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Abstract 
 
The shallow subsurface, a few hundred meters in depth, comprises mainly of 
unconsolidated sediments, a porous material, with gravel, sand, silt, clay, and rock 
fragments, and it is the source for groundwater as well as the region of landslide 
hazards, and the main resource in agriculture, soil. For geophysical investigations of 
this region electrical and seismic methods are first choices; however this requires a 
good understanding between these physical properties and the characteristics of these 
unconsolidated sediments. For this study disturbed samples of unconsolidated 
sediments from different layers from bedrock to the top soil layer were taken from 
two locations of the Khao Khohong mountain range, Hat Yai, Songkhla Province. The 
two sample locations comprise different bedrock lithologies, sandstone and granite. 
The dried samples were characterized as following: main composition, grain size 
distribution, grain matrix density, bulk density, porosity, as well as pore structure. The 
electrical resistivity and seismic P- and S-wave velocities were determined under 
laboratory conditions with increasing water saturation (0–100%) of the sample. In 
general, the electrical resistivity decreases with increasing water content, with a larger 
gradient until about 40% saturation and a lower one above. For clay bearing 
sediments the electrical resistivity is the combination of electrolytic (water) and 
colloidal (wet clay) conductivity. With a modified Archie equation proposed by Sen 
et al. (1988) the laboratory derived data could be modeled; however the tortuosity 
factor (m, usually 2), the saturation index (n, usually 1.3), and a constant (a, usually 1) 
have to be modified, with m=0.3-3.1, n=1.4-2.2 for sediments from the granite site, 
and m=1.0-3.9, n=2.5-3.2 for the sandstone site, due to differences in the grain size 
distribution. The seismic velocity data show for samples from both sites a 
significantly decrease of the shear velocities at around 60-80% water saturation, 
which correlates with a decrease in the Young's modulus and an increase to almost 0.5 
of the Poisson's ratio, indicating significantly changes of the mechanical properties, 
thus reducing the stiffness of the samples. The absolute velocity values depend on the 
porosity as well as the composition of the samples. This study has clearly 
demonstrated that sediments are different in their nature depending on their source or 
base rock, here granite and sandstone. The nature of the sediments also changes or can 
change with different states of weathering and different distances of short 
transportation as shown here. The different nature of the sediments has an effect on 
the electrical resistivity and seismic velocities. This has to be taken into account for 
any applications, especially in the design and calibration of sensors for landslide early 
warning systems. 
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hill slope. Two-thirds of landslides are triggered by rainfall. According to Kyoji Sassa 
from the Kyoto University in Japan, he says that the unanswered question is how 
rainfall can change the dynamics of the groundwater and by this the strength of soil 
and rock particles in the slope (Qiu, 2014). 
 
 In Thailand landslides are a common phenomenon due to deep weathered 
rocks and sediments and a rainy season with heavy and prolonged rainfall. Landslides 
occurrence is registered almost every rainy season in mountainous or hilly areas, with 
the latest landslide in Khao Phanom, Krabi Province, Chayia, Surat Thani Province, 
Lang Suan, Chumphon Province, and Kathu in Phuket Province; all occurred in 
March 2011, with loss of lives and livelihoods (The Nation, 2011). In January 2011 a 
landslide in Songkhla's Muang District killed one person at the foot of the hills. 
According to witnesses debris from the November flooding blocked the nearby 
waterway and thus causing water to change its direction and subsequently flowed into 
the houses at the foothills (MCOT news, 2011). More than 130 people were killed by 
a debris flow and associated debris flood in August 2001 in Ban Nam Ko Yai, which 
is situated on the alluvial fan below the canyon mouth of the same-named Nam Ko 
Yai stream, a tributary of Pa Sak River in Lom Sak District, Phetchabun, Central 
Thailand. The muddy debris flow felt trees and destroyed several houses along the 
stream banks with an estimation of over 200 million Bath of the property damage 
(Yumuang, 2005). 
 
1.2 Physics and Mechanics of Landslides 
 Landslides as the motion of soil, sediments, or rocks can be described by the 
combination of laws related to friction, cohesion, and gravity with normal and shear 
stress. In case of soil containing substantial amounts of mud, so called cohesive 
material, and water, such a mud or debris flow can be described as rheological flow, 
which practically is a fluid with complex properties. On the other hand movement of 
granular material can result in granular flow, a type where friction plays an important 
role in the dynamics. Other types of landslides are slow moving masses and rock falls. 
All of them described above from the group of landslides under the overall regime of 
gravity mass flows (de Blasio, 2011; see Figure 1.2). 
 For the stability of slopes and the hazard of landslides the shear strength is a 
main geotechnical parameter to be considered; it describes the magnitude of the shear 
stress that a soil can sustain or the shear strength of the material is the greatest stress it 
can sustain. Shear strength in soils depends primarily on interactions between 
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cohesion parameters still have to be determined in the geomechanical laboratory 
(Sawangsuriya, 2012). 
 
1.3 Role of Pore water 
 Landslides induced by heavy rainfall usually occur in areas where the slope 
angles are steeper than the friction angle of the soil or sediment. The reason is that 
only within a certain range of water saturation these slopes are stable. This is when 
the effect of suction creates an apparent cohesion between the soil and sediment 
particles and by this increases the shear resistance between the soil or sediment 
particles (e.g., Fredlund and Rahardjo, 1993; Springman et al., 2003). If the saturation 
gets above a certain or critical value both parameters, suction and shear resistance, are 
significantly reduced (e.g. Pagano et al., 2010). Especially heavy rainfalls results in 
higher water saturation that may exceed a critical limit in certain parts of a slope, and 
by this starting the local failure, which consequently is leading to a landslide or debris 
flow (e.g. Sassa et al., 2010). 
 Further, the fast infiltration of rainwater in natural slopes can result in higher 
water pressures inside the pores of the soil and sediments. In has to be noted that in 
the near–surface vadose zone air is always present and by this influencing the 
infiltration of the water, as the gas phase can transmit the pressure during the 
infiltration (Hartge and Horn, 1999). In case the near–surface soils and sediments are 
separated in layers with different permeability or hydraulic conductivity they can 
create buoyancy effects when the water is flowing beneath low–permeable layers (e.g. 
Stadler et al., 2009). Further important parameters of how and how fast the rainwater 
infiltrates the soil and sediments are the occurrence and distribution of pores with 
different sizes (pores size distribution), which have an effect. Especially of 
importance are the occurrence and distribution of macropores (e.g. root channels, 
fissure, soil cracks, borrows from earthworms and other animals; Beven and German, 
1982; Jarvis, 2007), as they are responsible for a fast infiltration and pressure reaction 
in the soil and sediments (e.g. Uchida et al., 2001). Further, macropores in a low–
permeable matrix create a dual–permeability system that will affect the infiltration 
and the water flow down the slope of a hill or mountain (e.g. Stadler et al., 2008). 
 Every slope is different, with different soils and sediment, different materials, 
and these materials having different properties, e.g. porosity, permeability, or the 
distribution of macropores, and due to these differences the processes leading to the 
slope failure (landslide) can be also different. A detailed investigation of the slope 
structure and geometry is necessary. This is also of importance for any geophysical 
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investigations prior to an installation of any landslide early warning system at any 
given slope (e.g. Friedel et al., 2006). Especially, the electrical and seismic properties 
are significantly affected by the composition of the material (e.g. clay content; 
Guenzel, 1994) as well as the pore space properties (porosity and permeability, e.g. 
Schön, 1983) and the water saturation (e.g. Sharma et al., 2010). The later one is 
subject to change over time due to water infiltration after rainfall. 
 
1.4 Electrical Properties of Unconsolidated Sediments 
 Electrical resistivity method is one of the most used geophysical methods in 
shallow investigation, for example soil moisture content in agriculture, or as vertical 
electrical sounding in groundwater exploration. It is based on measuring the electrical 
potentials between one electrode pair while transmitting a direct current between 
another electrode pair (Telford et al., 1990).  Electrical resistivity is a parameter 
exhibiting a large range of values sensitive to various factors like the nature of 
material (e.g., gravel, sand, and clay), the water content and its conductivity, porosity, 
permeability, and the water or fluid saturation. Table 1.1 gives an overview over 
electrical conductivity values for common unconsolidated materials of the shallow 
subsurface.  
 
Table 1.1. Electrical resistivity values of common unconsolidated sediments (after 
Telford et al., 1990; Reynolds, 1997). 

Material Electrical conductivity (S/m) 
Clays 0.01 – 1.00 
Top soil 5.8×10−4 -4.0×10−3 
Soil (40% clay) 0.125 
Soil (20% clay) 0.030 
Sand and gravel 0.01-0.03 
Unconsolidated wet clay 0.05 
Alluvium and sand 1.25×103 – 1.0×10−1 

 
 The shallow subsurface is a few hundred meters in depth, comprises mainly of 
unconsolidated sediments, porous material, solid fragmental material from weathering 
of rocks, transported and deposited by air, but mainly by water, that form layers on 
the Earth's surface at normal temperature and pressure conditions; near surface in 
unconsolidated form, e.g., sand, gravel, silt, mud, alluvium (Immoor, 2006). 
Unconsolidated sediment characteristics are composition, grain size, grain shape, 
grain arrangement, as well as pore size and shape.  
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 The electrical resistivity (ρ, Ohm-m) of a homogeneous cylindrical solid of 
length L in meters and with a cross section area A in square meters, having resistance 
R in ohms between the end faces, is given as, (Telford et al., 1990): 

 L
RA

=ρ
 (1.2) 

 The resistivity of a saturated porous rock can be expressed by Archie’s law 
(Telford et al., 1990) as below 

 w
mnaS ρφρ −−=   (1.3) 

where S is the degree of the water saturation, φ is porosity, ρw is the resistivity of pore 
fluid or water (it is temperature dependent), m is the tortuosity factor (m is used like 
porosity exponent, shape factor, or cementation degree), n is the saturation exponent, 
a is the constant that reflects the influence of mineral grains on current flow (Kirsch, 
2006). In general, the exponent m and the parameter a expresses empirically the 
complicated pore channel geometry with respect to the electrical current flow and 
they are therefore a kind of pore textural property. Archie noted that the exponent has 
a value of about 1.3 for unconsolidated sands and a range between 1.8 and 2.0 for 
many consolidated sandstones (Schön, 2011). 
 In case of a fully saturated rock (S=100%) the Archie Equation can be 
rewritten in the form, where F is the formation factor 

 
Fa

m
w

==
φρ

ρ

 (1.4) 

 Figure 1.3 shows the relationship between porosity and formation factor, 
which in a log-log scale gives a straight line. With increasing porosity the formation 
factor decreases. Assuming that the resistivity of the water (fluid) is not changing then 
the resistivity of the water-saturated rock is decreasing as the relative water content is 
increasing with increasing porosity. 
 
 Equation 1.3, or Archie equation, is valid only for clay free (clean) sediments 
as it describes the electrical resistivity of a sample only by the electrolytic 
conductivity of the pore filling water, respectively fluid. However, unsaturated 
sediments often contain clay in various structural arrangements (see Figure 1.4), 
except, for example, beach sand that can be considered clean sand. Shale (in rocks) or 
clay (in sediments) can be in a laminar arrangement, as layers between the grains; it 
also can be structurally distributed among the grains, or dispersed in the pore space. 
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 The main parameters affecting the seismic velocities, compressional (Vp) and 
shear wave velocity (Vs), are the material composition, with grain size, shape, and 
arrangement, bulk and mineral density, porosity, with pore size and pore distribution, 
and saturation, either air or water. These parameters can be summarized as intrinsic 
parameters (Figure 1.8), whereas pressure and temperature are extrinsic parameters. 
For shallow sediments and soils the latter one have almost no influence, mainly as 
pressure increases with depth 26.46 MPa/km (for ρ=2.70), referred to as the lithostatic 
pressure gradient. 
 
Table 1.4. Summary of wave propagation methods for determining the stiffness of 
soils, sediments and rocks in the subsurface (after Sawangsuriya, 2012). 

Test US Standard Methodology 
Soil Stiffness 
Gauge (SSG) 

ASTM D 
6758 

LABORATORY - Small dynamic force generated inside a device is 
applied through a ring shaped foot resting on the ground surface. 
Deflection is measured using velocity sensors. Near-surface 
stiffness is the ratio of the applied force to the measured deflection. 

Bender 
Element no LABORATORY - Shear wave travel time and tip-to-tip distance of 

piezoceramic bender elements are used to determine shear wave 
velocity. With mass density the shear stiffness is calculated from 
that. 

Resonant 
Column 

ASTM D 
4015 

LABORATORY - Shear wave velocity and the corresponding shear 
stiffness determined from resonant frequency. 

Ultrasonic 
Pulse 
Transmission 

ASTM C 597 LABORATORY/FIELD - From travel time of compressional or shear 
wave arrivals and distance between transducers elastic wave 
velocity are determined and stiffness is calculated based on elastic 
theory. 

Reflection 
Seismic No FIELD - Travel times of seismic waves reflected from subsurface 

interfaces following the law of reflection are measured. Wave 
velocities and corresponding stiffness are determined. 

Refraction 
Seismic 

ASTM D 
5777 

FIELD - Travel time of seismic waves refracted at subsurface 
interfaces (Snell’s law) is measured. Wave velocity and stiffness of 
are determined. 

Spectral 
Analysis of 
Surface 
Waves 
(SASW) 

No FIELD - Surface (Rayleigh) wave velocity varied with frequency is 
measured utilizing their dispersion characteristics. Surface waves 
propagate to subsurface depths that are proportional to their 
wavelengths or frequencies in order to determine the stiffness of 
subsurface profiles. 

Seismic 
Cross-Hole 

ASTM D 
4428 

FIELD/BOREHOLE - Measurement of wave velocity (Vp or Vs) from 
one borhole to another in a linear array. Elastic waves propagate in 
the horizontal direction through the subsurface and measured by 
the geophones. 

Seismic 
Down-Hole or 
Up-Hole 

No BOREHOLE - Travel time of P - or S-wave propagate vertically in a 
single borehole are monitored. Wave velocity at any depths is from 
travel time versus depth. 

Seismic Cone 
Penetration No FIELD - No borehole is required. A profile of shear wave velocity is 

obtained comparable to seismic down-hole test. Receiver is located 
in the cone. 
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d) High accuracy tiltmeters are used for measuring the soil layer rotational 
movements, which might be also the early onset of a later landslide. 

e) Geophones with near real-time data collection are used for the analysis of 
vibrations caused during the beginning of a landslide. This demands the 
measurement of frequencies up to 250 Hz with a resolution of 0.1 Hz. 

f) Rain gauges measure the rainfall in the area of potential landslides. Abundant 
rainfall is one of the main parameters causing landslides, as the water that 
infiltrates into the slope can change the soil properties, raising the water table, and 
reducing the shear strength of soils that subsequently may trigger a landslide.  

g) Temperature sensors are needed as the physical properties of soil and water change 
with temperature.  

 
1.7 Objective of the Study 
 The aims of this study are first focusing on the understanding of the processes 
leading to potential landslides in the study area (Kohong Range, Hat Yai) through 
investigations of the structure, geometry, physical properties and related mechanical 
parameters of soils and sediments (porous media) and the distribution of pores and 
flow pathways (pore space properties) by applying field and laboratory investigations. 
Second, from the results of the laboratory and field investigations relationships 
between physical properties of soils and sediments (electrical resistivity, 
compressional and shear wave velocities) and different water saturation levels through 
laboratory investigations are attempted in order to create a physical base to determine 
what geophysical method is sensitive to saturation changes for potential use in any 
landslide early warning system. 
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2. Methodology 
2.1 Fieldwork 
 For this study disturbed samples of unconsolidated sediments from different 
layers from bedrock to the top soil layer were taken from two locations of the Khao 
Khohong mountain range in Hat Yai District, Songkhla Province as shown in 
Figure 2.1. The two sample locations comprise different bedrock lithology, the first 
location from UTM 0666802 East, 0779972 North, mainly granite at a mountain site 
in different states of weathering. The second location from UTM 0666927 East, 
0774098 North, mainly sandstone with different layers from bedrock to top soil. 
Before the field surveys previous studies, geological map and topographic map were 
analyzed to identify outcrop location, mainly outcrops of shallow unconsolidated 
sediments. Field observation of the selected outcrops focuses on the identification of 
lithology, different layers, structures, stratigraphy and geologic processes were 
studied and recorded. Detailed photos were taken, sketched structures, description of 
geology, made grids, and measured strike directions of faults. 
 
2.2 Sampling method 

Sediment samples classify being either disturbed or undisturbed. The disturbed 
sample has been changed sufficiently that tests of structural properties of the sediment 
will not be representative of in-situ conditions, and only properties of the sediment 
grains can be accurately determined. The undisturbed sample is close enough to the 
conditions of the in-situ sediment to allow tests of structural properties of the 
sediment to be used to approximate the properties of the sediment at in-situ conditions 
(Wikipedia, 2014). For this study, from the first site samples (mainly granite) have 
been randomly collected around the area and the second site samples (mainly 
sandstone) have been collected as a profile from the top layer to the bottom layer (see 
Figure 2.2). The top layer (KH_1_2), the second layer (KH_2_2) and bottom layer 
(KH_3_2).  
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controlled by their elemental composition and internal bonding and structure. Density 
of porous sediments is controlled by the mineral composition (grain density), 
porosity, and saturation (Schön, 2011).  

The bulk density ρb considering dry-sediments conditions is defined as the ratio 
of the mass of the solid phase ms to the volume of the whole body V 

 

 
V
ms

b =ρ  (2.2) 

  
and the matrix density of the sediments ρs is determined by the ratio of the mass of 
solid phase ms to its volume Vs 
 

 
s

s
m V

m
=ρ   (2.3) 

 
Methodology 

The mineral density was determined by the pycnometer methods using water, 
ASTM D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water 
Pycnometer (AASHTO T100 - Standard Method of Test for Specific Gravity of 
Soils). First, recorded the weighted the mass of the empty clean and dry pycnometer, 
then the dry sediments sample filled into the pycnometer and the mass was about 5 g. 
Distilled water was added to fill the about half to three-fourth of the pycnometer (with 
sample), removing entrapped air, added to fill the pycnometer until full and weighted. 
Finally, the pycnometer was filled with distilled water only and weighted again (see 
Figure 2.4). This method done at Department of Mining and Materials Engineering, 
Faculty of Engineering, Prince of Songkla University. The gravity specific of 

sediment sample was calculated follow 
 

 
wpswpsp

psp

WWWW
WW

 ravity Specific G
+−−

−
=  (2.4) 

 
where WP is mass of empty clean pycnometer in grams, Wps is mass of empty 
pycnometer and dry sediment sample in grams, Wpsw is mass of pycnometer, dry 
sediment sample and water in grams and Ww is mass of pycnometer and water in 
grams.  
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 %1001 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

m

b

ρ
ρ

φ  (2.5) 

 
or defined by the ratio of the volume of its pores Vp to the total volume of the body 
 

 %100×=
V
Vpφ  (2.6) 

 
Methodology 

Porosity measurement, the first, the sediment samples filled into beaker and 
recorded volume. Then, slowly and carefully pour the water into the beaker until the 
water just reaches the top of the sediment sample, recorded how much water was 
used. Calculate the porosity by dividing the volume of water was used by the total 
volume of the sediment sample, expressed as percentage. 

 
2.5 Grain Size Analysis 

For analyzing the grain size distribution of the unconsolidated sediment, the 
distributions of the coarse particles (gravel and sand, larger than 75 µm) were 
determined by sieve analysis. Fine particles (silt and clay, smaller than 75 µm) were 
analyzed by the hydrometer method. Grain sizes can occur in a wide range of sizes 
from micrometer to centimeters, and the assumption is that the particles are roughly 
circular with the diameter measured. This test method used ASTM D 422- Standard 
Test Method for Particle-Size Analysis of Soils (AASHTO T88 - Standard Method of 
Test for Particle Size Analysis of Soils). 
 

2.5.1 Sieve analysis 
Theory 

Usually data on sand and gravel fractions have been obtained from sieve 
analysis, which has marked theoretical and experimental limitations in the way it 
provides size data. Sieving sorts on the basis of smallest cross-sectional diameter (the 
plane of the intermediate and short axes- the diagonal length between mesh corners 
determines the intermediate axis length). Since most sedimentary particles are not 
spherical, the number of particles that pass through a given sieve is time dependent; 
there will always be more grains that could pass through a given sieve if they were to 
land with just the right orientation on the mesh (Blott and Pye, 2001).  
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sediment solution concentration, RS is density of sediment solution at time 50 seconds 
or 2 hours (g/L) from 
 
 CRRR −=S   (2.8) 

 
where R is the hydrometer reading of the sediment solution at time 50 seconds or 
2 hours (g/L), RC is calgon from temperature correction at time 50 seconds or 2 hours 
(g/L)  

 
 B)0.5(TAR C −−=   (2.9) 

 
where, A is the hydrometer reading of calgon at time 50 seconds or 2 hours (g/L), T is 
temperature reading of the sediment solution at time 50 seconds or 2 hours (g/L), B is 
temperature reading of calgon at time 50 second or 2 hour (g/L).  
 
Table 2.2 Hydrometer analysis of sample (KH_3_2). 

Name Weight 
(g) 

Reading 
hydrometer  

at 50 sec (g/L) 

Reading 
temperature    

at 50 sec (g/L) 

Reading 
hydrometer 
at 2 hr (g/L) 

Reading 
temperature 
at 2 hr (g/L) 

calgon - 10.00 23.00 10.00 20.00 
KH_3_2 49.43 46.00 24.00 37.50 21.50 

 
For example, sample KH_3_2 with calgon from temperature correction at time 

50 seconds is 10.00–0.5 (24.00–23.00)=9.50 g/L; calgon from temperature correction 
at time 2 hours = 10.00–0.5 (21.50–20.00)=9.25 g/L; density of sediment solution at 
time 50 seconds is 46.00 – 9.50 = 36.50 g/L; density of sediment solution at time 
2 hours is 37.50–9.25=28.25 g/L; the reading of the hydrometer of the sediment 
solution correction at time 50 seconds is 36.50+0.36 (24.00–20)=37.94 g/L; and the 
reading of the hydrometer of the sediment solution correction at time 2 hours is 
28.25+0.36 (21.50–20)=28.79 g/L. The results of the grain size analyses are presented 
in percentage of clay, silt and sand follow 
 
clay fraction: 
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Determining Minimum Laboratory Soil Resistivity). The sediment box has a length of 
0.078 m; 0.052 m was the width, and 0.065 m the height, so 0.003 m2 the area, and 
0.043 m of area divided by the width. This method using the sediment box was tested 
with a salt (NaCl) solution with different concentrations. Figure 2.17 shows the 
comparison between the resistivity from the laboratory using the sediment box and 
resistivity from Schlumberger (2000). For a range of different NaCl concentrations 
both values show a good similarity. 

 

 
Figure 2.17 Comparisons between resistivity from laboratory for a NaCl solution (red 
square) and resistivity from Schlumberger (2000) for a NaCl solution (blue diamond). 

 
Sediment samples were compacted in the box with the weight recorded. Two 

voltage electrodes were connected to the sediment sample through electrically 
conductive aluminum foil at both ends of the box. Cables were connected with the 
sample, a power source and a current and voltage meter. Current and voltage were 
measured and converted into apparent resistivity shown in Figure 2.18, recorded value 
of current and calculated electrical resistivity from Equation 2.18. The electrical 
resistivity was determined under laboratory conditions at room temperature, around 
28 °C, with increasing water saturation from 0 to 100% of the sample in several steps, 
around 14-15, as following 
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2.9.2 Electrical resistivity modeling 

The resistivity of a saturated porous rock can be expressed by Archie’s law 
(Telford et al., 1990) as below 
 
 w

mnaS ρφρ −−=   (2.19) 

 
where S is degree of the water saturation, φ is porosity, ρw is the resistivity of water, 
m is the tortuosity factor (m are used like porosity exponent, shape factor, or 
cementation degree), n is saturation exponent, a is the constant (reflects the influence 
of mineral grains on current flow) (Kirsch, 2006). 

For the interpretation of the resistivity data the factors saturation, porosity and 
clay content (clayey material is characterized by low electrical resistivity) were 
identified as crucial. For the conductivity of clay bearing sandstones and sediments 
following model of Sen et al. (1988) has been used, with 

 
 )]/1/([1

wvvw
mn CQAQaS σσφσ ++= −  (2.20) 

 
where, σ is soil/sediment conductivity in S/m (σ =1/ρ), S is the degree of the water 
saturation, φ is porosity, σw  is the conductivity of water, m is the tortuosity factor, n is 
saturation exponent, a is the constant, A=1.94×m in (S/m)/(mol/l) and C =0.7/Q v in 
S/m, Qv (in mol/l) is the concentration of Na-exchange cations relative to the water 
saturated pore space, which depends on the cation exchange capacity (Cex ) in mol/g 
and the matrix specific density ρm. Qv replaced by Q*=Qv/S (for partial saturation; see 
Günzel, 1994), 
 

 
φ
φρ −

=
1

mexv CQ   (2.21) 

 
The dependence of the exchange capacity Cex on the relative clay and silt 

content (mineral composition of clay) Pclay and Psilt is estimated by a relationship 
found by Günzel (1994), with 
 
 )2.0(47.0 siltclayex PPC +=  (2.22) 
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Methodology 
For the seismic laboratory measurements transducers with 63 kHz for the P-

wave and 33 kHz for the S-waves were used, together with Sonic Viewer-170, OYO, 
using a uniaxial pressure of 0.122 MPa for better contact as shown in Figure 2.25. 
First, the sediment sample was in a plastic bag which had holes so that any excessive 
air or water could flow out, by this avoiding any build-up of pore pressure. The 
sample as placed between the transducers and from this the sample length was 
determined. Weight was placed on the top transducers to increase the vertical pressure 
aiming to get clear signals. 

Next, Sonic Viewer-170 was connected with power supply, set the power switch 
on, connected the Sonic Viewer-170 to P-wave transducer. The gain was set at 10-50, 
filter was set as high cut 1 MHz and low cut 30 KHz, no pre-trigger was used, the 
sampling range was100-500 nano sec. Before the sample was set up the determination 
of the zero point is required. Here the transducers were set on each other, a 
measurement was taken and the cursor key was moved to the position of the first 
break and by this fixing the time as zero point. Then, the transducers were connected 
to the samples as illustrated in Figure 2.25 and the P-wave velocity was measured by 
identifying the first break. For S wave transducer as similar procedure was carried 
out. Here the gain was 50-500, the filter a high cut 200 kHz and low cut 500 Hz,no 
pre-trigger, and a sampling range of 100-500 nano sec. The ultrasonic velocity was 
determined under laboratory conditions with increasing water saturation from 0 to 
100% of the sample in 6-12 steps. The wave velocity is calculated by using the time 
taken by the pulse to travel the measured distance between the transmitter and the 
receiver. The pulse velocity is given by the formula 

 

 t
sv =   (2.25) 

 
where, v is velocity (km/s), s is length of sample (cm) and t is delta time (μs). For 
example, VP of KH_1_2, 39.56 cm distance, 58.50 μs time, 767 km/s of VP. This 
method was done at the School of Geotechnology, Institute of Engineering, Suranaree 
University of Technology, in Nakhon Ratchasima. Uncertainty comes with the 
identification of the first break by moving the cursor key in discrete steps. One step in 
the cursor results in different velocities. For example, VP of KB_7_2, 80.0 μs time at 
the first break gives 516 km/s for VP, whereas for the step 78.0 μs time 530 km/s of 
VP will be calculated. The difference is small. 
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where F is the force which acts, A is area on which the force acts, Δx is 

transverse displacement, l is initial length. The bulk modulus B or k of a substance 
measures the substance's resistance to uniform compression. It is defined as the ratio 
of the infinitesimal pressure increase to the resulting relative decrease of the volume. 
Its SI unit is the Pascal, 

 
VΔV

ΔΡ
=k   (2.27) 

 
where, ΔP is the pressure change, ΔV is the volume change, and V is the volume. 
 
Methodology 
 From the velocity and bulk density the elastic moduli can be calculated, where 
VP is the compressional (P) wave velocity in m/s, VS is shear (S) wave velocity in 
m/s, and ρ is the density in kg/m3 (Sheriff and Geldart, 1995), as following 
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Bulk modulus (k) 
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Shear modulus (µ) 
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For example, the elastic modulus of KH_1_2 with 676 m/s P wave velocity, 

261 m/s S wave velocity, 1.35 g/cm3 bulk density at 0% water saturation, the Young’s 
modulus is 259 MPa from Equation 2.25, the Poisson’s ratio is 0.46 MPa from 
Equation 2.26, the bulk modulus is 495 MPa from Equation 2.27, and the shear 
modulus is 92 MPa from Equation 2.28. 
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The textural classification of the samples from the sandstone site shows mainly 
clay loam to clay samples (Figure 3.16). Interesting here to observe is that samples 
from the top layer all plot in the clay loam filed. The middle and bottom layers are all 
in the clay field. This is due to the fact that gravel is not part of this diagram (see 
above).  
 
3.5 Composition 
 The XRD-derived composition of the samples is listed in Table 3.3 for all 
samples from both sites, granite (KB) and sandstone site (KH). The main minerals are 
quartz and several clay minerals, kaolinite, illite, and montmorillonite. In one sample 
hematite was found (KH-13). The clay minerals are the products of chemical 
weathering of mainly feldspar minerals in the granite and in the sandstone as well. 
 
Table 3.3 Composition of unconsolidated sediment samples from XRD. 
Sample 

Name 

JCPDF No. Chemical Name Chemical Formula 

KB_1_2 01-085-0798 

01-078-1996 

00-026-0911 

Quartz 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KB_4_2 01-085-0504 

01-080-0885 

00-026-0911 

00-007-0330 

Quartz 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

Illite-Momtmorillonite, regular 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

K-Al4(SiAl)8O20(OH)4·xH2O 

KB_5_2 03-065-0466 

01-080-0886 

00-026-0911 

Quartz low, syn 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KB_9_2 01-085-0796 

01-076-0918 

00-026-0911 

Quartz 

Microcline maximum 

Illite-2\ITM\RG#1[NR] 

SiO2 

KAlSi3O8 

(K,H3O)Al2Si3AlO10(OH)2 

KB_2 01-085-0796 

01-089-6538 

00-026-0911 

Quartz 

Kaolinite Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KB_5 03-065-0466 

01-080-0886 

00-026-0911 

Quartz low, syn 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 
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Table 3.3 Composition of unconsolidated sediment samples (cont.). 
KH_1_2 01-085-1053 

01-080-0886 

Quartz, syn 

Kaolinite 1\ITA\RG 

SiO2 

Al2(Si2O5)(OH)4 

KH_2_2 01-078-2315 

01-080-0886 

00-026-0911 

Quartz 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KH_3_2 01-085-0504 

00-026-0911 

01-080-0886 

Quartz 

Illite-2\ITM\RG#1[NR] Kaolinite 

1\ITA\RG 

SiO2 

 (K,H3O)Al2Si3AlO10(OH)2 

Al2(Si2O5)(OH)4 

KH_6_2 01-083-2565 

01-080-0885 

00-026-0911 

Quartz, syn 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KH_7_2 01-085-1053 

01-080-0885 

Quartz, syn 

Kaolinite 1\ITA\RG 

SiO2 

Al2(Si2O5)(OH)4 

KH_10_2 01-085-0504 

01-080-0885 

Quartz, syn 

Kaolinite 1\ITA\RG 

SiO2 

Al2(Si2O5)(OH)4 

KH_1 01-083-2465 

01-089-6538 

00-026-0911 

Quartz low, syn 

Kaolinite  

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KH_2 01-079-1910 

01-080-0885 

Quartz, syn 

Kaolinite 1\ITA\RG 

SiO2 

Al2(Si2O5)(OH)4 

KH_3 01-086-1560 

01-089-6538 

Quartz low 

Kaolinite  

SiO2 

Al2(Si2O5)(OH)4  

KH_4 01-087-2096 

01-080-0886 

00-026-0911 

Quartz low 

Kaolinite 1\ITA\RG 

Illite-2\ITM\RG#1[NR] 

SiO2 

Al2(Si2O5)(OH)4 

(K,H3O)Al2Si3AlO10(OH)2 

KH_8 01-087-2096 

01-080-0885 

Quartz low 

Kaolinite 1\ITA\RG 

SiO2 

Al2(Si2O5)(OH)4 

KH_9 01-083-2465 Quartz low, syn SiO2

KH_13 01-085-0504 

00-073-2234 

01-080-0885 

Quartz 

Hematite 

Kaolinite 1\ITA\RG 

SiO2 

Fe2O3 

Al2(Si2O5)(OH)4 

 
3.6 Microstructures 
 With the SEM microstructures of the samples were observed and shown in 
Figure 3.17a-i to 3.20a-f, with samples dry shown in Figure 3.17a-i to 3.19 a-i and 
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 The seismic velocities with increasing water saturation for four samples from 
the granite site are shown in Figure 3.27a-d. The P-wave velocities at dry conditions 
are in the range of 500-800 m/s whereas the S-ware velocities for the same condition 
range between 300 and 500 m/s; published data provide similar values (e.g. Schön, 
2011). Some data points seem not to reflect the overall trend of the velocities with 
increasing saturation highlighting the difficulties in the measurements of such 
samples. 
 For three samples,  KB_1_2, KB_4_2, and KB_7_2, it seems that Vp 
keeps almost constant before 80% water saturation, then increase at 80%, and then 
towards 100% water saturation decrease significantly, for sample KB_7_2 for 
example below the initial value. For sample KB_9_2, the increase is already at around 
50% water saturation and after that the decrease is significant. The shear wave 
velocities mainly decrease with decreasing water saturation, however the gradient of 
decrease at almost 100% water saturation is for most samples significant larger (see 
Figure 3.2b-d). For the general decrease the explanation given for the beach sand also 
hold here. 
 
 The seismic velocities with increasing water saturation for four samples from 
the sandstone site are shown in Figure 3.28a-d. The P-wave velocities at dry 
conditions are in the range of 700-900 m/s and by this slightly higher. The S-ware 
velocities for the same condition range between 220 and 500 m/s; also in accordance 
to published data (e.g. Schön, 2011). 
 Both Vp and Vs decrease with increasing water saturation. For the 
shear wave velocities the explanation provided for the beach sand also applies here. 
However, the gradient of decrease is larger towards a saturation of 100%. For the P-
wave velocities the values also decrease significantly towards 100% water saturation, 
but some samples exhibit an increase before at around 40-50% water saturation 
(Figure 3.28b-d). 
 
 The behavior of the P-wave velocity might be explained by the macroscopic 
visible change of the sediment with increasing water saturation shown in Table 3.4 
and 3.5. With increasing water saturation first some grains stick together, and at about 
80% all grains stick together correlating with increased Vp values. After that the 
sediments exhibit liquid behavior which correlates with a sharp drop in the P-wave 
and S-wave velocities. 
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 The Poisson's ratio for all samples shown in Figure 3.30 increase from around 
2.7-4.0 at low saturation values to almost 0.5 indicating a perfectly incompressible 
material that deforms elastically at small strains (Poisson's ration = 0.5) (see 
Santamarina et al., 2001). 
 
 The elastic parameters of the four samples from the sandstone site are shown 
in Figure 3.31a-d. The bulk modulus for all samples does not show a clear trend; it 
might be concluded that in general there is no change taken into account uncertainties 
in the data points. The shear modulus decreased for all samples with increasing water 
saturation, but a significant decrease can be seen at around 60-80%. Comparable like 
for the samples form the granite site the Young's modulus decreases more or less with 
increasing water saturation and end with very low values at 90-100% (see Figure 
3.31). The Poisson's ratio for the samples increases from around 3.0-4.5 at low 
saturation values to almost 0.5 indicating also here an almost perfectly incompressible 
material (see above), as shown macroscopically in Table 3.5.  
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4. Discussion and Conclusion 
4.1 Relationships with electrical resistivity 

As shown in Chapter 3 in general the electrical resistivity decreases when the water 
content increases which is in accordance with the theory of the modified Archie's 
equation. It can be seen that for a water content of 0-40% there is a larger gradient for 
the decrease of the electrical resistivity. The shape of the resistivity curve can be 
attributed to a combination of electrolytic conductivity of the pore fluid and colloidal 
conductivity processes related to the clay content. In sediments with clay content, the 
electrical charges located at the surface of the clay texture lead to less electrical 
resistivity than in coarse-textured soils because of the magnitude of the specific 
surface (Samouëlian et al., 2005). A large specific surface area supports the surface 
conductivity because a number of cations in clay minerals are higher valence; 
electrical charge of the clay mineral surface is negative. It is compensated by the 
concentration of cations in the pore water in the mineral surface. This process is the 
cation exchange capacity (CEC). The calculation of the resistivity of clayey material 
is not trivial, since the electrical current flow is possible through clay minerals as well 
as through pore fluid (Kirsch, 2006).  
 
 Result from the resistivity measurements versus increasing water saturation 
are shown in Figure 3.24 for the three samples, KH_1_2, KH_2_2, and KH_3_2 in 
semi-log graph. The shape of the curve for all three samples is similar, but the 
absolute values are different, with the resistivity values showing following order: 
KH_3_2 > KH_2_2 > KH_1_2. However, for the three samples here the clay content 
is relatively similar, which might not explain the differences in the absolute resistivity 
values.  

However, the three samples in Figure 3.24 show significant difference in the gravel 
and sand grain size distribution. Sample KH_3_2 has a gravel content of 36% and a 
sand content of 15%, sample KH_2_2 has 24% and 36%, and sample KH_1_2 has 6% 
and 47%, respectively. A higher resistivity correlates with a higher content in gravel 
and vice versa. The larger gravel grains might obstruct the electrical pathway more 
than the sand grains and might also have an effect on the clay distribution in the 
sample (see Figure 4.1). This would explain that the differences are more or less 
independent from the saturation degree. 
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Figure 4.2. Comparison of m, tortuosity factor, n, saturation exponent, and a, a 
constant, of KH (9 samples) and KB (7 samples) location. Line reflects the range of 
all values; symbols represent the average value for each factor. 
 
4.2 Relationships with elastic parameters 
 The measurement of seismic velocities of unconsolidated sediments with 
increasing water content is challenging, which is reflected by the P-wave velocity 
values. In general they do not change much with water saturation. Vp is primary 
controlled by the bulk modulus of the water, as well as by the porosity and the bulk 
modulus of the matrix grains (quartz, etc.).  
 The S-wave velocities in general are more consistent for both sample groups 
and the shear wave velocities have a direct effect on the small strain stiffness (see 
Equation 1.1). For clay bearing sediments the small strain stiffness depend on the 
composition of the soils, its structure, and shape and size distribution of the particles, 
as well as aging, altogether the nature of the soil (intrinsic variables); all these 
parameters have also an influence on cohesion and friction, the main properties 
related to the strength of the material (e.g. Salgado, 2000). Water is one of the most 
important instability factors for slopes as it decreases cohesion in soils and increases 
weight and pore water pressure in granular sediment (Santamarina et al., 2001).  
 
 The data from this study show that for the samples from the granite site as 
well as for the sandstone site the shear velocities significantly decrease at around 60-
80% water saturation (Figure 3.27 and 3.28). This is reflected in a decrease in the 
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shear modulus at the same water saturation percentage (Figure 3.30 and 3.31). This 
also correlates with a decrease in the Young's modulus and an increase to almost 0.5 
of the Poisson's ratio. All this indicated that at around 60-80% water saturation the 
mechanical properties of the sediment samples from both sites significantly changes, 
thus reducing the stiffness of the unconsolidated sediments. That this might not 
necessarily result in lower shear strength has been remarked by Salgado et al. (2000) 
that although the small scale stiffness dropped the shear strength parameter increased 
with increasing clay content. For the shear strength with increasing water content this 
might not behave in the same way and has to be determined in a geomechanical 
laboratory. 
 
4.3 Relationships to slope stability 
 The results of the study have shown in Chapter 3, as well as in Section 4.1 and 
4.2 that the unconsolidated sediments of the shallow subsurface exhibit differences in 
the nature of the sediments and in their properties. These differences have effect on 
the geomechanical properties as shown in Section 4.2 and Chapter 3. However, 
friction and cohesion are the main parameter of the shear strength that governs the 
slope stability. So, do these differences between different layers make the layer 
interfaces a preferred friction plane. Because the question is here where in a slope a 
friction plane can develop easily that is leading finally to the slope instability. Large 
scale laboratory testing would be required to answer this question 
 
4.4 Relationships to a landslide early warning system 
 In a landslide early warning system one type of senor used is making use of 
the resistivity changes in the soil and sediments with increasing water saturation (see 
Section 1.5). From the results of the electrical resistivity measurements in this study it 
can be seen that above a water saturation of around 50-60% the values of the 
electrical resistivity are not changing significantly for field measurements. Further, it 
has to be noticed that the resistivity change of a sediment or soil mainly depends on 
the nature of this sediments; this can change with depth. Therefore, detailed 
investigation about the sediment at the depth of the sensor would be useful in order to 
increase its sensitivity.  
 
4.5 Conclusions 
 The electrical resistivity of clay bearing unconsolidated sediments is a 
complex phenomenon. Laboratory measurements have shown that the electrical 



86 
 

 
 

resistivity decreases when the water content increases because of a combined effect 
from the electrolytic conductivity of the pore fluid and the colloidal conductivity from 
the clay mineral, and that the data follow current theory. However, the fitting 
parameter, m, n, and a, vary with different sediment type. With limited data the 
difference are clear. Further, the results of this study suggest that the grain size 
distribution has a significant effect on the absolute resistivity, independent from the 
water saturation. 
 This study has clearly demonstrated that soils and sediments are different in 
their nature depending on their source or base rock, here granite and sandstone. The 
nature of the sediments also changes or can change with different states of weathering 
and different distances of short transportation as shown here. The different nature of 
the sediments has an effect on the different properties. This has been demonstrated 
with the shear modulus and the other elastic parameters. These differences can have 
an effect on the cohesion and friction parameters of the shear strength, which at the 
end is controlling the slope stability. Therefore, further work has to be directed in 
more detailed geomechanical laboratory investigation of the shear strength parameter 
combined with detailed information about the nature of the sediments as done with 
this study. This will lead to a better understanding why and how slopes fail. 
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5. Utilization Possibilities 
 
One of the main open issues in understanding slope failures leading to disastrous 
landslides is the role of pore water, especially its increase during and after heavy rain 
fall, because large amounts of rain are considered a main trigger for landslides. This 
study focused on the relationship between sediment characteristics, or the nature of 
the sediments, and electrical resistivity and seismic velocities as physical properties. 
Utilization of the results is possible in following ways, with 
 a) The geomechanical parameters derived from seismic velocities change 
significantly at about 60-80% water saturation indicating a possible change in the 
strength of the sediments. Future shear strength measurements with the parameters 
cohesion and friction might focus on this to see if there is a potential decrease of the 
shear strength. This then might be utilized for sensor calibration or development of 
news sensors for a landslide early warning system. 
 b) In a landslide early warning system another type of senor used is making 
use of the resistivity changes in the soil and sediments with increasing water 
saturation (see Section 1.5). From the results of the electrical resistivity measurements 
in this study it can be seen that above a water saturation of around 50-60% the values 
of the electrical resistivity are not changing significantly for field measurements. 
Further, it has to be noticed that the resistivity change of a sediment or soil mainly 
depends on the nature of this sediments, which can change with depth. From the 
results of this study it can be advised to carry out detailed investigation about the 
sediment at the depth of the sensor in order to increase its sensitivity. 
 c) The most shallow layers are of interest for farming and agricultural use. 
Precision agriculture is getting more and more attention where, for example, precise 
information about soil conditions are acquired and interpreted to choose the most 
suitable crops and to increase the yield. Electrical resistivity measurements are 
already applied, however the interpretation is often difficult. As the results of this 
study have shown the main parameters affecting soil resistivity, these parameters 
might be determined in order to enhance the interpretation of electrical field 
measurements. 
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The shallow subsurface, a few hundred meters in depth, comprises mainly of unconsolidated 
sediments, a porous material, with gravel, sand, silt, clay, and rock fragments, and it is the source 
for groundwater as well as the region of landslide hazards, and the main resource in agriculture, 
soil. For geophysical investigations of this region electrical methods are the first choices, for 
example soil moisture content in agriculture or vertical electrical sounding in groundwater 
exploration. For this study disturbed samples of unconsolidated sediments from different layers 
from bedrock to the top soil layer were taken from two location of the Khao Khohong mountain 
range near Hat Yai District, Songkhla Province. The two sample locations comprise different 
bedrock lithologies, sandstone and granite. The dried samples were characterized as following: 
main composition (X-ray diffraction), grain size distribution (sieve analysis for sand and 
hydrometer method for clay and silt content), grain matrix density (water pycnometer), bulk 
density, porosity, as well as pore structure (scanning electron microscopy). The electrical 
resistivity was determined under laboratory conditions with increasing water saturation (0–100%) 
of the sample. In general, the electrical resistivity decreases with increasing water content, with a 
larger gradient until about 40% saturation and a lower one above. The electrical resistivity of clay 
bearing sediments is the combination of electrolytic (water) and colloidal (wet clay) conductivity. 
Therefore, we used the modified Archie equation proposed by Sen et al. (1988) to model the 
laboratory derived data: σ=Sn φm a–1 [σω+A Qv/(1+C Qv /σw)], with Qv replaced by Q*=Qv/S (for 
partial saturation; Günzel, 1994) where σ is the sediment conductivity (inverse of the resistivity), 
σω is the water conductivity, φ is the porosity, A=1.93×m (mho/m)(l/mol) and CQ v =0.7 (mho/m), 
m is the tortuosity factor (usually 2), S is the saturation degree, and n is the saturation index 
(usually 1.3), and a is constant (usually 1). In order to fit our experimental values for the electrical 
resistivity, respectively conductivity, with m=0.3-3.1, n=1.4-2.2 for sediments from the granite 
site, and m=1.0-3.9, n=2.5-3.2 for the sandstone site. The reduction in the tortuosity factor might 
show that larger grain sizes constrict the pathway of electrical current more than smaller grain 
size material resulting in higher resistivity values. Additionally, the larger grain size material 
might also result in a more uneven distribution of the clay content, which contributes significantly 
to the electrical pathway. The increase in the saturation index is mainly related to the too low 
resistivity values at lower water saturation values.  
Keywords: Unconsolidated sediments, Resistivity, Clay, Water saturation 

 

1. INTRODUCTION 
Electrical resistivity method is one of the most used 

geophysical methods in shallow investigation, for example 
soil moisture content in agriculture, or as vertical electrical 
sounding in groundwater exploration. It is based on 
measuring the electrical potentials between one electrode 
pair while transmitting a direct current between another 
electrode pair [1]. Electrical resistivity is a parameter 
exhibiting a large range of values sensitive to various 
factors like the nature of material (e.g., gravel, sand, and 
clay), the water content and its conductivity, porosity, 
permeability, and the water or fluid saturation. The shallow 
subsurface is a few hundred meters in depth, comprises 
mainly of unconsolidated sediments, porous material, solid 
fragmental material from weathering of rocks, transported 
and deposited by air, but mainly by water, that form layers 
on the Earth's surface at normal temperature and pressure 
conditions; near surface in unconsolidated form, e.g., sand, 

gravel, silt, mud, alluvium [2]. Unconsolidated sediment 
characteristics are composition, grain size, grain shape, 
grain arrangement, as well as pore size and shape. 
Important physical properties of unconsolidated sediments 
are density (bulk and mineral density), porosity, water 
saturation, and electrical resistivity, but also seismic 
velocities [3]. 

 
1.1 Study area 

For this study disturbed samples of unconsolidated 
sediments from different layers from bedrock to the top soil 
layer were taken from two location of the Khao Khohong 
mountain range in Hat Yai District, Songkhla Province. 
The two sample locations comprise different bedrock 
lithology, first, mainly granite at a mountain site in 
different states of weathering and second, mainly sandstone 
with different layers from bedrock to top soil. From the 
later site samples have been collected as a profile from the 
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top layer to the bottom layer (see Fig. 1). The top layer is 
top soil (KH_1_2), dark grey soil with roots, the second 
layer is yellowish brown unconsolidated sediment 
(KH_2_2), and bottom layer is brown unconsolidated 
sediment (KH_3_2). Below the last layer is bedrock, here a 
sand/siltstone (see Fig. 1). 
 

 
 
FIGURE 1. Samples of unconsolidated sediments from Khao 
Khohong Mountain. Bedrock is a sand/siltstone. 
 

1.2 Electrical resistivity 

The electrical resistivity (ρ, Ohm-m) of a homogeneous 
cylindrical solid of length L in meters and with a cross 
section area A in square meters, having resistance R in 
ohms between the end faces, is given as, [1]: 
 
 

L
RA

=ρ  (1) 

 
The resistivity of a saturated porous rock can be 

expressed by Archie’s law [1] as below 
 
 w

mnaS ρφρ −−=   (2) 
 

where S is the degree of the water saturation, φ is 
porosity, ρw is the resistivity of pore fluid or water (it is 
temperature dependent), m is the tortuosity factor (m are 
used like porosity exponent, shape factor, or cementation 
degree), n is saturation exponent, a is the constant (reflects 
the influence of mineral grains on current flow) [4]. Eq. 2, 
or Archie equation, is valid only for clay free (clean) 
sediments as it describes the electrical resistivity of a 
sample only by the electrolytic conductivity of the pore 
filling water, respectively fluid. 

However, for the interpretation of resistivity data of 
clay bearing material the factors saturation, porosity, and 
clay content were identified as crucial [5]. Clay minerals 
are hydrated minerals, which exhibit high porosity but quite 
low permeability values. Although clay minerals 

themselves are not very conductive, their surfaces can 
generate an excess of cations in the pore fluid adjacent to 
the surfaces of the clay minerals. The result is a high 
conductivity space near to the clay surfaces, which can 
dominate the overall conductivity of the sediment even if 
the conductivity of the pore fluid is quite low. Following 
model for the conductivity of clay bearing sediments is 
proposed by [5]: 

 
 ( )[ ]wvvw

mn CQAQaS σσφσ /1/1 ++= −  (3) 
 

where, σ is Soil/sediment conductivity in S/m (σ =1/ρ), S is 
degree of the water saturation, φ is porosity, σw is the 
conductivity of water, m is the tortuosity factor, n is 
saturation exponent, a is the constant, A=1.94×m in 
(S/m)/(mol/l) and C =0.7/Qv in S/m, Qv (in mol/l) is the 
concentration of Na-exchange cations relative to the water 
saturated pore space, which depends on the cation 
exchange capacity (Cex) in mol/g and the matrix specific 
density ρm. Qv replaced by Q*=Qv/S (for partial saturation; 
[6]), with: 
 

 
φ
φρ −

=
1

mexv CQ  (4) 

 
The dependence of the exchange capacity Cex on the 

relative clay and silt content (mineral composition of clay) 
Pclay and Psilt is estimated by a relationship proposed by [6]: 
 
 )2.0(47.0 siltclayex PPC +=   (5) 
 

2. EXPERIMENT 
The characterization of the unconsolidated sediments 

comprised the analyses of the main components, grain size 
distribution, grain shape, grain arrangement and pore 
structure (size and shape). The main physical properties of 
unconsolidated sediments investigated here are density 
(bulk and mineral density), porosity, water saturation, and 
electrical resistivity. 

Semi-quantitative X-ray diffraction (XRD) analysis was 
used to identify the main components. Diffracted X-rays 
are used to measure the dimensions of the various atomic 
layers in the crystals, and different minerals have a distinct 
set of atomic layer spacing, which can be used to identify 
the mineral [7] 

For analyzing the grain size distribution of the 
unconsolidated sediment, the distribution of the coarse 
particles (gravel and sand) was determined by sieve 
analysis. Fine particles (silt and clay), less than 0.063 mm 
in size, were analyzed by the hydrometer method. Grain 
sizes can occur in a wide range of sizes from micrometer to 
centimeters, and the assumption is that the particles are 
roughly circular with the diameter measured [8].  

For the sieve analysis, weighed samples are poured into 
a top sieve which has the largest screen opening. Each 
lower sieve in the layer has smaller opening, at the base is a 
pan. The shaker shakes the column, usually for some fixed 
amount of time. After the shaking is complete the material 
on each sieve is weighed. The weight of the sample of each 
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sieve is then divided by the total weight to give a 
percentage retained on each sieve. The hydrometer method 
is based on the change of density of a soil and water 
suspension upon the settling of the soil particles. The 
hydrometer is gently placed into the cylinder containing the 
suspension after predetermined periods of time and a 
reading taken by determining where the meniscus of the 
suspension strikes the hydrometer.  

The density, ρ, is defined as the ratio of its mass m to its 
volume V. It of a material can be separated into the matrix 
density (ρMineral) that depends on the components (mineral) 
and the bulk density (ρBulk), which depends on the minerals 
and the porosity.  

The mineral density was determined by the pycnometer 
methods using water. First, the mass of the empty 
pycnometer was determined, then the sample was put in 
and the mass was measured. Distilled water was added to 
fill the pycnometer (with sample), removing entrapped air 
and weighted. Finally, the pycnometer was filled with 
distilled water only and weighted again. The density was 
calculated from the value of the sample mass per water 
mass and multiplied by the density of water. The bulk 
density of a sample was obtained by measuring the 
dimensions of a geometric sample container filled with the 
sediment and by this getting the volume and weight of the 
dry sample.  

Porosity, φ, is a measure of the total void spaces in a 
material, and is the volume of voids over the total volume, 
between 0 and 1. The value for total porosity can be 
calculated from φ=1-(bulk density/mineral density). 

Pore space properties are controlling the fluid 
distribution in the pore space and are important for the 
characterization of the pore volume fractions of the fluids 
(porosity, saturation, bulk volume of fluids) [3]. The pore 
structure with pore space and pore size was analyzed using 
scanning electron microscopy (SEM). Samples needed to 
be made conductive by covering the sample with a thin 
layer of conductive material, here gold [9].  

The electrical resistivity measurements were performed 
following a classical four-electrode-configuration. 
Electrical current (I) was injected by two electrodes named 
and the resulting electrical potential (ΔV) is measured by 
two other electrodes. This geometrical configuration 
offered a compromise between two contradictory constrains 
of a small contact (electrical) resistance that requires a 
large electrode diameter and the assumption of point 
electrodes needed for calculating the electrical resistivity 
(ρ) value. With A is cross sectional area in square meters, s 
is length in m, V in volt and I in ampere. The electrical 
resistivity was determined under laboratory conditions at 
room temperature with increasing (tap) water saturation (0–
100%) of the air dried sample. The samples were always 
compacted by hand as much as possible before each 
measurement of the electrical resistivity. 

 

3. RESULTS AND DISCUSSIONS  
The grain size distributions of three of the 

unconsolidated sediment samples are show in Fig. 2, their 
frequency and cumulative curves based on the logarithmic 
particle size method. The grain size distribution of the 
samples show that more than 50% of the unconsolidated 

sediment fraction exceeded 0.063 mm (gravel and sand). 
KH_1_2 contained less coarse particles (gravel) than 
KH_2_2 and KH_3_2 as it is the top soil (KH_1_2) and 
because of weathering, erosion and transportation of 
particles. But KH_1_2 has a higher sand content than the 
other two samples, whereas KH_3_2 had the highest clay 
content. 
 

 
 
FIGURE 2. Grain size distribution curve for KH_1_2 (top soil), 
KH_2_2 (second layer), and KH_3_2 (bottom layer) 

 

 
 
FIGURE 3. SEM microphotographs of unconsolidated sediment 
samples (a) KH_1_2, top soil, (b) KH_6_2, second layer (parallel 
sample to KH_2_2). P: pore, Q: quartz grain, C: clay mineral. 
 

The main minerals of the unconsolidated sediments are 
quartz and clay minerals (illite and kaolinite) based on the 
XRD results. SEM microphotographs of the samples 
showed differences in micro texture and morphology due to 
the mineral content and grain size distribution. Mineral 
constituents identified under SEM are clay and quartz, 
consistent with the XRD results. Fig. 3(a) shows SEM 
microphotographs of KH_1_2 with pores and grains, which 
have a sub-rounded to angular grain shape, and show a fine 
to coarse grain size. Fig. 3(b) shows SEM micro-
photographs of sample KH_6_2 after 100% water 
saturation and subsequent drying under air. Smaller pores 
are seen than in the SEM microphotographs of KH_1_2 
because the grains are arranged closer together than before 
due to the saturation.  

Result from the resistivity measurements versus 
increasing water saturation are shown in Fig. 4 for the three 
samples, KH_1_2, KH_2_2, and KH_3_2 in semi-log 
graph. In general, the electrical resistivity decreases when 
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the water content increases which is in accordance with the 
theory, see Eq. 2 and 3. It can be seen that for a water 
content of 0-40% there is a larger gradient for the decrease 
of the electrical resistivity.  
 

 
 
FIGURE 4. Relationship between the degree of water saturation 
and the electrical resistivity for different sample 
 

Measured resistivity decreases logarithmically with 
increasing water saturation. The shape of the curve for all 
three samples is similar, but the absolute values are 
different, with the resistivity values showing following 
order: KH_3_2 > KH_2_2 > KH_1_2 (Fig. 4).  

The shape of the resistivity curve can be attributed to a 
combination of electrolytic conductivity of the pore fluid 
and colloidal conductivity processes related to the clay 
content. In sediments with clay content, the electrical 
charges located at the surface of the clay texture lead to less 
electrical resistivity than in coarse-textured soils because of 
the magnitude of the specific surface [10]. A large specific 
surface area supports the surface conductivity because a 
number of cations in clay minerals are higher valence; 
electrical charge of the clay mineral surface is negative. It 
is compensated by the concentration of cations in the pore 
water in the mineral surface. This process is the cation 
exchange capacity (CEC). The calculation of the resistivity 
of clayey material is not trivial, since the electrical current 
flow is possible through clay minerals as well as through 
pore fluid [4]. However, for the three samples here the clay 
content is relatively similar, which might not explain the 
differences in the absolute resistivity values. 

However, the three samples in Fig. 4 show significant 
difference in the gravel and sand grain size distribution. 
Sample KH_3_2 has a gravel content of 36% and a sand 
content of 15%, sample KH_2_2 has 24% and 36%, and 
sample KH_1_2 has 6% and 47%, respectively. A higher 
resistivity correlates with a higher content in gravel and 
vice versa. The larger gravel grains might obstruct the 
electrical pathway more than the sand grains and might also 
have an effect on the clay distribution in the sample (see 
Fig. 5). This would explain that the differences are more or 
less independent from the saturation degree. 

 

 
 
FIGURE 5. Relationship between the grain size and electrical 
current. a) higher content of larger grain size, b) lower content of 
larger grains size, white area represent smaller grain sizes. 
 

In Fig. 4 the lines represent the calculations of the 
electrical resistivity using Eq. 3, using average parameters 
from the laboratory measuremtns: clay content (percent of 
clay and silt), porosity, matrix density, and conductivity of 
the water used. In order to fit a curve with the experimental 
values from the electrical resistivity measurements, the 
values m, n, and a in Eq. 3 were changed; it was tried not to 
change a significantly. When m was increased, the curve 
changed to higher resistivity values at higher degrees of 
saturation and the curve changed to much higher resitivity 
values at lower degrees of saturation when n was incresed. 
For the three samples shown in Fig. 4 following order for 
the values m and n were obtained: KH_3_2 > KH_2_2 > 
KH_1_2. The tortuosity factor m increases with depth and 
with increasing larger grain size, making it more difficult 
for the electrical current to find a pathway, thus resulting in 
a higher resistivity. The increase in n value with depth 
might reflect the distribution of the pores associated with a 
larger portion of larger grains. 

A summary of all m, n, and a values for nine samples 
from KH location and seven samples from KB location 
give following values: m=0.3-3.1, n=1.4-2.2, a = 0.8-1.0 
for sediments from the granite site (KB), and m=1.0-3.9, 
n=2.5-3.2, a=1.0-1.1 for the sandstone site (KH) as shown 
in Fig. 6. Values of m for KB and KH are overlapping, 
whereas values of n for KB are less than for KH, 
illustrating that these values change with sediment type, in 
general, and that one set of these values cannot be applied 
to all sediments types. 

 

 
 
FIGURE 6. Comparison of m, tortuosity factor, n, saturation 
exponent, and a, a constant, of KH (9 samples) and KB 
(7 samples) location. Line reflects the range of all values, symbols 
represent the average value for each factor. 
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4. CONCLUSION 

The electrical resistivity of clay bearing unconsolidated 
sediments is a complex phenomenon. Laboratory 
measurements have shown that the electrical resistivity 
decreases when the water content increases because of a 
combined effect from the electrolytic conductivity of the 
pore fluid and the colloidal conductivity from the clay 
mineral, and that the data follow current theory. However, 
the fitting parameter, m, n, and a, vary with different 
sediment type. With limited data the difference are clear. 
Further, the results of this study suggest that the grain size 
distribution has a significant effect on the absolute 
resistivity, independent from the water saturation. 
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The shallow subsurface, a few hundred meters in depth, comprises mainly of unconsolidated 
sediments, a porous material, with gravel, sand, silt, clay, and rock fragments, and it is the 
source for groundwater as well as the region of landslide hazards, and the main resource in 
agriculture, soil. For this study disturbed samples of unconsolidated sediments from different 
layers from bedrock to the top soil layer were taken from two location of the Khao Khohong 
mountain range near Hat Yai District, Songkhla Province. The two sample locations comprise 
different bedrock lithologies, sandstone and granite. The dried samples were characterized as 
following: main composition (X-ray diffraction), grain size distribution (sieve analysis for 
sand and hydrometer method for clay and silt content), grain matrix density (water pycnome-
ter), bulk density, porosity, as well as pore structure (scanning electron microscopy). The 
seismic velocities, P- and S-wave, were determined at ultrasonic frequencies at 63 kHz and 
33 kHz, respectively, under laboratory conditions at 0.12 MPa semi-confining pressure with 
increasing water saturation (0–100%) of the sample in five steps. In general the seismic veloc-
ities do not change much with water saturation. Vp is primary controlled by the bulk modulus 
of the water, as well as by the porosity and the bulk modulus of the matrix grains (quartz, 
etc.). The S-wave velocities in general are more consistent for both sample groups and the 
shear wave velocities have a direct effect on the small strain stiffness. The data from this 
study show that for the samples from the granite site as well as for the sandstone site the shear 
velocities significantly decrease at around 60-80% water saturation. This is reflected in a de-
crease in the shear modulus at the same water saturation percentage. This also correlates with 
a decrease in the Young's modulus and an increase to almost 0.5 of the Poisson's ratio. All this 
indicated that at around 60-80% water saturation the mechanical properties of the sediment 
samples from both sites significantly changes, thus reducing the stiffness of the unconsolidat-
ed sediments.  
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Comments and Suggestions 
 
A number of technical issues as well as service support from other departments were 
the main reasons for the extension of the project duration. However, finally all 
planned measurements could be carried out and by this meeting the project objectives. 
 
All of the data will be published, as a full journal paper is in preparation. 
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