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บทคัดย่อ 
 

 ตัวแบบการถดถอยลอจิสติกเป็นตัวแบบที่นิยมใช้ส าหรับการทดสอบความสัมพันธ์

ระหว่างตัวแปรต้นและตัวแปรตามที่มีจ านวนสองกลุ่ม แต่ในกรณีข้อมูลแบบกลุ่มมีความถี่เป็นศูนย์ ตัว

แบบการถดถอยลอจิสติกไม่สามารถประมาณค่าพารามิเตอร์ได้หรือมีความผิดพลาดในการประมาณ

การ (non-convergence) การศึกษานี้เสนอวิธีการทางเลือกส าหรับการแก้ปัญหาดังกล่าว โดยใช้หลักการ

ของการปรับค่าข้อมูลแทนการคิดค้นโปรแกรมหรือค าสั่งเฉพาะส าหรับการวิเคราะห์ข้อมูลลักษณะนี้ 

ใช้วิธีการแทนที่ความถี่ที่มีค่าเป็นศูนย์ด้วยค่าหนึ่ง และความถี่ที่อยู่ในกลุ่มตัวแปรต้นกลุ่มเดียวกันกับค่า

ศูนย์จะถูกเพิ่มค่าเป็นสองเท่า เรียกวิธีการน้ีว่า Data Modification (DM) จากนั้นจึงน าข้อมูลที่ได้จากการ

ปรับค่าไปวิเคราะห์ด้วยโปรแกรมส าเร็จรูปที่มีอยู่ทั่วไป และเปรียบเทียบผลลัพธ์กับวิธกีารที่มีอยู่เดิม 

คือวิธีการของ Firth ซึ่งใช้หลกัการ penalized likelihood estimation ในการประมาณค่าพารามิเตอร์ ผล

การศึกษาพบว่าวิธีการของ DM ให้ค่าระดับนัยส าคัญ (p-value) ที่ใกล้เคียงกับวิธีการทีม่ีอยู่เดิม 
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ABSTRACT 

Logistic regression is the commonly used for testing the association between binary 

outcome and a set of explanatory variables. When the data tables contains at least one 

zero count, the logistic regression does not converge. This study introduce an 

alternative method for solving the non-convergence problem in logistic regression. 

The method does not require any special software to be develop. It simply involves 

modifying the data by replacing the zero count by 1 and doubling a corresponding 

non-zero count. The method is compared with the existing method including the 

penalized likelihood suggested by Firth. Results show that the data modification 

method provides statistical significance of associations similar to Firth’s method 

while using the standard logistic regression.  
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CHAPTER 1 

Introduction 

Logistic regression is a method that have been widely use for testing the association in 

two by two tables. However, when any counts in table equal to zero, this method does 

not converge. In practice, there are existing method which can be solve this problem 

but using the special software. Therefore, this thesis suggest a new way to solving the 

problem by using the data modification instead of any statistical packages.   

1.1 Rational for study 

For analysis of 2 by 2 tables, the simplest case for contingency tables, there are many 

methods for getting p-values, some “exact”, and they give widely varying results. The 

most common test is Pearson’s chi-squared test, which is appropriate for sufficiently 

large sample sizes. It is inaccurate if any expected count is less than five (Mehta and 

Patel, 1997; Mehta and Senchaudhuri, 2003; Seneta and Phipps, 2001). In case of 

small sample sizes, Fisher’s exact test is the most used (Mehta and Patel, 1997; Mehta 

and Senchaudhuri, 2003; Seneta and Phipps, 2001) and it is based on an “exact 

conditional approach”. This approach can eliminate the nuisance parameter in the 

model under the null hypothesis by conditioning on its marginal totals (Mehrotra et 

al., 2003). 

Another way to reduce the conservatism of Fisher’s exact test is to consider an 

unconditional approach, such as Barnard’s test. Barnard’s test eliminates the nuisance 

parameter by taking its supremum over all possible values in the space of the null 

model (Lin and Yang, 2009; Lydersen et al., 2009). Moreover, there is a concern 
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regarding the default use of Fisher’s exact test so several alternative tests have been 

proposed (Biddle, 2011). These include Lancaster’s mid-p test (King and Zeng, 2001; 

Lancaster, 1961), an adjustment to the Fisher’s exact test that tend to have increased 

power while maintaining a Type I error rate close to the nominal level (Biddle, 2011; 

Lydersen, 2009). Liebermeister’s test is also can be used in place of Fisher’s exact 

test, and is less conservative than Fisher’s test and just as easy to calculate (Seneta 

and Phipps, 2001). In addition, the “Conditional Binomial Exact Test” (CBET) is 

proposed as an alternative test for comparing binomial proportions estimated from 

samples of larger populations (Rice, 1988). 

Logistic regression has been used commonly in contingency tables. It provides a more 

general method because it provides a model that accommodates more complex 

determinants.  However, when one of any cell in the contingency table equal to zero, 

standard errors of parameters estimated by maximum likelihood method are too large 

and biased. Thus, logistic regression fails to converge (Bester and Hansen, 2005; 

Biddle et al., 2011; Eyduran, 2008; Len and Yang, 2009; Rice, 1988; Sean, 2004; 

Seneta and Phipps, 2001). A procedure to solve this problem was proposed by Firth 

(1993). This method gives finite parameter estimates via penalized maximum 

likelihood (Firth, 1993; Heinze and Schemper, 2002; Heinze, 2009b; Heinze and 

Ploner, 2003a; Heinze and Ploner, 2004b). This method is available in statistical 

software such as SAS, S-PLUS and R (Heinze, 2006a; Heinze, 2009b; Heinze and 

Ploner, 2004b).  However, the estimates from this procedure are biased away from 

zero (Heinze and Ploner, 2003a). Thus, this solution has limited use in practice 

because the bias may be quite substantial. 
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Tables with small count, especially with zero cell count thus lead to numerical 

problems (Brown, 1983), so it is important to identify the methods which provide the 

accurate results for particular data structures. Thus the main objective of this study is 

finding the method that provides more exact results using logistic regression. The 

procedure is based on making a small modification on contingency tables. The bias is 

reduced from logistic regression without changing the method as in Firth’s procedure, 

but modifying the data instead, and thus not requiring any new software to be 

developed.  

1.2 Review of literature 

1.2.1 Convergence problem in logistic regression  

In logistic regression, the well-known method for parameter estimation is “maximum 

likelihood estimation”. A frequent problem in estimating logistic regression models is 

a failure of the likelihood maximization algorithm to converge. In several cases, this 

failure is a consequence of data patterns known as complete or quasi-complete 

separation. This section review the overview of maximum likelihood estimation 

including the example of data with separation with their possible solutions. The 

information were collected from Allison (2004) and Allison (2008). 

Logistic maximum likelihood estimation 

For a sample of n case (i=1,…,n), there are data on a dummy dependent variable yi 

(with values of 1 and 0) and a vector of explanatory variables xi (including a 1 for the 

intercept term). The logistic regression model states that:   

Pr(yi=1|xi) = 
)xexp(1

1

iβ
                                     (1.1) 
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where is a vector of coefficients. Equivalently, we may write the model in “logit” 

form:

ix
)|0Pr(

)|1Pr(
In β

xy

xy

ii

ii 











                                          (1.2) 

Assuming that the n cases are independent, the log-likelihood function for this model 

is:  

  
i i

ii )]xexp(1[Inx)( βyββ i                       (1.3) 

The goal of maximum likelihood estimation is to find a set of values for that 

maximize this function. One well-known approach to maximizing a function like this 

is to differentiate it with respect to set the derivative equal to 0, and then solve the 

resulting set of equations. The first derivative of the log-likelihood is: 

 




i i

ˆ
)(

)(
iiii yxyx

β

β
                                   (1.4) 

where iŷ is the predicted value of yi: 

)xexp(1

1
ˆ

iβ
yi


                                                (1.5) 

The next step is to set the derivative equal to 0 and solve for : 

0ˆ  
i i

ii xx ii yy                                                  (1.6) 

ecause  is a vector, (1.6) is actually a set of equations, one for each of the 

parameters to be estimated. These equations are identical to the “normal” equations 
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for least-squares linear regression, except that by equation 1.4, y is a non-linear 

function of the xi’s rather than a linear function.  

For some models and data (e.g., “saturated” model), the equation 1.6 can be explicitly 

solved for the ML estimator b. For example, suppose there is a single dichotomous x 

variable, so that the data can be arrayed in a 2 by 2 table, with observed cell 

frequencies f11, f12, f21, and f22. Then the ML estimator of the coefficient of x is given 

by the logarithm of the “cross-product ratio”: 











2112

2211

ff

ff
β logˆ                                                 (1.7) 

For most data and models, however equations 1.6 have no explicit solution. In such 

cases, the equations must be solved by numerical methods, of which there are many. 

The most popular numerical method is the Newton-Raphson algorithm. Let  

U () be the vector of first derivatives of the log-likelihood with respect to and let   

I be the matrix of second derivatives. That is,  

U =  




i i

iiii yy
β

β
ˆxx

)(
 

I  




i

iiii yy
ββ

(ββ
)ˆ1(ˆxx

2
                      (1.8) 

The vector of first derivatives U() is sometimes called the gradient or score while 

the matrix of second derivatives Iis called the Hessian. The Newton-Raphson 

algorithm is then  
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)()(1

1 jjjj ββββ UI


                                     (1.9) 

where I-1 is the inverse of I.  

To operationalize this algorithm, a set of starting values 0 is required. Choice of 

starting values is not critical; usually, setting 0 = 0 works fine. The starting values 

are substituted into the right-hand side of equation 1.9, which yields the results for the 

first iteration, 1. These values are then substituted back into the right hand side, the 

first and second derivatives are recomputed, and the results is 2. The process is 

repeated until the maximum change in each parameter estimate from one iteration to 

the next is less than some criterion, at which point we say that the algorithm has 

converged. Once we have the results of the final iteration, β̂ , by product of the 

Newton-Raphson algorithm is an estimate of the covariance matrix of the coefficients, 

which is just –I-1(). Estimates of the standard errors of the coefficients are obtained 

by taking the square roots of the main diagonal elements of this matrix.  

What can go wrong? 

A common problem in maximizing a function is the presence of local maxima. 

Fortunately, such problems cannot occur with logistic regression because the log-

likelihood is globally concave, meaning that the function can have at most one 

maximum. Unfortunately, there are many situations in which the likelihood function 

has no maximum, in which case we say that the maximum likelihood estimate does 

not exist. Consider the set of data on 10 observations in Table 1.1, Y is binary 

outcome and X is continuous covariates.  
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Table 1.1: Data exhibiting complete separation. 

x y x y 

-5 0 1 1 

-4 0 2 1 

-3 0 3 1 

-2 0 4 1 

-1 0 5 1 

 

 

 

 

 

 

 

 

Figure 1.1: Log-likelihood as a function of the slope under complete separation 

It is apparent that, although the log-likelihood is bounded above by 0, it does not 

reach a maximum as beta increases. We can make the log-likelihood as close to 0 as 

we choose by making beta sufficiently large. Hence, there is no maximum likelihood 

estimate.  

This is an example of a problem known as complete separation (Albert and Anderson, 

1984), which occurs whenever there exists some vector of coefficients b such that  

yi =1 whenever bxi > 0 and yi =0 whenever bxi < 0. In other words, complete 

separation occurs whenever a linear function of x can generate perfect predictions  
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of y. For our hypothetical data set, a simple linear function that satisfies this property 

is 0+1(x). That is, when x is greater than 0, y=1, and when x is less than 0, y=0.  

A related problem is known as quasi-complete separation. This occurs when (a) there 

exists some coefficient vector b such that bxi 0 whenever yi =1, and bxi 0 

whenever yi = 0, and equality holds for at least one case in each category of the 

dependent variable. Table 1.2 displays a data set that satisfies this condition.  

Table 1.2: Data exhibiting quasi-complete separation. 

x y x y 

-5 0 1 1 

-4 0 2 1 

-3 0 3 1 

-2 0 4 1 

-1 

 0 

0 

0 

5 

0 

1 

1 

The difference between this data set and the previous one is that there are two more 

observations, each with x values of 0 but having different values of y. 

The log-likelihood function for these data, shown in Figure 1.2, is similar in shape to 

that in Figure 1.1. However, the asymptote for the curve is not 0, but a number that is 

approximately -1.39. In general, the log-likelihood function for quasi-complete 

separation will not approach 0, but some number lower than that. In any case, the 

curve has no maximum so, again, the maximum likelihood estimate does not exist.  

Of the two conditions, complete and quasi-complete separation, the latter is far more 

common. It most often occurs when as explanatory variable x is a dummy variable 

and, for one value of x, either every case has the event y=1 or every case has the event 

y=0. Consider the following 2 by 2 table:  
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If we form the linear combination c = 0 + (1) x, we have c 0 when y =1 and c   0 

when y = 0. So the conditions of quasi-complete separation are satisfied.  

To get some intuitive sense of why this leads to non-existence of maximum likelihood 

estimator, consider equation 1.7 which gives the maximum likelihood estimator of the 

slope coefficient for a 2 by 2 table. For our quasi-complete table, this would be 

undefined because there is a zero in the denominator. The same problem would occur 

if there were a zero in the numerator because the logarithm of zero is also undefined. 

If the table is altered to read:  

 

 

 

 

 

 

 

Figure 1.2: Log-likelihood as a function of the slope under quasi-complete separation 

 

 

 

  y 

  1 0 

x 
1 5 0 

0 15 10 
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then there is complete separation with zeros in both the numerator and the 

denominator. So the general principle is evident. Whenever there is a zero in any cell 

of a 2 by 2 table, the maximum likelihood estimate of the logistic slope coefficient 

does not exist. This principle also extends to multiple independent variables: 

For any dichotomous independent variable in a logistic regression, if there is a zero in 

the 2 by 2 table formed by that variable and the dependent variable, the ML estimate 

for the regression coefficient will not exist.  

This is by far the most common cause of convergence failure in logistic regression. 

Obviously, it is more likely to occur when the sample size is small. Even in large 

samples, it will frequently occur when there are extreme splits on the frequency 

distribution of either the dependent or independent variables. Consider, for example, a 

logistic regression predicting the occurrence of a rare disease. Suppose further, that 

the explanatory variables include a set of seven dummy variables representing 

different age levels. It would not be terribly surprising if no one had the disease for at 

least one of the age levels, but this would produce quasi-complete separation.  

 

1.2.2 Solutions for non-convergence problem in logistic regression 

 

As mentioned by Santos and Barrios (2012), there are several solutions to solve the 

non-convergence problem. The most popular is dropping the separating variable(s) in 

the model. Clogg et al (1991) suggest to adding “artificial” data across the different 

patterns of categorical covariates and analysis is done on modified data. Another 

  y 

  1 0 

x 
1 5 0 

0 0 10 
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approach is to use exact logistic regression that allows estimation of the coefficients 

even in the presence of empty cells and complete separation.  

The exact logistic regression uses the method of conditional maximum likelihood in 

performing exact inference for a parameter yielding exact p-values rather than 

approximations. This method prevents infinite estimated odds ratios or confidence 

intervals with one side equal to infinity, see in Agresti (1996). However, Zorn (2005) 

revealed that the exact logistic regression may result to degenerate estimates when 

relatively sparse data or small number of observations in particular patterns of 

categorical predictors is present.  

Another approach in solving the problem of separation of likelihood is the modified 

score procedure conducted by Firth (1993). The procedure modifies the maximum 

likelihood estimation by penalizing the score equation. The method reduces the bias 

on the maximum likelihood estimates for the coefficients of the logistic regression 

model. This approach are recommended by many studies as follows; 

Heinze and Shamper (2002), suggested that a procedure by Firth originally developed 

to reduce the bias of maximum likelihood estimates and it is shown to provide an 

ideal solution to separation. It produced finite parameter estimates by means of 

penalized maximum likelihood estimation. Corresponding Wald test and confidence 

interval are available but it is shown that penalized likelihood ratio tests and profile 

penalized likelihood confidence intervals often preferable.  
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According to the suggestion by Heinze and Shamper (2002), Heinze and Ploner 

(2003a, 2004b) then developed a SAS macro and SPLUS library to make Firth 

method available from within of these widely used statistical software packages. 

Heinze (2006), provide some examples of separation and near-separation in clinical 

data sets and give the options to analyses such data, including exact logistic regression 

and penalized likelihood approach. Both methods supply finite point estimates in case 

of separation. Profile penalized likelihood confidence intervals for parameters show 

excellent behavior in terms of coverage probability and provide higher power than 

exact confidence intervals.  

Heinze (2009) study the data when the phenomenon of separation occurred. Example 

of two studies are given: the first one investigated whether primary graft dysfunction 

of lung transplants is associated with endothelin-1 mRNA expression measured in 

lung donors and in graft recipients. Second one is using the conditional logistic 

regression to analyses a randomized animal experiment in which animals were 

clustered into sets defined by equal follow-up time. The estimates obtained by a 

penalized likelihood approach have reduced bias compared to their maximum 

likelihood counterparts, and inference using penalized profile likelihood is 

straightforward.  

Toshinari (2011) proposed new method based on the bootstrap resampling techniques 

and compare the true p-values for the likelihood ratio test, Wald test, Firth method 

and other testing methods. The Firth method has a good property that it gives the bias 

reduction of maximum likelihood estimation and the stable estimates are obtained 

even for the nearly quasi-separations case.  
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For more options, the user can applied the data modification into such cases of 

problem (separation/quasi-complete separation). Some studies mentioned about this 

approach as following;  

Clogg et al (1991) considered the possibility of resolving the separation problem by 

adding “artificial” data across the different patterns of the categorical predictors and 

then conducting the analysis in the resulting data in the usual manner. This study 

consider sapling strategy as a possible solution to the separation problem. Since the 

separation problem usually arises from the existence of “patterns” among the data on 

the predictors, then it is possible that the problem is avoided if the likelihood of such 

“pattern” is minimized.  

Similar approach, Gart and Zweifel (1967) and Haldane (1955) also suggest the data 

modification by adding .5 to every cell in table and the estimated odds ratio by this 

approach are behave well, mentioned by Agresti (2002).  

Related the data modification approach, Parzen et al (2002) propose an estimate of the 

odds ratio in 2 by 2 table obtained from studies in which the row totals are fixed by 

design, such as phase II clinical trial. The estimation of the odds ratio is based on the 

median unbiased estimated of the probabilities of success in the 2 by 2 table compare 

with the estimated odds ratio by adding .5 to each cell of the table. Found that, the 

median unbiased estimate had smaller finite sample bias and larger mean square error.  

Apart from those previous solution, there are another option to solve the non-

convergence problem. Santos and Barrios (2012) propose a study by drawing the 

sample using ranked set sampling (RSS). An extensive simulation study was 
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conducted to assess the performance of logistic regression model fitted from ranked 

set samples and compared to those estimate using simple random samples (SRS). RSS 

performs best in small populations regardless of the distribution of the binary 

response variable in the population. As the sample and population sizes increase, the 

predictive ability under RSS also improves but it stabilizes to become comparable to 

SRS.  

Since the solution of using penalized likelihood estimation (Firth method) is seem to 

be recommended. While the data modification approach are less used. Therefore, this 

study consider on the method involve data modification and provides the similar 

results to Firth method.  

1.3 Objectives for studies 

1. To measure the bias in the penalized likelihood method compared to other 

recommended tests of independence in 2 by 2 tables containing a zero and other small 

counts, when the true p-value is approximately 0.05. 

2. To provide an alternative test based on making a small modification to the data 

similar to that used by Liebermeister’s and Lancaster’s mid-P tests.  

3. To compare this method with p-values given by other recommended tests (CBET, 

Lancaster's mid-P, Pearson's, Fisher's exact test, Liebermiester's modification, 

Barnard’s test, Penalized likelihood ratio test, and logistic regression) when the true     

p-value is close to 0.05. 

4. To provide an alternative to penalized likelihood that does not require special-

purpose software, being able to run using ordinary logistic regression. 



CHAPTER 2 

Methodology 

This chapter contains all the methods which involved in this study. Section 2.1 

contains a brief description of the existing methods for testing the association in 

contingency tables. Section 2.2 contains the basic knowledge of the logistic regression 

with maximum likelihood estimation and logistic regression with penalize maximum 

likelihood estimation (Firth’s procedure). Section 2.3 contains methods of data 

modification which including the existing approach (data augmentation by Clogg’s 

and adding 0.5 to each cell by Agresti’s) and an alternative idea with the similar 

approach, namely Data Modification, DM method. Section 2.4 contains more 

explanation for DM method.  

2.1 Methods for testing the association in contingency tables 

There are several methods for significance test for the association in 2 by 2 tables. A 

brief summary of these tests may describe as follows. 

Table 2.1: The general counts of a 2 by 2 table. 

  j  

  1 2 Total 

i 1 a b m 

 2 c d n 

 Total z v m+n 

Suppose we have the 2 by 2 table as shown in Table 2.1. The most commonly used 

test statistics for association are Pearson’s chi-squared test and Fisher’s exact test.  
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1) Pearson’s chi-squared test  

This test is an asymptotic test that approximates the p-value by the upper tail 

probability of the chi-squared distributed with one degree of freedom (Lyderson et al., 

2009).  

The formula used to calculate the Pearson’s chi-squared test is 

)db)(ca)(dc)(ba(

)bcad(nm 2
2




      (2.1) 

In general, the p-value is defined as the probability of the test statistic T being equal to 

or more extreme than its value for the observed table (tobs), therefore, the approximate 

p-value for Pearson’s chi-squared test is (Lyderson et al., 2009). 

   p-value = )t(P obs
2   

2) Fisher’s exact test  

This procedure is a conservative test (i.e. the p-value tends to be too large), but 

commonly applied test when the sample sizes are small. The formula used to calculate 

p-value of Fisher’s exact test is (Seneta and Phipps, 2001) 











 



















ar
F z      

nm
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r

m
P                                                   (2.2) 

Therefore, alternative test statistics which can be used in place of Fisher’s exact test 

with small counts are needed. The following procedures are recommended test for 

reducing the conservativeness of the p-value from Fisher’s exact test.  
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3) Liebermeister's test 

To calculate the p-value, use formula as follows. 

       

































 


1ar
L

1z      

2nm

r1z

1n    

r      

1m
P                                    (2.3) 

4) Lancaster's mid-P test  

From (2.2), we may write PF or PF (a), as Lancaster’s mid-P test is Fisher’s exact test 

adjusted so the formula for the p-value is (Eyduran, 2008) 

                 2)1a(P)a(PP FFM                                                                        (2.4) 

Another procedure which based on the exact approach for comparing the equality of 

two binomial probabilities is Barnard’s exact test. For small sample size, statistically 

significant exact p-value produced by Barnard’s method is no accident and more 

powerful than Fisher’s (Lyderson et al., 2009). A brief description of this procedure is 

as follows.  

5) Barnard’s exact test 

Suppose X : X is a 2 x 2 table as in Table 2.1} 

Barnard’s test is an unconditional test. It generates the exact distribution of T(X) by 

considering all the tables X . Barnard suggested that we calculate p (  ) for all 

possible values of (0,1). Barnard’s exact p-value is defined as (Mehta and 

Senchaudhuri, 2003)                   

              PB = sup{p( ): (0,1)}                                                         (2.5) 
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Barnard’s test and a simplified version of Barnard’s test have higher power, but are 

considered too computationally intensive for practical use (Lyderson et al., 2009). 

6) Conditional Binomial Exact Test (CBET) 

This test is derived from the joint distribution of two binomial samples and 

conditioned by the estimate of the probability of success p based on the combined 

samples (Phipps, 2003) 

For more advanced analysis in testing the association in contingency table, logistic 

regression is commonly used. However, when any cells in table equal to zero, using 

the maximum likelihood estimation is not preferable. Thus, there is a procedure to 

solve this problem by using the penalized maximum likelihood estimation. The 

summary of these two procedures is as follows. 

2.2 Logistic regression  

Logistic regression is the commonly use method for analysis the association between 

dichotomous responses variables and explanatory variables, which can be either 

continuous or categorical. These models very useful since covariates can be included 

in the model to account for variability and to determine the effect of covariates on the 

response variable.  

2.2.1 Logistic Regression with Maximum Likelihood Estimation  

Consider the logistic regression model 

 Prob(yi = 1| xi, ) = 1
11 

   )}xexp({ k
r riri     (2.6) 
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With i =1, . . . , n, yi ∈ {0, 1} denoting the binary outcome variable, xi1 =1 denoting the 

constant, and xir (i =1, . . . , n; r =2, . . . , k) referring to n observations on k − 1 

independent covariates. Maximum likelihood estimates r̂  of regression 

parameters )k,...,r(r 1 , which can be interpreted as log odds ratio estimates, are 

obtained as solutions to the score equations  

0x)y()(U /Llog
n

1i
iriirr  



 where log L is the log-likelihood function 

(Heinze, 2006). 

2.2.2 Logistic regression with Penalized Maximum Likelihood Estimation (PMLE)  

In order to reduce the small bias of those estimates by maximum likelihood method. 

Firth (1993) suggested the procedure which based on the estimation on the modified 

score equations. 

U( 0)}](|)(I {)( I[ trace
2

1
)(U)* r

1
rr               (r =1,…,k)             (2.7) 

Where I( )1  is the inverse of the information matrix evaluated at . The modified 

score function U( *)r  is related to the penalized log-likelihood and likelihood 

functions. 

log L  )( I log
2

1
)(Llog)*( r      and  L       2/1

r   I  L*   

If Firth’s general idea is applied to a logistic regression model 

Prob (   
k

1r
1

ririii )}xexp(1{),x|1y  
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Then the score equation U      
n

1i iriir 0x y   is replaced by the modified 

score equation 

U   0x 
2

1
hy* ir

n
1i iiiir 

















          (r=1,…,k) 

where the hi’s are the ith diagonal elements of the ‘hat’ matrix  

H=W1/2X(XTWX)-1XTW1/2 with W = diag{i(1-i )} 

2.3 Data modification for non-convergence problem in logistic regression  

This section contains a data manipulation approach for solving the non-convergence 

problem in logistic regression, which occur when the data set contain a zero counts, 

which known as ‘separation’. This situation occur if the responses and non-responses 

can be perfectly separated by a single risk factor or by a non-trivial linear combination 

of risk factors (Albert and Anderson, 1984). There are many options for solving this 

problem as following: 

1. Omission of that risk factor from the model. 

2. Changing to a different type of model. 

3. Use of an ad hoc adjustment (data manipulation) 

4. Exact logistic regression 

5. Standard analysis with factor̂ set to a ‘high’ value. (Heinze and Schamper, 2002) 

The method suggested in this study is focused on the data modification/data 

manipulation. However, there are the previous studies related to the data manipulation 

which proposed by Clogg et al (1991) and Agresti (2002). The briefly ideas for these 

two procedure are as follows. 
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2.3.1 Data Augmentation by Clogg et al (1991) 

Let p = 


n

1i

i ny   with yi   1,0 , k is the number of parameters to be estimated. The 

basic idea is to add gk p artificial responses and (1- p )k/g artificial non-responses to 

each of the g groups of distinct risk factor patterns, and then to do a standard analysis on the 

augmented data set.  

Suppose the contingency 2 by 2 table contain counts as in Table 2.2 (A), then the 

augmented data are shown as in Table 2.2 (B). (Heinze and Schamper, 2002) 

Table 2.2: The example of contingency tables with data augmentation by Clogg et al 

(1991) (with p = 14/18, k=2, g=2) 

                               A                                                            B                                

                                     

 

 

2.3.2 Adding 0.5 to cell frequencies of contingency tables 

Suppose we have a table as shown in Table 2.1. The sample odds ratio bc/adˆ  for 

a 2 by 2 table equals to 0 or  if any cell equal to zero and it is undefined if both 

entries in a row or column are zero. Gart (1966) suggested the simple adjustment by 

replace a, b, c, d by {a+ 0.5, b+05, c+0.5 and d+0.5} in the estimator and standard 

error. In terms of bias and mean-squared error, Gart and Zweiful (1967) and Haldane 

(1956) showed that the amended estimator is 

y x 

1 2 

1 8+(14/18) 6+(14/18) 

2 0 + (4/18) 4+(4/18) 

y x 
Total 

1 2 

1 8 6 14 

2 0 4 18 

Total 8 10 18 
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)5.0c)(5.0b(

)5.0d)(5.0a(~




     (2.8) 

And log 
~

behave well (Agresti, 2002)                                        

2.3.3 Data modification method (DM) 

The DM method is another choice of data adjustment. It is similar to the standard 

approach in equation 2.1 and equation 2.2. This study introduce a new simple method 

for which the statistical significance determined by Wald’s test from logistic 

regression aligns closely with Firth’s method. The Firth procedure is the current 

method of choice for logistic regression in tables with zero cell counts (Heinze, 2009). 

The DM method is the data modification applying a duplication method similar used 

by Lynn and McNeil (1995). Suppose that there is no responses in the data table (zero 

frequency count), we assumed to observed one case by doubling the sizes of the same 

group of risk factor (explanatory variable).  

Suppose we have a data of 2 by 2 tables containing counts a, b, c, and d as shown in 

Table 2.2, which suppose c=0. Using DM method, we simply replace zero by 1 and 

doubling the corresponding cell a. For more example, let’s see the table below.  

Table 2.3: The study of testing the association between urinary tract infection (y) and 

       diaphragm used (x) 

              A                           B 

  

 

y x 

yes no 

yes 14 (a*) 123 (b) 

no 1 (c*) 109 (d) 

y x 

yes no 

yes 7(a) 123 (b) 

no   0 (c) 109 (d) 
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The example of the data in Table 2.3 show that, there are no cases of women with the 

uninfected urinary tract and use of diaphragm. With applied the DM method, the 

modified data will be shown as in Table 2.3 (B). We assumed to get one women 

without urinary tract infection by collected another seven women who using the 

diaphragm.   

2.4. Hypothesis testing and 95% confidence intervals for DM method 

In a 2 by 2 tables with counts a, b, c and d as in Table 2.3, the sample odds ratio (OR) 

ad/bcθ̂  equals 0 or   if any count is 0, then DM’s estimator of the OR for counts 

in Table 2.3 (B) is  















*cb

d *a
θ̂      (2.9) 

Logistic regression with applied the DM method provide the p-value determined by 

Wald’s test. The null hypothesis of the logistic regression model is H0: =0, testing no 

association between outcome and explanatory variables, where = log () is the  

log (OR). Then )log(ˆ bc*d*aβ  , using the Mantel Haenszel test (McNeil, 1996), 

the standard error 

SE( ̂ ) = 
d*cb*a

1111
    (2.10) 

Then the Wald’s test statistic is z=log )ˆ(SE/ β
*bc

d*a








= 

)ˆ(SE

ˆ

β

β
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However, the standard errors of the log(OR) from the DM method give a too narrow 

confidence intervals as a consequence of the increased sample size. To avoid such 

bias, we adjust the )ˆ(SE  by using the expected counts of a, b, c, d (namely, dandcba ˆˆ,ˆ,ˆ     ), 

which can be calculated as ni*I where ni is the total number for each group of 

independent variables (n1=a+c, n2=b+d) and i is the fitted probability of the 

successful outcome Y=1 for a modified data table. The new standard error is then 

calculated as  

SE( β̂ ) = 
dcba ˆ

1

ˆ

1

ˆ

1

ˆ

1
    (2.11) 



CHAPTER 3 

Applications 

This chapter present the application of the DM method with the existing methods based 

on various data structures, including the simulated data and the real data set. The 

following section were including in this chapter. First section, provide the appropriate 

methods for testing the association in 2 by 2 tables containing a zero count by comparing 

the results for the existing methods. Section 3.2, comparison the results for DM method 

to the existing method using the simulation data set. Section 3.3, illustrate the use of DM 

method by comparing the results (including p-values, standard errors of log odds ratios 

and also 95% confidence intervals) of logistic regression with maximum likelihood 

estimation (using DM method), logistic regression with penalized maximum likelihood 

estimation (Firth’s method) using the real data set. These information were appeared in 

Dureh et al (2015) and Dureh et al (2016). 

3.1 Comparing methods for testing the association in 2 by 2 tables with zero counts 

Since there are several methods available for testing the association in 2 by 2 tables. The 

main objective of this thesis is related to handle table with zero counts. Following 

example shows to handle zero counts using simulated data.  

The simulated data in Table 3.1 comprising 72 two by two tables were created based on 

the condition that one cell is always equal to zero and the rest are small counts that make 

the averaged p-value from Pearson’s chi-square test and Fisher’s exact test close to 0.05. 
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The p-value equal to 0.05 was used as a reference p-value for comparison. We selected 

these 72 tables because they cover all such tables that fail to satisfy the sample size 

requirement in Pearson’s chi-squared test that all expected counts are at least 5. These 

two methods were selected because they are most commonly preferred for testing an 

association in categorical data. Pearson’s chi-square test is the conventional method for 

testing independence and Fisher’s exact test is the preferred method when the sample 

sizes are too small. Therefore, using the averaged p-value from these two methods as a 

reference value is acceptable.  

Table 3.1: Cell counts in 72 two by two tables where one cell contains zero and which     

       gives averaged p-value close to 0.05 

Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

a 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 18 27 37 46 55 64 74 83 92 6 8 10 13 15 17 20 22 25 

Table 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

a 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 4 5 6 8 9 10 11 12 13 3 4 5 6 8 8 10 11 12 

Table 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

a 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 2 3 4 5 6 7 7 8 9 2 3 4 4 5 6 6 7 8 

Table 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

a 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 1 2 3 4 4 5 5 6 6 2 2 3 3 4 4 5 6 6 
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Figure 3.1 show that the p-values from each test not entirely consistent but almost all are 

between 0.01 and 0.2. A group including Pearson’s chi-squared test with the continuity 

correction, Pearson’s uncorrected chi-squared with Monte Carlo simulation test, Fisher’s 

exact test as well as Barnard’s test give p-values higher than 0.05. Pearson’s uncorrected 

chi-squared test and Liebermeister's test tend to give p-values lower than 0.05 and tend to 

increase when sample size is increased. CBET, Lancaster mid-P test and Penalized 

maximum likelihood estimates gave p-values close to 0.05. There were no outliers distant 

from 0.05.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: p-values from the recommended tests using data in two by two tables with c= 0 
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3.2 DM method for simulation 2 by 2 tables 

3.2.1 Comparison the p-values from DM method to the existing method 

To illustrate the used of the DM method, we simulate the 2 by 2 contingency tables. Each 

table contains at least one zero count. The counts a, b and d are generated from 

independent Poisson distribution with specific means equal to N*(1-, 1-, ) for N=10, 

25, 50 and 3N  . However, c was forced to be a zero count since our purpose is to 

study the use of the DM method. The choice 3N  provides tables in which group 1 

has an expected 3 cases with positive outcomes. Hence, outcome d has corresponding 

expected value 3 in all simulations. In both groups, the outcomes were generated with 

corresponding rates of negative results (i.e. 70% probability). We conditioned on the final 

cell count c being 0.  The expected number 3 is towards the upper limit for a confidence 

interval for the cell mean given that 0 counts have occurred. 

Figure 3.2 shows the level of agreement of the p-values from DM method, Fisher’s exact 

test Lancaster’s mid-p test, Agresti’s method and Clogg’s method are compared to p-

values for Firth’s method. The majority of p-values from DM method fall close to the line 

of identity with Firth’s p-values, for which the two p-values agree exactly. Agresti’s 

method and data augmentation by Clogg’s tends to have a larger p-values compare to 

Firth’s. Similar to Fisher’s exact test and Lancaster’s mid-P test also giving a larger p-

values when compare to Firth’s. This is consistent with Fisher’s test being more 

conservative than Firth’s test.  
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0.01 0.02 0.05 0.10 0.20 0.50 1.00
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N1=N2= 25

P-value
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Lamda= 3
N1=N2= 50

Figure 3.2: P-values from Fisher’s exact test, Lancaster’s mid-p test, Agresti’s method, 

DM method and Clogg’s data augmentation compared with Firth’s method. 

Figure 3.3 shows the differences of the p-values for those previous methods with Firth’s. 

This finding confirm that the DM method give the closest p-values with Firth’s method. 

While the p-values for Clogg’s method have a big difference with Firth’s. Even though, 

the DM and Clogg’s are using the similar approach.  

 

 

 

 

 

Figure 3.3: The differences of the p-values from Fisher’s exact test, Lancaster’s mid-p 

test, Agresti’s method, DM method and Clogg method compared with Firth’s method. 
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3.2.2 Comparison the percentages of correctly identified p-values 

The 2 by 2 tables were obtained by generating binomial random numbers using R 

software. Suppose we have a binary response variable where Y=1 denotes a success and 

Y=0 otherwise. We also have a binary covariate X, also with values 0 or 1. If pij is the 

probability of a successful outcome, P(Y|X), the logistic regression model is given by: 

                                                                                     

                                                                                                                                        (3.1) 

 

And         Logit (pij) = β0 +β1 X                                                           (3.2) 

The logistic regression model for a 2 by 2 table can be shown as in Table 3.2: 

Table 3.2: The general probabilities given by logistic regression model 

Y 
X 

1 0 

1 P(Y=1|X=1) P(Y=1|X=0) 

0 1-P(Y=1|X=1) 1- P(Y=1|X=0) 

If β1=0 in equation (3.2), then the rows and columns of the 2 by 2 table are independent. 

In the following we simulate data based on condition β1=0 and β0=-3, for example. Using 

equation (3.2), the pij for this independent model may represented by Table 3.3. 

Table 3.3: The probabilities given by the logistic regression model, using β1=0, β0=-3 

Y 
X 

1 0 

1 0.0474 0.9526 

0 0.9526 0.0474 

Moreover, we also simulate data tables where the row and columns are dependent/nearly 

independent. According to the logistic regression model, we calculate the pij using 

X

X

e

e
XYP

10

10

1
)|(
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β1=0.5, β0=-3 to generate another set of tables. Table 3.4 below is in accordance with this 

model. 

Table 3.4: The probabilities given by logistic regression model using β1=0.5, β0=-3 

Y 
X 

1 0 

1 0.0759 0.9526 

0 0.9241 0.0474 

The sample sizes of the simulated data sets vary from 10 to 100 with equal sizes for 

groups X=0 and X=1. For the purposes of this study, only the data from tables which 

include zero counts are selected. An example of data tables is shown in Table 3.5 (A) 

with different sample sizes for X=1 and X=0 and the corresponding data tables after data 

modification (DM) are shown in Table 3.5 (B). 

Table 3.5: The counts in simulated 2 by 2 tables which include zero counts (A) and 

corresponding tables (B) modified according to the DM method 

              A                              B   

 

 

 

 

 

 

 

 

Table ID a b c d 

 1 10 10 0 0 

2 9 10 1 0 

3 10 9 0 1 

4 8 10 2 0 

:     

:     

103 100 96 0 4 

104 96 100 4 0 

105 100 97 0 3 

106 94 100 6 0 

107 100 95 0 5 

108 97 100 3 0 

Table ID a b c d 

1 20 20 1 1 

2 9 20 1 1 

3 20 9 1 1 

4 8 20 2 1 

:     

:     

103 200 96 1 4 

104 96 200 4 1 

105 200 97 1 3 

106 94 200 6 1 

107 200 95 1 5 

108 97 200 3 1 
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Figure 3.4 shows the percentages of correctly identified the p-value for DM method, 

Lancaster’s mid-P test and Firth’s method. Figure 3.4 (A) shows the percentage of three 

methods correctly identified that the explanatory variable (X) and outcome (Y) variable 

are dependent, that is the test produced a p-value less than 0.05. The DM method yielded 

the highest percentage (approximately 46%) of correct identification of dependence, 

Lancaster’s mid-P test and Firth’s method correctly identified dependence in 38 percent 

and 41 percent of cases, respectively. 

Figure 3.4 (B) shows the results for the data where the explanatory variable (X) and 

outcome (Y) variable are assumed to be independent. We found that Firth’s method 

correctly identified the highest percentage, approximately 81 percent of independent 

cases the p-values, while the DM method correctly identified only 63 percent. 

                       A (Dependent model)                                         B (Independent model) 

 

 

 

 

 

 

 

Figure 3.4: Percentages times the methods correctly identified p-values  
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3.3 DM method for real data set (2 by n table) 

For more illustration, we applied the DM method with the data set based on the Thai 

2005 Verbal Autopsy (VA) study (Rao et al, 2010) for correcting misreported cause of 

death for children under five. The data consists of one determinant, DR.hGrp, which is 

the combined variable of reported cause of death and place of death (inside/outside 

hospital). The binary outcome is whether the child died from congenital (chapter Q) 

causes versus other causes. These data are listed in the left panels of Table 3.6 with 

modified data for using the DM method asterisked in the right panel. 

Table 3.6: Number of child deaths from congenital and other causes 

 

DR.hGrp 

Cause of deaths Cause of deaths* 

Other  Congenital Other  Congenital 

Perinatal inside hospital 9 3 9 3 

Congenital inside hospital 3 0  6*   1* 

External+  inside hospital 18 25 18 25 

All causes outside hospital    21 24 21 24 

*Modified data using DM method. 

In comparison, we found that DM, Clogg data augmentation and adding 0.5 to each cell 

by Agresti are return the similar results for the coefficients, standard errors and p-values 

to Firth’s method. However, for DM method, we have to re-calculate the standard error 

for the coefficient (with the asterisk in Table 3.7) according to the increasing number of 

sample sizes. 

 



3
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Table 3.7: Logistic regression analysis of number of child deaths from congenital and other causes 

 

Variable 

Firth’s method  DM  Clogg’s    Agresti’s  

coef se(coef) p-value coef se(coef) p-value coef se(coef) p-value coef se(coef) p-value 

Intercept -0.999 0.651 0.089 -1.099 0.667 0.099 -1.045 0.648 0.105 -0.998 0.625 0.110 

Perinatal   

inside hospital 
0   -   -  0   -   - 

 

0 

 

- 

 

- 

 

- 

 

- 

 

- 

Congenital 

inside hospital 
-0.947 1.863 0.531 -0.693 1.792* 0.585 

 

-1.509 

 

2.164 

 

0.486 

 

-0.947 

 

1.636 

 

0.563 

External+  

inside hospital 1.319 0.720 0.046 1.427 0.735 0.052 

 

1.369 

 

0.714 

 

0.055 

 

1.319 

 

0.696 

 

0.058 

All causes 

outside hospital 1.129 0.716 0.087 1.232 0.731 0.092 

 

1.177 

 

0.710 

 

0.097 

 

1.129 

 

0.692 

 

0.103 

Note: The standard error with asterisk (*) is the adjusted standard errors.  
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3.4 DM method for real data set (2 by 2p table) 

This illustration considered on the data structure with one binary outcome and many 

binary explanatory variables. The case-control study of Foxman et al (1997) examines 

urinary tract infection related to age and contraceptive use. The data set consists of 130 

college women with urinary tract infections and 109 uninfected controls, and includes 

binary covariates age (age), oral contraceptive use (oc), condom use (vic), lubricated 

condom use (vicl), spermicide use (vis) and diaphragm use (dia). There are no cases of 

women with the uninfected urinary tract and use of diaphragm. This is an example of an 

aggregated data set where one cell has a zero count. The data are available in the package 

logistf of the R program (Heinze and Ploner, 2004). 

As mentioned in the chapter 1 for the numerical problem in logistic regression. Table 3.8 

shows the results given by logistic regression with the data set contain zero counts. 

Variable dia return a very large standard error which leading to an infinite 95% 

confidence intervals.  
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Table 3.8: Logistic regression analysis of condom use and first-time urinary infection     

       study for original data 

Variable coef SE(coef) OR(95% CI) p-value 

Intercept 0.13 0.49 1.14 (0.44, 2.97) 0.794 

age -1.16 0.43 0.31 (0.13,0.73) 0.007 

oc -0.07 0.45 0.93 (0.38, 2.24) 0.870 

vic 2.41 0.57 11.09 (2.63, 33.86) <0.001 

vicl -2.25 0.56 0.11 (0.04, 0.32) <0.001 

vis -0.82 0.42 0.44 (0.19, 1.01) 0.052 

dia 16.73 799.43 18517467.13 (0,Inf) 0.983 

When the data were applied with DM method, the logistic regression model provide a 

better results for those coefficients, standard error, 95% confidence interval and including 

p-values. Both DM method and Firth’s method give a similar results. Factors age, vic, 

vicl and dia are associated with urinary tract infection with p-values less than 0.05. 

However, when the standard errors of the log odds ratio in the model are considered, the 

DM method gives smaller estimates of effects and standard errors and correspondingly 

shorter 95% confidence intervals than those for Firth’s method as shown in Table 3.9. 
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Table 3.9: Logistic regression analysis of condom use and first-time urinary infection study for DM method and Firth’s method 

Variable 

DM  Firth’s method  

coef SE(coef) OR (95% CI) p-value coef SE(coef) OR (95% CI) p-value 

Intercept 0.21 0.48 1.23 (0.48, 3.15) 0.659 0.12  0.49 1.13 (0.44, 2.92) 0.802 

age -1.07 0.39 0.34 (0.16,0.75) 0.007 -1.11 0.42 0.33 (0.14,0.76) 0.006 

oc -0.15 0.43 0.86 (0.37,2.02) 0.731 -0.07 0.44 0.93 (0.39,2.23) 0.875 

vic 2.04 0.51 7.72 (2.85,20.94) <0.001 2.27 0.55 9.67 (3.30,28.33) <0.001 

vicl -1.92 0.50 0.15 (0.06,0.39) <0.001 -2.11 0.54 0.12 (0.04,0.35) <0.001 

vis -0.81 0.41 0.45 (0.20,1.00) 0.048 -0.79 0.42 0.45 (0.20,1.03) 0.054 

dia 1.16 1.04 3.18 (0.41,24.54) 0.052 3.10 1.67 22.11(0.83,589.36) 0.005 

 



CHAPTER 4 

Conclusion and Discussion 

This chapter comprising two sections, first section 4.1 includes discussion and 

conclusion of the study. Section 4.2, and 4.3, mention about the limitation and 

recommendation of the study, respectively. 

4.1 Conclusion and discussion 

This study introduced an alternative method for solving the problem of non-

convergence in logistic regression when the two by two table contain a zero count. 

This problem is widely known but need to use special statistical package which 

conducted by Firth (1993). Therefore, this thesis suggest the simpler way which 

involved the data modification by replace the zero count by one and doubling the 

corresponding non-zero counts, called as “data modification (DM)” method. Using 

logistic regression applying the DM method yeilds a similar results (p-values) with 

Firth’s method. Firth’s method is the recommended method for solving the non-

convergence problem in logistic regression (Heinze and Schemper, 2002; Eyduran, 

2008). 

This DM method uses logistic regression with the maximum likelihood estimates, the 

well-known method for parameter estimation and has the advantage of not requiring 

specialized statistical software. The DM method might also be applicable with 

continuous covariates, but this possibility needs to be considered in further study 

comparing methods. 
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The user should be aware too of the potential bias of DM as an estimator of the log-

OR and its standard error (underestimated). This bias occurs in tables of small cell 

counts, including the situation of separation. It is known that the Wald test and 

confidence interval become unsuitable (Heinze and Shemper, 2002). However, the 

DM estimator holds the correct level of significance in the association, as judged by 

Firth’s method. In examples other than small 2 by 2 tables this bias was less evident, 

as regression coefficients as well as SE’s more closely agreed. Thus, we may 

conclude that the DM method is useful and preferable for solving the non-

convergence problem in logistic regression.  

4.2 Recommendation of study 

1. This study does not compare any actual bias of the estimated parameter between 

DM method and other existing methods. This point should be staged in the next study. 

2. The DM method is appropriate handing zero counts, especially in Randomize 

Controlled Trial (RCT), rare diseases and other clinical data set.  

 4.3 Limitation of study 

The application of DM method in this study is based the categorical covariates and 

has not been applied with continuous covariates. The DM method might also be 

applicable with continuous covariates, but this possibility needs to be considered in 

further study. 
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Comparing Tests for Association in Two by Two Tables with Zero 

Cell Counts 
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ABSTRACT 

This study compared the tests for association in two by two tables with zero cell counts. 

Pearson’s uncorrected chi-squared test, Pearson’s chi-squared test with the continuity 

correction, Pearson’s uncorrected chi-squared Monte Carlo simulation test, Fisher’s 

exact test, the Conditional Binomial Exact Test (CBET), Barnard’s exact test, 

Liebermeister’s test, Lancaster’s mid P-test and logistic regression with penalized 

maximum likelihood were considered. Criteria used 72 two by two tables with smallest 

counts and average p-value for Fisher’s exact test and Pearson’s uncorrected chi-

squared test close to 0.05. CBET, Lancaster’s test, and the penalized maximum 

likelihood test give similar p-values closest to 0.05, suggesting that these three methods 

can be recommended for testing association in two by two tables with zero cell counts. 

Keywords: zero cell, two by two table, association. 
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1. INTRODUCTION 

Several methods have been recommended for analysis of association in two by two 

tables. The most common test is Pearson’s chi-squared test, which is appropriate for 

sufficiently large sample sizes. It is inaccurate if any expected count is less than five 

[1, 2, 3]. In cases of small sample sizes, Fisher’s exact test is recommended  [1, 2, 3]. 

This method eliminates the nuisance parameter in the model under the null hypothesis 

by conditioning on its marginal totals [4] but is conservative. Another way to reduce 

the conservatism of Fisher’s exact test is to consider an unconditional approach, such 

as Barnard’s test, which eliminates the nuisance parameter by taking its supreme 

value over all possible values in the space of the null model [5, 6]. Several alternative 

tests also have been proposed [7]. These include Lancaster’s mid-P test [8], an 

adjustment to the Fisher’s exact test that tends to have increased power while 

maintaining a Type I error rate close to the nominal level [7, 9]. The Liebermeister’s 

test also can be used in place of Fisher’s exact test, and is less conservative than 

Fisher’s test and just as easy to calculate [3]. In addition, the “conditional binomial 

exact test” (CBET) is proposed as an alternative test for comparing binomial 

proportions estimated from samples of larger populations [10].  

Logistic regression provides a more general method because it provides a model that 

accommodates more complex determinants. However, when one of the four cells in 

the two by two table is equal to zero, maximum likelihood estimates fail to converge 

[3, 5, 7, 10, 11, 12, 13]. A solution to this problem was proposed by Firth [14], giving 

finite parameter estimates based on penalized maximum likelihood [14, 15, 16, 17, 

18]. This method is available in statistical software such as SAS, S-PLUS and R [17, 
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19].  However, these estimates are biased away from zero [16], so it is important to 

know how substantial these biases are. 

Tables with zero cell count thus lead to numerical problems [20], so it is important to 

identify the methods which provide the most accurate results for particular data 

structures. With this information, researchers can select the appropriate method for 

their studies. Thus the main objective of this study was to compare the results when 

using recommended tests for association in two by two tables with small zero cell 

counts.  

2. MATERIALS AND METHODS 

Tests for an association in two by two table 

There are several methods for testing the association in 2 by 2 tables. Suppose that the 

2 by 2 table contain counts as in Table 1, a brief summary of computing a p-value of 

these tests describes as follows. 

Table 1: The general counts of a 2 by 2 table. 

  j  

  1 2 Total 

i 1 a b m 

 2 c d n 

 Total    z   v    m+n 
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Pearson’s uncorrected chi-squared test  

The functional form of this test is  

d)c)(bb)(ab)(c(a

2bc)n(adm2
p
χ




     (1) 

In general, the p-value is defined as the probability of the test statistic T being equal to 

or more extreme than its value for the observed table (tobs), therefore, the approximate 

p-value for Pearson’s chi-squared test is [6] 

p-value = )tP(χ obs
2   

Pearson’s chi-squared test with the continuity correction (Pearson’s CC) 

A continuity correction for the Pearson’s chi-squared test was proposed by Yate (1984). 

The corresponding formula for Pearson’s CC test is 

d)c)(bd)(ab)(c(a

)2n/bc)n(abs(ad
χ

2
2

PCC



 .                                              (2) 

Pearson’s uncorrected chi-squared test with Monte Carlo Simulation 

This test uses a reference set of 10,000 samples to compute the p-value for Pearson’s 

uncorrected chi-squared test in (1) 

Fisher’s Exact Test  

The Fisher’s Exact P-value is obtained by conditioning on the observed total 

successes [3]. If r is the observed value in 2 by 2 table, which can be greater or equal 

to cell a, thus the formula is  
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Alternative test statistics which can be used in place of Fisher’s exact test with small 

counts are as follows. 

Liebermeister's test 

This test is the quasi-exact test for two binomials. It proposed by adjusting the 

observed table and can be obtained by hand calculator very simply as the formula  
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Lancaster's mid-P test  

From (2), we may write Fisher’s Exact P-value as PF or PF (a). As Lancaster’s mid-P 

test is Fisher’s exact test adjusted so the formula for this p-value is [3]. 

      21)a(P)a(PP FFM                                                                 (5) 

Barnard’s exact test 

Suppose  = {X: X is a 2 by 2 table as in Table 1} 

Barnard’s exact test is an unconditional test. Suppose T(X) is a “discrepancy 

measure” or test statistic that measures how discrepant any table X is relative to the 

type of table one would expect under the null hypothesis. It generates the exact 

distribution of T(X) by considering all the tables X . If p (  ) is the exact p-value 

for any given  , Barnard suggested that we calculate p(  ) for all possible values of 
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(0,1) and choose the value   which maximized p( ), thus, Barnard’s exact p-

value is defined as [2]                     

   PB = sup {p ( ):(0,1)}                                 (6) 

Conditional Binomial Exact Test (CBET) 

This test is derived from the joint distribution of two binomial samples and 

conditioned by the estimate of the probability of success p based on the combined 

samples [10] 

Data Simulation 

Data comprising 72 two by two tables were created based on the condition that one 

cell is always equal to zero and the rest are small counts that make the averaged 

p-value from Pearson’s chi-square test and Fisher’s exact test close to 0.05. We 

selected these 72 tables because they cover all such tables that fail to satisfy the 

sample size requirement in Pearson’s chi-squared test that all expected counts are at 

least 5. We selected these two methods because they are most commonly preferred for 

testing an association in categorical data. Pearson’s chi-square test is the conventioned 

method for testing independence and Fisher’s exact test is the preferred method when 

the sample sizes are too small. Therefore, using the averaged p-value from these two 

methods as a reference value is acceptable.  
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Table 1: Cell counts in 72 two by two tables where one cell contains zero and which 

gives averaged p-value close to 0.05. 

Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

a 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 18 27 37 46 55 64 74 83 92 6 8 10 13 15 17 20 22 25 

Table 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

a 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 4 5 6 8 9 10 11 12 13 3 4 5 6 8 8 10 11 12 

Table 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

a 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 2 3 4 5 6 7 7 8 9 2 3 4 4 5 6 6 7 8 

Table 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

a 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

d 1 2 3 4 4 5 5 6 6 2 2 3 3 4 4 5 6 6 

The nine methods used for testing association in the two by two tables were Pearson’s 

uncorrected chi-squared test,  Pearson’s chi-squared test with the continuity correction 

(Pearson’s CC), Pearson’s uncorrected chi-squared test with Monte Carlo Simulation, 

Fisher’s exact test, Liebermeister's test, Lancaster's mid-P test , Barnard’s exact test, 

Conditional Binomial Exact Test (CBET) and Logistic regression with penalized 

maximum likelihood estimates. The reference p-value used was p=0.05 based on the 

average p-value of Pearson’s uncorrected chi-squared test and Fisher’s exact test.  

3. RESULTS  

The p-values from the nine methods applied to tables 1-36 are shown in Figure 1 and 

Figure 2 shows p-values from tables 37 - 72. The solid line represents p-values equal 

to 0.05 and each dotted line denotes p-values for each test.  
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The p-values from each test not entirely consistent but almost all are between 0.01 

and 0.2. A group including Pearson’s chi-squared test with the continuity correction, 

Pearson’s uncorrected chi-squared with Monte Carlo simulation test, Fisher’s exact 

test as well as Barnard’s test give p-values higher than 0.05. Pearson’s uncorrected 

chi-squared test and Liebermeister's test tend to give p-values lower than 0.05 and 

tend to increase when sample size is increased. CBET, Lancaster mid-P test and 

Penalized maximum likelihood estimates gave p-values close to 0.05. There were no 

outliers distant from 0.05 for any of these three methods. 

 Figure 1: P-values from the recommended tests using data in two by two tables with c= 0       

 and a is 1, 2, 3 and 4.  
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 Figure 2: P-values from the recommended tests using data in two by two tables with c= 0 

 and a is 5, 6, 7 and 8.  

For comparison, Table 2 displays the average p-values of 72 tables from those nine 

tests. It is clear that Lancaster’s mid-P test, the Conditional Binomial Exact Test 

(CBET) and penalized maximum likelihood gave p-values closest to 0.05 thereby 

providing the most exact results, at least when averaged. Pearson’s uncorrected chi-

squared test and Liebermeister’s test gave averaged p-values lower than 0.05. On the 

other hand, Fisher’s exact test, Pearson’s chi-squared test with the continuity 

correction, Pearson’s uncorrected chi-squared with Monte Carlo simulation test and 

Barnard’s exact test gave large biases. All tended to have a large p-value.  

Table 2 Average p-values from nine recommended tests for testing the association in 

two by two tables with zero cell count.  

Test Averaged p-value  

Pearson’s uncorrected chi-square 

Pearson’s corrected chi-square 

0.0320 

0.1528 

Pearson’s uncorrected chi-square Monte Carlo Simulation 0.0970 

Fisher’s exact test 0.0939 

Conditional Binomial Exact Test (CBET) 0.0469 

Barnard’s exact test 0.0694 

Liebermeister's test 

Penalized Maximum Likelihood 

0.0332 

0.0478 

Lancaster's mid-P test  0.0501 
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Child Deaths from Perinatal Originating Conditions on Thai Provinces Example 

The data shown in Table 3 are the numbers of child deaths from perinatal originating 

conditions separated groups of provinces, based on the Thai 2005 Verbal Autopsy (VA) 

study [21, 22, 23, 24]. With the question “Is the number of deaths from perinatal 

originating conditions in Chumporn province are different from other provinces in 

Thailand ? ”. The results are shown in Table 4.  

Table 3: Number of child death from perinatal originating conditions by province 

Provinces 
Cause of death 

Total 
Other Perinatal  

Other 84 59 143 

Chumporn 6 0 6 

A p-values from those nine recommended tests show that the tests including Pearson’s 

uncorrected chi-square test, CBET, Liebermeister’s test and Penalized Maximum 

Likelihood gave the significance results with p-values 0.0429, 0.0483, 0.0423 and 

0.0441, respectively. Meaning that Chumporn province have the number of child deaths 

from perinatal originating conditions different from other provinces.  
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Table 4 Average p-values from nine recommended tests for testing the association of 

provinces and child death from perinatal originating conditions 

Test Averaged p-value  

Pearson’s uncorrected chi-square 

Pearson’s corrected chi-square 

0.0429 

0.1100 

Pearson’s uncorrected chi-square Monte 

Carlo Simulation 

0.0838 

Fisher’s exact test 0.0815 

Conditional Binomial Exact Test (CBET) 0.0483 

Barnard’s exact test 0.0541 

Liebermeister's test 

Penalized Maximum Likelihood 

0.0423 

0.0441 

Lancaster's mid-P test  0.0588 

 

4. CONCLUSION AND DISCUSSION 

This study compared the accuracy of nine separate tests of the association in two by two 

tables, where one cell contained a zero count, using a reference p-value equal to 0.05. 

When comparing the individual p-value with the reference p-value, most of the tests gave 

p-values in the range from 0.01 and 0.2. This study showed that the methods of Pearson’s 

chi-squared test and Fisher’s exact test were not appropriate for this condition of a zero 

count in a two by two tables, because of the high p-values resulting from their 

application. 

Lancaster’s mid-P test, Conditional Binomial Exact Test and method of penalized 

maximum likelihood estimates were identified as acceptable and clearly preferable in 

testing the association in two by two tables with zero counts. These three methods 

consistently produced results close to the reference (p=0.05), in average as shown in 

Table 2 and in range as shown in Figure 1 and 2.  
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For CBET, this conforms to the finding by Rice (1988) that CBET can be used in place of 

Fisher’s exact test when analyzing contingency tables that compare binomial proportions 

estimated from samples of larger populations. In addition, this study can also recommend 

the use of Lancaster’s mid-P test and Penalized maximum likelihood estimates. The three 

methods, Conditional Binomial Exact Test, Lancaster’s mid-P test and penalized 

maximum likelihood estimates can be recommended in cases of testing the association in 

two by two tables with zero cell counts. Since the main objective of this study was not 

identify the best method but to compare the results when using recommended tests for 

association in two by two tables, this study can not be concluded which method is the 

best. The researchers have to considered due to many conditions, for example, the 

important of data, software avaiability, simplicity of calculation, the situation of each 

study etc.   
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Abstract 

This paper introduces an alternative method for solving a problem of non-convergence in 

logistic regression. The method does not require any special software to be developed. It 

simply involves modifying the data by replacing the zero count by 1 and doubling a 

corresponding non-zero count. The method is compared with that based on penalized 

likelihood suggested by Firth. Results show that the data modification method provides 

statistical significance of associations similar to Firth’s method while using standard 

logistic regression output. 

Keywords: zero cell count, logistic regression, data modification 

1. Introduction 

The method we propose extends results given in Dureh et al (2014), where several 

methods for testing association in two-by-two tables containing at least one small count 
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(possibly zero) were compared. The result showed that the Conditional Binomial Exact 

Test (Rice, 1988), Lancaster’s mid-P test (Biddle and Moris, 2011) and the penalized 

maximum likelihood (Firth, 1993) had similar power in testing association in tables with 

small marginal totals. In this study, we consider more general situations with a binary 

outcome and one or more determinants, each of which is a factor with two or more levels. 

With such data, grouping into a contingency table of counts and logistic regression is 

commonly used to fit a model. However, when the contingency table has at least one cell 

containing a zero count, the method may fail to converge (Aitkin and Chadwick, 2003; 

Albert and Anderson, 1984; Bester and Hansen, 2005; Eyduran, 2008).  

A penalized likelihood (PL) procedure to solve this problem for generalized linear 

models was proposed by Firth (1993) and further studied by Heinze (2006, 2009) and 

Heinze and Shemper (2002) in logistic regression. Since this method requires special 

software we considered the possibility of simply modifying the data rather than the 

method. Lunn and McNeil (1995) used a similar approach for modeling competing risks 

in survival analysis. Agresti (2002) and Clogg et al (1991) also recommend data 

modification in preference to new methodology when cell counts are small or data 

incomplete. 
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2. Methodology  

Logistic regression model 

Suppose Y is a binary response variable where Y=1 denotes an outcome successes (e.g. 

present of disease) and Y=0 otherwise (absent of disease). We also have a set of 

covariates X= (x1,x2,…xp), which can be discrete, continuous or a combination. If  is the 

probability of a successful outcome, Pr(Y=1|X), the logistic regression model is given by: 

 

or                           logit (  ) = log (




-

 

1
) = 0 + x + ... + pxp 

In this study we demonstrate the use of DM method for logistic regression with the 

categorical covariates and extend results for 2x2 tables to 2x2p, and similar tables of 

summary counts.  

Data modification (DM) 

The data modification method (DM) is improved from the standard approach suggested 

by Agresti (2002). In a 2 by 2 table with counts a, b, c and d as in Table 1A, the sample 

odds ratio bc/adˆ   equals 0 or  if any count is 0, then Agresti’s estimator of the OR 

is 

)5.0c)(5.0b(

)5.0d)(5.0a(ˆ



  



))pxp...1x10(exp(1
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To deal with such kind of problem in logistic regression, we introduce a new simple 

method for which the statistical significance determined by Wald’s test from logistic 

regression aligns closely with Firth’s method. The Firth procedure is the current method 

of choice for logistic regression in tables with zero cell counts (Heinze, 2009); it removes 

the O(n-1) asymptotic bias of the maximum likelihood estimator of the log( ̂ ). Coverage 

rates of its confidence intervals are shown to be close to nominal values.  

Our DM adjustment is similar to Agresti’s approach. The modified table is that shown in 

Table 1B after replacing the original cell entries a, c by a* and c*, while b and d remain 

the same as indicated in table 1. Hence ̂  = a*d/bc* with a*=2a and c*=1 for the data of 

Table 1A.  

Table 1: The general counts of a two-by-two table with a zero count (1A) and modified 

table (1B). 

                     1A                                                                                      1B         

 

 

 

The p-values for testing no association between outcome and explanatory variables with 

the DM method is then calculated by logistic regression, testing a null hypothesis, H0:  = 

response (y) 
group (x) 

1 0 

1(negative) a b 

0 (positive) c=0 d 

response (y) 
group (x) 

1 0 

1(negative) a*= a+a b 

0 (positive)  c*=1 d 
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0, where  = log (  ) is the log(OR). Then ̂ = log (
*cb

d*a




). Using the Mantel Haenszel 

test (McNeil, 1996), the standard error SE( ̂ ) = 
d*cb*a

1111
                                                   

Then the Wald’s test statistic is z = log (
*cb

d*a




) / SE =

)ˆ(SE

ˆ




 

However, the standard errors of the log OR from the DM method give incorrect 

confidence intervals as a consequence of the increased sample sizes. To avoid such bias, 

we adjust the SE( ̂ ) by using the expected counts of a, b, c, d (namely, dandcba ˆˆ,ˆ,ˆ     ), 

which can be calculated as ni*i where ni is the total number for each group of 

independent variables (n1=a+c, n2=b+d) and i is the fitted probability of the successful 

outcome Y=1 for a modified data table. The new standard error is then calculated as  

SE( ̂ ) = 
dcba ˆ

1

ˆ

1

ˆ

1

ˆ

1
  

This method generalizes readily to logistic regression models which test the association 

of categorical explanatory variables with a binary outcome (termed “positive” or 

“negative”) where a zero “positive” count has occurred for some cell within the covariate 

cross-classification, so that a complete separation of outcomes can be achieved and 

logistic regression fails to converge (Heinze, 2009). In such cases DM replaces the zero 

count by 1, and doubles all other cell counts with negative outcomes for the same 

explanatory variables that correspond to the zero. Then the output from logistic 

regression of the modified data is used for inference.  
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3. Results  

Example 1: Constructed data set 

To illustrate this procedure in 2 by 2 tables, we construct a zero count data set (1A) and a 

modified data set (1B). The constructed data set consisted of 36 two-by-two tables with 

n1>4 and two properties: at least one cell contains a zero count; and, the p-value from 

Firth’s method was close to 0.05 (between 0.01 and 0.10). 

Each table contains a zero cell and other small counts. These tables fail to satisfy the 

assumption in Pearson’s chi-squared test and also give infinite parameter estimates when 

using logistic regression. We applied our proposed method to these data and then 

compared the results with other commonly used tests of associations, including, Fisher’s 

exact test, (Seneta and Phipps, 2001), Lancaster’s mid-P test, Agresti’s method adding 

0.5 to each cell and Firth’s method. 

P-value for test association in two-by-two tables with zero cell counts. 

Figure 1 shows p-values given by (a) Firth’s method, (b) logistic regression using the DM 

method, (c) Fisher’s exact test, (d) Lancaster’s mid-P test and (e) the method suggested 

by Agresti. Logistic regression with the DM method usually agrees closely in p-values 

with Firth’s method and tends to track the p-values of Firth’s method. In comparison, the 

method suggested by Agresti, the Fisher’s exact test and Lancaster’s mid-P test have 

higher P-values, consistent with them being more conservative tests of association in 2 by 

2 tables (see Seneta and Phipps, 2001). Our findings suggest that the DM method is an 



67 
 

 
 
 

appropriate alternative to Firth’s method for judging statistical significance of 

associations in more general logistic regression when zero counts occur in the response 

variable.  

 

Figure 1: P-values of test for independence in two-by-two tables with a zero count for 36 

tables with specified values of the counts (a, b, c, d). 

Comparison of standard errors  

Standard errors of the log odds ratio are used to compare the accuracy of methods as 

shown in Figure 2. The standard errors for the DM and Agresti’s method are a little 

smaller than those for the Firth’s procedure. The small standard errors provide narrower 

limits for confidence intervals. Corresponding results were found in the study of Gart and 
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Thomas (1972), which concluded that confidence interval for log odds ratio in logistic 

regression are generally too narrow, especially when the sample sizes are small.  

 

Figure 2: Standard error of log odds ratio of test for independence in two-by-two tables 

with a zero count for 36 tables with specified values of the counts (a, b, c, d). 

Example 2: Comparison of p-values using a simulation data set 

Data for 2 by 2 table frequencies were simulated using the Poisson and Binomial 

distributions. In the first case, counts a, b, and d are generated from independent Poisson 

distribution with specific means equal to N*(1-, 1-, ) for N=10, 25, 50 and 

3N  . However, c was forced to be a zero count since our purpose is to study the 

use of the DM method. In addition, we also simulated the data table using the Binomial 

distribution with the same expected values for counts a, b, d, and sample sizes.  
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The choice 3N  provides tables in which group 1 has an expected 3 cases with 

positive outcomes. Hence, outcome d has corresponding expected value 3 in all 

simulations. In both groups, the outcomes were generated with corresponding rates of 

negative results (i.e. 70% probability). We conditioned on the final cell count c being 0.  

The expected number 3 is towards the upper limit for a confidence interval for the cell 

mean given that 0 counts have occurred. 

Figure 3 shows the level of agreement of the p-values from DM method, Fisher’s exact 

test and Lancaster’s mid-p test are compared to p-values for Firth’s method. The upper 

panel graphs provide the results for the data tables simulated from the Poisson 

distribution, and the lower panel graphs are the results for the data tables simulated from 

the Binomial distribution. For either distribution, the majority of p-values from DM 

method fall close to the line of identity with Firth’s p-values, for which the two p-values 

agree exactly. In comparison the other two methods, Fisher’s exact test and Lancaster’s 

mid-P test tends to have a larger p-values compare to Firth’s. This is consistent with 

Fisher’s test being more conservative than Firth’s test.  
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Figure 3: P-values from Fisher’s exact test, Lancaster’s mid-p test and DM method 

compared with Firth’s method 

Example 3: Condom use and first-time urinary tract infection study 

The case-control study of Foxman et al (1997) examines urinary tract infection related to 

age and contraceptive use. The data set consists of 130 college women with urinary tract 

infections and 109 uninfected controls, and includes binary covariates age (age), oral 

contraceptive use (oc), condom use (vic), lubricated condom use (vicl), spermicide use 

(vis) and diaphragm use (dia). There are no cases of women with the uninfected urinary 

tract and use of diaphragm. This is an example of an aggregated data set where one cell 

has a zero count. The data are available in the package logistf of the R program (Heinze 
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and Ploner, 2004). Comparing logistic regression results with DM and Firth’s method 

gives results as shown in Table 2.  

Table 2: Logistic regression analysis of condom use and first-time urinary infection study 

Variable 

DM  Firth’s method  

coef SE(coef) 
OR 

(95% CI) 
p-value coef SE(coef) 

OR 

(95% CI) 
p-value 

    age 
-1.07 0.39 0.34 

(0.16,0.75) 

0.007 -1.11 0.42 0.33 

(0.14,0.76) 

0.006 

oc -0.15 0.43 0.86 

(0.37,2.02) 

0.731 -0.07 0.44 0.93 

(0.39,2.23) 

0.875 

vic 2.04 0.51 7.72 

(2.85,20.94) 

<0.001 2.27 0.55 9.67 

(3.30,28.33) 

<0.001 

vicl -1.92 0.50 0.15 

(0.06,0.39) 

<0.001 -2.11 0.54 0.12  

(0.04,0.35) 

<0.001 

vis -0.81 0.41 0.45  

(0.20,1.00) 

0.048 -0.79 0.42 0.45 

(0.20,1.03) 

0.054 

dia 1.16 1.04 3.18  

(0.41,24.54) 

0.052 3.10 1.67 22.11 

(0.83,589.36) 

0.005 

The two methods give similar results. Factors age, vic, vicl and dia are associated with 

urinary tract infection with p-values less than 0.05. However, when the standard errors of 

the log odds ratio in the model are considered, the DM method gives smaller estimates of 

effects and standard errors and correspondingly shorter 95% confidence intervals than 

those for Firth’s method. 
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Example 4: Child Deaths from External cause in Thailand.  

The data here are based on the Thai 2005 Verbal Autopsy (VA) study (Rao et al, 2010) 

for correcting misreported cause of death for children under five. The data consists of one 

determinant, DR.hGrp, which is the combined variable of reported cause of death and 

place of death (inside/outside hospital). The binary outcome is whether the child died 

from perinatal (ICD chapter P) or congenital (chapter Q) causes versus other causes. 

These data are listed in the left panels of Table 3 with modified data for using the DM 

method asterisked in the right panel. 

Table3: Number of child deaths from congenital and other causes 

 

DR.hGrp 

Cause of deaths Cause of deaths* 

Other  Congenital Other  Congenital 

Perinatal inside hospital 9 3 9 3 

Congenital inside hospital 3 0  6*   1* 

External+  inside hospital 18 25 18 25 

All causes outside hospital    21 24 21 24 

*Modified data using DM method. 

DM and Firth’s method return similar results for coefficients, standard errors of log odds 

ratios and p-values as shown in Table 4. 
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Table 4: Logistic regression analysis of number of child deaths from congenital and other 

causes 

 

Variable 

DM Firth’s method 

coef se(coef) p-value coef se(coef) p-value 

Intercept -1.099 0.667 0.099 -0.999 0.651 0.089 

Perinatal   

inside hospital    0   -   -   -   -   - 

Congenital 

inside hospital -0.693 1.792 0.585 -0.947 1.863 0.531 

External+  

inside hospital 1.427 0.735 0.052 1.319 0.720 0.046 

All causes 

outside hospital 1.232 0.731 0.092 1.129 0.716 0.087 

In this analysis the p-values are based on contrasts between the omitted level for the 

factor (perinatal inside hospital) and each other level, and we see that only one of these 

differences (perinatal versus external+) is statistically significant at the 5% level. A p-

value for testing the hypothesis that there is no mortality difference between the three 

cause groups is provided by an anova test, which has p-value 0.038 for these data based 

on the DM method. While p-values for LR test and Wald test given by Firth’s method are 

0.081 and 0.193, respectively. 

4. Discussion and Conclusion  

This study provides an alternative method for solving the problem of non-convergence in 

logistic regression. Firth’s method has previously been recommended for analysis data 

with such a problem (Heinze and Schemper, 2002; Eyduran, 2008), but in this study it 
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was found that the data modification (DM) method generally provides smaller p-values to 

those from Firth’s method. However, in 2 by 2 tables, with small total counts, we have 

consistent evidence that the results of DM and Firth’s method align closely. While 

Agresti’s method is used for the zero count problems, especially in two-by-two tables, the 

DM method gives closer result to Firth’s method. We have demonstrated that the DM 

method can be used as an alternative to Firth’s method in more general logistic regression 

when zero counts occur in the response variable and observed the same close 

correspondence in results.  

The DM method uses logistic regression methods for maximum likelihood estimation. 

Logistic regression methods are well known and have the advantage of not requiring 

more specialized statistical software. The DM method might also be applicable with 

continuous covariates, but this possibility needs to be considered in further study 

comparing methods. 

The user should be aware too of the potential bias of DM as an estimator of the log-OR 

and its standard error (underestimated). This bias occurs in tables of small cell counts 

(e.g. in Table 2 for the factor dia), including the situation of separation. It is known that 

the Wald test and confidence interval become unsuitable (Heinze and Shemper, 2002). 

However, the DM estimator holds the correct level of significance in the association, as 

judged by Firth’s method. In examples other than small 2 by 2 tables this bias was less 

evident, as regression coefficients as well as SE’s more closely agreed.  
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Abstract 

Logistic regression is one of the most useful methods used to describe the 

relationship between a binary dependent variable and a set of independent variables. 

However, when any of the counts are zero, a non-convergence problem will occur. A 

procedure for solving such a problem has been proposed by Firth (1993), and provides 

finite parameter estimates based on penalized maximum likelihood.  This study suggests 

a simpler method which involves modifying the data by replacing the zero count by one 

and doubling the corresponding non-zero count. Results show that this simple data 

modification method gives similar results to those from the Firth's procedure.  

Keywords: Logistic regression, zero counts, Firth’s procedure, non-convergence 
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1 Introduction 

Logistic regression is one of the most used methods for modeling and testing the 

association between a binary outcome and one or more determinants. However, when one 

of the four cells in a two by two table of counts is equal to zero, maximum likelihood 

estimates of the model parameters fail to converge [1,3,5]. A solution to this problem was 

proposed by Firth (1993), giving finite parameter estimates based on penalized maximum 

likelihood. This method is available in statistical software packages such as SAS, S-

PLUS and R [7,8]. Since this method requires special software we considered the 

possibility of simply modifying the data rather than using Firth’s method. Lunn and 

McNeil (1995) used a similar simple approach for modeling competing risks in survival 

analysis. Agresti (2002) and Rubin (2002, Chapter 2), also reccommended modification 

in preference to new methodology when cell counts are small or the data are incomplete. 

2 Method 

The data modification method (DM) proposed in this paper is an improvement 

from the standard approach suggested by Agresti (2002) where 0.5 is added to each cell 

in a 2 by 2 table. To deal with zero count problem in logistic regression, we introduce a 

new simple method for which the statistical significance determined by conventional 

procedures aligns closely with Firth’s method. 
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Suppose the 2 by 2 table contains counts a, b, c, d with all possible cases of zero 

count as in Table 1A. The DM method simply replaces zero by 1 and double the count in 

the corresponding cell. The modified tables contain count with asterisk as in Table 1B.  

 Table 1. The general counts of a 2 by 2 table with a zero count (1A) and modified table 

(1B)    

 

 

 

                                                                                                  

          

 

 

 

 

 

  

 

 

1A  1B 

y x  y x 

1 0  1 0 

1 a=0 b 1 a*=1 b 

0 c d 0 c*=c+c d 

       

       

y x  y x 

1 0  1 0 

1 a b=0  1 a b*=1 

0 c d  0 c d*=d+d 

       

       

y x  y x 

1 0  1 0 

1 a b  1 a*=a+a b 

0 c=0 d  0 c*=1 d 

       

       

y x  y x 

1 0  1 0 

1 a b  1 a b*=b+b 

0 c d=0  0 c d*=1 
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  2.1 Simulation data for 2 by 2 tables with zero count 

The 2 by 2 tables were obtained by generating binomial random numbers using R 

software. Suppose we have a binary response variable where Y=1 denotes a success and 

Y=0 otherwise. We also have a binary covariate X, also with values 0 or 1. If  pij is the 

probability of a successful outcome, P(Y|X), the logistic regression model is given by: 

(1) 

 

And    Logit (pij)  = β0 +β1 X                                                 (2) 

The logistic regression model for a 2 by 2 table can be shown as in Table 2: 

Table 2. The general probabilities given by logistic regression model 

Y 
X 

1 0 

1 P(Y=1|X=1) P(Y=1|X=0) 

0 1-P(Y=1|X=1) 1- P(Y=1|X=0) 

If β1=0 in Eqn 2, then the rows and columns of the 2 by 2 table are independent. In the 

following we simulate data based on condition β1=0 and β0=-3, for example. Using Eqn 2, 

the pij for this independent model may represented by Table 3. 

Table 3. The probabilities given by the logistic regression model, using β1=0, β0=-3 

Y 
X 

1 0 

1 0.0474 0.9526 

0 0.9526 0.0474 

X

X

e

e
XYP

10

10

1
)|(
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Moreover, we also simulate data tables where the row and colums are dependent/nearly 

independent. According to the logistic regression model, we calculate the pij using β1=0.5, 

β0=-3 to generate another set of tables. Table 4 below is in accordance with this model. 

Table 4. The probabilities given by logistic regression model using β1=0.5, β0=-3 

Y 
X 

1 0 

1 0.0759 0.9526 

0 0.9241 0.0474 

 

The sample sizes of the simulated data sets vary from 10 to 100 with equal sizes for groups 

X=0 and X=1. For the purposes of this study, only the data from tables which include zero 

counts are selected. An example of data tables is shown in Table 5A with different sample 

sizes for X=1 and X=0 and the corresponding data tables after data modification (DM) are 

shown in Table 5B. 
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Table 5. The counts in simulated 2 by 2 tables which include zero counts (5A) and 

corresponding tables (5B) modified according to the DM method 

              5A                           5B   

 

 

 

 

 

 

3 Results 

3.1. Comparison the percentages of correctly identified p-values  

Figure 1 shows the percentage of times each of three methods correctly identified 

that the explanatory variable (X) and outcome (Y) variable are dependant, that is,that the 

test produced  a p-value less than 0.05. While the results from our simulation study 

yielded the highest percentage (approximately 46%) of correct identification of 

dependence, Lancaster’s mid-P test and Firth’s method correctly identified dependence in 

38% and 41% of cases, respectively. 

Table ID a b c d 

 1 10 10 0 0 

2 9 10 1 0 

3 10 9 0 1 

4 8 10 2 0 

:     

:     

103 100 96 0 4 

104 96 100 4 0 

105 100 97 0 3 

106 94 100 6 0 

107 100 95 0 5 

108 97 100 3 0 

Table ID a b c d 

1 20 20 1 1 

2 9 20 1 1 

3 20 9 1 1 

4 8 20 2 1 

:     

:     

103 200 96 1 4 

104 96 200 4 1 

105 200 97 1 3 

106 94 200 6 1 

107 200 95 1 5 

108 97 200 3 1 
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Figure 1. Percentages of times the methods correctly identified a dependent model 

 When these methods were applied to data where the explanatory variable (X) and 

outcome (Y) variable are independent, that is, that the test produced a p-value greater 

than 0.05, we found that Firth’s method correctly identified the highest percentage, 

approximately 81% of independent cases the p-values, while the DM method correctly 

identified  only 63% as shown in Figure 2. 

 

  

 

 

 

 

 

Figure 2. Percentage times the methods correctly identified an  independent model 
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3.2 Comparison of the p-values from DM, Fisher and Lancaster’s mid-P test to 

Firth’s  

 Figure 3 shows a comparison of the p-values from DM, Fisher’s exact test and 

Lancaster’s mid-P test to Firth’s method. The red diagonal line indicates that p-values 

from the first three methods are in agreement with those obtained using Firth’s method. 

The finding shows that the p-values from DM method appear closest to Firth’s and some 

of them are in complete agreement both on the data for generated from a dependent 

model (Table 3) and from an independent model (Table 4). 

 

Figure 3. Comparison of the p-values from DM method, Fisher’s exact test and Lancaster’s 

mid-P test with Firth’s method for 2 by 2 tables simulated from the independent model and 

dependent model. 
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4 Conclusion  

In this study, we have introduced a simple method for solving the non-

convergence problem in logistic regression, resulting from zero counts. We have made a 

simple modification to the data and compared the results to those obtained from Firth’s 

procedure and others. Firth’s method (FL) has previously been recommended for the 

analysis data with such a problem [6]. From this study, we found that the data 

modification (DM) method gave similar p-values as Firth’s method. In addition, when 

compared the percentages of correctly indentified p-values for logistic regression, we also 

found that the tests of independence carried out on data modified by the DM method, 

produced p- values which were more likely to be in agreement with those produced by 

the same tests applied to data modified using Firth’s method, compared to p-values 

obtained by Lancaster’s mid-p test carried out on the data. Furthermore, the p- values 

from the tests on the DM data were closer in value to those from the tests on the data 

modified using Firth’s method, than those obtained from both Fisher’s exact text and 

Lancaster’s mid-P test.  

5 Reference 

1. Aitkin M. and Chadwick T., Bayesian analysis of 2x2 contingency tables from 

comparative trials, School  of  Mathematics and Statistics, University of 

Newcastle UK., 2003. 

2. Agresti, A. 2002. Categorical data analysis. John Wiley & Son, New York, U.S.A., pp. 

 70-71. 



87 
 

 
 
 

3. Bester C.L. and Hansen C., Bias reduction for Bayesian and frequentist estimators,   

 University of Chicago., 2005. 

4. Firth D.,  Bias reduction of maximum likelihood estimates, Biometrika., 1993; 80: 27-

 38. 

5. Eyduran E., Usage of Penalized Maximum Likelihood Estimation Method in Medical 

 Research: An Alternative to Maximum Likelihood Estimation Mehod, Jrms., 

2008;  13: 325-330. 

6. Heinze G. and Schemper  M., A solution to the problem of separation in logistic 

regression, Stat. Med., 2002; 21: 2409-2419. 

7. Heinze G. and Ploner M., Fixing the nonconvergence bug in logistic regression with 

SPLUS and SAS, Comput. Meth.Prog. Bio., 2003; 71: 181-187. 

8. Heinze G. and Ploner M., A SAS macro, S-PLUS library and R package to perform 

logistic regression without convergence problems, Medical University of Vienna., 

2004.  

9. Little, R.J. and Rubin, D.B. 2002. Statistical Analysis with Missing Data. John Wilay&

 Sons. New York. 

10. Lunn, M. and McNeil, D. 1995. Applying Cox Regression to Competing Risks. 

 Biometrics. 51, 524-532. 

 

 

 



88 
 

 
 

Vitae 

Name:  Mrs. Nurin Dureh 

Student ID:    5520330003 

Education Attainment: 

Degree    Name of institution   Year 

B.Sc. (Applied Mathematics)  Prince of Songkla University  2006 

M.S. (Research Methodology)  Prince of Songkla University  2010 

Scholarship Awards during Enrolment 

The Royal Golden Jubilee Ph.D. Program. The Thailand Research Fund. 

Work-Position and address: 

Lecture 

Department of Mathematics and Computer Sciences, Prince of Songkla University. 

List of Publications: 

Dureh, N., Choonpradub, C., and Tongkumchum, P. 2015. Comparing Tests for 

 Association in Two by Two Tables with Zero Cell Counts. Chiang Mai Journal 

 of Sciences. 42 (4). 

Dureh, N., Choonpradub, C., and Tongkumchum, P. 2016. An Alternative Method for 

 Logistic Regression on Contingency Tables with Zero Cell Counts. 

 Songklanakarin Journal of  Science and Technology. 38 (2).  



89 
 

 
 

Proceeding: 

Dureh, N., Choonpradub, C., and Green, H. 2015. Comparing Methods for Testing 

 Association  in Tables with Zero Cell Counts Using Logistic Regression. The 

 2nd International Conference on Computing, Mathematics and Statistics  2015. 

 Malaysia. 

 

 

 

 


	Cover.pdf
	Abstract.pdf
	Acknowledgements.pdf
	Contens.pdf
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	References1.pdf
	Appendix.pdf
	Vitae.pdf



