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ABSTRACT 

 

The study of cloud type classification has played 

significant role in weather forecast, air traffic control, and global 

warming analysis. Therefore, being able to classify clouds 

accurately is important. This thesis proposes new features and 

algorithms for automatic cloud type classification system using 

ground-based images. The input to the system is the images of 

seven sky conditions, namely, cirriform clouds, high 

cumuliform clouds, stratocumulus clouds, cumulus clouds, 

cumulonimbus clouds, stratiform clouds, and clear sky. The 

output is a class name for an image which belongs to one of the 

seven sky conditions. There are four steps involved in 

developing the system. First, the suitable classifier is chosen 

from commonly used classifiers; and the well-performed 

classifier will be used in our system design and implementation. 

Second, different feature extraction techniques are compared 

with the k-FFTPX which is our newly proposed technique based 

on Fourier transform; and the most effective feature extraction 

technique will be used in the classification system. Third, more 

features and hierarchical classification technique are introduced 

to improve the system performance to achieve accuracy higher 
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than 95%. Fourth, a complete cloud classification system is 

implemented in practice for local cloud monitoring at Prince of 

Songkla University, Phuket Campus. The best accuracy for 

classifying seven cloud types using hierarchical classification 

tree technique integrating with the meteorological data is as high 

as 99.82%. In addition, a mobile application is developed for 

online classification using the approach presented in the thesis. 

Live cloud image and live meteorological data from our station 

can be viewed through mobile application from anywhere in the 

world. 

 

Keywords: pattern recognition, cloud classification, ground-

based images 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction and Motivation 

Weather conditions have received increasing attention 

in recent years because severe weather has caused damages in 

many countries around the world. In 2012, the destruction of 

hurricane Sandy in the United States caused serious damages; at 

least 159 people have died, more than 650,000 homes and 

hundreds of thousands of businesses were severely damaged [1]. 

Therefore, the study of weather conditions is vital in help 

preparing for incoming natural disasters and extreme weather 

changes such as storm, lightning, heavy rain, landslides and 

flash flood.  This is because it helps to reduce the losses that 

may occur. Analyzing weather conditions involves essential 

elements of celestial phenomena and clouds. The appearance of 

each cloud type changes upon the weather conditions at the time 

and in the near future. Therefore, we can recognize weather 

conditions using cloud classification. Nowadays, with the help 

of image processing, weather conditions can be monitored 

without any use of sophisticated instruments, even in the remote 

or rural areas. Hence, cloud classification is worth exploring. 

Automatic cloud classification has been highly 

appreciated over the last decades [2]–[16] because the 

traditional cloud type classification requires specialists to do it 

manually. Nevertheless, the number of specialists in this area is 

limited. Moreover, this approach lead to high cost, speed of 

manual classification is also slowly and human errors are 
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occurring. Unique shape and disorder of clouds can lead to 

different results for different observers. Moreover, the 

observation of cloud requires experts and there is limited 

number of experts in the area. Therefore, automatic cloud 

classification has been developed since 1977 [17] to serve the 

purpose of auto-recognition.  

Satellite images have been used as input in the analysis 

of cloud classification. It can provide information and overview 

but is unable to provide local details on a specific area. 

Furthermore, satellite images are sometimes expensive, and they 

are limited for public use [10], [13]. Thus, ground-based images 

which obtained by imager devices have been utilized more 

extensively. Two types of imagers are developed [18], namely, 

the total sky imager (TSI) and the whole sky camera (WSC). 

Both of the imagers take an image with wide angle of more than 

160° field of view (FOV) that can cover large area of sky. 

However, these devices are used for commercial and they are 

expensive which may not be suitable for small research groups. 

Therefore, a normal digital camera is introduced. Although, this 

type of camera provides a fraction of sky image, it has more 

specific information needed, low cost, and easier acquisition.  

In this thesis, we will develop an automatic ground-

based cloud type classification using digital camera. Image 

processing and pattern recognition technique are used. Seven 

different sky conditions are considered in the classification, 

namely, cirriform clouds, high cumuliform clouds, 

stratocumulus clouds, cumulus clouds, cumulonimbus clouds, 

stratiform clouds, and clear sky. The characteristics and the 

sample images of these cloud types will be explained in details 

in Chapter 2. 
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1.2 Literature Review 

1.2.1 Satellite Images 

Several researchers use satellite images as an input for 

automatic cloud type classification. Lee et al. [2] presented a 

classification of sub-regions into one of three cloud types using 

a neural network with texture features. The overall accuracy of 

classification is 93%. Heinzmann [3] used fuzzy logic approach 

to classify four cloud classes in form of cloud cover percentage. 

Bankert [4] suggested a probabilistic neural network (PNN) with 

spectral, textural, and physical measures for classifying each 

region into one of ten cloud classes which achieve an accuracy 

of 79.80%. Aha and Bankert [5] provided feature selection 

algorithms for classifying ten cloud classes using IB1. The best 

accuracy here is 88%. Fan et al. [7] used a bispectral cloud 

classification method based on man-computer interactive way to 

classify six types of clouds, land, and water through looking up 

table. This method provides an accuracy of 87.10%. Ambroise 

et al. [8] used distribution of pixels with hierarchical clustering 

to classify nine cloud types. The method achieves an accuracy of 

63%. Lee et al. [9] applied multi-category support vector 

machine (MSVM) to classify radiance profiles as one of three 

cloud classes. The result of classification is 90.11%. Shangguan 

et al. [12] studied texture feature analysis combined with 

Variational theory to extract texture features. Kaur and Ganju 

[14] used singular value decomposition (SVD) to extract the 

salient spectral and textural features to classify clouds based on 

their heights. This method has an accuracy of 70-90%. All the 

papers mentioned above used satellite images. 
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1.2.2 All Sky Images 

Recently, ground-based images have been used 

increasingly in cloud classification. Buch et al. [6] used images 

from two whole-sky imagers (WSIs) to create three-dimensional 

volume. Binary decision trees with three groups of features 

(texture measures, position information, and pixel brightness) 

are used to classify each pixel into one of five sky conditions. 

The accuracy of classification is 61%. Calbó and Sabburg [13] 

used images from two ground-based imagers, namely, TSI and 

WSC. They applied parallelepiped technique with three types of 

features (texture, Fourier transform, and cloudy pixels). When 

classifying eight sky conditions, it yields accuracy of 62% and is 

increased to 76% when classifying five sky conditions. Heinle et 

al. [15] used whole sky images as an input for cloud type 

classification. Their k-nearest neighbor (k-NN) classifier applied 

12 features from spectral features and textural features to 

classify seven sky conditions. The accuracy classification is as 

high as 97% but in general case with unseen data, the accuracy 

is between 75% and 88%. Martínez-Chico et al. [16] used 

radiation data and images from TSI to classify clouds according 

to their heights. The result was shown as the frequency of 

occurrence for each class. Afterwards, there were two papers 

based on the previous work of Heinle et al. [15]. First, 

Kazantzidis et al. [19] proposed method to detect raindrops for 

feature extraction. The average of classification is 87.9%. 

Second, Liu et al. [20] proposed the new feature method called 

the salient local binary pattern (SLBP). Their accuracy classified 

by the nearest neighborhood using chi-square metric is 93.65%. 

Taravat et al. [21] used pixel values of the whole-sky images to 

classify pixels into either cloud coverage or others (cloud-free 
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and sun). They used Multilayer perceptron (MLP) neural 

networks in the classification and the overall accuracy is 

95.07%. Cheng and Yu [22] used block-based classification on 

all-sky images to classify six sky conditions. In each block, 

statistical texture features and local binary pattern are extracted. 

Then, these features are classified using Bayesian classifier 

which gives the accuracy of 90%. Li et al. [23] proposed new 

method named bag of micro-structures (BoMs) for classifying 

five sky conditions using s support vector machine (SVM) 

classifier. Their result yields an accuracy of 90.9%. 

 

1.2.3 Digital Images without Fisheye Lens 

The input images captured from digital cameras have 

received high attention from several researchers since around 

2005. Singh and Glennen [10] classified five sky conditions 

using k-NN and neural network classifiers with five different 

feature extraction methods. The best result has an accuracy of 

64%. Souza-Echer et al. [11] presented the new algorithm based 

on a criteria decision process on Illuminant-Hue-Saturate (IHS) 

space to classify each pixel as clear sky, cloudy or undefined 

using parallelepiped method. This method estimates the 

percentage of sky cloud coverage, the output yields better than 

94% for classifying clear sky and better than 99% for classifying 

cloudy sky. Most recently, Zhuo et al. [24] introduced color 

census transform (CCT) and automatic block assignment 

method. Then, texture and structure information are extracted in 

every block and are concatenated as a feature vector. SVM 

classifier is used to classify six sky conditions and the result is 

81.17%. Xia et al. [25] presented texture features, color features, 

and shape features which performed with a hybrid method based 
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on k-NN and extreme learning machine (ELM). The overall 

accuracy of classifying four sky conditions is 84.82%. Wu et al. 

[26] used ELM classifier to classify four sky conditions. By 

combining three features, namely, texture features, color 

features, and SIFT features, it provides accuracy is 86.64%. 

 

Table 1.1. Summary of literature survey on existing methods 

using satellite images. 

Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

1990 Texture 

features 

Neural 

network 

3 93 Lee et al. 

[2] 

1994 Spectral, 

textural, and 

physical 

measures 

PNN 10 79.80 

 

Bankert 

[4] 

1994 Feature 

selection 

algorithms 

IB1 10 88 Aha and 

Bankert 

[5] 

1997 Bispectral 

cloud 

classificatio

n method 

Look up 

table 

8 87.10 Fan et al. 

[7] 
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Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

2000 Distribution 

of pixels 

Hierarchi

cal 

clustering 

9 63 Ambroise 

et al. [8] 

2004 Radiance 

profiles 

MSVM 3 90.11 Lee et al. 

[9] 

2008 SVD Unclear 3 70-90 Kaur and 

Ganju [14] 

 

Table 1.2. Summary of literature survey on existing methods 

using all sky images. 

Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

1995 Texture, 

position 

info, and 

pixel 

brightness 

Binary 

decision 

trees 

5 61 Buch et al. 

[6] 
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Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

2008 Fourier 

transform, 

texture, and 

cloudy 

pixels 

Parallelep

iped 

technique 

5 76 Calbó and 

Sabburg 

[13] 

2010 Spectral and 

textural 

features 

k-NN 7 75-88 Heinle et 

al. [15] 

2012 Existence of 

raindrops 

k-NN 7 87.90 Kazantzidi

s et al. 

[19] 

2013 SLBP 

feature 

Nearest 

neighbor 

7 93.65 Liu et al. 

[20] 

2015 Pixel values MLP 

neural 

network 

2 95.07 Taravat et 

al. [21] 

2015 Block-based 

classificatio

n 

Bayesian 6 90 Cheng and 

Yu [22] 
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Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

2016 BoMs SVM 5 90.90 Li et al. 

[23] 

 

Table 1.3. Summary of literature survey on existing methods 

using digital images. 

Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

2005 Five feature 

extraction 

methods 

Neural 

network 

and k-NN 

5 64 Singh and 

Glennen 

[10] 

2006 Criteria 

decision 

process on 

IHS 

Parallelep

iped 

method 

2 94-99 Souza-

Echer et 

al. [11] 

2014 CCT and 

automatic 

block 

assignment 

SVM 6 81.17 Zhuo et al. 

[24] 
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Year Proposed 

method 

Classifier No. 

class 

Accuracy 

(%) 

Author 

2015 Texture, 

color, and 

shape 

features 

ELM and 

k-NN 

4 84.82 Xia et al. 

[25] 

2015 Texture, 

color, and 

SIFT 

features 

ELM 4 86.64 Wu et al. 

[26] 

 

From the literature surveys in Table 1.1 – 1.3, the 

texture features are commonly used for feature extraction. 

However, the classification accuracy using only texture features 

is not very high; therefore, they must be combined with other 

features to achieve higher accuracy. Although some result using 

a digital camera shows the high accuracy of 94%, the number of 

cloud classes being considered is only two.  

In this research, we will use a digital camera and the 

number of cloud classes being considered is increased to seven. 

Our cloud classification system for the seven cloud classes is 

aimed to have accuracy higher than 95%. We will begin our 

experiment by finding a set of suitable texture features. Then, 

using these features we will compare the performance of two 

classifiers, namely, k-nearest neighbor and artificial neural 

network. We will show that artificial neural network performs 
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better than k-nearest neighbor. In the second experiment, we will 

find a suitable feature extraction technique that is effective for 

cloud type classification. We will also develop a novel feature 

based on Fourier transform to enhance the accuracy of 

classification. In the third experiment, we will introduce three 

new features based on Fourier transform and new classification 

tree algorithm to enhance the accuracy even further. Finally, a 

complete cloud classification system will be constructed.  
 

1.3 Objective 

1.3.1 To select a suitable classifier from the two 

commonly used classifiers, namely, k-nearest neighbor and 

artificial neural network. 

1.3.2 To select a suitable feature extraction technique 

that is effective for cloud type classification. 

1.3.3 To propose novel features and algorithms that 

are different from the previous works. 

1.3.4 To propose a complete cloud classification 

system for classifying seven cloud types using ground-based 

images which has accuracy higher than 95%. 

1.3.5 To implement hardware system for capturing 

cloud images and to build a low-cost local cloud monitoring 

station.  

 

1.4 Scope 

To study and to design automatic cloud-type 

classification system using digital camera for classifying seven 

sky conditions. The color images have a resolution at least 640 × 

480 pixels in Red-Green-Blue (RGB) and JPEG format and they 
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are taken in daylight. There are four steps of system 

development. In the first three steps we will use simple digital 

images without fisheye lens. 

The first step is to test a less-sophisticated system using 

texture features in order to find a suitable classifier to be used in 

the final complete system. An experiment will be conducted to 

compare two classifiers between k-nearest neighbor and 

artificial neural network. 

The second step is to conduct more experiments in 

order to test different feature extraction techniques with our 

proposed feature based on Fourier transform. The most 

effective feature extraction technique will be selected for later 

cloud type classification. 

The third step is to use the suitable classifier and 

suitable features to construct a hierarchy classification tree for 

high–accuracy classification. 

The final step is to integrate and implement hardware 

system (see Figure 1.1) to capture cloud images with 170° FOV 

fisheye lens every 5 minutes. The fisheye lens is used in the 

final step to enhance the system accuracy as it can cover larger 

area in the sky. A low-cost local cloud monitoring station is 

built and installed at Prince of Songkla University, Phuket 

Campus. Moreover, a mobile application will be developed for 

online classification and for mobile users to view live images 

from our station. 
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Figure 1.1. Hardware architecture. 

 

In Figure 1.1, the hardware architecture for capturing 

whole sky images has 5 main components. The first component 

is a glass dome for protecting camera from the rain and other 

particles. The second component consists of digital camera and 
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fisheye lens for capturing color image 170° FOV with a 

resolution of 2048 × 1536 pixels in JPEG format. The third 

component is a Raspberry Pi 2 Model B for controlling system 

such as capture images and control cooling device. The fourth 

component is a humidity and temperature sensor named DHT22. 

Finally, we place cooling device for controlling heat inside the 

hardware, it will run when a temperature inside is more than 

30°C. 

 

1.5 Benefit 

1.5.1. The research proposes several novel features 

for cloud type classification with our own hardware 

implementation that is low-cost and operational as a complete 

system.  

1.5.2. The research proposes several algorithms for 

cloud type classification and can be applied to various 

applications by changing the user-expected accuracy or 

changing the number of cloud classes being considered. 

1.5.3. Being able to classify cloud types more 

accurately can lead to the more accurate weather prediction and 

other applications that are related to metrological events. 

1.5.4. The research can be further extended to predict 

cloud type which is related to earthquakes. A recognition of 

earthquake clouds is interesting and it is currently under study 

by Nanyang Normal University [27], [28], Institute of 

Geography and Natural Resource [28], and others [29]–[34].  
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1.6 Overall System  

In Figure 1.2, the input image to our system will be in 

RGB color. Then, the image will pass to cloud classification 

algorithm and return the output class which belongs to one of 

the seven sky conditions.  Each stage is explained in more 

details as follows. 

In the preprocessing step, the image resolution is scaled 

for a suitable size. Channel splitting is used to convert an RGB 

image to a grayscale image. Moreover, the transformation of 

RGB to Hue-Saturation-Value (HSV) color model (RGB2HSV) 

is used before channel splitting of HSV.  

Then, we use a binary mask image for segmentation. A 

segmentation of each pixel is made by multiplying a pixel value 

of image with a mask pixel in the same position; the result is set 

to zero if the pixel value is multiplied by zero, otherwise the 

result is equal to the pixel value itself if it is multiplied by one. 

By removing the unwanted parts such as buildings and trees, the 

output of segmentation will give only clouds and sky. 

There are several feature extraction methods. We 

extract the features from image using relation of pixels in image. 

Some feature is not suitable for identifying cloud types. 

Therefore, after the feature extraction we also need feature 

selection algorithm for selecting suitable features.    

The classification is performed based on the extracted 

features. There are two parts involved in this step which are the 

training and the testing. The training process is used to construct 

a classifier model by machine learning algorithm using feature 

vectors together with their pre-defined classes (label vectors).  
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Figure 1.2. System overview of proposed cloud classification. 
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Then, the classifier model is tested by utilizing feature 

vectors in the testing process. We use artificial neural network 

and k-nearest neighbor as our classifiers; we then compare the 

results from both classifiers and choose the best one. Our 

classification system is expected to perform better than the 

existing one in the literatures. 

Finally, the system will be tested and integrated. The 

automatic cloud classification system will be implemented and 

installed at Prince of Songkla University, Phuket campus. 

 

1.7 Organization of the Thesis 

The organization is as follows: 

- This chapter described introduction and motivation, 

objective, scope and literature review. 

- Chapter 2 introduces the theoretical background and 

related algorithms. 

- Chapter 3 describes an experiment for finding a 

suitable classifier. 

- Chapter 4 discusses a series of experiments to select 

a suitable feature extraction technique.  

- Chapter 5 presents three novel fast Fourier transform 

(FFT) features and a complete cloud classification 

tree algorithm. 

- Chapter 6 explains the system integration test and the 

hardware installation. 

- Finally, Chapter 7 concludes our works and 

contributions of the thesis and also suggests possible 

future work.  



 
 

18 
 

CHAPTER 2 

THEORETICAL AND PRINCIPLE 

 

This chapter presents theoretical background that is 

important for readers to understand each element in the cloud 

classification system. The cloud names, their characteristics, the 

features used in the later experiments, and the classifiers used in 

our system will be described. 

 

2.1 Cloud Names and Classifications 

In the study of Meteorological Office (Met Office), 

clouds are difficult to recognize since they are always changing 

and are in many shapes and forms. A meteorologist, Luke 

Howard has written a book on cloud classification in 1803 

which he described structure of various clouds and names [35]. 

Afterward, Luke Howard's classifications were 

extended by the World Meteorological Organization (WMO) as 

10 cloud types or genera, namely [36], cirrus, cirrocumulus, 

cirrostratus, altocumulus, altostratus, nimbostratus, stratus, 

cumulonimbus, cumulus, and stratocumulus. Figure 2.1 show 

eleven different cloud types (clear sky is included). 

1) Cirrus Clouds 

Cirrus clouds occur above about 18,000 - 40,000 feet. 

They are short, detached, and look like hair. They are whiter 

than any other clouds in daytime. Furthermore, they are colors 

of the sunset while the sun is rising [35]. 
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Cirrus 

 

 
Cirrocumulus 

 

 
Cirrostratus 

 
Altocumulus 

 
Altostratus 

 
Nimbostratus 

 
Stratus  

 
Cumulonimbus  

 
Cumulus 

 
Stratocumulus 

 
Clear sky 

Figure 2.1. Eleven different sky conditions. 
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2) Cirrocumulus Clouds 

Cirrocumulus clouds occur above about 20,000 - 

40,000 feet. Often cirrocumulus clouds are small white ripples 

and compose mostly ice crystals. They are often rare than 

altocumulus clouds and no shading [35]. 

3) Cirrostratus Clouds 

Cirrostratus clouds occur above about 18,000 - 40,000 

feet. They are transparent and covering big areas of the sky, and 

may be smooth or fibrous, and usually have cirrus clouds around 

them. When the sun shines through cirrostratus clouds, they 

have shadows which are difference from nimbostratus clouds 

[35]. 

4) Altocumulus Clouds 

Altocumulus clouds occur above about 2,000 - 18,000 

feet. They are white or grey color and the sides are shaded when 

they are away from the sun. Usually, altocumulus clouds are 

rounded clump shape and composed of droplets and may contain 

ice crystals which are found in settled weather. The appearance 

like shading can help distinguish between altocumulus clouds 

and cirrocumulus clouds. Cirrocumulus clouds are only white 

but altocumulus clouds can be white or grey and the sides may 

be shaded [35]. 

5) Altostratus Clouds 

Altostratus clouds occur above about 7,000 - 18,000 

feet. They consist of the mixture of water droplets and ice 

crystals. In addition, they are in grey or bluish layers and appear 

thin where we can see the sun shining weakly through the cloud. 
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The difference between altostratus and nimbostratus clouds is 

that there is no shadow when the sun shining through altostratus 

[35].  

6) Nimbostratus Clouds 

Nimbostratus clouds occur above about 2,000 - 10,000 

feet. They are dark grey or bluish grey covering large area of 

sky with no layers. Moreover, they can block out the sun and 

usually comes with continuous heavy rain or snow [35]. 

7) Stratus Clouds 

Stratus clouds occur above about 0 - 6,500 feet. They 

are in grey layers or white or even tract of clouds with blurry 

edges. Sometimes, they appear like fog at ground level. The sun 

or the moon may shine through stratus clouds, if there is no 

other cloud above. Stratus clouds often come with drizzle or 

snow [35]. 

8) Cumulonimbus Clouds 

Cumulonimbus clouds occur above about 1,100 - 6,500 

feet. They are heavy and dense, often flat and very dark. This 

type of clouds extends high into the sky like towers or 

mushroom shape. Moreover, they are related with extreme 

weather conditions such as heavy torrential downpours, hail 

storms, lightning and tornados [35]. 

9) Cumulus Clouds 

Cumulus clouds occur above about 1,200 - 6,500 feet. 

The top of clouds is white but their base is rather dark. Usually, 

they appear in fair weather which is similar to the cauliflower 
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shape. Sometimes, they produce showers when they get larger 

[35].  

 

Table 2.1. Seven sky conditions and their descriptions. 

Class 

No. 

Cloud types Description Subtypes 

1 Cirriform Hair-like, milky, thin, 

whitening of the blue, 

white. 

Cirrus and 

cirrostratus 

2 High 

cumuliform 

Rounded, patched 

clouds of small 

cloudlets, white or 

gray. 

Cirrocumulus 

and 

altocumulus 

3 Stratocumulus Patches of clouds, 

white or gray. 

Stratocumulus 

4 Cumulus Puffy with flat bases, 

white or light-gray. 

Cumulus 

5 Cumulonimbus Mushroom-like, dark 

base, gray. 

Cumulonimbus 

6 Stratiform Layer of cloud, 

uniform, usually 

overcast, gray or dark. 

Altostratus, 

nimbostratus, 

and stratus 

7 Clear sky No cloud or a very few 

of clouds, blue. 

Clear sky 
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10) Stratocumulus Clouds 

Stratocumulus clouds occur above about 1,200 - 6,500 

feet. Their colors are changing from bright white to dark grey 

which are patches of cloud. They tend to stick together or 

separate and often appear in every weather condition [35]. 

11) Clear Sky 

Clear sky is when there is no cloud or a very few of 

clouds in the sky. Usually, it appears as blue. 

The above cloud types will be grouped into seven 

classes for the experiments in Chapter 3 to 5. The seven classes 

are concluded in Table 2.1. In this table, some cloud types are 

combined together because they have similar characteristics. For 

example, cirrus and cirrostratus are grouped into one class 

because cirrostratus rarely occurs in nature and it usually 

appears together with cirrus. Similarly, cirrocumulus is hardly 

found in nature. Hence, it is grouped with altocumulus and 

being classified under the name of high cumuliform clouds. Our 

grouping of cloud types here follows Heinle et al. [15]. 

However, nimbostratus is grouped together with stratiform in 

accordance with Calbó and Sabburg [13] and Li et al. [23].  

 

2.2 Features 

2.2.1 Texture Features 

Texture description is used to describe the texture of 

region. There are two main approaches for texture description 

which are grouped by data sources used in calculation. The first 

type is when texture features are extracted straight from images. 

These features are mean (ME), standard deviation (SD), 
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difference of mean (Dij) between each channel, and uniformity 

(U) defined by the equations below [13], [15]. 

 

 Mean 

                                  ∑        
   
                                   (2.1) 

 Standard deviation 

                         (∑              
   
   )

   
         (2.2)   

 

 Difference of mean R-G, R-B, and G-B 

                           {     }             (2.3)   

 Uniformity 

                                          ∑      
   
                                 (2.4) 

 

The notation N in the equation is the number of pixels in image, 

xi is a value of pixel i-th, and p(xi) is a probability of xi. This 

type of texture features is used to distinguish between dark 

clouds and white clouds as well as to separate thin clouds like 

cirrus from others. However, some clouds have the same color 

tone such as cumulus and stratocumulus; hence we cannot 

separate them by these features alone [15]. Therefore, other 

texture features will be combined to solve this problem. 

The second type is when texture features are calculated 

from Grey Level Co-occurrence Matrices (GLCM) which is a 

square matrix where the number of columns equals the number 

of grey levels. Each element in the matrix refers to the 
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frequency that two pixels occurred (P

(a,b)) [15]. We will use 

the following Haralick texture features [15], [37] later on in the 

experiments. 

 Homogeneity 

                                 ∑ ∑
       

       

   
   

   
                          (2.5) 

 Contrast 

                            ∑ ∑          
   

   
                      (2.6) 

 Energy 

                                  ∑ ∑           
   

   
   

 
                    (2.7) 

 Variance 

                           ∑ ∑         
   

   
   

 
                     (2.8) 

 Inverse Difference Moment 

                                 ∑ ∑
       

        
   
   

   
                         (2.9) 

 Sum Average 

                                    ∑   
      
      

                        (2.10) 

 Sum Variance 

                               ∑         
      
      

              (2.11) 

 Sum Entropy 

                          ∑  
      
      

                       (2.12) 
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 Entropy 

                       ∑ ∑                     
   

   
          (2.13) 

 Difference Variance 

                                                                         (2.14) 

 Difference Entropy 

                         ∑     
      

                          (2.15) 

 Information Measures of Correlation 

                                   
       

    {     }
                               (2.16) 

 

The GLCM matrix size is denoted by G where HX and HY are 

entropies of summing row and column of GLCM matrix, 

respectively, and HXY is the entropy of multiplying row and 

column together.   

                  ∑ ∑            {          }   
   

   
       (2.17) 

Px+y(a) is a sum of GLCM element where row plus column 

equals a. In contrast, Px-y(a) is a sum of GLCM element where 

row minus column equals a. 

2.2.2 Moments of Two-Dimensional Functions 

Moments of two-dimensional functions are used 

because of their resistance to any transformation. That is, the 

value of moments after transformation is not varied too much. 

The Zernike moments is shown in equation below [38]. 
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∑ ∑                                  (2.18) 

Note that n is an order with repetition l for a digital image, Pxy is 

the current pixel, Vnl(x,y) is the Zernike polynomial and * is the 

complex conjugate. 

2.2.3 Features based on Fourier Transform 

We use a grayscale image to transform pixels into 

frequency domain by two dimensional fast Fourier transform 

(2D-FFT) and use FFT shift to move the low frequency pixels 

into the center of the image (see Figure 2.2). There are three 

types of features based-on Fourier transform that we will use in 

the experiments of Chapter 4, namely, abs-FFT, log-FFT, and k-

FFTPX. 

1) Abs-FFT 

Abs-FFT is an absolute-magnitude of Fourier 

transform image. Figure 2.2(a) is a grayscale image, we use 2D-

FFT and FFT shift to derive abs-FFT (see Figure 2.2(b)) by 

calculating an absolute value of each pixel. The transformed 

image in Figure 2.2(b) is later on passed to the texture feature 

extraction process. 

2) Log-FFT 

We use a grayscale image in Figure 2.2(a) 

followed by 2D-FFT and FFT shift. Then, we calculate the 

logarithmic of each pixel in frequency domain which is a 

logarithmic magnitude of Fourier transform image (log-FFT) as 

shown in Figure 2.2(c). The log-FFT image is then used in a 

calculation of texture feature extraction. 
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(a) A grayscale image 

 

 

 
(b) Abs-FFT 

 
(c) Log-FFT 

Figure 2.2. Fast Fourier transform of a grayscale image. 

 

3) k-FFTPX 

This is a new FFT feature that we introduce in 

Chapter 4. The proposed feature extraction method called Fast 

Fourier Transform Projection on the x-axis (k-FFTPX) is named 

after the process of projecting the log-FFT values of an image 

onto the x-axis (see Figure 2.3(a)) before selecting k sampling 

values of the data as k dimensions of a feature vector as depicted 

in Figure 2.3(b). The k-FFTPX is based on FFT technique which 

has more sub methods inside. First, DWT is used to extract the 

key characteristics by frequency separation of an image. Second, 
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the image is transformed to the frequency domain by FFT which 

is useful in distinguishing shapes of clouds and reduces the 

effects of unequal brightness of the image. Third, the 

characteristics and key features are extracted from the 

logarithmic magnitude of FFT image and the values are 

projected on the x-axis. Then, these projection values are split 

into k blocks in order to reduce the dimension of the feature 

vector. Each block is then represented by an average value. 

After that, values in the feature vectors are sorted in descending 

order to increase the performance because we found that the 

sorting technique works well in practice. The algorithm is 

explained in full in Chapter 4. 

 

2.3 Classifier 

A classifier is a function that assigns the input images 

to a desired output class. Two commonly used classifiers, k-

nearest neighbor and artificial neural network are described 

below. 

2.3.1 k-Nearest Neighbor 

The k-nearest neighbor (k-NN) technique is used in 

many research papers [10], [15], [19] for cloud type 

classification because it is simple to implement and understand. 

In addition k-NN has low computation and also can be used to 

solve a complex problem [10], [15]. 
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(a) Projection on x-axis 

 
(b) k-FFTPX when k=10, n=320 

Figure 2.3. k-FFTPX projection and sampling values. 
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The k-NN algorithm is a non-parametric method. It 

uses a training data which consists of a set of vectors with class 

label of each vector. In classification, we define a k constant 

which is the number of neighbors, and we use a test data (a 

vector with unknown class) which will be classified by 

considering k neighbors. 

 

 
 

Figure 2.4. The k-nearest neighbor algorithm [39]. 

  

If k neighbors of the test data come from many classes, 

we will classify the test data as it belongs to a class with the 

majority of neighbors [40] as shown in Figure 2.4. In the Figure 

above, we use k=3, the green circle is then classified as in the 

same class as the red triangle because among three neighbors 

there are two red triangles and one blue rectangle. If k=5, the 

green circle is classified as in the blue square class because 

among five neighbors there are two red triangles and three blue 

rectangles. 

2.3.2 Artificial Neural Networks 

Artificial neural network (ANN) technique is used for 

cloud type classification [2], [10] because it is a nonlinearity 
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classifier which is suitable for solving complex issues. Back 

propagation algorithm which applies gradient descent often used 

to train the network for the best-fit value. There are three layers 

of neural network which are composed of input layer, hidden 

layer, and output layer [40] as depicted in Figure 2.5. 

 

 
 

Figure 2.5. Multilayer Neural Networks [41]. 

 

Each node uses a net activation equation which is a sum of 

weights and inputs as shown in the equation below. 

 

                           ∑            
   ∑      

 
              (2.19) 

 

In the equation above, the subscript i is the indexes of input 

layer, where j is the indexes of hidden layer; wji is the weights 

from layer i to j. The output of each node uses a nonlinear 
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function known as the activation function. There are many 

activation functions with difference properties. For example, the 

equation below shows a hyperbolic tangent function [40]. 

                                          
       

                         (2.20)

    

There are several parameters of ANN that can be set in 

order to achieve high performance. In the next chapter, we will 

conduct the experiment to find a proper setting for these 

parameters. The number of hidden layers is usually set between 

one and three. However, only one hidden layer is enough to 

estimate a result of any problems, if the number of hidden nodes 

is sufficient [42]. The number of hidden nodes is normally set 

between the number of input nodes and the number of output 

nodes. Learning rate should be set to a reasonable small value to 

construct an accurate model. Momentum is used for avoiding 

local minimum in the training model and stopping criteria is a 

criterion to stop learning process. The setting of these 

parameters will be mentioned more in the next chapter. Note 

that, all experiments in this thesis are executed on a desktop 

computer using an Intel Core i5-3550 Quad-Core processor with 

clock speed 3.30 GHz and 4 GB of RAM. 
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CHAPTER 3 

EXPERIMENT A – FINDING A SUITABLE 

CLASSIFIER 

 

In this chapter, we begin the experiment by using 18 

texture features to distinguish seven sky conditions. The 

important parameters of two classifiers are fine-tuned in the 

experiment, namely, k-nearest neighbor (k-NN) and artificial 

neural network (ANN). The performances of the two 

classifications are compared. Advantages and limitations of both 

classifiers are discussed. Our result reveals that the k-NN model 

performs at 72.99% accuracy while the ANN model has higher 

performance at 86.93% accuracy. We show that our result is 

better than previous studies. Finally, seven most effective 

texture features are recommended to be used for more compact 

cloud type classification system. 

 

3.1 Introduction 

As mentioned before, texture features are commonly 

used in cloud classification to describe characteristics of cloud. 

There are several feature extraction methods to extract texture 

feature and the accuracy depends on how to choose features to 

use as a feature vector. In this chapter, we will experiment with 

automatic cloud classification system using ground-based sky 

images from a digital camera. Several texture features will be 

combined and we will select the 18 suitable features for 

classifying images into one of seven sky conditions which again 

are cirrus, high cumuliform, stratocumulus, cumulus, 
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cumulonimbus, stratus, and clear sky. Two classifiers will be 

tested in the system, namely, k-nearest neighbor and artificial 

neural network. Then, we will compare the performance of both 

classifiers in terms of percentage of accuracy. 

 

3.2 Technical Background 

We perform the feature extraction, before we apply a 

classifier to compute a class type based on the given features. 

Features are extracted from grayscale image by splitting 

channels of the image into Red (R), Green (G), or Blue (B) 

channel. Although, there are several feature extraction methods, 

we will begin our experiment using texture features because 

they are commonly used in cloud classification [10], [13], [15] 

Thus, it is worth testing these features. 

3.2.1 Texture Features 

Texture features describe texture of image region. This 

chapter uses two types of texture features in the feature 

extraction process. The first type of texture features, ME of R 

channel, SD of B channel, and Dij between each channel are 

used. All equations are as defined in Chapter 2 (Eq. (2.1) to 

(2.3)). The second type of texture features is described by 13 

features. We use Eq. (2.6) to (2.16) to compute 11 texture 

features on the R channel and also compute 2 texture features of 

HOM (Eq. (2.5)) and CON (Eq. (2.6)) on the B channel. Note 

that, there are three features from Eq. (2.3). In total there are 5 

texture features of the first type and 13 texture features of the 

second type. Therefore, there are 18 texture features for feature 

extraction. Most of these features are calculated from the R 

channel. We explain why this is the case.  
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Cloud texture generally appears white or gray because 

it is equally composed of red and blue pixel values. In contrast, 

clear sky appears blue because it is composed of blue pixel 

values more than red [15]. Therefore, the distinction between 

clear sky and cloud is better described by R channel which gives 

higher contrast of image than other channels. Features from R 

channel can be used to distinguish cloud types better than the B 

channel which will be shown later by experiment in Section 

4.3.1.    

Two commonly used classifiers [10], [15], pattern 

recognition tools for distinguish classes, for cloud classification 

in this experiment are k-nearest neighbor and artificial neural 

network. 

3.2.2 k- Nearest Neighbor 

The reason we choose k-nearest neighbor (k-NN) for a 

comparison is, because it is quite a popular technique in cloud 

classification because of low computation and its ability to solve 

complex problem. Most of all, it is simple to implement [10], 

[15]. A brief detail of k-NN algorithm is that it works by 

considering k neighbors of a sample before classifying that 

sample as a class by a majority vote of its neighbors; that is the 

sample is assigned to the class most frequent among its k nearest 

neighbors. In theory, the larger k is more suitable for infinite 

number of samples. However, this is impossible in practice [43]. 

Hence, we are required to choose the optimal k within the 

available samples. 

3.2.3 Artificial Neural Network 

The reason we choose artificial neural network (ANN) 

is, because when a problem is complex, this classifier is often 
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used [10]. ANN is composed of three main layers, namely, input 

layer, hidden layer, and output layer. It can be used to solve 

nonlinear problems without considering the relationship 

between input and output. However, the classifier requires the 

tuning of multiple parameters in the model [44] for the best 

performance. Therefore, to achieve high accuracy we will 

examine key parameters of ANN in the experimental section. In 

this experiment, multilayer feed forward neural network is used. 

 

3.3 Experimental Results 

We used 696 ground-based cloud images taken from a 

digital camera for training and testing process.  These images 

are scaled to 320 × 240 pixels for all experiments. The 18 

texture features explained in Section 3.2 using Eq. (2.1) to (2.3) 

and Eq. (2.5) to (2.16) are implemented and the two classifiers 

used are ANN and k-NN. The main objective of the experiment 

is to find the suitable classifier for cloud classification. First, the 

parameters of two classifiers are tuned for providing high 

accuracy. Then, we compared the performance of the two 

classifiers and discussed the result. Some parameters are fixed 

for all experiments such as, a learning rate of ANN to 0.01 and a 

momentum to 0.9. Leave-one-out cross-validation (LOOCV) 

[44] is used to evaluate the percentage of classification. 

3.3.1 Selection of k Value for k-NN 

The number of neighbors is assigned for classification. 

The results are shown in Table 3.1. The accuracy (%) values are 

the average percentages of all correctly classified instances.  
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The k values from 1 to 14 were tested with a distance 

measure set to the Euclidean distance. In practice, k should not 

be too large as it can lead to over-smoothed boundaries [43].  

 

Table 3.1. The k value of k-NN model between 1 to 14. 

k-value 1 2 3 4 5 6 7 

Accuracy 

(%) 

60.20 50.00 49.86 50.14 51.72 50.72 52.01 

k-value 8 9 10 11 12 13 14 

Accuracy 

(%) 

51.29 51.72 49.86 48.42 49.71 49.86 50.00 

 

According to Table 3.1, when k = 1 the accuracy is highest 

among others. This means that k = 1 can separate noises from a 

correct sample better than other k values. Note that, the suitable 

k value depends on the distribution of features. For this problem, 

other k values (k > 1) may include points from other classes 

which can easily lead to the misclassification. Therefore, the 

remaining of this chapter will apply k = 1 as the parameter of k-

NN model. 

3.3.2 Selection of Distance Measures for k-NN 

Distance function is an important parameter of k-NN 

classifier for determining nearest neighbor of the test data.  

There are many distance measures for k-NN and 

choosing a suitable measure is an important problem in 

supervised learning techniques [45]. We used seven distance 

measures as shown in Table 3.2. From Table 3.2, each distance 

measure provides similar results except that Standardized 
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Euclidean distance has around 10% higher accuracy than others. 

We, therefore, resolve that Standardized Euclidean distance 

measure is compatible with a form of our training data 

distribution. 

 

Table 3.2. Accuracy when using seven different distance 

measures. 

Distance measures Accuracy (%) 

City Block 61.06 

Chebychev 61.49 

Correlation 59.34 

Cosine 59.91 

Euclidean 60.20 

Min-kowski 60.20 

Standardized Euclidean 72.99 

 

3.3.3 Selection of Activation Function for ANN  

ANN model has many parameters that we can vary. 

The activation function of the hidden layer is examined here. 

Note that the activation function of the input layer is fixed as 

linear to keep the same input values throughout the model. For 

the output layer, we fixed as hyperbolic tangent because this 

function can generate binary outputs [46].  
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Table 3.3. Different activation functions in hidden layer. 

Activation 

function 

Radial 

basis 

Tangent Linear Log-sigmoid 

Accuracy (%) 80.45 82.04 77.87 80.32 

 

From Table 3.3, there are 5 hidden nodes in the hidden layer. 

The result shows that the hyperbolic tangent function 

outperforms the other 3 functions because the hyperbolic 

tangent can provide binary outputs which are suitable for 

classification problems. However, it provides a good result if 

this function is used in both hidden and output layers [46]. 

3.3.4 Selection of Number of Hidden Nodes for  

ANN      

The number of hidden nodes in a hidden layer is varied 

as 3, 5, 7, and 9. The activation function is set to hyperbolic 

tangent. 

 

Table 3.4. The number of hidden nodes is chosen as 3, 5, 7, and 

9. 

Number of hidden 

nodes 

3 5 7 9 

Accuracy (%) 77.44 82.04 86.93 82.90 

 

From Table 3.4, the number of hidden nodes equal to 7 gives the 

best result. The number of hidden nodes affects the 

generalization error. When there are fewer hidden nodes such as 

3 hidden nodes, this might cause underfitting and high statistical 
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bias. In contrast, if we design our hidden layer with many 

hidden nodes such as 9 hidden nodes, it might cause overfitting 

and high variance [47]. 

3.3.5 Comparison of k-NN and ANN 

In the past four sub-experiments, it may seem that 

ANN classifier is cumbersome to use than k-NN due to the fine-

tuning of various parameters. However, if we can tune the 

parameters appropriately, it can lead to a more accurate 

classification over k-NN. 

 

Table 3.5. The accuracy comparison of k-NN and ANN. 

Classifiers k-NN ANN 

Accuracy (%) 72.99 86.93 

 

Table 3.5 shows that the accuracy of ANN is about 

14% higher than k-NN. While the result of Singh and Glennen 

[10] is 64% accurate for a classification of five sky conditions 

using ANN, we obtained 86.93% accuracy for a classification of 

seven sky conditions using also ANN. Nevertheless, our k-NN 

did not perform badly in the comparison with Singh and 

Glennen. For the k-NN, we received 72.99% accuracy while 

Singh and Glennen have 59.5% accuracy for a classification of 

less sky conditions. Although Souza-Echeret et al. [11] have 

94% accuracy, their classification is only for clear sky condition. 

If we classify only this class, we would get 96.34%.  
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(a) Confusion matrix of k-NN classifier 
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(b) Confusion matrix of ANN classifier 

 

Figure 3.1. Confusion matrix for the ground-based cloud image 

using two different classifiers. 

 

The percentage of the correct classification for each 

class is described in Figure 3.1, using confusion matrix. 

According to Figure 3.1, each row represents the percentage of 

the instances in a true class and each column represents the 

    1        2          3         4          5         6          7  

 

    1        2          3         4          5         6          7  
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percentage of the instances in a predicted class. Note that Class 

1 refers to cirrus and Class 7 refers to clear sky which is in the 

same order as explained in the beginning of this chapter. In 

Figure 3.1(a), four classes have less than 75% accuracy leading 

to a poorer result when using k-NN.  On the other hand, in 

Figure 3.1(b), the majority of correctly classified instances for 

ANN are over 80%, some are even as high as 96.34%. To 

further improve this result, we could try to find more effective 

features for distinguishing cirrus and stratocumulus from the rest 

of the other clouds. 

3.3.6 Recommended Texture Features  

The 18 texture features used in the experiment did not 

produce the same impact. Therefore, we rank the most effective 

texture features using a knock-out method. The results of 

ranking are as follows: 1) SD of B channel, 2) Dij of R and B 

channel, 3) HOM of B channel, 4) EN of R channel, 5) V of R 

channel, 6) ENT of R channel, and 7) C of R channel. With 

merely 7 texture features above, we get the accuracy as high as 

77.44% using ANN with 7 hidden nodes. 

3.3.7 Standard Cloud Images 

In this section, we conduct an additional experiment to 

show the generalization of our features and classifier. Since 

there is no official standard library for the seven cloud-type 

images, we will use 636 pre-classified cloud images from the 

two trusted locations [48], [49] as our standard cloud images for 

the testing purposes. The ANN classifier with the same 

parameter settings as Section 3.3.5 is tested using the standard 

images. The 18 texture features are applied in the same way as 

the previous experiments 
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Table 3.6. Confusion matrix for classifying standard cloud 

images. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 85.83 3.94 1.57 0.79 6.30 0 1.57 

2 15.07 65.75 4.11 2.74 6.85 4.11 1.38 

3 12.12 33.33 36.36 3.03 3.03 12.12 0 

4 5.45 7.27 0.91 54.55 30 1.82 0 

5 1.67 0.56 0.56 5 92.22 0 0 

6 0 2.90 5.80 1.45 4.35 82.61 2.90 

7 2.28 0 0 2.28 0 2.27 93.18 

 

Table 3.6 shows the classification results using a set of 

standard cloud images. Four classes are correctly classified with 

high accuracy of more than 82%. Class 4 is highly misclassified 

as Class 5 because most of Class 4 images are towering cumulus 

which is quite similar to cumulonimbus in Class 5. The texture 

features alone cannot distinguish these shapes of clouds. The 

shape information is also necessary. This problem will be 

addressed in the next chapter. Also, Class 3 is highly 

misclassified as Class 2. This is a problem of the zoomed 
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images in Class 3. With the images from different angles and 

scales, it becomes more difficult to separate Class 2 and Class 3. 

Nevertheless, the overall classification accuracy using standard 

cloud images is 72.93%. This is rather the same with the result 

of k-NN (72.99%). Hence, the generalization and effectiveness 

of our method are rather acceptable for general cloud images. 

Note that the standard cloud images from different 

places of the world are merely for the testing purposes, they will 

no longer be used in the future experiments. Instead, a database 

of real cloud images captured locally at Prince of Songkla 

University, Phuket Campus will be experimented upon as the 

final cloud monitoring station will be built at this location. 

 

3.4 Chapter Summary 

The seven texture features in recognizing each sky 

condition were recommended. If the 18 texture features were 

combined, this would give even better results. Although, ANN 

was difficult to fine-tune, ANN provided a better accuracy than 

k-NN with 86.93% of instances are correctly classified. This 

result is about 23% higher than the previous studies which were 

using also a digital camera and ANN method but the number of 

classes in those studies was only for five sky conditions, in our 

case we have seven sky conditions.  In particular, our 

classification for clear sky condition returned 96.34% accuracy 

which is higher than the previous studies.  

According to the results of k-NN and ANN, they show 

that when a problem is complex such as a problem of classify 

seven sky conditions, ANN can handle the complex problem 

better than k-NN. In the next experiment, we, therefore, will use 
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ANN as our main classifier. In addition, we will explore not 

only texture features but also other kinds of features such as a 

two dimensional fast Fourier transform (2D-FFT) and moments 

of two-dimensional functions. Moreover, we will conduct the 

experiments to find a suitable feature extraction technique to 

achieve a higher percentage of accuracy. 
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CHAPTER 4 

EXPERIMENT B – FINDING A SUITABLE 

FEATURE EXTRACTION TECHNIQUE 

 

This chapter studies several feature extraction 

techniques for the classification of cloud types using ground-

based images. Seven sky conditions are again considered. We 

present an algorithm that computes a matrix of feature vectors 

for cloud classification with five alternative ways of extracting 

cloud features. The five feature extraction techniques include 

textures, moments of two-dimensional functions, abs-FFT, log-

FFT, and the new technique called Fast Fourier Transform 

Projection on the x-axis (k-FFTPX). We propose the k-FFTPX 

algorithm that extracts features by projecting the values of 

logarithmic magnitude of FFT images on the x-axis of the 

frequency domain before selecting k sampling values of the data 

as k dimensions of a feature vector. To the best of our 

knowledge, there is no research on ground-based cloud type 

classification using such technique before. Then, a comparison 

of the techniques is made through a series of five experiments 

and the accuracies are ranged between 80.76% and 90.40%. Our 

new method provides the highest accuracy. The advantages are 

that we can now classify more cloud types than the existing 

methods with further improved in accuracy, and our method 

requires no expensive tools, only a digital camera is used to 

obtain ground-based images. This suggests a variety of practical 

solutions in combination with other meteorological sensors to 

report weather conditions inexpensively. 
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4.1 Introduction 

In this chapter, we will develop an automatic cloud 

type classification system for ground-based digital camera using 

image processing and pattern recognition. Seven different cloud 

types for our recognition are cirrus, high cumuliform 

(cirrocumulus and altocumulus), stratocumulus, cumulus, 

cumulonimbus, stratus, and clear sky. We will extract texture 

features from cloud images and will use this information in the 

training process of the classification. ANN is then used for 

classifying instances. Moreover, we will add three types of 

features based on Fourier transform. The first two types use 

logarithmic and absolute magnitudes for extracting texture 

features of FFT images. The last type uses logarithmic 

magnitude but we project these values on the x-axis. Our main 

contribution is a novel feature that uses a projection of 

logarithmic magnitude of the FFT onto the x-axis. We call this 

feature k-FFTPX. 

 

4.2 Technical Background 

Our new approach will incorporate the strength of 

texture analysis found in the previous chapter into the new 

technique of FFT feature extraction that focuses more on the 

shape of cloud. In addition to Table 1.1 – 1.3, Table 4.1 shows 

specifically various uses of FFT techniques, some are 

incorporated with other methods. Calbó and Sabburg [13] used 

features based on Fourier transform to discriminate cloud 

shapes. They extracted the characteristics of the spectral power 

image using correlation with clear (CC) and spectral intensity 

(SI). Daowieng et al.  [50] used FFT and discrete wavelet 
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transform (DWT) for word recognition. More recently, Chen 

[51] extracted dual-tree complex wavelet (DTCWT) features 

from EEG signals and perform the FFT to the DTCWT features 

subbands. Soltana et al. [52] applied FFT with Local Binary 

Patterns (LBP) histogram to calculate features from lace images. 

Stępniowski et al. [53] calculated the radial average of FFT for 

arrangement analysis of the aluminum nanopores.  

 

Table 4.1. Related works on fast Fourier transform techniques. 

Year Proposed 

method 

Application Author 

2008 Extracting CC 

and SI from 

FFT 

Cloud 

classification 

Calbó and 

Sabburg [13] 

2010 DWT with 

FFT 

Word 

recognition 

Daowieng et al.  

[50] 

2014 DTCWT with 

FFT 

EEG analysis Chen [51] 

2014 LBP and FFT 

with k-NN 

Analysis of lace 

images 

Soltana et al. 

[52] 

2014 Radial average 

of FFT 

Aluminum 

nanopores 

Stępniowski et 

al. [53] 
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To the best of our knowledge, there is no research on 

ground-based cloud type classification that performs feature 

extraction by projecting the values of logarithmic magnitude of 

FFT images on the x-axis of the frequency domain. Furthermore, 

the new idea of introducing the k-sampling and sorting 

techniques in the settings of feature vector will be incorporated 

into our proposed algorithms. These techniques will be 

explained later. 

4.2.1 Features 

We use a grayscale image which is computed by 

splitting channels of image as R, G, and B channels for 

extracting features. There are three groups of features which are 

used in the experiments, namely, the texture feature, the 

moments of two-dimensional, and the features based on Fourier 

transform. 

1) Texture Features 

There are two types of texture features used in this 

chapter. The first type of texture features are extracted from 

images directly. These are ME of R channel, SD of B channel, 

and Dij between each channel defined by the Eq. (2.1) to (2.3) in 

Chapter 2. The second type of texture features are computed 

from GLCM. We will use the Haralick texture features Eq. (2.6) 

to (2.16) are computed on R channel and Eq. (2.5) to (2.6) are 

computed on B channel. There are 18 texture features to be used 

in the algorithm which is the same as Chapter 3. 
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2) Moments of Two-Dimensional Functions 

Moments of two-dimensional functions or 2D-

moments are used because of their resistance to any 

transformation. The Zernike moments is shown in Eq. (2.18) for 

calculating 0-th to 7-th moments on R channel. 

3) Features Based on Fourier Transform 

We use a grayscale image (R channel) to transform 

pixels into frequency domain by two dimensional Fast Fourier 

Transform (2D-FFT) and use FFT shift to move the low 

frequency pixels into the center of the image. There are three 

types of features based-on Fourier transform that we exploit in 

the experiment, namely, abs-FFT, log-FFT, and k-FFTPX. 

These features were, as explained earlier in Chapter 2. 

 

4.2.2 Algorithms 

Two algorithms used in our experiments are explained. 

We use a set of digital camera images with no more than 36 

degree FOV as the input. Algorithm 1 explains our methodology 

for cloud classification starting from preprocessing the input, 

extracting dominant features, training the classifier, classifying 

the instances and returning the confusion matrix as the answer. 

In the preprocessing stage of Algorithm 1, we scale 

down each image to the resolution of n × m size. By this process 

we achieve a much smaller computational time. For each image 

we perform the feature extraction method using discrete wavelet 

transform (DWT). This transformation gives four images which 

are coefficient approximated (CA), coefficient horizontal edge 

(CH), coefficient vertical edge (CV), and coefficient diagonal 
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edge (CD). The size of four images is reduced by half. We select 

only CA image for a calculation of our feature vector. 

 

In feature extraction stage, we split channels into R, G, 

and B channels as grayscale images before calculating a vector 

of texture features F. The vector F is a based feature in our 

algorithm which is calculated by Eq. (2.1) to (2.3) and Eq. (2.5) 

to (2.16) explained in Section 3.2. There are a total of 18 texture 

features implemented in the algorithm. However, to improve the 

accuracy of the classification we propose to add one of the four 

following feature extractions, 2D-moments, abs-FFT, log-FFT, 
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or k-FFTPX. We call this additional feature vector, H. The 

moments of two-dimensional functions extract eight features 

using Zernike moments in Eq. (2.18) of order n = 0 to n = 7 and 

repetition m = 2. The features based on Fourier transform are 

referred to abs-FFT, log-FFT, and our proposed feature (also 

operated on frequency domain) called k-FFTPX. We test and 

evaluate each feature separately and discuss the performance in 

the experimental section. Note that the method of computing k-

FFTPX is presented in Algorithm 2 which we will explain later. 

In the training stage of classifier, we build a matrix of 

feature vectors V for holding the trained features. We label the 

answer for each feature vector and call it a targeted matrix T. 

Based on these information, we train classifier C using V and T. 

In the classification stage, we build a matrix of feature 

vectors U for holding the tested features. We pass each feature 

in U to C for the classification process before building confusion 

matrix for final results. 

Our proposed k-FFTPX is shown in Algorithm 2. We 

extract the k-FFTPX feature from 2 levels which are DWT level 

1 (DWT1) and DWT level 2 (DWT2) using R channel of the CA 

image g. The two levels of DWT are used because they are 

useful for multiresolution analysis of cloud shapes and this 

technique is less affected by the zooming of image. Higher 

levels of DWT (more than 2) will take longer to calculate and 

they are not recommended because the image will be too small 

and the important details will be lost. After the transformation of 

DWT1 (in Algorithm 1), we first transform the image g into a 

frequency domain using 2D-FFT to get  as presented in 

Algorithm 2. After that,  is obtained by shifting 2D-FFT of . 
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Then, we calculate the logarithmic magnitude of  to find M. 

We project the magnitude M on the x-axis of the transformed 

image and called it a vector Px. We split Px into k blocks and 

take the average of the magnitude in each block to get k 

projection values. Note that the suitable k value is determined 

experimentally. The k value should be able to represent a 

dominant characteristic of each cloud class. The small k value 

may not be able to describe characteristics of each class while 

the large k value may represent too specific characteristics and 

cannot generalize to each class. A feature vector H1 is 

constructed by joining the k projection values of Pavg(s) in order 

from s = 0 until s = k – 1. The process is repeated with DWT2 to 

obtain the second feature vector H2. The output of k-FFTPX 

algorithm is H1 concatenating with H2. 
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The overall feature extraction process is summarized in 

Figure 4.1. According to Figure 4.1, two features vectors, F1 and 

H1, are extracted from DWT1. The feature vector F1 contains 18 

texture features derived from Algorithm 1. The feature vector H1 

is a k dimensional FFTPX feature. The feature vector H2 is 

extracted from DWT2. This feature vector is also a k 

dimensional FFTPX feature. Finally, we concatenate all vectors 

to get a feature vector F which will be the input of our classifier 

in Algorithm 1. Each F represents one image. In the training 

stage of the classifier, we then build a matrix of feature vectors 

called V which comes from all vectors F combined. 

 

 

Figure 4.1. Feature extraction process for k-FFTPX. 
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4.3 Experimental Results 

In the following experiments, we begin to exploit the 

real cloud images captured from the interested area of study 

which is Prince of Songkla University, Phuket Campus. We 

used over 353 ground-based cloud images. Each image has a 

resolution of 640 × 480 pixels. The methodology used for all 

experiments is as per depicted in Algorithm 1 except in the last 

experiment Algorithm 1 and 2 are both used. LOOCV is used to 

evaluate the accuracy of the classification. Our classifier is a 

multilayer feed forward neural network with a single hidden 

layer for classifying seven sky conditions. The hyperbolic 

tangent function is used as the activation function in hidden 

layer and in output layer as shown in Figure 2.5. The number of 

input nodes is equal to the size of each feature vector in each 

experiment. The number of output nodes is seven. The suitable 

number of hidden nodes will be determined experimentally. 

Other parameters of ANN are fixed with a learning rate of 0.01 

and a momentum of 0.9. There are five experiments based on 

different features being tested in this chapter. In the first 

experiment, we test the performance of correctly classification 

with our 18 chosen texture features. Experiment 2–5, the 18 

texture features are used in conjunction with 2D-moments, abs-

FFT, log-FFT, and k-FFTPX, respectively. Furthermore, we will 

analyze the strengths and weaknesses of each feature used in 

each experiment. 

4.3.1 Experiment 1 - Texture Features 

There are many features that we used in the 

classification of cloud types. Therefore, we must find a way to 

choose the suitable features for classification.  
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(a) Small overlapping 

 
(b) High overlapping 

Figure 4.2. Distribution of chosen features.  
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We select the features by observing a distribution of 

each feature where the overlapping is minimized between each 

class. Figure 4.2 shows a plot of the mean distribution of the two 

considered features. The horizontal axis displays a range of 

distribution of a chosen feature whereas the vertical axis is a 

class number identifying the cloud types. In Figure 4.2(a) we 

give an example of the suitable feature (mean-R) where the 

distribution has small overlapping among classes. Figure 4.2(b) 

is an example of the unsuitable feature (mean-B) where the 

distribution has high overlapping among classes. This latter 

feature cannot distinguish a class from each other. Although, the 

mean-R feature from Figure 4.2(a) is suitable we still cannot use 

one feature solely for cloud classification because the 

distribution cannot distinguish all classes at once. Hence, based 

on the above technique we checked the distributions of 39 

texture features appeared in [13], [15], [37] and selected the best 

18 texture features such that the distributions can separate 

classes most effectively.  

The chosen 18 texture features are implemented in the 

experiment using Eq. (2.1) to Eq. (2.3) and Eq. (2.5) to Eq. 

(2.16). The 18 texture features are used in the training of ANN 

classifier. The ANN model is constructed and fine-tuned by 

varying the number of hidden nodes. According to Heaton [54], 

this value is usually lied between the number of input nodes and 

output nodes. We conduct separate experiments to heuristically 

find which number of hidden nodes optimizes the performance 

of our ANN model. For this experiment (Experiment 1 – 

Texture features) the suitable number of hidden nodes is set to 

15. Note that the number of hidden nodes for the remaining four 
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experiments will be optimized in the same manner. This value 

will be varied experimentally based on the size of feature vector.  

 

Table 4.2. Confusion matrix classified using 18 texture features. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 79.14 6.30 2.47 7.41 0.86 1.23 2.59 

2 6.50 84.25 4.25 2.13 1.25 1.63 0 

3 1.92 13.46 79.42 1.92 1.35 1.92 0 

4 15.59 9.15 1.19 70.00 1.19 0 2.88 

5 8.70 0 0 4.35 73.91 13.04 0 

6 5.26 0 5.26 0 0 89.47 0 

7 1.79 0 0 0 2.56 0.77 94.87 

 

From Table 4.2, the result of classification using 18 

texture features is presented in the form of confusion matrix. 

Each row of the confusion matrix is a true class while each 

column represents the output class given by our classifier. For 

example, the element in the first row and third column is a 

percentage of the accuracy classified as Class 3 while in fact, it 
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is Class 1. The diagonal of the matrix is, therefore, a correct 

classification for each class. From the table, the classification 

accuracies of Class 2, 6 and 7 are more than 80%, however, 

class 4 and 5 have quite low accuracy in comparison with the 

other classes since the misclassification of Class 4 as Class 1 

and Class 5 as Class 6 are still high. On the average, the 

accuracy of a classification using 18 texture features is 80.76%. 

4.3.2 Experiment 2 - Moments of Two-Dimensional 

Functions 

Moments of two-dimensional functions or 2D-moments 

are used in the experiment because their ability to tolerate any 

transformation changes of images. They are calculated from CA 

images of DWT level 1 using Eq. (2.18). We split this 

experiment into 3 sub-experiments. First, we add in the feature 

vector each n-th order for n = 0, 1, . . . , 7 one by one to the 

existing 18 texture features. Second, only 0-th order to 7-th 

order are in the feature vector. And third, the 18 texture features 

combined with all n-th orders are in the feature vector. 

 

Table 4.3. Texture features with one additional Zernike 

moments of order n. 

n-th order 0 1 2 3 

Accuracy (%) 81.66 82.15 81.73 82.04 

n-th order 4 5 6 7 

Accuracy (%) 82.58 80.52 78.56 81.78 
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Table 4.3 shows the result of the first sub-experiment 

where the 18 texture features are used in combination with each 

n-th order. The accuracy of classification is peaked at 82.58% 

when using texture features with the 4-th order of Zernike 

moments. However, in the second sub-experiment when the 

texture features were removed, the accuracy is reduced to 

63.03%. Therefore, we have learnt that 2D-moments work better 

in the presence of 18 texture features.  

 

Table 4.4. Confusion matrix classified using textures features 

and 2D-moments.  

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 81.73 8.27 2.59 4.07 0 0.99 2.35 

2 6.25 85.13 2.00 4.25 0 1.25 1.25 

3 8.08 4.04 84.62 0.19 0 3.08 0 

4 16.95 4.24 1.19 73.39 2.71 0.85 0.68 

5 4.35 11.30 1.30 5.22 66.96 10.87 0 

6 2.63 0 1.58 3.68 0 92.11 0 

7 1.79 2.56 0 0 0 0 95.64 
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In the third sub-experiment when the 18 texture features and all 

2D-moments are combined, we obtained more satisfiable result 

with the accuracy of 82.66%. This is better than using 18 texture 

features alone (see Experiment 1). The confusion matrix for this 

sub-experiment is presented in Table 4.4. In particular, the 

accuracy of Class 7 is increased to 95.64%. However, the 

accuracy of Class 5 is reduced to 66.96%. Therefore, we will 

explore another technique to improve these results in the next 

experiments. 

4.3.3 Experiment 3 - Absolute FFT 

Absolute FFT or abs-FFT computes texture features 

using the absolute magnitude of FFT. There are two sub-

experiments. First, we select four best texture features which 

operate on this magnitude of FFT and add each of these features 

one by one to the existing 18 texture features. Second, the 18 

texture features combined with all four abs-FFT features are in 

the feature vector. 

 

Table 4.5. Texture features with one additional abs-FFT feature. 

Additional feature Max Average Energy Variance 

Accuracy (%) 81.30 85.44 80.74 82.55 

 

Table 4.5 yields the result of the first sub-experiment. 

The best result is at 85.44% when using average-features in 

conjunction with the 18 texture features and this is superior than 

the result in Experiment 2. Therefore, it is still worth to use 18 

texture features with our test features as the performance has 

been improved by 2.78%. The second sub-experiment gives 
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85.06% of the accuracy. This result is close to using the 

average-feature. However, the average-feature yields slightly 

higher percentage. The confusion matrix of the average-feature 

is, therefore, shown in Table 4.6. The accuracies in most classes 

are improved from Experiment 2. Especially, Class 4 and 5 we 

had problems before in Experiment 2, now Class 4 is improved 

by 1.02% while Class 5 is improved by 9.13%. The accuracy of 

Class 7 is now climbed up to 97.18%, and the average accuracy 

of Table 4.6 is 85.44%. 

 

Table 4.6. Confusion matrix classified using texture features and 

the abs-FFT average-feature. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 85.41 3.70 0.37 5.43 0.62 0.86 1.61 

2 7.5 85.75 3.63 1.63 0.25 1.25 0 

3 2.69 5.00 90.00 1.15 0.58 0.58 0 

4 14.25 6.78 2.20 74.41 1.53 0.17 0.68 

5 4.35 0.43 3.04 9.13 76.09 6.96 0 

6 8.42 0 1.58 0.53 4.21 84.74 0.53 

7 1.54 0 0 0.51 0.51 0.26 97.18 
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4.3.4 Experiment 4 - Logarithmic FFT 

Logarithmic FFT or log-FFT closely resembles the abs-

FFT but log-FFT uses the logarithmic magnitude of FFT. There 

are two sub-experiments. First, we use one additional log-FFT 

feature with 18 texture features. Second, we use all log-FFT 

features together with 18 textures features in order to compare 

which sub-experiments give better results. 

 

Table 4.7. Texture features with one additional log-FFT feature. 

Additional feature Max Average Energy Variance 

Accuracy (%) 62.46 86.11 79.96 84.99 

 

The result of the first sub-experiment is given in Table 

4.7. The average of log-FFT feature outperforms the other three 

features. The best accuracy is at 86.11% which is higher than the 

abs-FFT average-feature in Experiment 3. In the second sub-

experiment when we use all log-FFT features with 18 texture 

features, the overall accuracy is down to 78.47%. We believe 

that the max-feature and energy-feature are the plausible causes 

since their accuracies are not too high as shown before in Table 

4.7. Therefore, only average-feature is recommended with the 

18 texture features. The confusion matrix when using texture 

features and the log-FFT average-feature is presented in Table 

4.8. The result reveals that most of the classes have the 

accuracies higher than Experiment 3 with the slight drop of 

Class 1 and Class 4 performances. However, Class 5 to 7 give 

rather excellent results, all are above 90%. The performances of 
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Class 5 and Class 6 are enhanced by 15.21% and 10%, 

respectively. Moreover, Class 7 accuracy is now 100%. 

 

Table 4.8. Confusion matrix classified using texture features and 

the log-FFT average-feature. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 82.72 4.94 1.23 4.94 2.47 1.23 2.47 

2 6.25 87.50 3.75 1.25 0 1.25 0 

3 3.85 5.77 90.38 0 0 0 0 

4 10.17 8.47 3.39 71.18 3.39 0 3.39 

5 0 0 0 0 91.30 8.70 0 

6 0 0 5.26 0 0 94.74 0 

7 0 0 0 0 0 0 100 

 

Until now, the accuracy of Class 4 is still less than 

75%. In the next experiment, we will show how our new 

technique of feature extraction can lead to a significant 

improvement of Class 4 and the rest of the remaining classes. 

We expect to have no less than 87% accuracy for every class. 
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4.3.5 Experiment 5 – FFT Projection on x-axis 

The experiment uses the logarithmic magnitude of FFT 

presented in Algorithm 2 (k-FFTPX) along with the 18 texture 

features that are obtained from Algorithm 1. Algorithm 2 is 

called by Algorithm 1 when the step of appending optional 

features H to F is reached. 

There are two sub-experiments. First, we investigate 

the suitable value of k in the k-FFTPX algorithm. Table 4.9 

shows the accuracy of the k-FFTPX algorithm when k = 1, 5, 10, 

15, and 20, respectively. The accuracy increases as the k value 

increases until it reaches a peak at k = 10 and the accuracy 

begins to decrease when k when k is greater than 10.  

 

Table 4.9. Performance of k-FFTPX when k is varied. 

k values k = 1 k = 5 k = 10 k = 15 k = 20 

Accuracy (%) 71.84 89.94 90.40 30.03 32.44 

 

In the second sub-experiment, we apply k = 10 and 

derive the confusion matrix as shown in Table 4.10. Most of the 

correctly classified instances are now over 87% which are better 

than the previous four experiments. Moreover, the correctly 

classified instances of all the classes are higher than 80%. 

Furthermore, the accuracy of Class 4 is improved by 8.99%. The 

overall (average) accuracy is at 90.40% which is better than the 

results of the previous four experiments. 
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Table 4.10. Confusion matrix classified using texture features 

and 10-FFTPX. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 89.26 1.85 0.12 7.28 0.12 0 13.58 

2 2.38 93.88 1.23 1.25 0.12 1.25 0 

3 2.88 4.42 92.69 0 0 0 0 

4 11.53 6.78 0.68 80.17 0.85 0 0 

5 1.74 0 4.35 1.74 87.83 4.35 0 

6 6.32 0 0 0 0 93.68 0 

7 0 0 0 2.05 0 0 97.95 

 

4.3.6 Comparison of Each Feature Extraction 

Method 

Table 4.11 shows the best results from Experiment 2 to 

5 where four different feature extraction techniques are used in 

conjunction with the 18 texture features. First, when we append 

2D-moments to the 18 texture features, we obtain the accuracy 

of 82.66% which comes from using textures features combined 

with eight features of Zernike moments. 
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Table 4.11. Each feature extraction method and its accuracy. 

Features Accuracy (%) 

Texture + 2D moments 82.66 

Texture + Abs-FFT 85.44 

Texture + Log-FFT 86.11 

Texture + k-FFTPX 90.40 

 

Later, the abs-FFT average-feature improves the 

accuracy to 85.44%. Then, the log-FFT average-feature 

increases the result even further to 86.11%. Finally, the highest 

accuracy arises from using the 18 texture features with k-FFTPX 

where the confusion matrix shows the overall accuracy of 

90.40%. This suggests that the 18 texture features with k-

FFTPX is the most effective among those feature extraction 

techniques we presented. In addition, when the magnitude of 

FFT is plotted in the logarithmic scale, the magnitude 

differences are far more prominent than the scale of the absolute 

magnitude (see Figure 2.2(b) and (c), for example). Hence, the 

projection of log-FFT image on the x-axis works very well. Note 

that the suitable k value may require tuning and it can be varied 

from problems to problems. That is why we stated in the 

algorithm as k-FFTPX.  
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4.4 Running Time Analysis 

In this section, we estimate the running time of our two 

algorithms which are the cloud classification algorithm and the 

k-FFTPX. The results are shown in Table 4.12. 

 

Table 4.12. The approximate running times of the two proposed 

algorithms. 

Algorithms Settings Number 

of images 

Approx. 

running time 

Cloud classification LOOCV 353 14.1 min 

Training 353 1.7 min 

Testing 1 813.9 ms 

The k-FFTPX k=5  

 

1 

52.7 ms 

k=10 52.9 ms 

k=15 54.0 ms 

k=20 54.5 ms 

 

The 18 texture features and the k-FFTPX (with the 

same setting as Section 4.3.5) are applied to the cloud 

classification algorithm. The running time of the k-FFTPX 

algorithm is around 52 ms which is slightly increased for the 
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larger k value. The algorithm for the k-FFTPX is executed once 

for each image. Therefore, a multiplication with the number of 

images is requited to calculate the total running time.  

 

4.5 Chapter Summary 

Two algorithms were presented. The first algorithm 

computes a matrix of feature vectors for all images before using 

this information in the process of cloud classification. The 

second algorithm is provoked by the first one if the feature 

extraction technique is set to use k-FFTPX. None of the 

literatures in Table 4.1 has provided such algorithms before. 

Besides, our k-FFTPX is different from other FFT techniques in 

many aspects. We project the values of logarithmic magnitude 

of FFT images on the x-axis of the frequency domain and split 

the projection values into k blocks and take the average of the 

magnitude in each block to get k projection values whereas the 

past research has calculated the characteristics of FFT using CC, 

SI, or the radial average. We also add a sorting technique to sort 

values in the feature vector for a better performance. Although, 

there were research using DWT with FFT for word recognition 

and using DTCWT with FFT for EEG analysis; the merit of this 

research is that we used DWT with texture features in 

conjunction with the new k-FFTPX features for cloud type 

classification. By using merely a digital camera available 

anywhere on the market today, our method is inexpensive. Our 

next contribution is the increase of cloud types to seven different 

cloud types and yet a good result, 90.40% accuracy, was 

obtained. Among digital camera images used in the literatures 

(see Table 1.3), there was a result showing more than 90% 

accuracy; however, their output classes were limited to two 
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cloud types. In this chapter, we also delivered more than one 

extraction technique; in fact, five different combinations of 

feature extraction techniques were presented and the accuracies 

are 80.76%, 82.66%, 85.44%, 86.11%, and 90.40%, 

respectively. These results, therefore, suggest a variety of 

practical solutions from the simple to the sophisticated 

functionality that requires no satellite images or expensive tools. 

Note that our approach will be developed until it can combine 

with other inexpensive meteorological sensors to report weather 

conditions and display them on a smart phone. 

In addition to the practical advantages above, our 

algorithm is rather simple to implement while the accuracy of 

our proposed method was improved from the conventional 

methods with the capability of distinguishing cloud types of up 

to seven classes. By using simply a digital camera with a 

resolution of at least 640 × 480 pixels, our method is less 

cumbersome and less expensive than those using TSI/WSI 

imagers. However, our method cannot classify more than one 

type of clouds that appear on the same image. Also, our 

algorithm has not yet been tested with the night time images. 

Our algorithm must be used in conjunction with the texture 

features to achieve the best performance because in Chapter 3 

we proved that texture features are necessary as they convey key 

characteristics of clouds.  Since the k-FFTPX provides the 

results better than the other three feature extraction techniques; 

therefore, we will use the k-FFTPX as the main feature 

extraction technique in the next chapter. However, we will 

further improve any drawbacks of the k-FFTPX especially in the 

area of a computation time while the good characteristics will be 

maintained. 
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CHAPTER 5 

EXPERIMENT C – VALIDATING PROPOSED 

FEATURES AND NOVEL ALGORITHMS 

 

In the last chapter, the k-FFTPX has proven to perform 

better than other feature extraction techniques. However, the 

computation time of the k-FFTPX can still be improved. In this 

chapter, we modify and bring in three more features based on 

the previous k-FFTPX. The classification accuracy will be 

increased from 90.40% because we use the new algorithms 

based on hierarchical classification. We still perform cloud 

classification on seven cloud types, namely, cirriform, high 

cumuliform, stratocumulus, cumulus, cumulonimbus, stratiform, 

and clear sky. In the chapter, we present eight algorithms that 

are used in automatic cloud classification with ground-based 

images as input. The main Cloud Classification Tree Algorithm 

(CCTA) uses the technique called hierarchical classification 

which is composed of three levels of tree. The design of our tree 

helps reduce the number of competitions among the cloud 

classes. We show that this method provides the highest accuracy 

at 98.08% through a series of four experiments. The result 

confirms that the hierarchical classification performs better than 

a single classification.  

In addition, the tree can be adapted to classify lesser 

number of cloud types. Our experiment reveals that the accuracy 

for classifying two classes, cloud and no-cloud, is high as 100%. 

Moreover, users have freedom to specify their expected 

accuracy to gain higher speed in calculation.  
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5.1 Introduction 

In this chapter, both texture and Fourier transform 

features are extracted from images. Then, ANN is used for 

training and classifying instances based on Cloud Classification 

Tree Algorithm (CCTA). Our classification tree splits sky 

conditions into clouded sky and clear sky before further 

separating clouded sky into three forms of clouds which are 

cirriform, cumuliform, and stratiform. Then, cumuliform clouds 

with four different shapes are classified last. Along with the 

classification tree, we also proposed three new features which 

are the modified k-FFTPX, the half k-FFTPX, and the h × k-

FFT. Eight algorithms are introduced and their validated results 

are presented in our four experiments. 

 

5.2 Technical Background 

In addition to Table 1.1 – 1.3, Table 5.1 shows 

specifically various uses of hierarchy classification. Hansen et 

al. [55] used hierarchical tree structure, a decision tree that 

applies training data to generate tree structure using pruning 

method to separate data into two sets. One data set is used to 

grow the tree and the other is used to prune errors. This method 

classifies satellite images (AVHRR) into one of twelve classes 

for land cover classification. Polat and Güneş [56] used a 

decision tree classifier and FFT based on Welch method to 

classify EEG signals as either patient or normal. Their method is 

used to detect epileptic seizure. Pang et al. [57] introduced a 

binary classification tree algorithm for face membership 

authentication. Their classification tree is constructed by 

clustering one data set from the root node into two subsets. 
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Then, clustering procedure is repeated on both child nodes. The 

procedure terminates when all nodes remain only either 

membership or non- membership data. The result from each 

node of tree is trained by SVM and all SVM classifiers are 

combined into SVM classification tree. From what mentioned 

above, the tree structure is generated automatically from training 

data.  

 

Table 5.1. Related works on classification tree and decision tree. 

Year Proposed 

method 

Application Author 

2000 Hierarchical 

tree structure 

Land cover 

classification 

Hansen et al. 

[55] 

2000 Hierarchical 

SVM structure 

Cloud 

classification 

Azimi-

Sadjadi and 

Zekavat [58] 

2005 SVM 

classification 

tree 

Face 

authentication 

Pang et al. 

[57] 

2007 Decision tree 

and FFT 

Detection 

epileptic 

seizure 

Polat and 

Güneş [56] 
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However, some researchers prefer to construct tree 

based on characteristics of each class. Azimi-Sadjadi and 

Zekavat [58] used satellite images (GOES 8) IR channel to 

classify areas into ten classes which composed of six cloud 

classes and four no-cloud classes. They used SVM classifier 

together with mean and standard deviation features to classify 

each block of image. Hierarchical SVM structure was then 

formed to classify at most two classes on each level of 

hierarchy. Moreover, Parikh [17] suggested that hierarchical 

classification leads to better results than using solely a single 

classification. To the best of our knowledge, apart from SVM 

classifiers there is no research on hierarchy classification using 

ANN classifiers. In this paper, we will design tree structure and 

use ANN to classify at most four classes on each level of 

hierarchy. Other research on SVM used only binary classes (two 

classes) per hierarchical level. 

5.2.1 Features 

Two color models, namely, RGB and HSV (Hue, 

Saturation, and Value) are used for feature extraction. In this 

paper, digital images are in RGB color while HSV color codes 

are computed by equations below [59]. The notation R′, G′ and 

B′ are R, G, and B which are scaled to [0, 1]. The H, S, and V 

values are all varied in a range of [0, 1]. The H values 

corresponds to colors varying from red through yellow, green, 

cyan, blue, magenta, and back to red, so at 0 and 1 they are both 

red. The S values are varied so that the corresponding H colors 

change from unsaturated to fully saturated (no white 

component) whereas the V values are brightness values in scale 

of [0, 1]. 
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We will use a grayscale image which is computed by 

splitting channels of image as R, G, B, H, S or V channels in 

feature extraction. There are two groups of features used in the 

experimental section which are the texture features and the new 

features based on Fourier transform. These features are used 

together because no single feature extraction method is best 

suited for recognizing all classes [10]. Each method has its own 

merits. 
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1) Texture Features 

In this chapter, there are five types of texture features 

depending on data sources used in the calculation. The first type 

is when texture features are extracted straight from images. 

These features are mean (ME) of R, G and B, difference of mean 

(Di j) between each channel, and uniformity (U) of R defined by 

Eq. (2.1) to Eq. (2.2) and Eq. (2.4)  [13], [15] in Chapter 2.   

The second type is when texture features are 

calculated from GLCM which is a square matrix [15]. We will 

use four of Haralick texture features [37]. These type of features 

are homogeneity (HOM) of B, contrast (CON) of B, energy 

(EN) of B and entropy (ENT) of R, G, B, and S as depicted by 

Eq. (2.5) to Eq. (2.7) and Eq. (2.13). 

The third type of texture feature is computed from 

edge of image which is calculated by canny edge detection [60] 

on R channel. The number of edge pixels is different for each 

cloud class; hence it can be used to distinguish clear sky and 

stratiform clouds from other cloud classes. The ENT (Eq. (2.13)) 

is calculated again, but on edge of image, this texture feature is 

called entropy of edge image (EE). The sum of edge pixels (SE) 

is calculated by equation below. The annotation e(i, j) is a pixel 

value from the i-th row and the j-th column while A and B are 

the size of edge image A × B pixels, width and height, 

respectively. 

                                   ∑ ∑          
   

   
                            (5.5) 
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The fourth type of texture feature is computed from 

binary image or threshold image on S channel. Threshold 

algorithm is used, if pixel value is less than threshold value then 

the pixel is set to one otherwise it is set to zero. The remaining 

pixels in the image are cloud pixels and we can use them to 

separate cloud types by considering the number of cloud pixels 

for each type. The sum of cloud pixels (SC) using threshold 

image is calculated by equation below. The annotation c(i, j) is a 

pixel value from  the i-th row and j-th column. 

                                        ∑ ∑          
   

   
                        (5.6) 

The fifth type of texture feature is computed from 

two gradient images on S channel using Eq. (5.7) called energy 

of image gradient (EG). The notation Ix and Iy describe image 

gradients of row and column directions, respectively [61]. This 

feature is used to measure sharpness of grayscale image. 

                              ∑ ∑ (  
         

      )   
   

   
             (5.7) 

 

2) Feature Based on Fourier Transform 

From Figure 5.1, we take input RGB image (Figure 

5.1(a)) and transform it to grayscale image by splitting channel 

into R, G, or B channel. The sample of grayscale image from R 

channel is shown in Figure 5.1(b). The channel splitting 

transforms HSV image to H, S or V image in grayscale. The S 

channel image is shown in Figure 5.1(c). We transform pixels of 

the grayscale image into frequency domain by 2D-FFT and we 
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use FFT shift to move the low frequency pixels into the center 

of the image (see Figure 5.1(d) and Figure 5.1(e)).  

 

 

(a) Input image 

 

(b) R channel image 

 

(c) S channel image 

 

(d) FFT image of R channel 

 

(e) FFT image of S channel 

Figure 5.1. A comparison of Fourier transform image of R and S 

channels. 

In Figure 5.1(b) the white color in cloud areas means that the 

areas have high red value while Figure 5.1(c) shows the 

complement of the image which presents a purity of pixels. The 

pixels with the highest purity have the highest values and are 

represented as white. The non-white color in cloud areas 

corresponds to a mixture of colors. Furthermore, the S image 

provides more details or better contrast than the R image. When 

both images are transformed to FFT images, the FFT image of S 
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channel (Figure 5.1(e)) also has better contrast than the FFT 

image of R channel (Figure 5.1(d)). Therefore, we will use the 

FFT image of S channel and the verification of results will be 

presented later in the experimental section. 

The shape of clouds cannot be explained by texture 

features alone. Therefore, we introduced features based-on 

Fourier transform for differentiating the shape of clouds. 

Moreover, it helps reduce the effect of unequal brightness in 

cloud images. There are three types of features based-on Fourier 

transform that we exploit in the experiment, namely, the 

modified k-FFTPX, the half k-FFTPX, and the h × k-FFT. 

2.1) The modified k-FFTPX 

The original k-FFTPX (in Chapter 4) used 

coefficient approximated image from DWT to transform the 

image to frequency domain using 2D-FFT. The projection of 

logarithmic magnitude of Fourier transform image on the x-axis 

was used. Then, we chose k uniform sampling values of the 

projection data as k dimensions of a feature vector. All steps are 

repeated twice and the second feature vector found was 

concatenated to the first one. To reduce computation time, the 

modified k-FFTPX is proposed (see Algorithm 3). The DWT is 

no longer used in the algorithm; a simple grayscale image is 

used instead. Moreover, it does not repeat the step of finding the 

second k dimensions of a feature vector. Only the first feature 

vector is required. 
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2.2) The half k-FFTPX 

This feature is similar to the modified k-FFTPX, 

but half k-FFTPX operates with a half projection of logarithmic 

magnitude of Fourier transform image on the x-axis to reduce 

calculation and processing time even further (See Algorithm 4). 
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2.3) The h × k-FFT 

The h × k-FFT is used to describe the shape of 

clouds in greater detail than the above two FFT features because 

it uses a sampling block technique on the FFT image. After 

logarithmic magnitude of Fourier transform image is calculated, 

we take half of the image and split it into h rows and k columns. 

This becomes the sub-images as depicted in Figure 5.2. The sum 

of pixel values in each sub-image is then calculated. Then, each 

sum value is concatenated as a feature vector V = [v1, v2, v3, ..., 

Vh×k] (See Algorithm 5) 
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Figure 5.2. The h × k-FFT diagram. 
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Both the half k-FFTPX and the h × k-FFT used the 

left half of logarithmic magnitude of Fourier transform image 

for feature extraction. Since Fourier transform is the process of 

signal transformation into series of sine and cosine which are 

odd and even function respectively; therefore, we can use only 

half image for calculated features. These novel features are 

referred to as features from the half of FFT image, or half-FFT 

for short. 

5.2.2 Algorithms 

We introduce the algorithm for cloud type classification 

based on classification tree. Figure 5.3 shows a hierarchy 

classification of clouds in a tree-like fashion. There are three 

levels of classification. In each level of classification, instances 

are classified at the internal node (black circle in Figure 5.3) 

using ANN classifier. Different features are used depending on 

the types of clouds being classified. For seven types of cloud, 

their subtypes and their descriptions we recommend readers to 

revisit Table 2.1. Level 1, clouded sky and clear sky are 

separated by the texture features. At this level, we select the 

most suitable five features introduced in Section 5.2.1. Level 2 

deals with three different forms of clouds which are cirriform, 

cumuliform, and stratiform. At this level, the modified k-

FFTPX, the half k- FFTPX, and the h × k-FFT are tested and the 

best performed feature is used to distinguish the three forms of 

clouds. Level 3, cumuliform clouds with different shapes are 

classified using two texture features and one of the best 

performed feature from the modified k-FFTPX, the half k-

FFTPX or the h × k-FFT. Note that leaves of the tree are the 

result of classification.  
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If we consider the computation time, it is not necessary 

the case that the single classification (one level) for seven cloud 

types will be faster than the hierarchical classification. This is 

because if the result is clear sky, only the first level of 

classification tree is executed and this will take less time than 

classifying of seven cloud types all at once. Similarly, using two 

levels of tree can classify cirriform and stratiform faster than the 

single classification in Chapter 4 (see Table 4.12 and 5.12). 

Although using all three levels of tree may take longer to 

classify seven cloud types than the single classification, the 

results from the cloud classification tree is more accurate. This 

is a simple trade-off between accuracy and computation time. 

 

 

 

Figure 5.3. Cloud classification tree. 

There are two main algorithms which are used to 

construct ANN models and to classify instances based on the 

classification tree. To construct ANN models, Algorithm 6 is 
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presented. The color ground-based images are scaled to 240 × 

320 pixels before transforming to grayscale images for feature 

extraction. The texture features described in Section 5.2.1 are 

selected by Algorithm 7 and ANN model for Level 1 is then 

constructed. After testing the three FFT features, ANN model 

for Level 2 is trained by the best performed FFT feature. Note 

that the optimization of k value for the first two FFT features 

uses Algorithm 8 while the optimization of h and k values for 

the h × k-FFT uses Algorithm 9. The three FFT feature vectors 

are computed using Algorithm 3, 4, and 5, respectively.  

 



 
 

87 
 

 

 

 

 



 
 

88 
 

 

 

 



 
 

89 
 

 

 

 

 

 



 
 

90 
 

 

 



 
 

91 
 

To construct ANN model for Level 3, the best 

performed FFT feature is appended to the suitable set of texture 

features. The set of texture features are derived from Algorithm 

7 using the 18 texture features and the best FFT feature vectors 

as the inputs. Finally, to classify instances based on the 

classification tree, CCTA is elaborated in Algorithm 10. The 

images are scaled and transformed in the same manner as 

described before in Algorithm 6. The same feature extraction 

methods which used to train ANN models are used to form 

feature vectors for classifying instances according to the 

classification tree in Figure 5.3. 

 

5.3 Experimental Results 

In the following experiments, we used 1,660 ground-

based images from digital camera. Some cloud types are rare 

naturally-occurring types; hence the number of images per class 

is collected based on the frequency of cloud occurrence in 

nature. The classification of cloud images is very challenging 

because these images are taken from different views and come 

in different sizes but they all have at least 640 × 480 pixels in 

JPEG format. Therefore, we can scale all the images down to 

320 × 240 pixels. LOOCV is used for result evaluation. For the 

setting parameter of ANN in these experiments, a hyperbolic 

tangent function is set as the activation function for both hidden 

and output layers. The activation function of input layer is set to 

linear so the input remains unchanged. The number of hidden 

layers is one. The number of hidden nodes is set to 9 for the first 

level of the tree and 11 for the second and third level. Learning 

rate and momentum are set to 0.01 and 0.9, respectively. We set 

stopping criteria when error in the training process reaches 
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0.001. All weights are initially fixed for our first three 

experiments. In the final experiment, random weights are used 

to achieve better classification performance. There are four 

separate experiments and the first three experiments match to 

the three levels of classification tree in Figure 5.3. In the first 

experiment, we classify instances into two classes either cloud 

or no-cloud (clear sky). In the second experiment, we classify 

three groups of clouds by considering their forms. In the third 

experiment, we classify four cloud classes by considering lumpy 

appearances of cumuliform clouds. Finally, all levels in the 

classification tree are combined together for the final 

classification. 

5.3.1 Level 1 - Cloud or No-cloud 

The set of n texture features are sent to Algorithm 7. In 

this experiment, n is set to 18 which refers to the 18 texture 

features are described in Section 5.2.1. Algorithm 7 is used to 

select a suitable minimal set of features. 

Table 5.2 shows the five-iteration results from 

Algorithm 7 which keep in the score matrix when Acc or 

expected accuracy value is set to 100%. Each iteration, one 

suitable feature is selected from the feature set (F) that has a 

maximum outcome of accuracy. On the next iteration, the 

previously selected feature will be concatenated with the 

remaining features for another classification round. The iteration 

is repeated until the accuracy reaches the expected value. 
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Table 5.2. Accuracy (%) in selection of suitable features for 

classifying between cloud and no-cloud. 

Features Iteration 

1 2 3 4 5 

ME (R) 50 50 97.71 96.29 99.97 

ME (G) 50 50 97.71 98.39 100 

ME (B) 54.94 50 96.93 94.73 100 

D (R-G) 52.03 50 99.03 99.48 99.77 

D (R-B) 82.75 50 98.84 50 99.74 

D (G-B) 81.81 50 98.65 99.97 - 

U 69.83 49.97 98.28 92.91 99.77 

CON 60.50 49.37 97.57 98.37 99.77 

HOM 50.23 50 96.93 89.72 99.77 

EN 50 86.75 97.38 95.86 99.77 

ENT (R) 73.47 50 99.19 - - 

ENT (G) 50 50 97.76 50 99.77 
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Features Iteration 

1 2 3 4 5 

ENT (B) 53.76 50 96.55 50 99.77 

ENT (S) 49.97 50 97 96.41 99.77 

EE 85.65 50 95.99 50 99.77 

SE 85.44 92.25 - - - 

SC 50 92.17 99.06 50 99.77 

EG 86.04 - - - - 

 

As a result, we selected five texture features from Table 

5.2 and referred to them as a suitable minimal set of features. 

These features in order of being added to the set (on each 

iteration) are EG, SE, ENT (R), D (G − B), and ME (G), 

respectively. Note that on the final iteration, ME (B) can also be 

chosen in place of ME (G) as they both yielded the same result. 

The five features are used in the process of building ANN model 

for Level 1 to classify clouded sky and clear sky in Algorithm 6. 

After executing Algorithm 10, we obtain the result for 

classifying cloud and no-cloud. The accuracy is as high as 

100%. The advantage of Algorithm 7 is the flexibility of user-

defined accuracy (Acc). For example, if Acc is expected at 

92.25%, the algorithm will run only two iterations and only two 
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features are used to classify cloud and no-cloud. Our algorithm 

is designed to have freedom to trade-off accuracy with 

computation time. 

5.3.2 Level 2 - Three Forms of Clouds 

The aim of this level is to classify three forms of clouds 

which are cirriform, cumuliform, and stratiform. In this 

experiment, features based on Fourier transform are used, 

namely, the modified k-FFTPX, the half k-FFTPX, and the h × 

k-FFT. However, only one of these features will be selected by 

Algorithm 6. 

 

Table 5.3. Accuracy of the modified 20-FFTPX when channel is 

varied. 

 

Table 5.3 shows the accuracy of classification using the 

modified k-FFTPX for k equal to 20. Each color channel is 

tested in the feature extraction process. The accuracy of S 

channel is higher than the five other channels. This result 

confirms that the use of FFT image of S channel has paid off. 

Hence, we will use the information obtained from this channel 

for the remaining experiments. 

 

 

Channel R G B H S V 

Accuracy (%) 74.30 63.23 61.22 79.39 81.25 61.64 
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Figure 5.4. Accuracy of the modified k-FFTPX on S channel 

when k is varied. 

 

 

Figure 5.5. Accuracy of the half k-FFTPX on S channel when k 

is varied. 
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Table 5.4. Accuracy (%) of the h × k-FFT when h and k are 

varied (k = 1 – 6). 

h value k value 

1 2 3 4 5 6 

1 48.27 45.71 76.59 78.83 33.33 84.35 

2 34.02 80.72 82.59 80.18 86.27 64.96 

3 81.6 88.19 86.69 88.05 78.72 89.51 

4 83.02 63.53 65.31 71.95 71.25 77.79 

5 84.14 88.81 89.2 55.3 90.38 91.24 

6 85.6 80.94 78.06 61.58 91.16 92.56 

7 84.99 90.38 91.58 89.05 90.62 91.44 

8 66.83 28.87 90.9 94.58 27.92 90.32 

9 84.92 86.23 91.21 90.97 93.65 91.09 

10 85.3 64.31 90.2 81.9 94.53 87.1 

11 38.8 89.61 89.58 70.22 90.28 79.36 

12 86.22 89.58 81.32 94.17 66.02 95.7 
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Table 5.5. Accuracy (%) of the h × k-FFT when h and k are 

varied (k = 7 – 12). 

h value k value 

7 8 9 10 11 12 

1 85.6 85.48 33.33 86.56 85.76 64.41 

2 88.6 71.09 84.84 42.66 88.84 86.72 

3 89.25 91.12 89.66 91.3 88.47 92.12 

4 90.44 90.31 94.46 47.16 65.16 78.95 

5 89.09 84.65 91.01 88.53 93.38 45.22 

6 92.57 93.65 95.16 65.8 46.76 90.68 

7 91.54 92.01 91.83 90.96 66.28 95.22 

8 92.19 67.82 94.96 70.41 92.6 88.75 

9 90.88 90.48 93.47 67.29 69.6 75.45 

10 89.69 89.17 68.5 91.45 93.49 85.31 

11 83.22 91.38 91.98 93.02 90.63 90.39 

12 88.46 90.77 89.85 72.49 94.92 89.08 
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The optimization of k value for the first FFT feature, 

the modified k-FFTPX, is performed by Algorithm 8. Figure 5.4 

shows the result of finding the optimized k value when k is 

varied from 1 to 30. The accuracy of this feature on S channel 

reaches the peak of 88.06% when k is 19. The k value for the 

second FFT feature, the half k-FFTPX, is also optimized by 

Algorithm 8. Figure 5.5 shows that the proper setting of k value 

for this feature is 16 which gives the accuracy of 87.20%. The 

optimization of h and k values for the third FFT feature, the h × 

k-FFT, is performed by Algorithm 9. Table 5.4 to 5.5 show that 

when h is equal to 12 and k is equal to 6, it yields the highest 

accuracy at 95.70%. This accuracy is more than the results of 

the modified k-FFTPX and the half k-FFTPX. Even with a 

smaller size (14 dimensions) of feature vector; h is equal to 7 

and k is equal to 2, the method still provides 90.38% accuracy 

(see Table 5.4 to 5.5). Consequently, the h × k-FFT outperforms 

the two previous FFT features. At this level of classification 

tree, the best feature for distinguishing three forms of clouds has 

been identified as the h × k-FFT. The advantage of this approach 

is that users are not required to manually specify h and k values. 

Our algorithm will choose the optimized values for h and k 

automatically. 

Table 5.6 shows the confusion matrix obtained from 

Algorithm 10. Class 1, 2 and 3 are cirriform, cumuliform and 

stratiform, respectively. The classification results of Class 2 and 

Class 3 are close to 100%. However, there is some 

misclassification of Class 1 as Class 2. This is because cirriform 

often occurs with cirrocumulus which belongs to Class 2. 

Nevertheless, the accuracy of Class 1 classification is still above 
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90%. The average accuracy of classification at this level is 

95.70%. 

 

Table 5.6. Confusion matrix classifying three forms of clouds 

using 12 × 6-FFT. 

True class Classified as 

1 2 3 

1 90.95 8.64 0.41 

2 1.20 98.80 0 

3 1.06 1.59 97.35 

 

5.3.3 Level 3 - Shapes of Cumuliform Clouds 

Considering lumpy appearances of cumuliform clouds, 

they can be rounded, patchy, puffy, and mushroom-like. The 

aim of this level is to classify four classes of cumuliform clouds 

which are high cumuliform, stratocumulus, cumulus, and 

cumulonimbus. Three features based on Fourier transform are 

tested in the same way as in Section 5.2.1. However, the best 

performed feature is also appended to a suitable minimal set of 

texture features computed by Algorithm 7. 
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Table 5.7. Accuracy (%) of the h × k-FFT when h and k are 

varied (k = 1 – 6).  

h value k value 

1 2 3 4 5 6 

1 44.06 57.31 58.5 63.15 30.4 65.98 

2 44.83 57.47 62.63 63.89 66.96 67.08 

3 56.19 69.61 74.75 76.63 78.41 78.89 

4 48.8 71.95 59.46 75.73 78.64 71.98 

5 57.27 73.28 78.61 78.18 25.57 29.04 

6 64.69 75.37 79.75 63.74 39.05 68.3 

7 68.98 54.44 77.81 75.84 79.96 71.57 

8 70.7 75.59 61.01 35.2 78.13 84.15 

9 69.14 76.15 77.71 80.55 81.1 81.54 

10 71.1 77.91 46.05 77.46 24.81 87 

11 60.48 77.5 78.65 79.53 81.85 85.38 

12 70.23 53.86 82.71 84.07 78.34 84.04 
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Table 5.8. Accuracy (%) of the h × k-FFT when h and k are 

varied (k = 7 – 12).  

h value k value 

7 8 9 10 11 12 

1 67.57 69.55 69.36 62.09 56.83 62.1 

2 57.7 68.15 69.08 69 70.18 70.07 

3 77.04 78.06 82.78 47.93 83.4 78.44 

4 71.68 53.41 63.72 25.95 77.11 79.95 

5 78.91 63.24 80.99 62.15 80.22 84.33 

6 52.87 76.14 83.14 72.48 81.09 87.53 

7 66.54 80.23 80.76 80.52 84.97 51.77 

8 82.07 82.51 82.28 88.31 84.23 84.09 

9 84.19 82.83 53.11 89 87.45 85.16 

10 79.41 77.2 85.07 85.24 88.41 84.21 

11 81.97 83.27 85.05 88.17 86.61 84.96 

12 71.49 84.42 88.89 88.73 85.95 87.45 
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Figure 5.6. Accuracy of the modified k-FFTPX on S channel 

when k is varied. 

 
 

 

Figure 5.7. Accuracy of the half k-FFTPX on S channel when k 

is varied. 
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Figure 5.6 shows the result of finding the suitable k 

value for the modified k-FFTPX using Algorithm 8. The best 

accuracy is at 76.95% for k equal to 16. The result of finding the 

suitable k value for the half k-FFTPX is shown in Figure 5.7. 

The best accuracy here is slightly decreased to 74.55% for k 

equal to 26. Table 5.7 to 5.8 show the result of finding the 

suitable h and k values for the h × k-FFT using Algorithm 9. 

When h is equal to 9 and k is equal to 10, the feature yields the 

highest accuracy at 89% which is about 12 – 14% higher than 

the two previous FFT features. Thus, at this level of 

classification tree, the 9 × 10-FFT is served as the best 

performed FFT feature. 

 

Table 5.9. Accuracy (%) in selection of suitable texture features 

for classifying cumuliform clouds. 

Features Iteration 

1 2 

ME (R) 57.35 91.79 

ME (G) 37.45 91.04 

ME (B) 28.20 90.82 

D (R-G) 54.45 91.42 

D (R-B) 65.98 92.84 
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Features Iteration 

1 2 

D (G-B) 73.98 96.29 

U 82.70 92.96 

CON 42.73 94.16 

HOM 82.63 94.48 

EN 81.38 92.42 

ENT (R) 25.19 91.52 

ENT (G) 83.30 93.90 

ENT (B) 86.75 91.97 

ENT (S) 88.88 95.53 

EE 93.24 - 

SE 91.57 93.75 

SC 28.55 96.21 

EG 25.73 92.10 
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The 18 texture features and the 9 × 10-FFT are passed 

to Algorithm 7 for the additional process of selecting a minimal 

set of texture features. Table 5.9 shows the two-iteration results 

where the selected texture features are EE and D (G - B), 

respectively. By concatenating the two suitable texture features 

with the 9 × 10-FFT, we obtain the confusion matrix as shown 

in Table 5.10.  

 

Table 5. 10. Confusion matrix classifying four cumuliform 

clouds. 

True class Classified as 

1 2 3 4 

1 97.32 1.19 1.49 0 

2 2.59 95.69 1.29 0.43 

3 0 0 99.36 0.64 

4 0 3.20 4 92.80 

 

Class 1, 2, 3 and 4 are high cumuliform, stratocumulus, 

cumulus, and cumulonimbus, respectively. The classification 

results of Class 1 and Class 2 are well above 95%. The accuracy 

of Class 3 classification is almost 100%. However, there are 

slight misclassifications of Class 4 as Class 2 and Class 4 as 

Class 3. This is because when cloudlets are very close together, 

stratocumulus appears similar to cumulonimbus. Likewise, 
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when cumulus is expanded high into the sky, it appears similar 

to cumulonimbus. Nevertheless, the average accuracy of 

classification at this level is still high at 96.29%. 

5.3.4 All level - A Complete Classification Tree 

In this experiment, all ANN models from Section 5.3.1 

to 5.3.3 are combined for hierarchy classification as per the 

proposed tree in Figure 5.3.  

 

Table 5. 11. Confusion matrix classifying seven cloud types. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 97.49 0 0 0 2.06 0.45 0 

2 0.68 98.18 0.63 0.24 0.27 0 0 

3 0 0.73 98.06 0.86 0.34 0 0 

4 0.74 0.23 0.68 98.10 0.26 0 0 

5 2.32 0 0.16 0.96 96.40 98.31 0 

6 1.11 0 0 0 0.58 98.31 0 

7 0 0 0 0 0 0 100 
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When Algorithm 10 is executed, the confusion matrix is 

obtained as shown in Table 5.11. Class 1 to Class 7 are 

cirriform, high cumuliform, stratocumulus, cumulus, 

cumulonimbus, stratiform, and clear sky, respectively. The 

classification results of seven classes are all above 96%. Five of 

the seven classes have the accuracy higher than 98%. The 

accuracy of clear sky classification reaches 100%. The overall 

accuracy of classification is 98.08%. 

 

5.4 Running Time Analysis 

We analyze the performance of the five main 

algorithms by considering their running times. The results are 

shown in Table 5.12. 

 

Table 5.12. The approximate running times of the five main 

algorithms. 

Algorithms Settings Number 

of images 

Approx. 

running time 

The modified k-

FFTPX 

k=10  

        1 

 

31.8 ms 

k=15 31.9 ms 

k=20 32.5 ms 

The half k-FFTPX k=10  

1 

30.2 ms 

k=15 30.6 ms 
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Algorithms Settings Number 

of images 

Approx. 

running time 

k=20 30.7 ms 

The h × k-FFT h=5, k=4  

1 

32.8 ms 

h=12, k=6 33.2 ms 

h=9, k=10 33.4 ms 

Building ANN 

models 

Finding 

suitable 

features and 

training 

 

1,660 

 

20 days 

Training 23.4 min 

Cloud 

Classification Tree 

Algorithm (CCTA) 

LOOCV 1,660 1.6 hr 

Test 1 level  

        1 

701.5 ms 

Test 2 levels 759.5 ms 

Test 3 levels 817.1 ms 

 

The running times of three new FFT features are rather 

similar. The running time of the modified k-FFTPX is around 31 

ms which is slightly increased when the k value is raised. 
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However, this running time is clearly less than the running time 

of the k-FFTPX around 20 milliseconds (see Table 4.12). The 

running time of the half k-FFTPX is slightly decreased 

compared to the modified k-FFTPX while the running time of 

the h × k-FFT is around 33 ms which is certainly faster than the 

original k-FFTPX. Although the building of ANN models by 

finding suitable features and training takes a long time (around 

20 days), the process is only performed once. The running time 

of testing CCTA when considering no more than two levels is 

less than the running time of testing cloud classification 

algorithm in Chapter 4. While testing CCTA for three levels is 

slightly slower than the cloud classification algorithm around 3 

milliseconds (see Table 4.12). Note that, both of the building 

ANN models and the CCTA use the same settings as Section 

5.3.1 – 5.3.3 

 

5.5 Chapter Summary 

To achieve high accuracy of cloud classification, we 

designed hierarchical classification (tree structure) based on 

forms and shapes of clouds. The design was composed of three 

levels of tree, with the aim to classify seven sky conditions. 

Three new FFT features were proposed to use in the 

classification process, namely, the modified k-FFTPX, the half 

k-FFTPX, and the h × k-FFT. Three ANN classifiers were 

trained separately on each level of the tree. Unlike other 

previous works, we used ANN to classify up to four classes 

while others used SVM to classify only two classes. The 

classification result of Level 1 yields the accuracy of 100% 

using texture features. The accuracy of classification for Level 2 

is 95.70% based on a selection of FFT features. The 
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classification result of Level 3 is 96.29% using texture features 

and the best performed FFT feature. Overall, a complete 

classification tree provides a high accuracy of 98.08%. This is 

because the arrangement of classification tree helps reduce the 

number of competitions among the classes. The number of 

features used in the algorithms was also selected at minimal 

sufficient but still gave satisfied results at less computational 

time. Consider the past papers listed in Table 1.3, although some 

of the accuracies are higher than 90%, the number of classified 

cloud classes are limited to fewer classes. In this chapter, the 

result is better than our two previous experiments (Chapter 3 

and 4). Thus, it confirms that the hierarchical classification 

performs better than a single classification.  

Our method accepts any input images from the ten 

standard cloud types shown in Figure 2.1. Although, some cloud 

types are rare naturally-occurring types especially for Phuket, 

the method can be extended further to classify eleven cloud 

classes (ten standard cloud types and one clear sky) if 

application requires. In addition, the advantage of classification 

tree over other methods is that the classification result at each 

level of the tree is known and available in hierarchical structure; 

therefore, the classification tree can be easily reconfigured or 

rearranged to suit user needs. For example, the tree can be used 

to classify only cloud or no-cloud or even lesser number of 

cloud types. With this benefit, our method can provide a wider 

range of applications. However, the drawback of our method is 

that the errors from the first level of the tree may be carried on 

to the second level and so on. Hence, in the design of the tree we 

must place low-misclassified classes before the high-

misclassified classes. Furthermore, our method cannot deal with 
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simultaneous appearances of more than one cloud class on the 

same image. We suggest solving this problem using modified 

sub-images or considering clouds as objects. 

In conclusion, our three main contributions are the new 

cloud classification method called CCTA, the three novel FFT 

features, and the presentation of our eight algorithms to readers 

who prefer the implementation of the method. Our algorithms 

can also be adapted to suit user requirements. Users can define 

their own accuracy to gain higher speed in calculation. In the 

next chapter, we will fine-tune our algorithms to fit Phuket sky 

conditions and to implement a low-cost cloud monitoring station 

for cloud monitoring on mobile devices. 
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CHAPTER 6 

SYSTEM INTEGRATION TEST AND HARDWARE 

INSTALLATION 

 

In this chapter, we describe each component of our 

hardware implementation. A cloud monitoring station equipped 

with a fisheye lens camera is built. It retrieves cloud information 

in conjunction with other meteorological sensors. The test using 

images captured from our cloud monitoring station shows that 

the classification accuracy in practice is as high as 99.82%. The 

final cloud monitoring system can report live cloud conditions 

and display them on a mobile application. 

 

6.1 Hardware Implementation 

Our hardware is implemented according to the design 

shown in Figure 1.1. The hardware is composed of four 

compartments. Each compartment is equipped with a different 

device. To withstand sun and rain, a plastic material is used to 

construct the body part using a 3D printer. We describe different 

compartment of a cloud monitoring station in more details as 

follows. 

Figure 6.1 shows different views of mounting a cooling 

device (an exhaustive fan) compartment. Inside of this 

component, there is a large ventilation hole in the middle (See 

Figure 6.1 (a)).  In the bottom, there are four small outer holes 

for mounting with the holding plate while the top of this 
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compartment has a twist connector for connecting with a control 

device compartment. 

 

 

(a) Top view 

 

(b) Bottom view 

 

 

 

(c) Side view 

 

(d) Isometric view 

Figure 6.1. The mounting of a cooling device compartment. 
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(a) Top view 

 

(b) Bottom view 

 

 

(c) Side view 

 

(d) Isometric view 

Figure 6.2. The mounting of a control device compartment. 

 

Figure 6.2 shows different views of mounting a control 

device (Raspberry Pi) compartment. Inside of this component, 

there are a Raspberry Pi board and a DHT22 sensor. There are 

two holes at the bottom for air passage. Two twist connectors 

are at the top and bottom for connecting with the previous and 

the next compartment. 
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(a) Top view 

 

(b) Bottom view 

 

 

(c) Side view 

 

(d) Isometric view 

Figure 6.3. The mounting of a digital camera compartment. 

 

Figure 6.3 shows different views of mounting a digital 

camera compartment. There is a square hole for air passage 

coming from the first compartment and there is an extended 

column to hold a digital camera in the center. A twist connecter 

is on the side and will be joined with a glass dome. 
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(a) Top view 

 

(b) Bottom view 

 

 

(c) Side view 

 

(d) Isometric view 

Figure 6.4. The mounting of a glass dome compartment. 

 

Figure 6.4 shows different views of mounting a glass 

dome compartment. This compartment has a glass dome on the 

top. At the bottom, there is a twist connector to connect a glass 

dome compartment with a digital camera compartment. Finally, 

all four compartments are connected as shown in Figure 1.1. 
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Figure 6.5. Weather station. 

 

Figure 6.5 shows the Oregon scientific professional 

WMR200A weather station which is composed of several 

meteorological sensors such as a temperature sensor, a humidity 

sensor, a wind sensor, a rain gauge, and a solar panel. A device 

can capture over ten weather measurements such as indoor / 

outdoor temperature and humidity, wind speed and direction, 

wind chill, dew point, heat index, barometric pressure and 

rainfall data. All of these data are sent to the central data logger. 
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6.2 System Integration 

 

 

Figure 6.6. Overview of a local cloud monitoring system. 

 

Figure 6.6 shows an overview of a local cloud 

monitoring system. Two data sources are used to provide the 

information for our database. The first source is the whole sky 

images captured from the cloud station every 5 minutes. The 

second source comes from meteorological sensors such as a 

temperature and humidity sensor, a wind sensor, a rain gauge 

and so on. These meteorological data are sent every 5 minutes to 

the data logger before forwarding to the server and kept in the 

database. Mobile application is developed to retrieve the images 

and the meteorological data for online classification purposes. 
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Mobile users can also view live cloud images and live 

meteorological data from our station. 

The cost of our cloud station is around 142 USD while 

the cost of WMR200A weather station is around 350 USD. In 

total, our estimated budget for building a complete system is 

492 USD which is cheaper than using TSI-880 (around 30,000-

35,000 USD) and WSC (about 2,500 USD) [62]. 

 

6.3 A Test on Local Cloud Classification 

In this experiment, we use 1,045 whole sky images 

from our cloud station. The sample images are shown in Figure 

6.7. Due to there are unwanted parts of buildings and trees on 

the sides, the segmentation process is performed before the 

feature extraction process. A binary mask technique is used for 

eliminating the unwanted parts (see Figure 6.8). All algorithms 

in Chapter 5 with the same settings of ANN are used again to 

classify the seven cloud types. In the feature extraction process, 

ANN model for Level 1 and Level 2 also use the same features 

as in Chapter 5. There are five texture textures for classifying 

cloud and no-cloud and 12 × 6-FFT for classifying three forms 

of clouds. However, in ANN model for Level 3, two texture 

features (SE and EE) with 12 × 6-FFT are used in the training of 

the model.  
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Cirriform 

 

High cumuliform 

 

Stratocumulus 

 

Cumulus 

 

Cumulonimbus 

 

Stratiform 

 

Clear sky 

Figure 6.7. Seven cloud types from our cloud monitoring 

station.  
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(a) A binary mask image 

 

(a) A result of segmentation 

Figure 6.8. Segmentation of a typical whole sky image. 

 

Table 6.1. Confusion matrix for classifying the local whole sky 

images into seven cloud classes. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 99.92 0 0 0 0.04 0 0.04 

2 0.13 99.38 0 0 0.25 0.25 0 

3 0.45 0 99.55 0 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0.06 99.79 0.15 

7 0 0 0 0 0 0 100 
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Table 6.1 shows the confusion matrix for classifying 

our whole sky images into seven cloud classes. Class 1 to Class 

7 are cirriform, high cumuliform, stratocumulus, cumulus, 

cumulonimbus, stratiform, and clear sky, respectively. The 

correctly classified instances of all class are now higher than 

99.30%. Among these results, three classes (cumulus, 

cumulonimbus, and clear sky) have the classification accuracy 

as high as 100%. The average accuracy of classification is 

99.80% which is higher than the previous results presented in 

Chapter 5. This is because when the camera is installed at a 

fixed position, the images obtained from the cloud station are 

less affected by viewpoint and zooming. 

 

6.4 Integrating with Meteorological Data 

It is interesting to see the performance of our cloud 

monitoring system if we combine cloud image information with 

meteorological data. Therefore, in this final experiment, we will 

integrate sixteen meteorological data obtained from the 

WMR200A weather station. These data are local pressure, sea 

level pressure, pressure trend, weather status, rainfall rate, 

current-hour rainfall, last-24-hour rainfall, temperature, 

temperature trend, humidity, humidity trend, comfort zone, dew 

point, heat index, gust wind, and the average wind. Using 

Algorithm 7, we select only a suitable set of meteorological data 

as a new feature vector and we concatenate it with the 12 × 6-

FFT. This new feature is introduced in ANN model for Level 3. 

In ANN model for Level 1 and Level 2, the settings are the same 

as before.   
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Table 6.2 shows the confusion matrix after a 

temperature data is chosen to concatenate with 12 × 6-FFT in 

the third level of the tree. There is a slight misclassification of 

Class 2. However, the overall accuracy of this experiment is 

99.82%. This result is marginally better than the previous 

experiment. Furthermore, the computation time is slightly 

reduced because texture features was no longer needed in the 

third level of the classification tree.  

 

Table 6.2. Confusion matrix after adding meteorological data. 

True 

class 

Classified as 

1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 98.75 0 0 0 1.25 0 

3 0 0 100 0 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 0 0 0 0 0 0 100 

 

6.5 Mobile Application 

The approach explained in Section 6.4 is used to 

develop a mobile application for online cloud classification.  

Figure 6.9 shows the first page of our mobile application. The 
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main menu is on the top right corner of the page. The important 

menus are such as live cloud image, live meteorological data, 

online classification and manual classification. The basic 

descriptions of cloud types and their appearances are available 

in the about-page for users to study before using the application 

(see Figure 6.10). Figure 6.11 shows the example of live cloud 

images from our cloud station. The cloud image is automatically 

updated every 5 minutes. The classification result and related 

weather conditions (see Table 6.3) of each cloud image is 

available along with the image. It is shown under of the cloud 

image.  

 
 

 
(a) Main page 

 

 
(b) Main menu 

Figure 6.9. The first page of our mobile application. 
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Figure 6.10. The about-page for basic cloud-type descriptions. 

 

Figure 6.11. Live cloud image from our cloud station. 
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Table 6.3. The relationship between each cloud type and 

weather conditions. 

Cloud types Weather conditions 

Cirriform Fair weather, changing in the weather 

High cumuliform Fair weather, indicator of bad weather 

Stratocumulus Overcast or clearing 

Cumulus Fair weather, sunny day 

Cumulonimbus Thunderstorms 

Stratiform Rain or drizzle 

Clear sky No moisture in the air 

 

Figure 6.12 shows the menu of live meteorological data 

from the weather station. These data are, local pressure (mB), 

rainfall rate (in/hr), temperature (°C), humidity (%), dew point 

(°C), gust wind (m/s), and so on. The meteorological data is 

automatically updated every 5 minutes. The information button 

is placed next to the time stamp. It explains the meanings of 

each meteorological data as shown in Figure 6.13.  
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(a) Live data 

 

 
(b) Live data (cont.) 

Figure 6.12. Live meteorological data menu. 
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Figure 6.13. The description of meteorological data. 
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Figure 6.14. Online classification menu. 

 

Figure 6.14 shows the menu for online classification. In 

this page, users can submit a cloud image from anywhere, then 

click upload file. Our system will classify the cloud image into 

one of the seven cloud types. The classification result is shown 

on the bottom of the page. 
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(a) Login menu 

 

 
(b) Manual classification 

Figure 6.15. Manual classification menu. 

 

Figure 6.15 shows the menu for manual classification. 

In this page, users can manually view the cloud picture and 

choose one preferred type from the list, then send the answer to 

our system for verifying the result. These results reflect different 

perspectives of how people view the clouds; therefore, the 

results will be collected in the database for improving our 

classification process in the future. 
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6.6 Benefits of Weather Station 

The meteorological data from the weather station is 

used to concatenate with cloud image information as a feature 

vector for cloud classification. The accuracy of classification is 

slightly improved from using cloud images alone. Moreover, the 

computation time is reduced by replacing meteorological data 

with texture features which is less cumbersome when 

developing mobile application. However, our current algorithms 

are still complicated and cannot make use of all useful 

meteorological data. In the future, the system may be simplified 

by using key meteorological data from the weather station to 

partially classify some easy cloud types first before sending to 

the normal cloud classification process. 

 

6.7 Chapter Summary 

A cloud station was designed and implemented. A 

weather station provided additional useful meteorological 

information. Together we have a low-cost local cloud 

monitoring system installed at Prince of Songkla University, 

Phuket campus. The performance test of local cloud 

classification using our whole sky images yielded 99.80% 

accuracy which is higher than the results in Chapter 5. Then, we 

modified a feature vector in Level 3 of ANN model to include 

meteorological data. The last result gave 99.82% accuracy 

which is slightly higher. This approach was then used to develop 

online classification for mobile users. Live cloud image and live 

meteorological data can be viewed through mobile application 

from anywhere in the world. In the future, the past cloud images 

and the historical meteorological data can be further analyzed 
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for forecasting clouds and weather conditions. Moreover, if our 

cloud monitoring system is installed in many areas, it may be 

useful for improving results of the weather forecast in the wider 

area. 
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CHAPTER 7 

CONCLUSIONS 

 

In this chapter, we summarize and discuss all 

developments of cloud classification system. Then, we conclude 

all contributions and open problems. 

 

7.1 Discussion 

We will discuss whether this research has met all of the 

objectives in Chapter 1. Referring to the first objective, it is to 

select a suitable classifier from the two commonly used 

classifiers, namely, k-NN and ANN. Our result showed that the 

well-performed classifier is ANN. Thus, we selected ANN as 

the preferred classifier in our system design and implementation.  

The second objective is to select a suitable feature 

extraction technique that is effective for cloud type 

classification. Our result showed the most effective feature 

extraction technique is our proposed feature based on FFT called 

the k-FFTPX. However, the textual contents of clouds were also 

shown as useful information as the shapes of clouds. Hence, we 

recommended keeping texture features (textual information) 

while applying the new FFT feature (shape information). 

The third objective is to propose novel features and 

algorithms that are different from the previous works. We 

proposed four new features, namely, the k-FFTPX, the modified 

k-FFTPX, the half k-FFTPX, and the h × k-FFT. Our new 

algorithm was based on a hierarchy classification tree and was 

proven to gain higher accuracy in the classification. 
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Table 7.1. Summary of cloud classification methods and their 

accuracies from all experiments. 

No. Proposed Method Accuracy (%) 

1 The 18 texture features with k-NN 72.99 

2 The 18 texture features with ANN 86.93 

3 
The most effective 7 texture features 

with ANN 
77.44 

4 Texture features 80.76 

5 Texture features with 2D-moments 82.66 

6 Texture features with Abs-FFT 85.44 

7 Texture features with Log-FFT 86.11 

8 Texture features with k-FFTPX 90.40 

9 Classification of cloud and no-cloud 100 

10 Classification of three forms of cloud 95.70 

11 
Classification of fours shapes of 

cumuliform clouds 
96.29 

12 A hierarchical classification tree 98.08 

13 
A hierarchical classification tree using 

whole sky images 
99.80 

14 

A hierarchical classification tree using 

whole sky images together with 

meteorological data 

99.82 
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The fourth objective is to propose a complete cloud 

classification system for classifying seven cloud types using 

ground-based images which has accuracy higher than 95%. 

Table 7.1 summarizes cloud classification methods and their 

accuracies from all experiments performed in this thesis. The 

highest accuracy for classifying seven cloud types is 99.82% 

which is a result of a hierarchical classification tree technique 

integrating with the meteorological data from our cloud 

monitoring station. We also obtained a by-product from the tree 

for classifying two cloud types, cloud and no-cloud, the 

performance here is as high as 100%. 

The final objective is to implement hardware system 

for capturing cloud images and to build a low-cost local cloud 

monitoring station. We implemented the system. The low-cost 

local cloud monitoring station was built and installed at Prince 

of Songkla University, Phuket Campus. The mobile application 

was developed for online classification. It is active and 

operational. Users can monitor live images and live 

meteorological data from our station. 

Our research has opened up new directions for those 

interested in the cloud classification. There are many areas 

where improvements are needed; for example, how to classify 

many types of clouds that appear on the same image, how to 

design the algorithm that recognizes clouds in the night time, 

how to enhance the accuracy of the system even closer to 100%. 

Other feature extraction techniques such as point detection, 

object detection, shape detection, gradient operators, and fractals 

may be worth exploring because shapes of clouds are useful 

information. Other classifiers such as SVM perhaps should be 
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looked at and compared. Finally, more cloud types in nature 

may be considered, for example, earthquake clouds.  

 

 

(a) Earthquake cloud from satellite images [63]  

 

(b) Earthquake cloud from a digital camera [29] 

Figure 7.1. Earthquake clouds. 
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Figure 7.1 shows some earthquake clouds that are 

caused by thermal effects intensifying from the ground. These 

clouds appeared a few days before the earthquake. In Figure 7.1 

(a), the earthquake epicenter is shown by the red circle while the 

red line shows cloud anomalies which occurred a day before the 

Virginia earthquake in 2011 [63]. Figure 7.2 (b) shows the 

earthquake clouds which appeared a day before the earthquake 

in Northern California in 1994 [29]. However, the challenge 

ahead requires researchers to investigate more closely on the 

true unknown origin of earthquake clouds and the feasibility 

study of them for earthquake prediction. 

 

7.2 Research Contribution 

The research has proposed different methods of feature 

extraction techniques and several classification algorithms to 

improve accuracy of cloud type classification. All contributions 

in different aspects are summarized below. 

7.2.1 Feature Extraction  

Five different combinations of feature extraction 

techniques were presented and the accuracies are 80.76%, 

82.66%, 85.44%, 86.11%, and 90.40%, respectively. We 

showed that the most effective feature extraction technique is 

based on our proposed FFT features. We, therefore, proposed 

more features based on FFT. There are in total of four new FFT 

features in the thesis. However, the main contribution is the 

half-FFT features which refer to the half k-FFTPX and the h × k-

FFT. 
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7.2.1 Classifier 

The parameter settings of k-NN and ANN were 

recommended. The performances of the two classifiers were 

compared. We also discussed advantages and limitations of both 

classifiers. The experiment revealed that the well-performed 

classifier is ANN. 

7.2.2 Algorithms 

Two algorithms were presented in Chapter 4. Eight 

algorithms were presented in Chapter 5. There are in total of ten 

proposed algorithms in the thesis. 

7.2.3 Performances 

The final classification accuracy is 99.82%. This result 

is higher than the previous studies on cloud classification using 

digital camera and ANN method. The number of cloud classes 

being classified in those studies was also less than in this 

research. 

7.2.4 Textual Contents 

The textual contents of clouds were also shown as 

useful information as the shapes of clouds. Hence, we 

recommended using texture features together with other 

features. For texture features, we thoroughly tested 18 texture 

features. The most effective texture features were also 

recommended for general use in a more simple system of cloud 

classification. 
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7.2.5 Hierarchical Classification  

The proposed Cloud Classification Tree Algorithm 

(CCTA) used the new technique called hierarchical 

classification which is designed to reduce the number of 

competitions among the cloud classes. The result has confirmed 

that the hierarchical classification performs better than a single 

classification.  

7.2.6 Flexibility 

According to Table 7.1, users have flexibility to choose 

any of the 12 proposed methods to suit their preferred accuracy. 

The results suggest a variety of practical applications from the 

simple to the sophisticated ones. In our classification algorithms, 

users also have freedom to reduce their expected accuracy to 

gain higher speed in calculation.  

7.2.7 By-Product 

By-product from the hierarchical classification tree is 

that the tree can also be used to classify lesser number of cloud 

types. Classification of two cloud classes; cloud and no-cloud; 

gave the accuracy as high as 100%. Classification of three cloud 

classes; cirriform, cumuliform and stratiform; yielded the 

accuracy of 95.70%. Classification of four cloud classes; high 

cumuliform, stratocumulus, cumulus, and cumulonimbus; 

returned the accuracy of 96.29%. 

7.2.8 Real Life Application 

The low-cost local cloud monitoring station was built. 

It is now working in conjunction with other inexpensive 
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meteorological sensors to report weather conditions and display 

them through a mobile application.  

 

7.3 Open Problems 

There are still fruitful opportunities to advance our field 

of research in automatic cloud classification using ground-based 

images. We suggest open problems as follows.  

1) To classify more cloud classes such as eleven 

sky conditions. 

2)  To design algorithms for classifying clouds in 

the night time using images from infrared camera. 

3)  To apply less dimensional feature vectors but 

still gain high accuracy using more efficient features or 

dimension reduction techniques such as principal component 

analysis (PCA), linear discriminant analysis (LDA), or 

independent component analysis (ICA). 

4)  To consider other features extraction 

techniques such as point detection, object detection, shape 

detection, gradient operators, and fractals 

5)  To consider other new classifiers such as 

SVM, and MSVM. We believe these classifiers may prudently 

avoid an overfitting problem that often occurs with ANN. 

6)  To classify more than one type of clouds that 

appeared on the same image by looking at sub-images or 

considering clouds as objects. 
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7)  To design less complicated and low 

computation time algorithm while maintaining high accuracy by 

exploiting meteorological data more cleverly. 

8)  To develop a system for weather prediction or 

other applications related with clouds such as earthquake clouds. 
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SAMPLE CLOUD IMAGES 
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a. Class 1: Cirriform Clouds 
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b. Class 2: High Cumuliform Clouds 
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c. Class 3: Stratocumulus Clouds 
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d. Class 4: Cumulus Clouds 
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e. Class 5: Cumulonimbus Clouds 
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f. Class 6: Stratifom Clouds 
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g. Class 7: Clear Sky 
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