing of the average upload time does not show any linear relationship with 

the file size. However, the linear relationship between the average upload time and 

the file size shows on two large files in the HBase file group and the two files in the 

HDFS file group. The average upload time performance of each file type shown in 

Table 4.33 is either similar to or slightly larger than that of the 75:25-write:read 

workload with original PHR file type mixture shown in Table 4.16, except the 

heartbeat sound file. However, the average upload time performance improvement 

of the original PHR file type mixture over the uniform file type mixture is less than 1 
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second. That is, the average upload time performance improvement of the original 

PHR file type mixture over the uniform file type mixture is smaller than 0.09, and 0.4 

seconds for the files smaller than 232MB and the 232MB files, respectively. 

Table 4.34 shows the overall download time performance of both 

small files (i.e., HBase files) and large files (i.e., HDFS files) of the 75:25-write:read 

uniform file type mixture workload. As expected, the maximum download time of 

the HBase file group is from the 10sound.mp3 which is the largest file in the group 

while the maximum download time of the HDFS file group is from the 

12videobig.mp4 which is the largest file in the group. The download time 

performance of the small files is smaller than that of the download time 

performance of the large files. Unlike the upload time performance, the download 

time performance of the 75:25-write:read workload of the uniform file type mixture 

shown in Table 4.34 is not clearly larger than the download time performance of the 

75:25-write:read workload of the original PHR file type mixture shown in Table 4.15, 

except the 99th-percentile, 95th-percentile and the average values of the HBase 

files. This is unexpected because the amount of read operation data in the 75:25-

write:read workload of the uniform file type mixture is approximately 2.5 times that 

of the 75:25-write:read workload of the original PHR file type mixture. To analyze the 

detail performance of each file type, Table 4.35 shows the download time 

performance of each file in the 75:25-write:read uniform file type mixture workload 

sorted by the file size. 
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Table 4.34 Overall download time of 75:25-write:read uniform file type mixture 
workload 

File types 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase files 15.405 8.924 6.004 1.405 0.019 

HDFS files 258.550 197.882 150.516 56.037 4.966 

 

Table 4.35 Download time of each file type of 75:25-write:read uniform file type 
mixture workload 

File 
types 

Filename Size 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 2.861 1.339 0.400 0.133 0.019 

4ccd.xml 31KB 6.934 2.681 0.423 0.169 0.022 

8excel.xlsx 41KB 3.016 1.024 0.325 0.125 0.024 

9sound.ogg 160KB 4.873 2.162 0.748 0.263 0.046 

1ecg.jpg 400KB 3.057 1.560 0.756 0.374 0.090 

7word.docx 440KB 5.576 2.137 0.779 0.395 0.097 

5ccd.xml 620KB 6.445 1.796 0.952 0.496 0.130 

6ccd.pdf 690KB 3.396 2.047 1.069 0.543 0.140 

3xray.png 4.01MB 9.291 6.025 4.668 2.415 0.761 

10sound.mp3 8.65MB 15.405 12.052 9.123 4.816 1.620 

HDFS 
files 

11videosmall.mp4 27MB 55.009 31.207 25.844 13.265 4.966 

12videobig.mp4 232MB 258.55 204.544 174.617 97.622 42.712 

 
As expected, the performance trend of the download time 

performance shown in Table 4.35 is similar to that of other three previously shown 

workloads. That is, the download time performance of all files smaller than 4.01MB is 

less than 0.6 seconds and the increasing of the average download time does not 

show any linear relationship with the file size. However, the linear relationship 

between the average download time and the file size shows on two large files in the 



120 

 

HBase file group and the two files in the HDFS file group. The average download time 

performance of each file type shown in Table 4.35 is slightly smaller or larger than 

that of the 75:25-write:read workload with original PHR file type mixture shown in 

Table 4.17. However, the performance difference is less than 1 second. That is, the 

performance difference is less than 0.09 second for all files smaller than 8.65MB and 

is less than 0.3 seconds for all files larger than 8.65MB.  

In conclusion, the increasing amount of data in the workload does not 

significantly affect the upload and download time performance of the files in the 

DSePHR system for the 75:25-write:read workload situation.  

Table 4.36 shows the overall upload time performance of both small 

files (i.e., HBase files) and large files (i.e., HDFS files) of the 50:50-write:read uniform 

file type mixture workload. As expected, the maximum upload time of the HBase file 

group is from the 10sound.mp3 which is the largest file in the group while the 

maximum upload time of the HDFS file group is from the 12videobig.mp4 which is 

the largest file in the group. The upload time performance of the small files is 

smaller than that of the upload time performance of the large files. The upload time 

performance of the 50:50-write:read workload of the uniform file type mixture shown 

in Table 4.36 is larger than the upload time performance of the 50:50-write:read 

workload of the original PHR file type mixture shown in Table 4.18 in all cases, 

except the maximum value of the HBase file and the minimum value of the HDFS 

files. The increasing in the upload time performance can be caused by the increasing 

amount of data between the two workloads. That is, the amount of write operations 
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of the 50:50-write:read workload of the uniform file type mixture workload data is 

2.51 times the amount of write operations of the 50:50-write:read workload of the 

original PHR file type mixture workload data. To analyze the detail performance of 

each file type, Table 4.37 shows the upload time performance of each file in the 

50:50-write:read uniform file type mixture workload sorted by the file size. 

Table 4.36 Overall upload time of 50:50-write:read uniform file type mixture 
workload 

File types 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase files 5.375 2.981 1.902 0.436 0.014 

HDFS files 116.072 82.459 59.992 20.533 2.579 

Table 4.37 Upload time of each file type of 50:50-write:read uniform file type mixture 
workload 

File 
types 

Filename Size 
Upload time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 1.585 0.278 0.073 0.040 0.015 

4ccd.xml 31KB 1.368 0.284 0.081 0.043 0.014 

8excel.xlsx 41KB 1.192 0.286 0.080 0.044 0.014 

9sound.ogg 160KB 2.189 0.295 0.139 0.066 0.024 

1ecg.jpg 400KB 1.226 0.481 0.251 0.116 0.047 

7word.docx 440KB 1.967 0.410 0.278 0.124 0.051 

5ccd.xml 620KB 3.546 0.854 0.399 0.199 0.076 

6ccd.pdf 690KB 1.581 0.716 0.410 0.185 0.075 

3xray.png 4.01MB 4.806 2.192 1.598 0.769 0.404 

10sound.mp3 8.65MB 5.375 4.086 3.079 1.491 0.853 

HDFS 
files 

11videosmall.mp4 27MB 16.510 11.760 9.059 4.346 2.579 

12videobig.mp4 232MB 116.072 87.760 71.927 36.535 22.062 
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As expected, the performance trend of the upload time performance 

shown in Table 4.37 is similar to that of other three previously shown workloads. 

That is, the performance of all files smaller than 4.01MB is less than 0.2 seconds and 

the increasing of the average upload time does not show any linear relationship with 

the file size. However, the linear relationship between the average upload time and 

the file size shows on two large files in the HBase file group and the two files in the 

HDFS file group. The average upload time performance of each file type shown in 

Table 4.37 is either similar to or slightly larger than that of the 50:50-write:read 

workload with original PHR file type mixture shown in Table 4.20, except the MRI 

image file and the ECG image file. However, the average upload time performance 

improvement of the original PHR file type mixture over the uniform file type mixture 

is less than 1 second. That is, the average upload time performance improvement of 

the original PHR file type mixture over the uniform file type mixture is smaller than 

0.04, and 0.5 seconds for the files smaller than 232MB and the 232MB files, 

respectively. 

Table 4.38 shows the overall download time performance of both 

small files (i.e., HBase files) and large files (i.e., HDFS files) of the 50:50-write:read 

uniform file type mixture workload. As expected, the maximum download time of 

the HBase file group is from the 10sound.mp3 which is the largest file in the group 

while the maximum download time of the HDFS file group is from the 

12videobig.mp4 which is the largest file in the group. The download time 

performance of the small files is smaller than that of the download time 
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performance of the large files. The download time performance of the 50:50-

write:read workload of the uniform file type mixture shown in Table 4.38 is larger 

than the download time performance of the 50:50-write:read workload of the original 

PHR file type mixture shown in Table 4.19, except the 99th-percentile, 95th-

percentile and the average values of the HDFS files. This is expected because the 

amount of read operation data in the 50:50-write:read workload of the uniform file 

type mixture is approximately 2.54 times that of the 50:50-write:read workload of the 

original PHR file type mixture.  

Similar to the download performance trend of the original PHR file 

type mixture workloads, the download time performance of the 50:50-write:read 

workload of uniform file type mixture shown in Table 4.38 is smaller than the 

download time performance of the 75:25-write:read workload of the uniform file 

type mixture shown in Table 4.35. This can be explained by the number of the 

DSePHR memory flushing activity because the number of DSePHR memory flushing 

activity of the 75:25-write:read workload of the uniform file type mixture is larger 

than that of the 50:50-write:read workload. That is, the number of DSePHR memory 

flushing activity occurs 4.23, 2.66 and 1.83 times in a minute for the 100:0-write:read, 

75:25-write:read and 50:50-write:read workload of the uniform file type mixture.  

Table 4.38 Overall download time of 50:50-write:read uniform file type mixture 
workload 

File types 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase files 17.834 8.318 5.421 1.213 0.020 

HDFS files 247.980 161.820 124.312 45.958 4.955 
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To analyze the detail performance of each file type, Table 4.39 shows 

the download time performance of each file in the 50:50-write:read uniform file type 

mixture workload sorted by the file size. As expected, the performance trend of the 

download time performance shown in Table 4.39 is similar to that of other three 

previously shown workloads. That is, the download time performance of all files 

smaller than 4.01MB is less than 0.5 seconds and the increasing of the average 

download time does not show any linear relationship with the file size. However, the 

linear relationship between the average download time and the file size shows on 

two large files in the HBase file group and the two files in the HDFS file group. The 

average download time performance of each file type shown in Table 4.39 is slightly 

smaller or larger than that of the 50:50-write:read workload with original PHR file 

type mixture shown in Table 4.21. However, the performance difference is less than 

1 second. That is, the performance difference is less than 0.06 second for all files 

smaller than 27MB and is less than 0.2 seconds for all files larger than 27MB.  
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Table 4.39 Download time of each file type of 50:50-write:read uniform file type 
mixture workload 

File 
types 

Filename Size 
Download time (s) 

Max 99th- 95th- Mean Min 

HBase 
files 

2mri.jpg 30KB 5.866 0.838 0.301 0.096 0.020 

4ccd.xml 31KB 6.403 0.643 0.271 0.094 0.021 

8excel.xlsx 41KB 5.497 1.087 0.277 0.106 0.020 

9sound.ogg 160KB 6.108 1.060 0.331 0.172 0.045 

1ecg.jpg 400KB 1.739 1.009 0.547 0.294 0.089 

7word.docx 440KB 4.711 0.902 0.609 0.323 0.095 

5ccd.xml 620KB 5.741 1.511 0.855 0.434 0.128 

6ccd.pdf 690KB 7.007 1.697 0.867 0.455 0.140 

3xray.png 4.01MB 7.313 5.195 4.198 2.141 0.759 

10sound.mp3 8.65MB 17.834 10.030 8.482 4.283 1.621 

HDFS 
files 

11videosmall.mp4 27MB 35.124 29.056 23.314 11.900 4.955 

12videobig.mp4 232MB 247.980 179.380 140.860 80.521 42.073 

 
In conclusion, the increasing amount of data in the workload does not 

significantly affect the upload and download time performance of the files in the 

DSePHR system for the 50:50-write:read workload situation.  
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CHAPTER 5  

CONCLUSION 

In this chapter, the conclusions of this thesis including problem 

statement, motivation, requirements of encrypted PHR data storage, the design of 

encrypted PHR storage, approach to evaluate the storage and the experimental 

results are shown in section 5.1. The limitation and suggestion of this work are 

explained in section 5.2. 

5.1 Conclusion 

Personal health records (PHRs) are the data that belongs to your life. 

PHRs can be sensitive data such as disgraceful disease or dangerous medication. The 

secure cloud PHR systems have emerged recently, providing on encrypted method 

to PHR data and promising to store the encrypted data in cloud storage. However, a 

mechanism to store massive encrypted PHR data to a cloud storage is not addressed 

clearly. The secure cloud PHR systems assume that the encrypted PHR data can 

store in a general cloud storage without any issue. Although the encrypted PHR data 

can be stored in the general cloud storage, it is difficult to access the data. The 

encrypted PHR data lacks of its related information, making it difficult to pre-process 

the data for convenient retrieval. The general storages do not provide any index of 

the data by users and time because the storages provide a bucket-style storage for 

storing the whole data at same place. 

This work provides a distributed storage for storing encrypted PHR 

data and an API for retrieving the encrypted PHR data. The storage has designed 

according to the encrypted PHR storage requirements including (1) the storage can 
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support a high volume of the data; (2) the data can be accessed and retrieved 

immediately; (3) the user can access the data easily. To achieve the encrypted PHR 

storage requirements, the storage should provide scalability, robustness, failure 

recovery, fast responding and suitable interface to participate with user. 

The distributed storage for encrypted personal health data (DSePHR) 

has been proposed in this thesis. DSePHR contains 2 parts including the API for 

distributed storage and distribute storage. DSePHR uses both HDFS (Hadoop 

distributed file system) and HBase (Non-relational database) as a fundamental 

storage framework. HDFS provides a replication mechanism for the load balancing 

feature and failure recovery feature. HDFS can also add more storage capacity 

without shutting down the system. HBase is a non-relational database that can 

persist on HDFS and support a replication feature from HDFS. 

The interface of API has been implemented by REST interface which is 

a cross platform interface (de-facto standard). It can be used on various platform. 

DSePHR creates the index of the encrypted PHR data using its properties: the owner 

of the data, the incoming time of the data and the size of the data. The index of the 

encrypted PHR data is stored in HBase. With the DSePHR’s designed index, all files of 

the same user are located close to each other and sorted by the incoming time. The 

users can retrieve the whole data or a specified data of the user. The encrypted PHR 

data is divided into large size files and small size files. The large size files are stored 

directly on HDFS. The small files are stored on HBase acting BLOB (large binary 

object) to prevent the high consumption memory problem. The tuning configuration 

and pre-split table approach of HBase are adopted to improve the throughput of 

HBase for storing small files. 
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The experiment parts including the DSePHR APIs, memory 

consumption issue and DSePHR performance on effect of the limited storage, effect 

of the write-read ratio and effect of file type mixture. The DSePHR APIs provide the 

interface for client or PHR system to store to or retrieve from the DSePHR framework. 

The memory issue experimental results show that the DSePHR can solve the high 

consumption memory problem of Namenode by storing small files in HBase. The 

performance of DSePHR under limited storage space shows that the extra storage 

can be added to the DSePHR system without shutting down the system. The extra 

storages take around 1-3 minutes to respond to the new incoming data. Although the 

system resource usage is very high (i.e., 90%), the performance of both upload and 

download time shows a slight effects from such situation. However, the extra storage 

is recommended to be added to the DSePHR system when the resource usage of the 

system reaches 90%. In the DSePHR performance under realistic environment, both 

upload and download performance depends on a number of upload requests. That 

is, the high number of upload requests can affect both upload and download time 

performance. The results show that the performance on 50:50-write:read situation is 

the best performance. The download time is larger than the upload time because 

the data need to be completely downloaded from the distributed storage first, then 

sent to the client. Although the large file size is larger in the uniform file type 

mixture, the DSePHR still can handle the situation with a slightly performance 

difference. 

5.2 Limitation and Suggestion 

The limitation of DSePHR API is the size of the upload files. Although 

the DSePHR caches the incoming data on its disk, but the request of the data persists 
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in the memory first before it is saved to disk. The large file can fill the DSePHR 

memory fast. The file size should be limited considering the memory of the DSePHR 

web service, or the memory of the DSePHR must be increased to handle larger files. 

Another limitation is the throughput of the DSePHR to the distributed storage and to 

the client. With a single LAN interface, it can affect the throughput because there is 

an overhead between sending and receiving the data simultaneously. The suggestion 

is to use 2 LAN interfaces, one for the client to DSePHR, another one for the DSePHR 

to the distributed storage. This way, the throughput of the system can be increased. 

The limitation of HDFS is that the Namenode can be a single point of 

failure because the Namenode stores the metadata of all file in HDFS. The client 

cannot retrieve the data if the Namenode is down. However, there are some 

solutions to solve this limitation. First solution is to use a high quality machine to 

work as the Namenode server. Second solution is to use a secondary Namenode that 

is provided by HDFS. The secondary Namenode is a backup node of the Namenode. 

Third solution is to use a high availability Namenode (AvatarNode), by setting more 

than a single Namenode as a backup of the primary Namenode. If the primary 

Namenode goes down, another Namenode can catch up the work immediately. 
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APPENDIX 

Table A.1 – A.5 present results each experiment of ideal situation. Unit 

is used in each table is second.  Each of columns includes file:  file name, num:  a 

number of files, max:  maximum time, avg:  average time, min:  minimum time, std: 

standard division, var: variance, 95th: 95 percentiles, 99th: 99 percentiles. 

Table A.1 Upload time of 100:0-write:read situation with original PHR file type 

mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 848 6.959 1.900 0.852 1.182 1.397 4.336 5.859 
11videosmall.mp4 413 20.469 5.679 2.620 3.523 12.412 13.012 16.981 
12videobig.mp4 481 129.562 47.318 22.141 25.663 658.590 101.537 117.282 
1ecg.jpg 879 1.278 0.140 0.047 0.130 0.017 0.289 0.741 
2mri.jpg 815 2.478 0.055 0.014 0.140 0.020 0.081 0.683 
3xray.png 850 3.846 0.977 0.403 0.654 0.428 2.311 3.217 
4ccd.xml 852 1.695 0.055 0.015 0.126 0.016 0.093 0.568 
5ccd.xml 859 1.976 0.235 0.073 0.203 0.041 0.483 1.213 
6ccd.pdf 855 2.370 0.236 0.075 0.227 0.052 0.533 1.261 
7word.docx 885 1.589 0.150 0.050 0.164 0.027 0.307 0.952 
8excel.xlsx 830 1.807 0.049 0.014 0.118 0.014 0.078 0.712 
9sound.ogg 821 1.120 0.083 0.023 0.120 0.014 0.161 0.757 
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Table A.2 Upload time of 75:25-write:read situation with original PHR file type 

mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 243 4.335 1.106 0.859 0.519 0.269 2.157 2.795 
11videosmall.mp4 138 8.244 3.441 2.621 1.396 1.949 6.809 7.900 
12videobig.mp4 123 61.222 27.281 22.110 7.770 60.376 45.624 56.287 
1ecg.jpg 265 0.892 0.077 0.046 0.069 0.005 0.180 0.297 
2mri.jpg 245 0.282 0.024 0.015 0.020 0.000 0.052 0.080 
3xray.png 274 3.247 0.591 0.403 0.365 0.133 1.333 1.766 
4ccd.xml 252 1.023 0.033 0.015 0.076 0.006 0.055 0.207 
5ccd.xml 259 1.191 0.133 0.073 0.106 0.011 0.259 0.654 
6ccd.pdf 247 0.692 0.120 0.074 0.087 0.008 0.307 0.493 
7word.docx 256 0.815 0.091 0.051 0.077 0.006 0.212 0.392 
8excel.xlsx 277 0.328 0.025 0.015 0.026 0.001 0.054 0.078 
9sound.ogg 225 0.283 0.042 0.024 0.036 0.001 0.108 0.218 

 

Table A.3 Download time of 75:25-write:read situation with original PHR file type 

mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 53 126.667 14.931 1.975 26.986 728.223 76.217 115.325 
11videosmall.mp4 37 304.664 20.231 6.305 48.203 2323.494 27.904 217.385 
12videobig.mp4 19 129.643 84.283 47.324 24.457 598.158 124.844 128.683 
1ecg.jpg 76 162.443 15.035 0.091 30.332 920.033 75.686 130.542 
2mri.jpg 83 106.676 11.249 0.024 23.857 569.143 69.022 91.728 
3xray.png 75 93.932 14.789 0.902 25.884 670.001 74.833 91.224 
4ccd.xml 63 143.368 20.901 0.025 37.904 1436.717 96.954 137.578 
5ccd.xml 75 149.265 21.883 0.138 37.699 1421.251 103.802 143.603 
6ccd.pdf 72 90.470 17.037 0.214 26.698 712.809 74.828 88.381 
7word.docx 66 157.400 25.594 0.113 42.255 1785.503 113.716 156.400 
8excel.xlsx 61 135.957 20.573 0.027 33.966 1153.687 92.431 116.093 
9sound.ogg 62 156.969 18.943 0.052 36.652 1343.381 113.246 150.202 
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Table A.4 Upload time of 50:50-write:read situation with original PHR file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 249 3.225 1.128 0.859 0.435 0.189 2.080 2.809 
11videosmall.mp4 123 14.369 3.373 2.617 1.395 1.945 5.845 7.189 
12videobig.mp4 107 77.729 28.041 22.084 10.923 119.303 46.066 73.328 
1ecg.jpg 254 0.813 0.079 0.050 0.063 0.004 0.172 0.251 
2mri.jpg 259 0.269 0.025 0.016 0.020 0.000 0.059 0.081 
3xray.png 251 1.976 0.561 0.407 0.259 0.067 1.132 1.476 
4ccd.xml 280 1.029 0.032 0.017 0.064 0.004 0.070 0.090 
5ccd.xml 265 0.474 0.133 0.081 0.064 0.004 0.277 0.366 
6ccd.pdf 272 1.236 0.128 0.074 0.112 0.013 0.303 0.462 
7word.docx 253 1.464 0.094 0.051 0.121 0.015 0.213 0.683 
8excel.xlsx 244 0.261 0.026 0.016 0.020 0.000 0.059 0.091 
9sound.ogg 280 0.372 0.041 0.023 0.036 0.001 0.101 0.164 

 

Table A.5 Download time of 50:50-write:read situation with original PHR file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 269 23.475 6.504 1.700 3.759 14.127 12.731 18.395 
11videosmall.mp4 109 231.603 28.321 5.623 35.507 1260.749 77.892 216.668 
12videobig.mp4 108 376.940 151.061 46.212 70.167 4923.377 276.155 347.929 
1ecg.jpg 256 8.398 0.700 0.094 1.276 1.628 2.750 7.393 
2mri.jpg 273 28.140 0.467 0.023 2.071 4.291 2.542 6.002 
3xray.png 260 23.133 3.368 0.763 2.316 5.365 6.317 10.627 
4ccd.xml 267 48.438 0.738 0.025 4.034 16.273 3.001 13.148 
5ccd.xml 248 25.164 1.097 0.147 2.418 5.846 3.937 9.525 
6ccd.pdf 256 39.950 1.168 0.145 3.238 10.483 3.021 15.375 
7word.docx 272 90.728 1.363 0.105 6.052 36.633 4.640 15.570 
8excel.xlsx 249 41.866 0.794 0.024 3.830 14.672 3.175 19.989 
9sound.ogg 233 88.946 0.928 0.052 6.300 39.688 1.591 18.452 
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Table B.1 – Table B.10 present results each experiment of real-world 

situation.  Unit is used in each table is second.  Each of columns includes file:  file 

name, num:  a number of files, max:  maximum time, avg:  average time, min: 

minimum time, std:  standard division, var:  variance, 95th:  95 percentiles, 99th:  99 

percentiles.  

 
Table B.1 Upload time of 100:0-write:read situation with original PHR file type 

mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 3459 7.257 1.849 0.843 1.045 1.092 3.885 5.035 
11videosmall.mp4 1839 19.819 5.687 2.625 3.333 11.109 12.609 15.965 
12videobig.mp4 1845 147.917 46.650 22.114 23.929 572.619 93.745 116.734 
1ecg.jpg 3662 2.639 0.146 0.047 0.143 0.020 0.298 0.777 
2mri.jpg 3631 3.069 0.058 0.013 0.150 0.022 0.086 0.793 
3xray.png 3660 4.421 0.951 0.398 0.591 0.349 2.101 2.818 
4ccd.xml 3621 1.750 0.054 0.015 0.106 0.011 0.084 0.630 
5ccd.xml 3672 4.181 0.236 0.071 0.224 0.050 0.484 1.263 
6ccd.pdf 3655 3.100 0.223 0.073 0.204 0.042 0.472 1.169 
7word.docx 3696 2.547 0.151 0.050 0.148 0.022 0.306 0.751 
8excel.xlsx 3628 2.411 0.056 0.013 0.128 0.016 0.082 0.745 
9sound.ogg 3632 2.384 0.085 0.023 0.129 0.017 0.156 0.732 
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Table B.2 Upload time of 75:25-write:read situation with original PHR file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 2716 6.457 1.566 0.834 0.879 0.772 3.295 4.326 
11videosmall.mp4 1342 17.524 4.688 2.612 2.511 6.305 10.076 12.190 
12videobig.mp4 1374 112.936 38.691 22.086 17.937 321.744 76.993 93.881 
1ecg.jpg 2636 1.643 0.125 0.046 0.122 0.015 0.265 0.639 
2mri.jpg 2830 3.066 0.047 0.014 0.112 0.013 0.075 0.367 
3xray.png 2724 4.286 0.817 0.401 0.505 0.255 1.790 2.390 
4ccd.xml 2671 1.559 0.049 0.014 0.092 0.008 0.082 0.456 
5ccd.xml 2739 2.279 0.205 0.074 0.171 0.029 0.420 0.825 
6ccd.pdf 2791 2.433 0.199 0.074 0.172 0.030 0.424 0.884 
7word.docx 2805 2.627 0.130 0.051 0.118 0.014 0.281 0.453 
8excel.xlsx 2668 1.673 0.049 0.014 0.103 0.011 0.078 0.684 
9sound.ogg 2689 1.304 0.072 0.023 0.096 0.009 0.146 0.539 
 

Table B.3 Download time of 75:25-write:read situation with original PHR file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 874 14.285 4.584 1.620 2.246 5.046 8.973 10.484 
11videosmall.mp4 431 47.212 13.069 4.971 6.516 42.455 25.158 32.743 
12videobig.mp4 469 288.480 97.871 42.738 39.159 1533.402 174.317 212.486 
1ecg.jpg 920 6.790 0.363 0.089 0.404 0.163 0.745 1.801 
2mri.jpg 925 5.428 0.154 0.019 0.432 0.187 0.490 2.319 
3xray.png 915 8.886 2.328 0.760 1.266 1.604 4.696 6.196 
4ccd.xml 911 7.142 0.153 0.021 0.467 0.218 0.391 2.355 
5ccd.xml 921 8.644 0.504 0.129 0.562 0.316 1.036 2.254 
6ccd.pdf 941 15.468 0.554 0.140 0.701 0.492 1.195 2.362 
7word.docx 882 7.484 0.433 0.095 0.577 0.333 0.951 2.771 
8excel.xlsx 878 7.907 0.156 0.023 0.425 0.181 0.494 1.686 
9sound.ogg 948 9.217 0.259 0.046 0.598 0.358 0.678 3.076 
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Table B.4 Upload time of 50:50-write:read situation with original PHR file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 1837 5.813 1.455 0.854 0.810 0.655 3.110 4.203 
11videosmall.mp4 917 15.258 4.317 2.617 2.245 5.038 9.202 11.610 
12videobig.mp4 953 115.492 36.082 22.064 15.356 235.807 68.376 85.093 
1ecg.jpg 1753 2.117 0.117 0.048 0.108 0.012 0.266 0.488 
2mri.jpg 1798 1.273 0.042 0.015 0.080 0.006 0.075 0.284 
3xray.png 1780 2.716 0.748 0.406 0.447 0.200 1.632 2.175 
4ccd.xml 1824 1.185 0.042 0.016 0.072 0.005 0.078 0.285 
5ccd.xml 1801 1.634 0.182 0.081 0.118 0.014 0.392 0.536 
6ccd.pdf 1795 1.292 0.177 0.077 0.134 0.018 0.388 0.641 
7word.docx 1874 1.170 0.122 0.051 0.108 0.012 0.280 0.542 
8excel.xlsx 1808 1.743 0.042 0.014 0.090 0.008 0.076 0.292 
9sound.ogg 1852 1.132 0.061 0.023 0.066 0.004 0.132 0.267 
 

Table B.5 Download time of 50:50-write:read situation with original PHR file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 1832 15.070 4.227 1.620 2.337 5.462 8.633 10.730 
11videosmall.mp4 917 49.537 12.038 4.953 6.381 40.723 23.840 30.840 
12videobig.mp4 928 240.318 80.638 42.462 32.456 1053.381 143.312 199.861 
1ecg.jpg 1817 6.298 0.291 0.088 0.312 0.098 0.552 1.452 
2mri.jpg 1790 5.960 0.102 0.016 0.315 0.099 0.294 1.269 
3xray.png 1832 10.384 2.086 0.758 1.183 1.400 4.281 5.634 
4ccd.xml 1767 5.771 0.110 0.020 0.333 0.111 0.203 1.624 
5ccd.xml 1831 9.898 0.420 0.128 0.437 0.191 0.820 1.601 
6ccd.pdf 1810 6.600 0.459 0.139 0.368 0.135 0.938 1.887 
7word.docx 1812 5.942 0.321 0.095 0.343 0.118 0.627 1.513 
8excel.xlsx 1820 4.615 0.099 0.021 0.257 0.066 0.292 1.120 
9sound.ogg 1852 7.785 0.174 0.042 0.368 0.135 0.294 1.239 
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Table B.6 Upload time of 100:0-write:read situation with uniform file type mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 5067 10.321 1.913 0.843 1.175 1.381 4.282 5.490 
11videosmall.mp4 5006 20.470 5.743 2.598 3.440 11.835 12.740 16.305 
12videobig.mp4 4988 148.622 47.417 22.084 25.566 653.639 101.738 127.220 
1ecg.jpg 1985 1.539 0.152 0.046 0.146 0.021 0.306 0.923 
2mri.jpg 3356 4.164 0.057 0.013 0.130 0.017 0.103 0.693 
3xray.png 5024 6.985 0.985 0.400 0.657 0.432 2.208 3.133 
4ccd.xml 3219 2.966 0.059 0.015 0.139 0.019 0.086 0.801 
5ccd.xml 1993 4.975 0.251 0.072 0.281 0.079 0.515 1.428 
6ccd.pdf 1974 2.121 0.240 0.075 0.224 0.050 0.521 1.267 
7word.docx 2001 2.681 0.155 0.050 0.153 0.023 0.308 0.870 
8excel.xlsx 3346 3.702 0.058 0.014 0.134 0.018 0.092 0.653 
9sound.ogg 2041 2.295 0.087 0.023 0.141 0.020 0.158 0.768 
 

Table B.7 Upload time of 75:25-write:read situation with uniform file type mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 3781 8.207 1.602 0.853 0.876 0.767 3.302 4.172 
11videosmall.mp4 3799 19.415 4.771 2.613 2.625 6.891 10.041 12.963 
12videobig.mp4 3783 125.737 38.994 22.075 17.708 313.588 75.111 95.856 
1ecg.jpg 1452 2.361 0.132 0.047 0.142 0.020 0.272 0.809 
2mri.jpg 2539 1.781 0.047 0.014 0.086 0.007 0.080 0.361 
3xray.png 3700 4.820 0.825 0.393 0.492 0.242 1.709 2.405 
4ccd.xml 2514 2.676 0.051 0.014 0.116 0.013 0.083 0.478 
5ccd.xml 1581 3.463 0.208 0.073 0.177 0.031 0.408 0.908 
6ccd.pdf 1549 1.998 0.207 0.073 0.186 0.035 0.431 1.150 
7word.docx 1504 2.091 0.133 0.051 0.115 0.013 0.282 0.519 
8excel.xlsx 2528 1.717 0.050 0.014 0.094 0.009 0.086 0.491 
9sound.ogg 1457 1.151 0.071 0.023 0.085 0.007 0.138 0.474 
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Table B.8 Download time of 75:25-write:read situation with uniform file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 1251 15.405 4.816 1.620 2.359 5.566 9.123 12.052 
11videosmall.mp4 1191 55.009 13.265 4.966 6.533 42.681 25.844 31.207 
12videobig.mp4 1225 258.550 97.622 42.712 37.035 1371.579 174.617 204.544 
1ecg.jpg 531 3.057 0.374 0.090 0.279 0.078 0.756 1.560 
2mri.jpg 779 2.861 0.133 0.019 0.244 0.060 0.400 1.339 
3xray.png 1229 9.291 2.415 0.761 1.243 1.546 4.668 6.025 
4ccd.xml 802 6.934 0.169 0.022 0.476 0.227 0.423 2.681 
5ccd.xml 547 6.445 0.496 0.130 0.398 0.158 0.952 1.796 
6ccd.pdf 487 3.396 0.543 0.140 0.371 0.138 1.069 2.047 
7word.docx 510 5.576 0.395 0.097 0.381 0.145 0.779 2.137 
8excel.xlsx 770 3.016 0.125 0.024 0.223 0.050 0.325 1.024 
9sound.ogg 491 4.873 0.263 0.046 0.423 0.179 0.748 2.162 

 

Table B.9 Upload time of 50:50-write:read situation with uniform file type mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 2483 5.375 1.491 0.853 0.815 0.664 3.079 4.086 
11videosmall.mp4 2491 16.510 4.346 2.579 2.287 5.229 9.059 11.760 
12videobig.mp4 2520 116.072 36.535 22.062 16.342 267.063 71.927 87.760 
1ecg.jpg 985 1.226 0.116 0.047 0.098 0.010 0.251 0.481 
2mri.jpg 1688 1.585 0.040 0.015 0.076 0.006 0.073 0.278 
3xray.png 2531 4.806 0.769 0.404 0.454 0.206 1.598 2.192 
4ccd.xml 1627 1.368 0.043 0.014 0.071 0.005 0.081 0.284 
5ccd.xml 1013 3.546 0.199 0.076 0.184 0.034 0.399 0.854 
6ccd.pdf 1007 1.581 0.185 0.075 0.153 0.023 0.410 0.716 
7word.docx 1024 1.967 0.124 0.051 0.121 0.015 0.278 0.410 
8excel.xlsx 1670 1.192 0.044 0.014 0.076 0.006 0.080 0.286 
9sound.ogg 1006 2.189 0.066 0.024 0.094 0.009 0.139 0.295 
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Table B.10 Download time of 50:50-write:read situation with uniform file type 
mixture 

FILE NUM MAX AVG MIN STD VAR 95th 99th 
10sound.mp3 2511 17.834 4.283 1.621 2.244 5.035 8.482 10.030 
11videosmall.mp4 2531 35.124 11.900 4.955 5.963 35.559 23.314 29.056 
12videobig.mp4 2494 247.980 80.521 42.073 31.017 962.060 140.860 179.380 
1ecg.jpg 1050 1.739 0.294 0.089 0.185 0.034 0.547 1.009 
2mri.jpg 1641 5.866 0.096 0.020 0.230 0.053 0.301 0.838 
3xray.png 2433 7.313 2.141 0.759 1.115 1.243 4.198 5.195 
4ccd.xml 1736 6.403 0.094 0.021 0.228 0.052 0.271 0.643 
5ccd.xml 970 5.741 0.434 0.128 0.369 0.136 0.855 1.511 
6ccd.pdf 973 7.007 0.455 0.140 0.384 0.147 0.867 1.697 
7word.docx 926 4.711 0.323 0.095 0.256 0.065 0.609 0.902 
8excel.xlsx 1672 5.497 0.106 0.020 0.250 0.063 0.277 1.087 
9sound.ogg 1018 6.108 0.172 0.045 0.276 0.076 0.331 1.060 
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