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ชื่อวิทยานิพนธ์ มัวร์-เพนโรสอินเวอร์สและสมาชิกปรกติในริง

ผู้เขียน นางสาววรรณิษา อภัยรัตน์

สาขาวิชา คณิตศาสตร์

ปีการศึกษา 2559

บทคัดย่อ

กำหนดให้ R เป็นริงภายใต้อินโวลูชัน ∗ แล้วเรากล่าวว่า สมาชิก a ∈ R

สามารถหาตัวผกผันมัวร์-เพนโรสได้ ถ้ามีสมาชิก b ∈ R ซึ่งสอดคล้องกับสมการต่อไปนี้

aba = a, bab = b, (ab)∗ = ab และ (ba)∗ = ba และเราเรียก b ว่า ตัวผกผันมัวร์-

เพนโรส ของ a เขียนแทนด้วย a† (ถ้ามีอยู่จริง)

ในวิทยานิพนธ์ฉบับนี้ เราได้หาเงื่อนไขที่จำเป็นและเพียงพอสำหรับการมี

อยู่จริงของตัวผกผันมัวร์-เพนโรสของสมาชิกในริงภายใต้อินโวลูชัน (involution) นอกจาก

นี้เรายังได้ค้นพบตัวผกผันมัวร์-เพนโรสสำหรับผลคูณของ x1x2x3 · · ·xn ได้ โดยที่

x1, x2, x3, . . . , xn เป็นสมาชิกที่สามารถหาตัวผกผันมัวร์-เพนโรสได้
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ABSTRACT

Let R be a ring with involution∗, then a ∈ R is a Moore-Penrose

invertible element if there is b ∈ R such that aba = a, bab = b, (ab)∗ = ab and

(ba)∗ = ba. b is called Moore-Penrose inverse of a, denoted by a† (if it exists).

In this thesis, we study Moore-Penrose inverses and normal ele-

ments in ring with involution and give the neccessary and sufficient conditions for

the existence of the Moore-Penrose inverse of an element in ring with involution.

Furthermore, we also investigate the existence of the Moore-Penrose inverse for the

product x1x2x3 · · ·xn where x1, x2, . . . , xn are Moore-Penrose invertible.
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CHAPTER 1

Introduction

The original concept of Moore-Penrose inverse started with the work

of E. H. Moore between 1910 and 1920. Moore studied the general reciprocal of any

matrix and applied it to solve systems of linear equations [10]. R.Penrose rediscov-

ered it later in 1955 [13]. It is called nowadays the Moore-Penrose inverse. There

have been many activities in the study of Moore-Penrose inverse since that day. The

study has been extended to complex matrix [1], [2], [3], linear operator on Banach

or Hilbert spaces [4], [5], C∗-algebra and also in any rings with involution [8].

This research is motivated by the work of [8], which related the con-

cept of well-suppored element in ring with involution to regularity of the element and

the existence of the Moore-Penrose inverse and by the work of [11], which gave the

characteriztions of normal and Hermitian elements in rings with involution in purely

algebraic terms.

In this thesis, we study the Moore-Penrose invertible elements in rings

with involution. We generalize the result of Koliha et al. [8] by giving the neces-

sary and sufficient conditions for an element in a ring with involution to be Moore-

Penrose invertible. We also investigate the existence of the Moore-Penrose invertible

elements in any ring with involution. For a ring R with involution ∗ and a ∈ R,

let a† denote the Moore-Penrose inverse of a (if it exists) and a# denote the group

inverse of a (if it exists). We prove that if a is Moore-Penrose invertible and a nor-

mal element, i.e. aa∗ = a∗a, then the product x1x2 · · ·xn is always Moore-Penrose

invertible for x1, x2, . . . , xn ∈ {a, a∗, a†, (a†)∗}. We also prove that if a is an EP

element, i.e. a is Moore-Penrose invertible, group invertible and a† = a# or a is

Moore-Penrose invertible and aa† = a†a, then xn is Moore-Penrose invertible for

any x ∈ {a, a∗, a†, (a†)∗} and for all n ∈ N. Finally, we show that if a ∈ R†, then

(aa∗)n, (a∗a)n, (a∗a†aa)n, a(a∗a)n, and a∗(aa∗)n are Moore-Penrose invertible for

all n ∈ N.
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CHAPTER 2

Preliminaries

We will use the notation and glossary of [8], [9] and [11] in order to

introduce the notion and the basic properties of Moore-Penrose inverses and normal

elements in rings.

Definition 2.1. [11] Let R be a ring, and let a ∈ R. Then a is group invertible if

there is an element b ∈ R such that

aba = a, bab = b, ab = ba;

b is a group inverse of a and it is unique, denoted by a#. We use R# to denote the

set of all group invertible elements of R.

Proposition 2.1. [11] a# is unique.

Proof. Assume that b and c are group inverses of a. Then

b = bab

= bba

= bbaca

= bbaac

= babac

= bac

= bacac

= abacc

= acc

= cac

= c.
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Definition 2.2. [9] An involution a 7−→ a∗ in a ring R is an anti-isomorphism of

degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

Definition 2.3. [8] Let R be a ring with involution ∗, and let a ∈ R. Then a is

Moore-Penrose invertible (or MP-invertible) if there is an element b ∈ R such that

aba = a, bab = b, (ba)∗ = ba and (ab)∗ = ab;

b is a Moore-Penrose inverse of a and it is unique, denoted by a†. We use R† to

denote the set of all Moore-Penrose invertible elements of R.

Proposition 2.2. [8] a† is unique.

Proof. Assume that b and c are MP-inverses of a. Then

b = bab

= bacab

= (ba)∗(ca)∗b

= (caba)∗b

= (ca)∗b

= cab

= cacab

= c(ac)∗(ab)∗

= c(abac)∗

= c(ac)∗

= cac

= c.

Definition 2.4. [11] An element a ∈ R satisfying aa∗ = a∗a is called normal.

Definition 2.5. [11] An element a ∈ R satisfying a = a∗ is called Hermitian (or

symmetric).
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Definition 2.6. [9] An element a of a ring R with involution is said to be EP if

a ∈ R# ∩R† and a# = a†.

Definition 2.7. [8] An element a ∈ R is left ∗-cancellable if

a∗ax = a∗ay implies ax = ay;

it is right ∗-cancellable if

xaa∗ = yaa∗ implies xa = ya;

and it is ∗-cancellable if it is both left and right ∗-cancellable.

Definition 2.8. [8] An element p ∈ R is a projection if p is both a Hermitian element

and an idempotent, that is, p = p∗ = p2.

Example 2.1. Let R = M2(Z2) and let the involution ∗ be the matrix transposition.

Then R is a ring with involution ∗. Let A =

1 1

0 0

 ∈M2(Z2). Then

A2 =

1 1

0 0

1 1

0 0

 =

1 1

0 0

 = A.

So AAA = A and AA = AA. Thus A is group invertible, and A# = A. However,

A is not MP-invertible.

Indeed, if A was MP-invertible. Then there is a matrix B =

a b

c d

 ∈ M2(Z2)

such that ABA = A,BAB = B, (AB)∗ = AB, and (BA)∗ = BA.

We consider ABA = A, so1 1

0 0

a b

c d

1 1

0 0

 =

1 1

0 0


a + c a + c

0 0

 =

1 1

0 0

 .

Thus a + c = 1.
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Next, we consider (BA)∗ = BA, soa b

c d

1 1

0 0

∗ =

a b

c d

1 1

0 0


a a

c c

T

=

a a

c c


a c

a c

 =

a a

c c


Thus a = c, and hence 1 = a + c = a + a = 2a = 0 ∈ Z2, which is a contradiction.

Example 2.2. Let A =

0 1

0 0

 ∈M2(Z2). Then there is

0 0

1 0

 such that

i)

0 1

0 0

 0 0

1 0

 0 1

0 0

=

1 0

0 0

 0 1

0 0

=

0 1

0 0

 ,

ii)

0 0

1 0

0 1

0 0

0 0

1 0

=

0 0

0 1

 0 1

0 0

=

0 0

1 0

 ,

iii)

0 1

0 0

0 0

1 0

∗=
1 0

0 0

T

=

1 0

0 0

 =

0 1

0 0

0 0

1 0

 ,

iv)

0 0

1 0

0 1

0 0

∗=
0 0

0 1

T

=

0 0

0 1

 =

0 0

1 0

0 1

0 0

 .

Thus A is MP-invertible and A† =

0 0

1 0

 .

The next table shows the inverses, the group inverses and the Moore-Penrose in-

verses for all elements in the ring M2(Z2) under involution ∗ as the transposition of

a matrix.
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Elements in M2(Z2) Inverse Group Inverse Moore-Penrose Inverse

A1 =

1 1

1 1

 - - -

A2 =

1 1

1 0

 A5 A5 A5

A3 =

1 1

0 1

 A3 A3 A3

A4 =

1 0

1 1

 A4 A4 A4

A5 =

0 1

1 1

 A2 A2 A2

A6 =

1 1

0 0

 - A6 -

A7 =

1 0

1 0

 - A7 -

A8 =

0 0

1 1

 - A8 -

A9 =

0 1

0 1

 - A9 -

A10 =

1 0

0 1

 A10 A10 A10

A11 =

0 1

1 0

 A11 A11 A11

A12 =

1 0

0 0

 - A12 A12

A13 =

0 1

0 0

 - - A14
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Elements in M2(Z2) Inverse Group Inverse Moore-Penrose Inverse

A14 =

0 0

1 0

 - - A13

A15 =

0 0

0 1

 - A15 A15

A16 =

0 0

0 0

 - A16 A16

Theorem 2.3. [11] For any a ∈ R†, the following is satisfied:

(1) (a†)† = a;

(2) (a∗)† = (a†)∗;

(3) (a∗a)† = a†(a†)∗;

(4) (aa∗)† = (a†)∗a†;

(5) a∗ = a†aa∗ = a∗aa†;

(6) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;

(7) (a∗)† = a(a∗a)† = (aa∗)†a.

Proof. (1) We know that a is the Moore-Penrose inverse of a† and also (a†)† is

the Moore-Penrose inverse of a†. Since the Moore-Penrose inverse of a†is unique,

(a†)† = a.

(2) We will show that (a†)∗ is the Moore-Penrose inverse of a∗ by direct compu-

tation.

i) a∗(a†)∗a∗ = (aa†a)∗ = a∗;

ii) (a†)∗a∗(a†)∗ = (a†aa†)∗ = (a†)∗;

iii) (a∗(a†)∗)∗ = a†a = (a†a)∗;

iv) ((a†)∗a∗)∗ = aa† = (aa†)∗.

Thus (a†)∗ is the Moore-Penrose inverse of a∗ and also (a∗)† is the Moore-Penrose

inverse of a∗. By the uniqueness of Moore-Penrose inverse, we get (a∗)† = (a†)∗.

(3) we will show that a†(a†)∗ is the Moore-Penrose inverse of a∗a by direct com-

putation.
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i)

a∗aa†(a†)∗a∗a = a∗aa†(aa†)∗a

= a∗aa†aa†a

= a∗a;

ii)

a†(a†)∗a∗aa†(a†)∗ = a†(aa†)∗aa†(a†)∗

= a†aa†aa†(a†)∗

= a†(a†)∗;

iii)

(a∗aa†(a†)∗)∗ = ((a†)∗)∗(aa†)∗(a∗)∗

= a†aa†a

= a†a = (a†a)∗

= a∗(a†)∗(aa†a)∗(a†)∗

= a∗aa†(a†)∗;

iv)

(a†(a†)∗a∗a)∗ = (a†aa†a)∗

= (a†a)∗

= a†a

= a†aa†a

= a†(a†)∗a∗a.

we conclude that a†(a†)∗ is the Moore-Penrose inverse of a∗a, so (a∗a)† = a†(a†)∗.

(4) The proof is similarly to (3)
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(5) Since a ∈ R†, a = aa†a, (aa†)∗ = aa† and (a†a)∗ = a†a. Then a∗ =

(aa†a)∗ = (a†a)∗a∗ = a†aa∗.

Similarly, a∗ = (aa†a)∗ = a∗(aa†)∗ = a∗aa†.

(6) From part (3), a†(a†)∗ = (a∗a)†. Then a† = a†aa† = a†(aa†)∗ = a†(a†)∗a∗ =

(a∗a)†a∗. Similarly, by the part (4) we get a† = a∗(aa∗)†.

For the equalities a† = (a∗a)#a∗ = a∗(aa∗)#, we will prove that (a∗a)# = (a∗a)†

and (aa∗)# = (aa∗)†.

Since a is Moore-Penrose invertible, a∗a and aa∗ are also Moore-Penrose invertible.

From the part (3), (a∗a)† = a†(a∗)†. Then

i)

a∗aa†(a†)∗a∗a = a∗aa†(aa†)∗a

= a∗aa†aa†a

= a∗a;

ii)

a†(a†)∗a∗aa†(a†)∗ = a†(aa†)∗aa†(a†)∗

= a†aa†aa†(a†)∗

= a†(a†)∗;

iii)

a†(a∗)†a∗a = a†(aa†)∗a

= a†aa†a

= a†a

= (a†a)∗

= a∗(a†)∗

= a∗(a†aa†)∗

= a∗(aa†)∗(a†)∗

= a∗aa†(a†)∗.
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Then a†(a∗)† = (a∗a)† is the group inverse of (a∗a). By the uniqueness od group

inverse, (a∗a)# = (a∗a)†.

The proof of (aa∗)# = (aa∗)† can be proved in the similar way as (a∗a)# = (a∗a)†.

Hence a† = (a∗a)†a∗ = (a∗a)#a∗ = a∗(aa∗)† = a∗(aa∗)#.

(7) Taking ∗ to the equation a† = (a∗a)†a∗ , we get (a†)∗ = ((a∗a)†a∗)∗ =

a(a†(a†)∗)∗ = aa†(a†)∗ = a(a∗a)†. Similarly, we applied ∗ to a† = a∗(aa∗)†, we get

(a∗)† = (a∗a)†a.

Theorem 2.4. [9] Let a ∈ R. Then a ∈ R† then a is ∗-cancellable and a∗a is group

invertible.

Proof. Let a ∈ R† and suppose that a∗ax = a∗ay.Then

ax = aa†ax = (aa†)∗ax

= (a†)∗a∗ax

= (a†)∗a∗ay

= (aa†)∗ay

= aa†ay

= ay.

Similarly, xaa∗ = yaa∗ implies xa = ya. Hence a is ∗-cancellable.

The MP-inverse of a∗a is obtained by verifying that (a∗a)† = a†(a†)∗.

Since (a∗a)∗(a∗a) = a∗a(a∗a)∗, a∗a is normal.

Since a∗a is normal, a∗a is EP i.e. (a∗a)# = (a∗a)†.

Lemma 2.5. [11] If a is group invertible and ax = xa then a#x = xa#.
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Proof. Let a ∈ R# and x ∈ R be such that ax = xa. Then

a#x = a#aa#x

= a#a#ax

= a#a#xa

= a#a#xaa#a

= a#a#axa#a

= a#xa#a

= a#xaa#

= a#axa#

= a#axa#aa#

= a#axaa#a#

= a#aaxa#a#

= axa#a#

= xaa#a#

= xa#.

Lemma 2.6. Let R be a ring with in volution. If a ∈ R# then a∗ ∈ R# and (a∗)# =

(a#)∗

Proof. We will show that (a#)∗ is the group inverse of a∗ by di rect computation.

i) a∗(a#)∗a∗ = (aa#a)∗ = a∗;

ii) (a#)∗a∗(a#)∗ = (a#aa#)∗ = (a#)∗;

iii) a∗(a#)∗ = (a#a)∗ = (aa#)∗ = (a#)∗a∗.

Thus the group inverse of a∗ is (a#)∗ i.e (a∗)# = (a#)∗.

Theorem 2.7. [11] An element a ∈ R is EP if and only if a is group invertible and

a#a is Hermitian.

Proof. (⇒) Let a ∈ R such that a is EP. Then a ∈ R# ∩R† and a† = a#.Thus

(a#a)∗ = (a†a)∗ = a†a = a#a.
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Hence a#a is Hermitian.

(⇐) Let a ∈ R such that a is group invertible and (a#a)∗ = a#a. Then aa#a =

a, a#aa# = a#, a#a = aa#. Consider

(aa#)∗ = (a#a)∗ = a#a = aa#.

Thus a is MP-invertible and a# = a†. Hence a is EP.

Lemma 2.8. Let a ∈ R† and b ∈ R. If ab = ba and a∗b = ba∗ then a†b = ba†.

Proof. Let a ∈ R† and binR.

Since a ∈ R†, aa∗ and a∗a are group invertible elements and by Theorem 2.3, a† =

a∗(aa∗)#.

According to Lemma 2.5, aa∗ is a group invertible element and (aa∗)b = b(aa∗), we

get (aa∗)#b = b(aa∗)#. Then

a†b = a∗(aa∗)#b = a∗b(aa∗)# = ba∗(aa∗)# = ba†.

Hence a†b = ba†.

Lemma 2.9. [11] Let a, b ∈ R†. If ab = ba and a∗b = ba∗, then ab ∈ R†.

Proof. Since ab = ba and a∗b = ba∗, so b∗a∗ = a∗b∗ and b∗a = ab∗. According to

Lemma 2.8, ab = ba and a∗b = ba∗ implied a†b = ba†.

ba = ab and b∗a = ab∗ implied b†a = ab†.

a∗b∗ = b∗a∗ and a∗b = ba∗implied a∗b† = b†a∗.

Since ab† = b†a and a∗b† = b†a∗, we can apply Lemma 2.8 then we obtain a†b† =

b†a†. We consider

i)

abb†a†ab = bab†a†ab

= bb†aa†ab

= bb†ab

= bb†ba

= ba

= a;
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ii)

b†a†abb†a† = a†b†abb†a†

= a†ab†bb†a†

= a†ab†a†

= a†aa†b†

= a†b† = b†a†;

iii)

(abb†a†)∗ = (a†)∗(bb†)∗a∗

= (a†)∗bb†a∗

= (a†)∗ba∗b†

= (a†)∗a∗bb†

= (aa†)∗bb†

= aa†bb†

= aba†b†

= abb†a†;

iv)

(a†b†ab)∗ = b∗a∗(b†)∗(a†)∗

= a∗b∗(b†)∗(a†)∗

= a∗(b†b)∗(a†)∗

= a∗b†b(a†)∗

= b†a∗b(a†)∗

= b†ba∗(a†)∗

= b†b(a†a)∗

= b†ba†a

= b†a†ba

= a†b†ba.
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Therefore ab ∈ R†, and (ab)† = b†a† = a†b†.

Lemma 2.10. [11] Let a ∈ R†. Then a is normal if and only if aa† = a†a and

a∗a† = a†a∗.

Proof. (⇒) Let a ∈ R† be a normal element. Then aa∗ = a∗a. By Lemma 2.8, we

get aa† = a†a and a∗a† = a†a∗.

(⇐) Suppose that aa† = a†a and a∗a† = a†a∗. Now, we obtain aa∗ = a(a∗aa†) =

a(a∗a†)a = a(a†a∗)a = a†aa∗a = a∗a. Hence a is normal.

Lemma 2.11. [9],[11] If a ∈ R† is normal, then a is EP.

Proof. Assume that a ∈ R† and a is normal. We will show that a is group invertible.

Since aa†a = a, a†aa† = a† and aa† = a†a, a is group invertible and a# = a†.

Lemma 2.12. Let a ∈ R†. Then a is EP if and only if aa† = a†a.

Proof. (⇒) Let a ∈ R† be an EP element. Then a† = a#. Hence

aa† = aa# = a#a = aa†.

(⇐) Let a ∈ R† be such that aa† = a†a. Since a ∈ R†, aa†a = a and a†aa† = a†.

From the assumption, aa† = a†a. We obtain a† is the group inverse of a. Since the

group inverse of a is unique, a# = a†. Hence a is EP.

Lemma 2.13. [11] If a ∈ R†, then aa∗a ∈ R† and (aa∗a)† = a†(a∗)†a†.

Proof. Let a ∈ R†. Consider

(i)

aa∗aa†(a∗)†a†aa∗a = aa∗(a∗)†a∗a

= a(aa†a)∗a

= aa∗a;



15

(ii)

a†(a∗)†a†aa∗aa†(a∗)†a† = a†(a∗)†a†aa∗(a∗)†a†

= a†(a∗)†a∗(a∗)†a†

= a†(a†aa†)∗a†

= a†(a†)∗a†

= a†(a∗)†a†;

(iii)

(aa∗aa†(a∗)†a†)∗ = (aa∗(a∗)†a†)∗

= (a(a†a∗)a†)∗

= (aa†aa†)∗

= (aa†)∗

= aa†

= aa∗(aa∗)†

= aa∗aa†(a∗)†a†;

(iv)

(a†(a∗)†a†aa∗a)∗ = (a†(a∗)†a∗a)∗

= (a†(aa†)∗a)∗

= (a†aa†a)∗

= (a†a)∗ = a†a

= (a∗a)†a∗a

= a†(a∗)†a†aa∗a.

Hence (aa∗a)† = a†(a∗)†a†.

Lemma 2.14. [11] a is ∗-cancellable if and only if a∗ is ∗-cancellable.

Proof. (⇒) Let a be ∗-cancellable. Suppose that aa∗x = aa∗y. Taking ∗ on both

sides, we get x∗aa∗ = y∗aa∗. Since a is ∗-cancellable, x∗a = y∗a. Thus a∗x = a∗y.
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Similarly, xa∗a = ya∗a implies xa∗ = ya∗. Hence a∗ is ∗-cancellable.

(⇐) Let a∗ be ∗-cancellable. Suppose that a∗ax = a∗ay. Taking ∗ on both sides,

we get x∗a∗a = y∗a∗a. Since a∗ is ∗-cancellable, x∗a∗ = y∗a∗. Thus ax = ay.

Similarly, xaa∗ = yaa∗ implies xa = ya. Hence a is ∗-cancellable.
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CHAPTER 3

Moore-Penrose Inverses

In this chapter, ring R means an associate ring with involution. We

give necessary and sufficient conditions for an element of a ring with involution to be

Moore-Penrose invertible. We also investigate the existence of the Moore-Penrose

inverse of the product of Moore-Penrose invertible elements.

Proposition 3.1. Let R be a ring with involution. Suppose 1 is the multiplicative

identity of R, the following are satisfied;

(1) 0∗ = 0;

(2) 0† = 0;

(3) If a ∈ R† then −a ∈ R† and (−a)† = −a†;

(4) If a is a projection then a† = a

(5) 1† = 1;

(6) If u is a unit in R then u† = u−1.

Proof. (1)

0∗ = (0 + 0)∗

0∗ = 0∗ + 0∗

0∗ − 0∗ = 0∗

0 = 0∗.

(2)

0† = 0† · 0 · 0†

0† = 0 · 0†

0† = 0.

(3) Let a ∈ R†. We will show that −a ∈ R† and (−a)† = −a†.

i) (−a)(−a†)(−a) = −aa†a = −a;
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ii) (−a†)(a)(−a†) = −a†aa† = −a†;

iii) ((−a†)(−a))∗ = (a†a)∗ = a†a = (−a†)(−a);

iv) ((−a)(−a†))∗ = (aa†)∗ = aa† = (−a)(−a†).

Since Moore-Penrose inverse of −a is unique, (−a)† = −a†. Hence −a ∈ R† and

(−a)† = −a†.

(4) Assume that a2 = a = a∗. We will show that a† = a. Since a2 = a and a∗ = a,

aaa = aa = a. and (aa)∗ = a∗ = a. Hence a† = a.

(5) Assume that 1 is the multiplicative identity of R. We know that 1 = (1∗)∗ =

(1 · 1∗)∗ = 1 · 1∗ = 1∗ and 12 = 1. By (4) we get 1† = 1.

(6) Let u be a unit in R. Then there is u−1 ∈ R such that uu−1 = 1 = u−1u.

i) uu−1u = 1u = u;

ii) u−1uu−1 = 1u−1 = u−1;

iii) (uu−1)∗ = 1∗ = 1 = uu−1;

iv) (u−1u)∗ = 1∗ = 1 = u−1u. Hence u ∈ R† and u† = u−1.

Lemma 3.2. Let a ∈ R†. If a†a = aa†, then an ∈ R† for any n ∈ N.

Proof. Let a ∈ R† be such that a†a = aa†. Then

i)

an(a†)nan = (aa†a)n

= an;

ii)

(a†)nan(a†)n = (a†aa†)n

= (a†)n;

iii)

[an(a†)n]∗ = [(aa†)n]∗

= [(aa†)∗]n

= (aa†)n

= an(a†)n;
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iv)

[(a†)nan]∗ = [(a†a)n]∗

= [(a†a)∗]n

= (a†a)n

= (a†)nan.

Therefore an ∈ R† for all n ∈ N.

Definition 3.1. An element a ∈ R is left supported by a projection if a = pa for

some projection p ∈ R; it is right supported by a projection if a = aq for some

q ∈ R; and it is supported by a projection if it is both left and right supported by a

projection.

Proposition 3.3. Let a ∈ R. Then aa† and a†a are projections.

Proof. It is clear that (aa†)2 = (aa†a)a† = aa† and (aa†)∗ = aa†. Thus aa† is a

projection. Similarly, a†a is also a projection.

Theorem 3.4. Let R be a ring with involution and let a ∈ R. Then the following are

equivalent:

(1) a is MP-invertible.

(2) a is left ∗-cancellable, right supported by a projection and a∗a is group invertible.

(3) a is right ∗-cancellable, left supported by a projection and aa∗ is group invertible.

(4) a is ∗-cancellable, supported by a projection and both a∗a and aa∗ are group

invertible.

Proof. (1) ⇒ (2), (3), (4) Suppose that a is MP-invertible. Let x, y ∈ R be such

that a∗ax = a∗ay. Then
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ax = aa†ax

= (aa†)∗ax

= (a†)∗a∗ax

= (a†)∗a∗ay

= (aa†)∗ay

= aa†ay

= ay.

Thus a is left ∗-cancellable. Similarly, a is right ∗-cancellable. Let p = aa† and

q = a†a. Then p, q are projections and

a = aa†a = pa = aq.

Thus a is left and right supported by a projection. Since a∗a and aa∗ are Hermitian,

a∗a and aa∗ are EP elements. Thus a∗a and aa∗ are group invertible. This proves (2)

and (3). It is obvious that (2) and (3) implies (4). Hence (4) holds.

(2) ⇒ (1) Suppose that a is left ∗-cancellable, right supported by a projection and

a∗a is group invertible. Then a = aq for some projection q. Let b = (a∗a)#a∗. Then

a∗aqba = a∗a(a∗a)#a∗a = a∗a = a∗aq.

Since a is left ∗-cancellable, it is clear that

i)

aba = aqba

= aq

= a;

ii)

bab = (a∗a)#a∗a(a∗a)#a∗

= (a∗a)#a∗

= b;
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iii)

(ab)∗ = [a(a∗a)#a∗]∗

= a(a∗a)#a∗

= ab;

and iv)

(ba)∗ = [(a∗a)#a∗a]∗

= a∗a(a∗a)#

= (a∗a)#a∗a

= ba.

Thus a is MP-invertible and a† = b.

(3) ⇒ (1) Suppose that a is right ∗-cancellable, left supported by a projection and

aa∗ is group invertible. Then a = pa for some projection p. Let b = a∗(a∗a)#. Then

abpaa∗ = aa∗(aa∗)#aa∗ = aa∗ = paa∗.

Since a is right ∗-cancellable, it is clear that

i)

aba = abpa = pa = a;

ii)

bab = a∗(aa∗)#aa∗(aa∗)#

= a∗(aa∗)#

= b;

iii)

(ab)∗ = [aa∗(aa∗)#]∗

= (aa∗)#aa∗

= aa∗(aa∗)#

= ab;
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and iv)

(ba)∗ = [a∗(a∗a)#a]∗

= a∗(aa∗)#a

= ba.

Thus a is MP-invertible and a† = b.

(4) ⇒ (1) It is trivial that (4) implies (3) and (3) implies (1). Thus (4) implies (1).

This completes the proof.

Remark 3.1. If R is a ring with identity, then every element in R is clearly supported

by the identity element. Thus Theorem 3.4 is a generalization of Proposition 1.1 in

[8].

The following example shows that we cannot omit the condition that a is left(right)

supported by a projection for an element a to be MP-invertible.

Example 3.1. Let R = {A ∈ M3(R)|aij = 0 for all i ≥ j} with the usual ma-

trix addition and multiplication. For any a =


0 x y

0 0 z

0 0 0

 ∈ R, we define a∗ =


0 z y

0 0 x

0 0 0

. Then ∗ is an involution. A computation shows that abc = 0 for all

a, b, c ∈ R. This implies that a ∈ R# if and only if a = 0 and a ∈ R† if and only if

a = 0.

Let a =


0 0 1

0 0 0

0 0 0

. Then ax = 0 for all x ∈ R. Thus a∗ax = 0 implies ax = 0 for

all x ∈ R. Likewise, xaa∗ = 0 implies xa = 0. Hence a is ∗-cancellable. It is clear

that aa∗ = a∗a = 0 which are group invertible. However, a is not MP-invertible.

Next, we investigate the existence of the Moore-Penrose inverse of the product x1x2 · · ·xn

given that x1, x2, . . . , xn ∈ R†. It is worth noting that R† is not closed under multi-

plication.
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Example 3.2. Let R = M2(Z2) with the matrix transposition as an involution.

Let a =

1 1

1 0

 and

1 0

0 0

 . Then a, b ∈ R† but ab =

1 0

1 0

 /∈ R†.

Definition 3.2. A subset Γ of R† is called star-dagger closed if x∗ ∈ Γ and x† ∈ Γ

for all x ∈ Γ. For any x ∈ R†, we define Γ(x) = {x, x†, x∗, (x∗)†}.

It is obvious that R† is star-dagger closed. The following theorem shows that

nontrivial star-dagger closed sets exist.

Theorem 3.5. If a ∈ R†, then Γ(a) is star-dagger closed.

Proof. Clearly, a, a∗, (a†)∗ ∈ R†. Since (a∗)∗ = a ∈ Γ(a) and [(a†)∗]∗ = a† ∈ Γ(a),

we have x∗ ∈ Γ(a) for all x ∈ Γ(a). Obviously, a† ∈ Γ(a). Since (a†)† = a ∈ Γ(a),

(a∗)† = (a†)∗ ∈ Γ(a) and [(a†)∗]† = [(a∗)†]† = a∗ ∈ Γ(a), we conclude that

x† ∈ Γ(a) for all inΓ(a). Therefore, Γ(a) is star-dagger closed.

Definition 3.3. A subset Γ of R is called a commuting set if xy = yx for all x, y ∈ Γ.

Theorem 3.6. If a ∈ R† is normal, then Γ(a) is a commuting set.

Proof. Suppose that a ∈ R is normal. Then aa∗ = a∗a, aa† = a†a and a∗a† = a†a∗.

Thus a(a†)∗ = (a†a∗)∗ = (a∗a†)∗ = (a†)∗a. Similarly, a∗(a†)∗ = (a†a)∗ = (aa†)∗ =

(a†)∗a∗ and a†(a†)∗ = (a∗a)† = (aa∗)† = (a†)∗a†. Hence Γ(a) is a commuting

set.

Theorem 3.7. If Γ ⊆ R† is a commuting and star-dagger closed set, then xy ∈ R†

for all x, y ∈ Γ. Moreover, (xy)† = y†x† for all x, y ∈ Γ.

Proof. Let x, y ∈ Γ. Then x∗, y∗, x†, y† ∈ Γ. Thus

(xy)(y†x†)(xy) = (xx†x)(yy†y)

= xy,

(y†x†)(xy)(y†x†) = (x†xx†)(y†yy†)

= y†x†,
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(xyy†x†)∗ = (xx†)∗(yy†)∗

= xx†yy†

= xyy†x†,

and

(y†x†xy)∗ = (y†y)∗(x†x)∗

= y†yx†x

= y†x†xy.

This shows that xy ∈ R† and (xy)† = y†x†.

Theorem 3.8. If Γ ⊆ R† is a commuting and star-dagger closed set, then x1x2 · · ·xn ∈

R† for all x1, x2, . . . , xn ∈ Γ. Moreover, (x1x2 · · ·xn)† = x†nx
†
n−1 · · ·x

†
1 for all

x1, x2, . . . , xn ∈ Γ.

Proof. Let Γ ⊆ R† be a commuting and star-dagger closed set. Then xy = yx for

all x, y ∈ Γ. Let P (n): ∀x1, x2, . . . , xn ∈ Γ, x1x2 · · ·xn ∈ R† and (x1x2 · · ·xn)† =

x†nx
†
n−1 · · ·x

†
1 for all n ∈ N. We will prove it by mathematical induction.

Basis Step: Suppose that x1, x2 ∈ Γ. According to Theorem 3.7, Γ is a commuting

and star-dagger closed set, then x1x2 ∈ R† and (x1x2)
† = x†2x

†
1 = x†1x

†
2.

Inductive Step: Assume that the statement P (k): holds.

We consider P (k + 1). Suppose that x1, x2, . . . , xk+1 ∈ Γ. According to Theorem

3.7 x1x2 · · ·xk, xk+1 ∈ R†, and x1x2 · · · xk+1 = (x1x2 · · ·xk)(xk+1) ∈ R† and

(x1x2 · · ·xk+1)
† = ((x1x2 · · ·xk)(xk+1))

†

= (xk+1)
†(x1x2 · · ·xk)†

= (x†k+1)(x
†
kx
†
k−1 · · ·x

†
1)

= x†k+1x
†
kx
†
k−1 · · ·x

†
1.

Thus x1x2 · · ·xn ∈ R† for all n ∈ N and (x1x2 · · ·xn)† = x†nx
†
n−1 · · ·x

†
1 for all

x1, x2, . . . , xn ∈ Γ.
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Corollary 3.9. If a ∈ R† is normal, then x1x2 · · ·xn ∈ R† for all x1, x2, . . . , xn ∈

Γ(a).

Proof. Since Γ(a) is commuting and star-dagger closed set, the result follows from

Theorem 3.8.

Corollary 3.10. If R is commutative, then (R†, ·) is a subsemigroup of (R, ·).

Proof. Since R is commutative, R† is a commuting and star-dagger closed set. The

result follows Theorem 3.7.

Theorem 3.11. If a is an EP element, then a†, a∗ and (a†)∗ are also EP elements.

Proof. Suppose that a is an EP element. Then aa† = a†a. Thus

a†(a†)† = a†a = aa† = (a†)†a†.

This means a† is an EP element. We also have that

a∗(a∗)† = a∗(a†)∗ = (a†a)∗ = (aa†)∗ = (a∗)†a∗.

Thus a∗ is an EP element. This implies (a†)∗ is an EP element.

Theorem 3.12. If a is an EP element, then xn ∈ R† for all x ∈ Γ(a) and all n ∈ N.

Proof. Suppose that a is an EP element. By using Theorem 3.11, we know that

a, a†, a† and (a†)∗ are EP elements. Thus it suffices to prove that an ∈ R† for all

n ∈ N. Since a is an EP element, aa† = a†a. Then

i)

an(a†)nan = (aa†a)n

= an,

ii)

(a†)nan(a†)n = (a†aa†)n

= (a†)n,
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iii)

[an(a†)n]∗ = [(aa†)n]∗

= [(aa†)∗]n

= (aa†)n

= an(a†)n,

iv)

[(a†)nan]∗ = [(a†a)n]∗

= [(a†a)∗]n

= (a†a)n

= (a†)nan.

This proves that an ∈ R† and (an)† = (a†)n for all n ∈ N.

Theorem 3.13. Let a ∈ R†. Then the following elements are Moore-Penrose invert-

ible for all n ∈ N.

(1) (aa∗)n,

(2) (a∗a)n,

(3) (a∗a†aa)n,

(4) a(a∗a)n and

(5) a∗(aa∗)n.

Proof. (1) We know that aa∗ ∈ R† is Hermitian. Thus aa∗ is an EP element. By

Theorem 3.12, (aa∗)n ∈ R† for all n ∈ N.

(2) We know that a∗a ∈ R† is Hermitian. Thus a∗a is an EP element. By Theo-

rem 3.12, (a∗a)n ∈ R† for all n ∈ N.
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(3) Let x = a∗a†aa. Then x∗ = a∗a∗(a†)∗a and

xx∗ = a∗a†aaa∗a∗(a†)∗a

= a∗(a†a)∗aa∗(a†a)∗a

= a∗a∗(a†)∗aa∗a†aa

= x∗x.

Thus x is a normal element and hence an EP element. By Theorem 3.12, (a∗a†aa)n ∈

R† for all n ∈ N.

(4) Let x = a(a∗a)n = (aa∗)na and y = [(a∗a)†]na† = a†[(aa∗)†]n. Since aa∗

and a∗a are EP elements, we have [(aa∗)n]† = [(aa∗)†]n and [(a∗a)n]† = [(a∗a)†]n.

Then

xy = (aa∗)naa†[(aa∗)n]†

= (aa∗)n−1(aa∗aa†)[(aa∗)n]†

= (aa∗)n−1(aa∗)[(aa∗)n]†

= (aa∗)n[(aa∗)n]†

and

yx = a†[(aa∗)†]na(a∗a)n

= a†[(aa∗)†]n−1[(aa∗)†a](a∗a)n

= a†[(aa∗)†]n−1(a∗)†(a∗a)n

= [a†(a∗)†]n(a∗a)n

= [(a∗a)n]†(a∗a)n.

Thus,

xyx = a(a∗a)n[(a∗a)n]†(a∗a)n

= a(a∗a)n

= x
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and

yxy = a†[(aa∗)n]†(aa∗)n[(aa∗)n]†

= a†[(aa∗)n]†

= y.

Since xy and yx are projections, we also have (xy)∗ = xy and (yx)∗ = yx. There-

fore a(a∗a)n ∈ R† and [a(a∗a)n]† = [(a∗a)†]na†.

5. Since [a(a∗a)n]∗ = a∗(aa∗)n, we conclude that a∗(aa∗)n ∈ R†.
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