

Metabolites from the Mangrove-derived Fungi: *Acremonium* sp. PSU-MA70 and *Pestalotiopsis* sp. PSU-MA92 and PSU-MA119

Aekkachai Rodglin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry Prince of Songkla University 2010

Copyright of Prince of Songkla University

i

Thesis Title	Metabolites from the Mangrove-derived Fungi: Acremonium
	sp. PSU-MA70 and Pestalotiopsis sp. PSU-MA92 and PSU-
	MA119
Author	Mr. Aekkachai Rodglin
Major Program	Organic Chemistry

Major Advisor:

Examing Committee:

	Chairperson
(Prof. Dr. Vatcharin Rukachaisirikul)	(Dr. Pattama Pittayakhajonwut)
Co-advisor:	(Prof. Dr. Vatcharin Rukachaisirikul)
(Dr. Yaowapa Sukpondma)	(Dr. Yaowapa Sukpondma)

(Assoc. Prof. Dr. Chatchanok Karalai)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Degree of Master of Science in Organic Chemistry

> (Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School

ชื่อวิทยานิพนธ์	เมทาบอไลต์จากเชื้อราพืชป่าชายเลน Acremonium sp. PSU-MA70 และ
	Pestalotiopsis sp. PSU-MA92 และ PSU-MA119
ผู้เขียน	นายเอกชัย รอดกลิ่น
สาขาวิชา	เคมือินทรีย์
ปีการศึกษา	2552

บทคัดย่อ

งานวิจัยนี้ศึกษาองค์ประกอบทางเคมีของเชื้อราจากพืชป่าชายเลนจำนวน 3 ชนิด ได้แก่ Acremonium sp. PSU-MA70 และ Pestalotiopsis sp. PSU-MA92 และ PSU-MA119 โดยนำส่วนสกัดหยาบเอทิลอะซิเตทจากส่วนน้ำเลี้ยงเชื้อของเชื้อราดังกล่าวมาทำให้ บริสุทธิ์ด้วยวิธีทางโครมาโทกราฟี สามารถแยกสารบริสุทธิ์ประเภทต่างๆ ได้ดังนี้

• สารใหม่จำนวน 10 สาร ได้แก่ อนุพันธ์ของ phthalide จำนวน 2 สาร (AR11 และ AR16) อนุพันธ์ของ isochromanone จำนวน 3 สาร (AR12, AR13 และ AR17) อนุพันธ์ของ isochromenone จำนวน 4 สาร (AR14, AR18, AR19 และ AR20) และอนุพันธ์ ของ lactone จำนวน 1 สาร (AR15) และสารที่มีการรายงานโครงสร้างแล้วจำนวน 10 สาร คือ อนุพันธ์ของ macrolide จำนวน 1 สาร (AR1) อนุพันธ์ของ cyclic depsipeptide จำนวน 2 สาร (AR2 และ AR3) อนุพันธ์ของ sesquiterpene จำนวน 2 สาร (AR4 และ AR7) อนุพันธ์ของ hexanediol จำนวน 1 สาร (AR5) อนุพันธ์ของ pentanediol 1 สาร (AR6) อนุพันธ์ของ phthalide จำนวน 1 สาร (AR8) และอนุพันธ์ของ diketopiperazine จำนวน 2 สาร (AR9 และ AR10) จากเชื้อรา Acremonium sp. PSU-MA70

สารใหม่จำนวน 4 สาร คือ อนุพันธ์ของ α-pyrone จำนวน 4 สาร (AR21, AR22, AR23 และ AR24) และสารที่มีการรายงานโครงสร้างแล้ว จำนวน 2 สาร คือ อนุพันธ์ ของ phenol (AR25) และ อนุพันธ์ของ penicillide (AR26) จากเชื้อรา Pestalotiopsis sp. PSU-MA92

สารใหม่จำนวน 2 สาร ได้แก่ อนุพันธ์ของ macrolide จำนวน 2 สาร (AR27 และ AR29) และสารที่มีการรายงานโครงสร้างแล้วจำนวน 3 สาร คือ อนุพันธ์ของ macrolide จำนวน 1 สาร (AR28) และอนุพันธ์ของ phenol จำนวน 2 สาร (AR30 และ AR31) จากเชื้อรา Pestalotiopsis sp. PSU-MA119 โดยสารประกอบ AR27 แยกในรูปอนุพันธ์อะซิเทต

โครงสร้างสารทั้งหมดวิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี โดยเฉพาะ 1D และ 2D NMR สเปกโทรสโกปี และเปรียบเทียบกับข้อมูลที่มีการรายงานไว้แล้ว สำหรับสเตอริโอ-เคมีของสาร **AR1** สามารถยืนยันได้ด้วยข้อมูล X-ray

AR1

, NCH3 H₃C H₃C CH₃ О ĊH₃ 0 0 0 CH₃ 0 H₃C N H H₃C CH₃ Ŕ

AR2 : R = OHAR3 : R = H

AR7 : R = OH

 $AR4 : R = OCOCH = CHCH_3$

AR6

AR5

 $AR8 : R = CH_3$

 $AR11 : R = CH_2OH$

AR10 :
$$R_1 = SCH_3, R_2 = H$$

CH₃

OCH₃O

AR15

 R_3

Ö

AR19 : $R_1 = OH$, $R_2 = H$, $R_3 = CH_3$

0

AR18: $R_1 = OCH_3$, $R_2 = CH_3$, $R_3 = CH_2OH$

AR20: $R_1 = OH$, $R_2 = CH_3$, $R_3 = CH_2OH$

 R_2

ÓН

H₃CO-

 R_1

AR12 : $R_1 = COCH_3$, $R_2 = H$

AR13 : $R_1 = CH_2OH$, $R_2 = CH_3$

AR17 : $R_1 = CH(OH)CH_3$, $R_2 = H$

CH₂

 CH_2

ЮH

AR14

AR16

 $\mathbf{AR21}: \mathbf{R} = \alpha \mathbf{-H}$

 $AR22 : R = \beta - H$

AR23 : $R_1 = R_3 = H$, $R_2 = OH$

 $11123 \cdot 11 = 113 = 113 = 113$

AR24 : $R_1 = R_2 = H$, $R_3 = CH_3$

AR26

AR30

|| 0

OH

0

CH₃

′′″ОН

Thesis Title	Metabolites from the Mangrove-derived Fungi: Acremonium
	sp. PSU-MA70 and Pestalotiopsis sp. PSU-MA92 and PSU-
	MA119
Author	Mr. Aekkachai Rodglin
Major Program	Organic Chemistry
Academic Year	2009

ABSTRACT

This research investigated the ethyl acetate extracts from the culture broth of the mangrove-derived fungi; *Acremonium* sp. PSU-MA70 and *Pestalotiopsis* sp. PSU-MA92 and PSU-MA119. Each extract was purified by various chromatographic techniques. The investigation led to the isolation of various types of secondary metabolites as follows.

• Ten new compounds: two phthalide derivatives (AR11 and AR16), three isochromanone derivatives (AR12, AR13 and AR17), four isochromenone derivatives (AR14, AR18, AR19 and AR20) and one lactone derivative (AR15) together with ten known compounds: one macrolide (AR1), two cyclic depsipeptide derivatives (AR2 and AR3), two sesquiterpene derivatives (AR4 and AR7), one hexanediol derivative (AR5), one pentanediol derivative (AR6), one phthalide derivative (AR8) and two diketopiperazine derivatives (AR9 and AR10), from *Acremonium* sp. PSU-MA70.

• Four new α-pyrone derivatives (AR21, AR22, AR23 and AR24) along with two known compounds: one phenol (AR25) and one penicillide derivative (AR26), from *Pestalotiopsis* sp. PSU-MA92.

• Two new macrolides (AR27 and AR29) and three known compounds: one macrolide derivative (AR28) and two phenol derivatives (AR30 and AR31), from *Pestalotiopsis* sp. PSU-MA119.

Their structures were elucidated by analysis of spectroscopic data, especially 1D and 2D NMR data, and comparison of the NMR data with those previously reported. The stereochemistry of **AR1**was confirmed by X-ray data.

AR1

AR4 : $R = OCOCH \stackrel{Z}{=} CHCH_3$

AR7 : R = OH

AR2 : R = OHAR3 : R = H

AR6

AR5

 $AR8 : R = CH_3$

 $AR11 : R = CH_2OH$

AR10 : $R_1 = SCH_3$, $R_2 = H$

AR12 : $R_1 = COCH_3$, $R_2 = H$

AR13 : $R_1 = CH_2OH$, $R_2 = CH_3$

 $\mathbf{AR17}: \mathbf{R}_1 = \mathbf{CH}(\mathbf{OH})\mathbf{CH}_3, \mathbf{R}_2 = \mathbf{H}$

AR15

 $\mathbf{AR18}: \mathbf{R}_1 = \mathbf{OCH}_3, \mathbf{R}_2 = \mathbf{CH}_3, \mathbf{R}_3 = \mathbf{CH}_2\mathbf{OH}$

AR19 : $R_1 = OH$, $R_2 = H$, $R_3 = CH_3$

 $\mathbf{AR20}: \mathbf{R}_1 = \mathbf{OH}, \mathbf{R}_2 = \mathbf{CH}_3, \mathbf{R}_3 = \mathbf{CH}_2\mathbf{OH}$

OCH₃ O

CH₃

H₃CO

 CH_2

AR21 : $R = \alpha$ -H

 $AR22 : R = \beta - H$

AR23: $R_1 = R_3 = H$, $R_2 = OH$

AR24 : $R_1 = R_2 = H$, $R_3 = CH_3$

AR27 OH OH OH CH₃ O

AR30

CONTENTS

		Page
บทคัดย่อ		iii
ABSTRA	СТ	vii
ACKNOV	VLEDGEMENT	xi
THE REL	EVANCE OF THE RESEARCH WORK TO THAILAND	xii
CONTEN	TS	xiii
LIST OF 7	TABLES	xvi
LIST OF	FIGURES	xxiii
LIST OF ABBREVIATIONS AND SYMBOLS		xxvii
PART I	METABOLITES FROM THE MANGROVE-DERIVED	1
	FUNGUS ACREMONIUM SP. PSU-MA70	
	CHAPTER 1.1 INTRODUCTION	2
	1.1.1 Introduction	2
	1.1.2 Objectives	11
	CHAPTER 1.2 EXPERIMENTAL	12
	1.2.1 Instruments and chemicals	12
	1.2.2 Fermentation and extraction	12
	1.2.3 Purification of the broth extract	13
	CHAPTER 1.3 RESULTS AND DISCUSSION	60
	1.3.1 Compound AR1	60
	1.3.2 Compound AR2	62
	1.3.3 Compound AR3	67
	1.3.4 Compound AR4	71
	1.3.5 Compound AR7	75
	1.3.6 Compound AR5	77
	1.3.7 Compound AR6	79
	1.3.8 Compound AR8	80
	1.3.9 Compound AR11	83

CONTENTS (Continued)

		Page
	1.3.10 Compound AR15	84
	1.3.11 Compound AR16	86
	1.3.12 Compound AR9	87
	1.3.13 Compound AR10	89
	1.3.14 Compound AR12	90
	1.3.15 Compound AR13	92
	1.3.16 Compound AR17	94
	1.3.17 Compound AR18	95
	1.3.18 Compound AR14	97
	1.3.19 Compound AR20	99
	1.3.20 Compound AR19	101
PART II	METABOLITES FROM THE MANGROVE-DERIVED	103
	FUNGUS PESTALOTIOPSIS SP. PSU-MA92	
	CHAPTER 2.1 INTRODUCTION	104
	2.1.1 Introduction	104
	2.1.2 Objectives	118
	CHAPTER 2.2 EXPERIMENTAL	119
	2.2.1 Fermentation and extraction	119
	2.2.2 Purification of the broth extract	119
	CHAPTER 2.3 RESULTS AND DISCUSSION	134
	2.3.1 Compound AR21	134
	2.3.2 Compound AR22	136
	2.3.3 Compound AR23	137
	2.3.4 Compound AR24	140
	2.3.5 Compound AR25	142
	2.3.6 Compound AR26	143

CONTENTS (Continued)

		Page
PART III	METABOLITES FROM THE MANGROVE-DERIVED	147
	FUNGUS PESTALOTIOPSIS SP. PSU-MA119	
	CHAPTER 3.1 INTRODUCTION	148
	3.1.1 Introduction	148
	3.1.2 Objectives	148
	CHAPTER 3.2 EXPERIMENTAL	149
	3.2.1 Fermentation and extraction	149
	3.2.2 Purification of the broth extract	149
	CHAPTER 3.3 RESULTS AND DISCUSSION	172
	3.3.1 Compound AR28 and its diacetate derivative	172
	3.3.2 Compound AR27	176
	3.3.3 Compound AE29 and its triacetate derivative	179
	3.3.4 Compound AR30	183
	3.3.5 Compound AR31	184
REFEREN	CES	186
APPENDE	X	192
VITAE		243

LIST OF TABLES

Table		Page
1	Compounds isolated from the Acremonuim genus	2
2	Fractions obtained from the crude EtOAc extract by dissolving	13
	with methanol	
3	Subfractions obtained from Fraction 70 by column	14
	chromatography over Sephadex LH-20	
4	Subfractions obtained from subfraction 70A by column	15
	chromatography over silica gel	
5	Subfractions obtained from subfraction 70A1 by column	15
	chromatography over silica gel	
6	Subfractions obtained from subfraction 70A13 by column	16
	chromatography over Sephadex LH-20	
7	Subfractions obtained from subfraction 70A15 by column	17
	chromatography over Sephadex LH-20	
8	Subfractions obtained from subfraction 70A151 by column	18
	chromatography over silica gel	
9	Subfractions obtained from subfraction 70A2 the by flash	20
	column chromatography over silica gel	
10	Subfractions obtained from subfraction 70B by column	21
	chromatography over silica gel	
11	Subfractions obtained from subfraction 70B2 by column	22
	chromatography over Sephadex LH-20	
12	Subfractions obtained from subfraction 70B3 by flash column	24
	chromatography over silica gel	
13	Subfractions obtained from subfraction 70B31 by column	24
	chromatography over Sephadex LH-20	
14	Subfractions obtained from subfraction 70C by column	26
	chromatography over silica gel	

Table		Page
15	Subfractions obtained from subfraction 70C3 by column	27
	chromatography over silica gel	
16	Subfractions obtained from subfraction 70C32 by column	27
	chromatography over silica gel	
17	Subfractions obtained from subfraction 70C4 by column	29
	chromatography over Sephadex LH-20	
18	Subfractions obtained from subfraction 70C42 by column	30
	chromatography over silica gel	
19	Subfractions obtained from subfraction 70C422 by column	30
	chromatography over silica gel	
20	Subfractions obtained from subfraction 70C43 by column	33
	chromatography over silica gel	
21	Subfractions obtained from subfraction 70C432 by column	33
	chromatography over silica gel	
22	Subfractions obtained from subfraction 70C4322 by column	34
	chromatography over silica gel	
23	Subfractions obtained from subfraction 70C5 by column	36
	chromatography over silica gel	
24	Subfractions obtained from subfraction 70C52 by column	37
	chromatography over silica gel	
25	Subfractions obtained from subfraction 70C6 by column	39
	chromatography over silica gel	
26	Subfractions obtained from subfraction 70C62 by column	40
	chromatography over reverse phase silica gel	
27	Subfractions obtained from subfraction 70C624 by column	41
	chromatography over silica gel	

Table		Page
28	Subfractions obtained from subfraction 70C626 by column	42
	chromatography over silica gel	
29	Subfractions obtained from subfraction 70C6261 by column	43
	chromatography over silica gel	
30	Subfractions obtained from subfraction 70D by column	46
	chromatography over reverse phase silica gel	
31	Subfractions obtained from subfraction 70D2 by column	47
	chromatography over silica gel	
32	Subfractions obtained from subfraction 70D3 by column	48
	chromatography over silica gel	
33	Subfractions obtained from subfraction 70E by column	54
	chromatography over silica gel	
34	The 1 H and 13 C NMR data of compound AR1 and (+)-	61
	brefeldin A in DMSO-d ₆	
35	The 1 H and 13 C NMR data of compound AR2 and	64
	guangomide A in CDCl ₃	
36	The HMBC and COSY data of compound $AR2$ in $CDCl_3$	66
37	The ¹ H and ¹³ C NMR data of compound AR3 and	68
	guangomide B in CDCl ₃	
38	The HMBC and COSY data of compound $AR3$ in $CDCl_3$	69
39	The ¹ H and ¹³ C NMR data of compound AR4 and 8-	73
	deoxytrichothecin in CDCl ₃	
40	The HMBC, COSY and NOE data of compound $AR4$ in $CDCl_3$	74
41	The 1 H and 13 C NMR data of compound AR7 and the 1 H	75
	NMR data of trichodermol in CDCl ₃	
42	The HMBC, COSY and NOE data of compound $AR7$ in $CDCl_3$	76
43	The NMR data of compound AR5 in CDCl ₃	78
44	The NMR data of compound $AR6$ in $CDCl_3$	80

Table		Page
45	The ¹ H and ¹³ C NMR data of compound AR8 and 5,7-	82
	dimethoxy-3,4-dimethyl-3-hydroxyphthalide in $CDCl_3$	
46	The HMBC data of compound $AR8$ in $CDCl_3$	82
47	The NMR data of compound AR11 in CDCl ₃	83
48	The ¹ H and ¹³ C NMR data of compound AR15 in CDCl ₃	85
49	The HMBC, COSY and NOE data of compound $AR15$ in $CDCl_3$	85
50	The ¹ H and ¹³ C NMR data of compound AR16 in CDCl ₃	87
51	The HMBC, COSY and NOE data of compound $AR16$ in $CDCl_3$	87
52	The 1 H and 13 C NMR data of compound AR9 and Sch 54794 in	88
	CDCl ₃	
53	The 1 H and 13 C NMR data of compound AR10 and Sch 54796 in	89
	CDCl ₃	
54	The NMR data of compound AR12 in $CDCl_3$	91
55	The NMR data of compound AR13 in CDCl ₃	93
56	The NMR data of compound AR17 in CDCl ₃	94
57	The ¹ H and ¹³ C NMR data of compound AR18 in Acetone- d_6	96
58	The HMBC, COSY and NOE data of compound AR18 in	97
	Acetone- d_6	
59	The ¹ H and ¹³ C NMR data of compound AR14 in CDCl ₃	98
60	The HMBC, COSY and NOE data of compound $AR14$ in $CDCl_3$	99
61	The NMR data of compound AR20 in Acetone- d_6	100
62	The ¹ H and ¹³ C NMR data of compound AR19 in Acetone- d_6	101
63	The HMBC, COSY and NOE data of compound AR19 in	102
	Acetone- <i>d</i> ₆	
64	Compounds isolated from the Pestalotiopsis genus	104
65	Fractions obtained from the crude EtOAc extract by column	119
	chromatography over Sephadex LH-20	

Table		Page
66	Subfractions obtained from fraction 92B by column	120
	chromatography over reverse phase silica gel	
67	Subfractions obtained from subfraction 92B2 by column	121
	chromatography over silica gel	
68	Subfractions obtained from subfraction 92B4 by column	124
	chromatography over silica gel	
69	Subfractions obtained from fraction 92C by column	127
	chromatography over reverse phase silica gel	
70	Subfractions obtained from subfraction 92C1 by column	128
	chromatography over reverse phase silica gel	
71	Subfractions obtained from subfraction 92C12 by column	128
	chromatography over Sephadex LH-20	
72	Subfractions obtained from subfraction 92C2 by column	130
	chromatography over Sephadex LH-20	
73	Subfractions obtained from fraction 92D by column	132
	chromatography over Sephadex LH-20	
74	The ¹ H and ¹³ C NMR data of compound AR21 in $CDCl_3$	135
75	The HMBC, COSY and NOE data of compound $AR21$ in $CDCl_3$	135
76	The ¹ H and ¹³ C NMR data of compound AR22 in $CDCl_3$	136
77	The HMBC, COSY and NOE data of compound $AR22$ in CDCl ₃	137
78	The ¹ H and ¹³ C NMR data of compound AR23 in Acetone- d_6	139
79	The HMBC, COSY and NOE data of compound AR23 in	139
	Acetone- d_6	
80	The ¹ H and ¹³ C NMR data of compound AR24 in CDCl ₃	141
81	The HMBC, COSY and NOE data of compound AR24 in $CDCl_3$	141
82	The ¹ H and ¹³ C NMR data of compound AR25 in Acetone- d_6 and	142
	4-hydroxybenzoic acid in DMSO- d_6	

Table		Page
83	The ¹ H and ¹³ C NMR data of compound AR26 in CDCl ₃ and 2'-	145
	hydroxy-3',4'-didehydropenicillide in CDCl ₃	
84	The HMBC, COSY and NOE data of compound $AR26$ in $CDCl_3$	146
85	Fractions obtained from the crude EtOAc extract by column	149
	chromatography over Sephadex LH-20	
86	Subfractions obtained from fraction ZC by column	150
	chromatography over reverse phase silica gel	
87	Subfractions obtained from subfraction ZC2 by column	151
	chromatography over Sephadex LH-20	
88	Subfractions obtained from subfraction ZC22 by column	152
	chromatography over Sephadex LH-20	
89	Subfractions obtained from subfraction ZC222 by flash column	152
	chromatography over silica gel	
90	Subfractions obtained from subfraction ZC2223 by flash column	153
	chromatography over silica gel	
91	Subfractions obtained from subfraction ZC22232 by flash column	154
	chromatography over silica gel	
92	Subfractions obtained from subfraction ZC2224 by column	158
	chromatography over silica gel	
93	Subfractions obtained from subfraction ZC22242 by column	160
	chromatography over silica gel	
94	Subfractions obtained from subfraction ZC222421 by column	160
	chromatography over silica gel	
95	Subfractions obtained from subfraction ZC23 by column	162
	chromatography over silica gel	
96	Subfractions obtained from subfraction ZC3 by flash column	164
	chromatography over silica gel	

Table		Page
97	Subfractions obtained from fraction ZD by column	167
	chromatography over reverse phase silica gel	
98	Subfractions obtained from subfraction ZD1 by column	167
	chromatography over Sephadex LH-20	
99	Subfractions obtained from subfraction ZD13 by flash column	168
	chromatography over silica gel	
100	Subfractions obtained from subfraction ZD3 by flash column	170
	chromatography over silica gel	
101	The 1 H and 13 C NMR data of compound AR28 and	174
	seiricuprolide in CDCl ₃	
102	The HMBC and COSY data of compound $AR28$ in $CDCl_3$	175
103	The NMR data of the diacetate derivative of $AR28$ in $CDCl_3$	175
104	The 1 H and 13 C NMR data of compound AR27 and the diacetate	177
	derivative of AR28 in CDCl ₃	
105	The HMBC and COSY data of compound $AR27$ in $CDCl_3$	178
106	The 1 H and 13 C NMR data of compound AR29 and its triacetate	180
	derivative in CDCl ₃	
107	The HMBC and COSY data of compound $AR29$ in $CDCl_3$	181
108	The HMBC, COSY and NOE data of the triacetate derivative of	182
	compound AR29 in CDCl ₃	
109	The 1 H and 13 C NMR data of compound AR30 and tyrosol in	184
	CDCl ₃	
110	The ¹ H and ¹³ C NMR data of compound AR31 in $CDCl_3$	185
	and 4-hydroxyacetophenone in DMSO-d ₆	

LIST OF FIGURES

Figure		Page
1	The 300 MHz 1 H NMR spectrum of compound AR1 in DMSO- d_{6}	193
2	The 75 MHz 13 C NMR spectrum of compound AR1 in DMSO- d_6	193
3	The X-ray structure of compound AR1	194
4	The 300 MHz 1 H NMR spectrum of compound AR2 in CDCl ₃	195
5	The 75 MHz 13 C NMR spectrum of compound AR2 in CDCl ₃	195
6	The 300 MHz 1 H NMR spectrum of compound AR3 in CDCl ₃	196
7	The 75 MHz 13 C NMR spectrum of compound AR3 in CDCl ₃	196
8	The 300 MHz 1 H NMR spectrum of compound AR4 in CDCl ₃	197
9	The 75 MHz 13 C NMR spectrum of compound AR4 in CDCl ₃	197
10	The 300 MHz 1 H NMR spectrum of compound AR7 in CDCl ₃	198
11	The 75 MHz 13 C NMR spectrum of compound AR7 in CDCl ₃	198
12	The 300 MHz 1 H NMR spectrum of compound AR5 in CDCl ₃	199
13	The 75 MHz 13 C NMR spectrum of compound AR5 in CDCl ₃	199
14	The 300 MHz 1 H NMR spectrum of compound AR6 in CDCl ₃	200
15	The 75 MHz 13 C NMR spectrum of compound AR6 in CDCl ₃	200
16	The 300 MHz 1 H NMR spectrum of compound AR8 in CDCl ₃	201
17	The 75 MHz 13 C NMR spectrum of compound AR8 in CDCl ₃	201
18	The 500 MHz 1 H NMR spectrum of compound AR11 in CDCl ₃	202
19	The 125 MHz 13 C NMR spectrum of compound AR11 in CDCl ₃	202
20	The mass spectrum of compound AR11	203
21	The 300 MHz 1 H NMR spectrum of compound AR15 in CDCl ₃	204
22	The 75 MHz 13 C NMR spectrum of compound AR15 in CDCl ₃	204
23	The mass spectrum of compound AR15	205
24	The 300 MHz 1 H NMR spectrum of compound AR16 in CDCl ₃	206
25	The 75 MHz 13 C NMR spectrum of compound AR16 in CDCl ₃	206
26	The mass spectrum of compound AR16	207
27	The 300 MHz 1 H NMR spectrum of compound AR9 in CDCl ₃	208

LIST OF FIGURES

Figure		Page
28	The 75 MHz 13 C NMR spectrum of compound AR9 in CDCl ₃	208
29	The 500 MHz 1 H NMR spectrum of compound AR10 in CDCl ₃	209
30	The 125 MHz 13 C NMR spectrum of compound AR10 in CDCl ₃	209
31	The 500 MHz 1 H NMR spectrum of compound AR12 in CDCl ₃	210
32	The 125 MHz 13 C NMR spectrum of compound AR12 in CDCl ₃	210
33	The mass spectrum of compound AR12	211
34	The 500 MHz 1 H NMR spectrum of compound AR13 in CDCl ₃	212
35	The 125 MHz 13 C NMR spectrum of compound AR13 in CDCl ₃	212
36	The mass spectrum of compound AR13	213
37	The 500 MHz 1 H NMR spectrum of compound AR17 in CDCl ₃	214
38	The 125 MHz 13 C NMR spectrum of compound AR17 in CDCl ₃	214
39	The mass spectrum of compound AR17	215
40	The 500 MHz ¹ H NMR spectrum of compound AR18 in	216
	Acetone- d_6	
41	The 125 MHz ¹³ C NMR spectrum of compound AR18 in	216
	Acetone- d_6	
42	The mass spectrum of compound AR18	217
43	The 500 MHz 1 H NMR spectrum of compound AR14 in CDCl ₃	218
44	The 125 MHz 13 C NMR spectrum of compound AR14 in CDCl ₃	218
45	The mass spectrum of compound AR14	219
46	The 500 MHz 1 H NMR spectrum of compound AR20 in	220
	Acetone- d_6	
47	The 125 MHz 13 C NMR spectrum of compound AR20 in	220
	Acetone- <i>d</i> ₆	
48	The mass spectrum of compound AR20	221
49	The 500 MHz ¹ H NMR spectrum of compound AR19 in	222
	Acetone- d_6	

LIST OF FIGURES (Continued)

Figure		Page
50	The 125 MHz ¹³ C NMR spectrum of compound AR19 in	222
	Acetone- <i>d</i> ₆	
51	The mass spectrum of compound AR19	223
52	The 300 MHz 1 H NMR spectrum of compound AR21 in CDCl ₃	224
53	The 125 MHz 13 C NMR spectrum of compound AR21 in CDCl ₃	224
54	The mass spectrum of compound AR21	225
55	The 300 MHz 1 H NMR spectrum of compound AR22 in CDCl ₃	226
56	The 125 MHz 13 C NMR spectrum of compound AR22 in CDCl ₃	226
57	The mass spectrum of compound AR22	227
58	The 300 MHz ¹ H NMR spectrum of compound AR23 in	228
	Acetone- <i>d</i> ₆	
59	The 75 MHz ¹³ C NMR spectrum of compound AR23 in	228
	Acetone- <i>d</i> ₆	
60	The mass spectrum of compound AR23	229
61	The 300 MHz 1 H NMR spectrum of compound AR24 in CDCl ₃	230
62	The 75 MHz 13 C NMR spectrum of compound AR24 in CDCl ₃	230
63	The mass spectrum of compound AR24	231
64	The 300 MHz ¹ H NMR spectrum of compound AR25 in	232
	Acetone- <i>d</i> ₆	
65	The 75 MHz ¹³ C NMR spectrum of compound AR25 in	232
	Acetone- d_6	
66	The 500 MHz 1 H NMR spectrum of compound AR26 in CDCl ₃	233
67	The 125 MHz 13 C NMR spectrum of compound AR26 in CDCl ₃	233
68	The 300 MHz 1 H NMR spectrum of compound AR28 in CDCl ₃	234
69	The 75 MHz 13 C NMR spectrum of compound AR28 in CDCl ₃	234
70	The 300 MHz ¹ H NMR spectrum of the diacetate derivative of	235
	compound AR28 in CDCl ₃	

LIST OF FIGURES (Continued)

Figure		Page
71	The 75 MHz ¹³ C NMR spectrum of the diacetate derivative of	235
	compound AR28 in CDCl ₃	
72	The 500 MHz 1 H NMR spectrum of compound AR27 in CDCl ₃	236
73	The 125 MHz 13 C NMR spectrum of compound AR27 in CDCl ₃	236
74	The mass spectrum of compound AR27	237
75	The 300 MHz 1 H NMR spectrum of compound AR29 in CDCl ₃	238
76	The 75 MHz 13 C NMR spectrum of compound AR29 in CDCl ₃	238
77	The mass spectrum of compound AR29	239
78	The 300 MHz ¹ H NMR spectrum of the triacetate derivative of	240
	compound AR29 in CDCl ₃	
79	The 75 MHz ¹³ C NMR spectrum of the triacetate derivative of	240
	compound AR29 in CDCl ₃	
80	The 300 MHz 1 H NMR spectrum of compound AR30 in CDCl ₃	241
81	The 75 MHz 13 C NMR spectrum of compound AR30 in CDCl ₃	241
82	The 300 MHz 1 H NMR spectrum of compound AR31 in CDCl ₃	242
83	The 75 MHz 13 C NMR spectrum of compound AR31 in CDCl ₃	242

PART I

METABOLITES FROM THE MANGROVE-DERIVED FUNGUS ACREMONIUM SP. PSU-MA70

CHAPTER 1.1

INTRODUCTION

1.1.1 Introduction

Fungi in the genus *Acremonium* producing various bioactive metabolites have drawn attention from many scientists to investigate their metabolites so far. Based on SciFinder Scholar Database, the secondary metabolites from the genus *Agremonium* with various biological activities since the year 2000 are summarized in **Table 1**. In this study, we conducted our research with the mangrove-derived fungus *Acremonium* sp. PSU-MA70. The crude ethyl acetate extract from its broth did not display antibacterial activity against *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Escherichia coli* at the concentration of 200 μ g/mL. However, it showed antifungal activity against *Candida albicans* and *Cryptococcus neoformans* with the equal MIC value of 128 μ g/mL and against *Microsporum gypseum* with the MIC value of 200 μ g/mL.

This fungus was isolated from the twigs of *Rhizophora apiculata*, collected from Satun province, Thailand in the year 2007. It was deposited at the Department of Microbiology, Faculty of Science, Prince of Songkla University, as the fungus PSU-MA70.

Scientific name	Compound	Activity	Reference
A. crotocinige-	6,8-Dimethoxy-4,5-dimeth-	-	Shim <i>et al</i> .,
num	yl-3-methyleneisochroman-		2008
	1-one, 1		
	5,7-Dimethoxy-3,4-dimeth-		
	yl-3-hydroxyisobenzofura-		

Scientific name	Compound	Activity	Reference
	none, 2		
A. furcatum	(2 <i>E</i> ,4 <i>E</i>)-2-Methylhexa-2,4-	Antifungal	Gallardo et
	dienoic acid (2'R,3'S)-		al., 2006
	isoleucinol amide, 3		
	(2 <i>E</i> ,4 <i>E</i>)-2-Methylhexa-2,4-		
	dienoic acid (2'S,3'S)-		
	isoleucinol amide, 4		
	(2 <i>E</i> ,4 <i>E</i>)-2-Methylhexa-2,4-		
	dienoic acid (2'R, 3'S)-		
	isoleucinaldehyde, 5		
	(2 <i>E</i> ,4 <i>E</i>)-2-Methylhexa-2,4-		
	dienoic acid (2'S, 3'S)-		
	isoleucinaldehyde, 6		
Acremonium sp.	Acremonin A, 7	Antioxidant	Abdel-Lateff
	Acremonin A glugoside, 8		et al., 2002
	(3 <i>R</i> ,4 <i>S</i>)-3,4-Dihydroxy-7-		
	methyl-3,4-dihydro-1(2H)-		
	naphthalenone, 9		
	(3 <i>S</i> ,4 <i>S</i>)-3,4-Dihydroxy-7-		
	methyl-3,4-dihydro-1(2H)-		
	naphthalenone, 10		
	2-(1-Methylethylidene)-		
	pentanedioic acid, 11		
	Pentanedioic acid 2-(1-		
	2-(1-Methylethylidene)-		
	methylethylidene)-5-methyl		
	ester, 12		
	Pentanedioic acid 2-(1-		
	methylethylidene)-1-methyl		

Scientific name	Compound	Activity	Reference
	ester, 13		
	Pentanedioic acid 2-(1-		
	methylethenyl)-5-methyl		
	ester, 14		
	2-(1-Hydroxy-1-methyl)-		
	2,3-dihydrobenzofuran-5-ol,		
	15		
	2,2-Dimethylchroman-3,6-		
	diol, 16		
	2-(2,3-Dihydroxy-3-		
	methylbutyl)benzene-1,4-		
	diol, 17		
	Acremonisol A, 18	-	Pontius et al.,
			2008
	Chlorocylindrocarpol, 19	Anti-	Zhang et al.,
	Cylindrocarpol, 20	inflammatory	2009
	Acremofuranone A, 21		
	Acremofuranone B, 22		
	Dihydroxybergamotene, 23		
	Lignoren, 24		
	Ascofuranone, 25		
	Ascofuranol, 26		
	Ascochlorin, 27		
	Cylindrol B, 28		
	Ilicicolin C, 29		
	Ilicicolin F, 30		
	Deacetylchloronectrin, 31		
	LL-Z1272 ε, 32		
	Awajanoran, 33	Cytotoxic and	Jang et al.,

Scientific name	Compound	Activity	Reference
		antimicrobial	2006
Acremonium sp.	3-Heptyl-5-hydroxyphenyl	Antiplasmo	Bunyapai-
BCC 14080	2-(β-D-galactopyranosyl-	dial, cytotoxic	boonsri et al.,
	oxy)-6-heptyl-4-hydroxy-	and anti-	2008
	benzoate, 34	HSV-1	
	3-Heptyl-5-hydroxyphenyl		
	2-[(6- <i>O</i> -β-D-galactopyrano-		
	syl- β -D-galactopyranosyl)-		
	oxy]-6-heptyl-4-hydroxy-		
	benzoate, 35		
	KS-501a, 36		
	2-(3-Heptyl-5-hydroxyben-		
	zyl)tetrahydro-6-(hydroxyl-		
	methyl)-5-methoxy-2H-		
	pyran-3,4-diol, 37		
Acremonium sp.	Acremoxanthone A, 38	Antibacterial,	Isaka <i>et al</i> .,
BCC 31806	Acremoxanthone B, 39	antifungal,	2009
	Acremonidin A, 40	antiplasmo	
	Acremonidin C, 41	dial, cytotoxic	
Acremonium sp.	FR235222, 42	Inhibitory	Mori et al.,
No. 27082		lymphocyte	2003
		proliferation,	
		lymphokine	
		production	
		and activity of	
		mammalian	
		histone	
		deacetylase	
		(HDAC)	

Scientific name	Compound	Activity	Reference
A. zeae	Curvularin, 43	Antifungal	Poling et al.,
	Dihydroresorcylide, 44		2008
	(R)-7-Hydroxydihydro-		
	resorcylide, 45		
	(S)-7-Hydroxydihydro-		
	resorcylide, 46		
	Pyrrocidine A, 47		
	Pyrrocidine B, 48		

Structures of the metabolites isolated from the Acremonium genus

1:6,8-Dimethoxy-4,5-dimethyl-

3-methyleneisochroman-1-one

- $\mathbf{3}: \mathbf{R} = \mathbf{CH}_2\mathbf{OH}$
 - : (2*E*,4*E*)-2-Methylhexa-2,4-dienoic acid (2'*R*,3'*S*)-isoleucinol amide
- **5** : R = CHO
 - : (2*E*,4*E*)-2-Methylhexa-2,4-dienoic acid (2'*R*, 3'*S*)-isoleucinaldehyde

2: 5,7-Dimethoxy-3,4-dimethyl-3-hydroxyisobenzofuran

- $4: R = CH_2OH$
- : (2*E*,4*E*)-2-Methylhexa-2,4-dienoic acid (2'*S*,3'*S*)-isoleucinol amide

6 : R = CHO

: (2*E*,4*E*)-2-Methylhexa-2,4-dienoic acid (2'S, 3'S)-isoleucinaldehyde

7: R = H: Acremonin A

11: R₁ = OH, R₂ = OH
: 2-(1-Methylethylidene)pentanedioic acid

 $12: R_1 = OH, R_2 = OCH_3$

- : Pentanedioic acid 2-(1-methylethylidene)-5-methyl ester
- $13 : R_1 = OCH_3, R_2 = OH$
 - : Pentanedioic acid 2-(1-methylethylidene)-1-methyl ester

9: R₁ = R₃ = H, R₂ = R₄ = OH
: (3R,4S)-3,4-Dihydroxy-7-methyl-3,4-dihydro-1(2H)-naphthalenone

$$10: R_2 = R_3 = H, R_1 = R_4 = OH$$

: (3*S*,4*S*)-3,4-Dihydroxy-7-methyl-

3,4-dihydro-1(2H)-naphthalenone

14 : Pentanedioic acid 2-(1-methylethenyl)-5-methyl ester

15 : 2-(1-Hydroxy-1-methyl)-2,3dihydrobenzofuran-5-ol

16: 2,2-Dimethylchroman-3,6-diol

17 : 2-(2,3-Dihydroxy-3-methylbutyl)- 18 : Acremonisol A benzene-1,4-diol

19 : R = Cl : Chlorocylindrocarpol

20 : R = H : Cylindrocarpol

22 : Acremofuranone B

24 : Lignoren

27 : R = Cl : Ascochlorin 28 : R = H : Cylindrol B

30 : Ilicicolin F

21 : Acremofuranone A

23 : Dihydroxybergamotene

 $\mathbf{25} : \mathbf{R}_1 + \mathbf{R}_2 = \mathbf{O} : \text{Ascofuranone}$ $\mathbf{26} : \mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{OH} : \text{Ascofuranol}$

29 : $R_1 = Cl$, $R_2 = H$: Ilicicolin C **31** : $R_1 = Cl$, $R_2 = OH$

Deacetylchloronectrin

32 :
$$R_1 = H$$
, $R_2 = H$: LL-Z1272 ε

33 : Awajanoran

$$34: R = \bigcup_{HO}^{OH} \bigcup_{OH}^{OH}$$

: 3-Heptyl-5-hydroxyphenyl 2-(β-D-galactopyranosyloxy)-6heptyl-4-hydroxybenzoate

: 3-Heptyl-5-hydroxyphenyl 2-[(6-*O-β*-D-galactopyranosyl-β-Dgalactopyranosyl)oxy]-6-heptyl-4-hydroxybenzoate

36 : R = H : KS-501a

37 : 2-(3-Heptyl-5-hydroxybenzyl)tetrahydro-6-(hydroxymethyl)-5methoxy-2*H*-pyran-3,4-diol

38 : Acremoxanthone A

42 : FR235222

44 : Dihydroresorcylide

46 : (*S*)-7-Hydroxydihydro-

resorcylide

48 : Pyrrocidine B

43 : Curvularin

45 : (*R*)-7-Hydroxydihydroresorcylide

47 : Pyrrocidine A

1.1.2 The Objectives

1. To isolate the secondary metabolites from the mangrove-derived fungus *Pestalotiopsis* sp. PSU-MA92.

2. To elucidate the structures of the isolated compounds.

CHAPTER 1.2

EXPERIMENTAL

1.2.1 Instruments and chemicals

Infrared (IR) spectra were recorded using a Perkin-Elmer 783 FTS165 FT-IR spectrophotometer. Ultraviolet (UV) absorption spectra were measured on a SHIMADZU UV-160A and a SHIMADZU UV-1600 Series spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a 300 or a 500 MHz Bruker FTNMR Ultra ShieldTM spectrometer using tetramethylsilane (TMS) as an internal standard. EIMS and HREIMS spectra were obtained on a MAT 95 XL Mass Spectrometer (Thermofinnigan). Optical rotation was measured in MeOH on a JASCO P-1020 polarimeter. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except for analytical grade reagents. Thin-layer chromatography (TLC) and precoated TLC were performed on silica gel 60 GF₂₅₄ (Merck). Column Chromatography (CC) was carried out on Sephadex LH-20, silica gel (Merck) type 60 (230-400 mesh ASTM) or type 100 (70-230 mesh ASTM), or reverse phase C₁₈ silica gel.

1.2.2 Fermentation and extraction

The flask culture of the fungus PSU-MA70 (15 L) in potato dextrose broth was filtered to separate into the filtrate and wet mycelia. The filtrate was divided into 37 portions. Each portion was extracted twice with an equal amount of EtOAc (2 x 300 mL). The organic layer was dried over anhydrous Na_2SO_4 and evaporated *in vacuo* to obtain a dark brown gum (2.11 g).
1.2.3 Purification of the broth extract

The crude EtOAc extract was separated by dissolving with methanol to afford a methanol-soluble fraction (70) and a methanol-insoluble one (70S) as shown in Table 2.

Table 2 Fractions obtained from the crude EtOAc extract by dissolving with methanol

Fraction	Weight (g)	Physical appearance
70	1.2168	Brown gum
70S	0.8930	Colorless crystals

<u>Fraction 70S</u> (AR1) showed one UV-active spot on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f value of 0.29.

m.p.	204-206 ⁰ C
$\left[\alpha\right]_{\mathrm{D}}^{29}$	+90.4 (c = 0.2, MeOH)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	208 (3.72)
$FTIR(neat) : \upsilon(cm^{-1})$	3424 (O-H stretching), 1705 (C=O stretching)
¹ H NMR(DMSO- d_6)(δ_{ppm}) :	7.34 (dd , $J = 15.6$, 2.7 Hz, 1H), 5.71 (dd , J
(300 MHz)	= 15.6, 1.8 Hz, 1H), 5.66 (ddd , $J = 15.0$,
	10.2, 4.5 Hz, 1H), 5.20 (dd , $J = 15.0$, 9.6
	Hz, 1H), 5.13 (d , $J = 5.7$ Hz, 1H), 4.70
	(sext, J = 6.3 Hz, 1H), 4.51 (d, J = 3.9 Hz,
	1H), 4.04 (m , 1H), 3.93 (m , 1H), 2.31 (qn , J
	= 8.1 Hz, 1H), 1.97 (m, 1H), 1.92 (m, 1H),
	1.84 (m, 1H), 1.78 (m, 1H), 1.76 (m, 1H),
	1.70 (m, 1H), 1.65 (m, 1H), 1.47 (m, 1H),
	1.30 (m, 1H), 1.18 (d, $J = 6.3$ Hz, 3H), 0.74
	(<i>m</i> , 1H)
¹³ C NMR(DMSO- d_6)(δ_{ppm}) :	166.18, 154.83, 137.60, 129.71, 116.76,
(75 MHz)	74.83, 71.36, 71.00, 52.20, 43.82, 43.56,

Fraction 70 was further separated by column chromatography over Sephadex LH-20. Elution was performed with 100% methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in **Table 3**.

Table 3	Subfractions	obtained	from	Fraction	70	by	column	chromatography	over
	Sephadex LH	[-20							

Subfraction	Weight (mg)	Physical appearance
70A	111.5	Brown gum
70B	178.3	Brown gum
70C	794.7	Brown gum
70D	68.2	Brown gum
70E	48.7	Brown gum
70F	7.1	Brown gum
70G	8.3	Colorless crystals

Subfraction 70A did not show any UV-active spots on normal phase TLC using 3% methanol in dichloromethane but showed four spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating with the R_f values of 0.13, 0.18, 0.53 and 0.58. It was further separated by column chromatography over silica gel. Elution was initially performed with 3% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 4.

Subfraction	Elution	Weight (mg)	Physical appearance
70A1	3% MeOH/CH ₂ Cl ₂	30.8	Yellow solid
70A2	3% MeOH/CH ₂ Cl ₂	25.8	Yellow gum
70A3	3-10% MeOH/CH ₂ Cl ₂	4.9	Yellow gum
70A4	10% MeOH/CH ₂ Cl ₂ -	38.6	Yellow gum
	100% MeOH		

 Table 4 Subfractions obtained from subfraction 70A by column chromatography over silica gel

Subfraction 70A1 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.25, 0.43 and 0.63. It was further separated by column chromatography over silica gel. Elution was initially performed with 40% ethyl acetate in dichloromethane and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions as shown in Table 5.

Table 5	Subfractions obtained from subfraction 70A1 by column chromatography
	over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70A11	20% EtOAc/CH ₂ Cl ₂	3.5	Yellow gum
70A12	20% EtOAc/CH ₂ Cl ₂	2.3	Yellow gum
70A13	20-50% EtOAc/CH ₂ Cl ₂	5.0	Yellow gum
70A14	50-70% EtOAc/CH ₂ Cl ₂	1.3	Yellow gum
70A15	100% EtOAc-100% MeOH	18.6	Yellow solid

Subfraction 70A11 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a

mobile phase (2 runs) with the R_f values of 0.53 and 0.63. Its ¹H NMR spectrum indicated that the major compound was **AR5**. No further purification was carried out.

Subfraction 70A12 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.30 and 0.43. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction 70A13 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.33 and 0.45. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford two subfractions as shown in Table 6.

Table 6 Subfractions obtained from subfraction 70A13 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
70A131	2.0	Yellow gum
70A132	2.3	Colorless gum

Subfraction 70A131 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.28, 0.45 and 0.55. It was then purified by precoated TLC with 20% ethyl acetate in dichloromethane as a mobile phase to afford AR3 as a white solid (1.2 mg). Its chromatogram showed one spot after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane (2 runs) with the R_f values of 0.24.

Subfraction 70A132 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.08, 0.20 and 0.30. The ¹H NMR spectrum displayed singnals in high field region. Thus, it was not investigated.

Subfraction 70A14 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.13, 0.20 and 0.30. Because of the minute quantity, it was not further investigated.

Subfraction 70A15 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs). It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford two subfractions as shown in **Table 7**.

 Table 7 Subfractions obtained from subfraction 70A15 by column chromatography

 over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
70A151	11.1	Yellow solid
70A152	7.4	Yellow gum

Subfraction 70A151 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.20 and 0.58. It was then purified by column chromatography over silica gel. Elution was initially performed with 2% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 8.

Subfraction	Elution	Weight (mg)	Physical appearance
70A1511	2% MeOH/CH ₂ Cl ₂	4.7	White solid
70A1512	2% MeOH/CH ₂ Cl ₂	2.1	White solid
70A1513	3% MeOH/CH ₂ Cl ₂ -	2.8	Yellow gum
	100% MeOH		

 Table 8 Subfractions obtained from subfraction 70A151 by column chromatography

 over silica gel

Subfraction 70A1511 (AR2) showed one spot after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.58.

m.p.	252-254 ⁰ C
$\left[\alpha\right]_{\mathrm{D}}^{28}$	-40.2 (c = 0.8, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \boldsymbol{\varepsilon})$	203 (4.42)
$FTIR(neat) : \upsilon(cm^{-1})$	3384 (O-H stretching), 3325 (N-H stretching),
	1746 and 1640 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	8.22 (d , J = 8.7 Hz, 1H), 7.25 (m , 2H), 7.20
	(m, 1H), 7.16 (m, 2H), 7.10 (d, J = 6.9 Hz,
	1H), 5.76 (<i>dd</i> , <i>J</i> = 11.7, 5.1 Hz, 1H), 5.28 (<i>s</i> ,
	1H), 5.22 (s, 1H), 5.00 (dd , $J = 8.7$, 5.1 Hz,
	1H), 4.96 (m , 1H), 4.86 (qn , $J = 6.9$ Hz,
	1H), 3.70 (q, $J = 6.9$ Hz, 1H), 3.48 (dd, $J =$
	15.3, 5.1 Hz, 1H), 3.20 (s, 3H), 2.92 (s, 3H),
	2.91 (<i>dd</i> , $J = 15.3$, 11.7 Hz, 1H), 1.58 (<i>m</i> ,
	1H), 1.53 (d , J = 7.5 Hz, 3H), 1.52 (d , J =
	6.9 Hz, 3H), 1.41 (<i>d</i> , <i>J</i> = 6.9 Hz, 3H), 1.25
	(s, 3H), 1.17 (s, 3H), 1.12 (m, 1H), 0.97
	(ddd, J = 14.1, 7.5, 5.1 Hz, 1H), 0.78 (d, J =
	6.6 Hz, 3H), 0.72 $(d, J = 6.6$ Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	172.60, 172.38, 171.39, 169.78, 168.95,

	168.50, 137.12, 128.63, 128.41, 126.60,
	77.19, 71.77, 70.57, 60.53, 56.61, 47.10,
	46.27, 38.83, 36.93, 33.18, 30.14, 26.75,
	24.14, 23.85, 22.84, 22.24, 19.26, 18.10,
	13.53
CH :	128.63, 128.41, 126.60, 77.19, 70.57, 60.53,
	56.61, 47.10, 46.27, 23.85
CH ₂ :	38.83, 33.18
CH ₃ :	36.93, 30.14, 26.75, 24.14, 22.84, 22.24,
	19.26, 18.10, 13.53

Subfraction 70A1512 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.30, 0.43 and 0.58. It contained AR2 as a major component. No further purification was carried out.

Subfraction 70A1513 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase (2 runs). The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction 70A152 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase (3 runs). Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70A2 showed five spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 95% ethyl acetate in petroleum ether as a mobile phase with the R_f values of 0.10, 0.30, 0.43, 0.63 and 0.70. It was further separated by flash column chromatography over silica gel. Elution was initially performed with 95% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar

chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in **Table 9**.

 Table 9 Subfractions obtained from subfraction 70A2 the by flash column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70A21	95% EtOAc/Petrol	2.2	Yellow gum
70A22	95% EtOAc/Petrol-	6.0	Yellow gum
	100% EtOAc		
70A23	100% EtOAc-	5.5	Yellow gum
	10% EtOAc/MeOH		
70A24	30% EtOAc/MeOH-	11.9	Yellow gum
	100% MeOH		

Subfraction 70A21 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 95% ethyl acetate in petroleum ether as a mobile phase with the R_f values of 0.59 and 0.66. The ¹H NMR spectrum displayed singnals in the high field region. Thus, it was not investigated.

Subfraction 70A22 showed one UV-active spot on normal phase TLC using 95% ethyl acetate in petroleum ether as a mobile phase with the R_f value of 0.39. Its ¹H NMR spectrum indicated that the major compound was AR1. No further purification was carried out.

Subfraction 70A23 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 95% ethyl acetate in petroleum ether as a mobile phase with the R_f values of 0.27 and 0.34. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70A24 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 95% ethyl acetate in petroleum ether as a

mobile phase. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70A3 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 5% methanol in dichloromethane as a mobile phase with the R_f values of 0.43, 0.50 and 0.65. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70A4 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 5% methanol in dichloromethane as a mobile phase. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70B did not show any UV-active spots on normal phase TLC using 2% methanol in dichloromethane but showed four spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating with the R_f values of 0.12, 0.32, 0.41 and 0.59. It was further separated by column chromatography over silica gel. Elution was initially performed with 2% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 10.

 Table 10 Subfractions obtained from subfraction 70B by column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70B1	2% MeOH/CH ₂ Cl ₂	2.5	Yellow gum
70B2	2% MeOH/CH ₂ Cl ₂	14.5	Yellow solid
70B3	3-10% MeOH/CH ₂ Cl ₂	94.0	Yellow gum
70B4	30% MeOH/CH ₂ Cl ₂ -	55.8	Yellow gum
	100% MeOH		

Subfraction 70B1 showed four spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.62, 0.69, 0.77 and 0.87. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70B2 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in **Table 11**.

 Table 11 Subfractions obtained from subfraction 70B2 by column chromatography

 over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
70B21	0.9	Yellow gum
70B22	8.5	White solid
70B23	4.7	Yellow solid

Subfraction 70B21 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in petroleum ether as a mobile phase. Because of the minute quantity, it was not further investigated.

Subfraction 70B22 (AR3) showed one spot after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase with the R_f value of 0.43.

m.p.	218-220 °C
$\left[\alpha\right]_{\mathrm{D}}^{28}$	$-16.7 (c = 0.9, CHCl_3)$
$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	203 (4.38)

3345 (N-H stretching), 1744 and 1642 (C=O
stretching)
7.89 (d , J = 8.7 Hz, 1H), 7.22 (m , 2H), 7.18
(m, 1H), 7.16 (m, 2H), 7.13 (d, J = 6.9 Hz,

¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	7.89 (d , $J = 8.7$ Hz, 1H), 7.22 (m , 2H), 7.18
	(m, 1H), 7.16 (m, 2H), 7.13 (d, J = 6.9 Hz,
	1H), 5.77 (<i>dd</i> , <i>J</i> = 11.4, 5.4 Hz, 1H), 5.23
	(d, J = 2.4 Hz, 1 H), 5.00 (m, 1 H), 4.97 (m, 1 H)
	1H), 4.84 (qn, $J = 6.9$ Hz, 1H), 3.70 (q, $J =$
	6.9 Hz, 1H), 3.47 (<i>dd</i> , <i>J</i> = 15.3, 5.4 Hz, 1H),
	3.19 (s, 3H), 2.92 (s, 3H), 2.89 (m, 1H),
	2.61 (hept d, $J = 6.9$, 2.4 Hz, 1H), 1.56 (m,
	1H), 1.55 (d , $J = 6.9$ Hz, 3H), 1.51 (d , $J =$
	7.2 Hz, 3H), 1.42 (<i>d</i> , <i>J</i> = 6.9 Hz, 3H), 1.17
	(<i>hept</i> , $J = 6.6$ Hz, 1H), 0.98 (<i>m</i> , 1H), 0.93
	(d, J = 6.9 Hz, 3H), 0.92 (d, J = 6.9 Hz,
	3H), 0.78 (d , J = 6.6 Hz, 3H), 0.72 (d , J =
	6.6 Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	172.46, 172.95, 171.18, 169.68, 168.56,
	168.52, 137.15, 128.64, 128.40, 126.58,
	78.03, 70.34, 60.68, 56.53, 47.03, 46.34,
	38.81, 36.87, 33.17, 30.12, 29.98, 23.84,
	22.87, 22.20, 19.32, 19.19, 18.05, 15.84,
	13.62
CH :	128.64, 128.40, 126.58, 78.03, 70.34, 60.68,
	56.53, 47.03, 46.34, 29.98, 23.84
CH ₂ :	38.81, 33.17
CH ₃ :	36.87, 30.12, 22.87, 22.20, 19.32, 19.19,
	18.05, 15.84, 13.62

 $FTIR(neat) : v(cm^{-1})$

Subfraction 70B23 showed three spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 20% ethyl acetate in dichloromethane as a mobile phase with the R_f values of 0.40, 0.48 and 0.58. It contained AR5 and AR6 as major components. No further purification was carried out.

Subfraction 70B3 showed four spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 50% acetone in petroleum ether as a mobile phase with the R_f values of 0.21, 0.40, 0.55 and 0.67. It was then purified by flash column chromatography over silica gel. Elution was initially performed with 50% acetone in petroleum ether and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 12.

 Table 12 Subfractions obtained from subfraction 70B3 by flash column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70B31	50% Acetone/Petrol	26.2	Yellow gum
70B32	50% Acetone/Petrol	23.9	Yellow gum
70B33	60% Acetone/Petrol-	36.2	Yellow gum
	100% Acetone		

Subfraction 70B31 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 50% acetone in petroleum ether as a mobile phase. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford two subfractions as shown in **Table 13**.

Table 13 Subfractions obtained from subfraction 70B31 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
70B311	13.2	Yellow gum
70B312	13.0	Yellow gum

Subfraction 70B311 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 80% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f values of 0.50 and 0.55. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70B312 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 80% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f values of 0.38 and 0.50. It contained AR1 as a major component. No further purification was carried out.

Subfraction 70B32 showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 50% acetone in petroleum ether as a mobile phase with the R_f values of 0.40 and 0.53. It contained AR1 as a major component. No further purification was carried out.

Subfraction 70B33 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 50% acetone in petroleum ether as a mobile phase. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70B4 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70C showed six UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.12, 0.17, 0.24, 0.37, 0.56 and 0.85. It was further separated by column chromatography over silica gel. Elution was initially performed with 1% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford seven subfractions as shown in Table 14.

Subfraction	Elution	Weight (mg)	Physical appearance
70C1	1% MeOH/CH ₂ Cl ₂	1.9	Yellow gum
70C2	1% MeOH/CH ₂ Cl ₂	5.5	Yellow gum
70C3	1% MeOH/CH ₂ Cl ₂	21.0	Yellow gum
70C4	1-2% MeOH/CH ₂ Cl ₂	156.4	Yellow solid
70C5	2-3% MeOH/CH ₂ Cl ₂	28.0	Brown gum
70C6	3-30% MeOH/CH ₂ Cl ₂	258.6	Brown gum
70C7	30% MeOH/CH ₂ Cl ₂ -	294.7	Brown gum
	100% MeOH		

 Table 14 Subfractions obtained from subfraction 70C by column chromatography over silica gel

Subfraction 70C1 showed three UV-active spots on normal phase TLC using 40% hexane in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.30, 0.45 and 0.63. The ¹H NMR spectrum indicated the presence of many components. Because of the minute quantity, it was not further investigated.

Subfraction 70C2 showed three UV-active spots on normal phase TLC using 40% hexane in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.30, 0.35 and 0.50. It contained **AR16** as a major component. No further purification was carried out.

Subfraction 70C3 showed five UV-active spots on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:3:6 as a mobile phase with the R_f values of 0.20, 0.38, 0.50, 0.67 and 0.76. It was further separated by column chromatography over silica gel. Elution was performed with above mixture. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 15.

Subfraction	Weight (mg)	Physical appearance
70C31	2.9	Yellow gum
70C32	13.2	Yellow gum
70C33	4.8	Yellow gum

 Table 15 Subfractions obtained from subfraction 70C3 by column chromatography over silica gel

Subfraction 70C31 showed a long tail under UV-S on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:2:7 as a mobile phase (3 runs). Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70C32 showed three UV-active spots on normal phase with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:2:7 as a mobile phase (3 runs) with the R_f values of 0.33, 0.45 and 0.69. It was further separated by column chromatography over silica gel. Elution was performed with above mixture. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 16.

 Table 16 Subfractions obtained from subfraction 70C32 by column

 chromatography over silica gel

Subfraction	Weight (mg)	Physical appearance
70C321	1.3	Yellow gum
70C322	4.0	Colorless gum
70C323	7.7	Yellow gum

Subfraction 70C321 showed a long tail under UV-S on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:2:7 as a mobile phase. Because of the minute quantity, it was not further investigated.

Subfraction 70C322 (AR4) showed one UV-active spot on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:2:7 as a mobile phase with the R_f value of 0.39.

$\left[\alpha\right]_{\mathrm{D}}^{30}$	-12.8 (c = 1.4, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	212 (3.54)
$FTIR(neat) : \upsilon(cm^{-1})$	1715 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.35 (dq , $J = 9.9$, 7.2 Hz, 1H), 5.83 (dq , $J =$
	9.9, 1.8 Hz, 1H), 5.63 (dd , J = 7.8, 3.6 Hz,
	1H), 5.42 (dd , $J = 5.4$, 1.2 Hz, 1H), 3.83 (d ,
	J = 5.1 Hz, 1H), 3.63 ($d, J = 5.4$ Hz, 1H),
	3.12 (d, J = 4.2 Hz, 1H), 2.83 (d, J = 4.2 Hz,
	1H), 2.56 (<i>dd</i> , $J = 15.6$, 7.8 Hz, 1H), 2.16
	(dd, J = 7.2, 1.8 Hz, 3H), 2.03 (ddd, J =
	15.6, 5.1, 3.6 Hz, 1H), 2.02 (m, 1H), 1.99
	(m, 1H), 1.92 (m, 1H), 1.72 (s, 3H), 1.42 (m,
	1H), 0.96 (<i>s</i> , 3H), 0.73 (<i>s</i> , 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	166.37, 145.46, 140.18, 120.70, 118.70,
	79.21, 74.52, 70.58, 65.58, 49.03, 47.85,
	40.47, 36.85, 28.03, 24.50, 23.23, 16.04,
	15.44, 5.97
CH :	145.46, 120.70, 118.70, 79.21, 74.52, 70.58
CH_2 :	47.85, 36.85, 28.03, 24.50
CH ₃ :	23.23, 16.04, 15.44, 5.97

Subfraction 70C323 showed two UV-active spots on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:2:7 as a mobile phase with the R_f values of 0.34 and 0.39. It contained **AR4** as a major component. No further purification was carried out.

Subfraction 70C33 showed four UV-active spots on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 1:2:7 as a mobile phase (3 runs) with the R_f values of 0.24, 0.33, 0.38 and 0.50. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70C4 showed a long tail under UV-S on normal phase TLC using 40% hexane in dichloromethane as a mobile phase (2 runs). It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in **Table 17**.

Table 17 Subfractions obtained from subfraction 70C4 by column chromatographyover Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
70C41	2.9	Yellow gum
70C42	90.4	Yellow gum
70C43	60.4	Yellow gum
70C44	2.3	Yellow gum

Subfraction 70C41 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 2% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum displayed singnals in the high field region. Thus, it was not investigated.

Subfraction 70C42 showed six UV-active spots on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 2:3:5 as a mobile phase with the R_f values of 0.10, 0.22, 0.34, 0.51, 0.63 and 0.71. It was further separated by column chromatography over silica gel. Elution was performed with above mixture. Fractions with the similar chromatogram were combined and

evaporated to dryness under reduced pressure to afford five subfractions as shown in **Table 18**.

Subfraction	Weight (mg)	Physical appearance
70C421	4.9	Yellow gum
70C422	37.7	Yellow solid
70C423	10.0	Yellow gum
70C424	30.9	Yellow solid
70C425	6.8	Yellow gum

 Table 18 Subfractions obtained from subfraction 70C42 by column

 chromatography over silica gel

Subfraction 70C421 showed two UV-active spots on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 2:3:5 as a mobile phase with the R_f values of 0.76 and 0.85. It contained AR4 as a major component. No further purification was carried out.

Subfraction 70C422 showed three UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f values of 0.23, 0.43 and 0.58. It was further separated by column chromatography over silica gel. Elution was initially performed with 20% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 19.

 Table 19 Subfractions obtained from subfraction 70C422 by column chromatography over silica gel

Subfraction Elution		Weight (mg)	Physical appearance	
70C4221	20% EtOAc/Petrol	17.0	White solid	
70C4222	40-60% EtOAc/Petrol	10.6	White solid	

Subfraction Elution		Weight (mg)	Physical appearance
70C4223	60% EtOAc/Petrol-	8.3	Yellow gum
	100%MeOH		

Subfraction 70C4221 (AR5) showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f value of 0.56.

m.p.	90-92 ⁰ C
$\left[\alpha\right]_{\mathrm{D}}^{22}$	$+12.5 (c = 1.4, CHCl_3)$
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	209 (3.52), 261 (2.11)
$FTIR(neat) : \upsilon(cm^{-1})$	3296 (O-H stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	7.33 (d , J = 6.6 Hz, 2H), 7.26 (d , J = 6.6 Hz,
	2H), 7.23 (t, $J = 6.6$ Hz, 1H), 3.91 (dd, $J =$
	8.1, 2.0 Hz, 1H), 3.52 (dd , $J = 8.1$, 2.0 Hz,
	1H), 2.91 (dd , $J = 13.8$, 2.4 Hz, 1H), 2.70
	(<i>dd</i> , <i>J</i> = 13.8, 8.1 Hz, 1H), 2.26 (<i>brs</i> , 1H),
	2.23 (brs, 1H), 1.90 (m, 1H), 1.62 (m, 1H),
	1.24 (m, 1H), 0.97 (d, $J = 6.9$ Hz, 3H), 0.95
	(d, J = 7.2 Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	138.59, 129.46, 128.75, 126.60, 77.74,
	73.11, 36.51, 36.24, 24.94, 14.80, 10.84
CH :	129.46, 128.75, 126.60, 73.11, 77.74, 36.24
CH_2 :	36.51, 24.94
CH ₃ :	14.80, 10.84

Subfraction 70C4222 showed two UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f values of 0.48.

and 0.56. It contained **AR6** as a major component. No further purification was carried out.

Subfraction 70C4223 showed six UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f values of 0.10, 0.22, 0.29, 0.39, 0.41 and 0.48. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70C423 contained many spots on TLC without major components. No further separation was conducted.

Subfraction 70C424 showed two UV-active spots on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 2:3:5 as a mobile phase with the R_f values of 0.24 and 0.34. It contained AR7 and AR9 as major components. No further purification was carried out.

Subfraction 70C425 showed a long tail under UV-S on normal phase TLC with a mixture of ethyl acetate, dichloromethane and petroleum ether in a ratio of 2:3:5 as a mobile phase. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction 70C43 showed five UV-active spots on normal phase TLC using 20% acetone in hexane as a mobile phase with the R_f values of 0.10, 0.28, 0.38, 0.48 and 0.58. It was further separated by column chromatography over silica gel. Elution was performed with 20% acetone in hexane and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 20.

Subfraction	Elution	Weight (mg)	Physical appearance
70C431	20% Acetone/Hexane	3.5	White solid
70C432	20% Acetone/Hexane	39.7	White solid
70C433	20% Acetone/Hexane	10.6	White solid
70C434	20% Acetone/Hexane-	6.3	Yellow gum
	100% Acetone		

 Table 20 Subfractions obtained from subfraction 70C43 by column chromatography over silica gel

Subfraction 70C431 showed one UV-active spot on normal phase TLC using 20% acetone in hexane as a mobile phase with the R_f value of 0.59. The ¹H NMR spectrum indicated that it was AR5.

Subfraction 70C432 showed two UV-active spots on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f values of 0.53 and 0.63. It was further separated by column chromatography over silica gel. Elution was performed with 2% acetone in dichloromethane and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 21.

 Table 21 Subfractions obtained from subfraction 70C432 by column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70C4321	2% Acetone/CH ₂ Cl ₂	10.3	White solid
70C4322	2-10% Acetone/CH ₂ Cl ₂	27.1	White solid
70C4323	30-70% Acetone/CH ₂ Cl ₂	3.9	White solid
70C4324	70% Acetone/CH ₂ Cl ₂ -	3.9	Yellow gum
	100% Acetone		

Subfraction 70C4321 showed one UV-active spot on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f value of 0.35. The ¹H NMR spectrum indicated that it was AR5.

Subfraction 70C4322 showed two UV-active spots on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f values of 0.35 and 0.45. It was further separated by column chromatography over silica gel. Elution was performed with 2% acetone in dichloromethane and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 22.

 Table 22 Subfractions obtained from subfraction 70C4322 by column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70C43221	2% Acetone/CH ₂ Cl ₂	8.3	White solid
70C43222	2-10% Acetone/CH ₂ Cl ₂	16.5	White solid
70C43223	70% Acetone/CH ₂ Cl ₂ -	1.4	White solid
	100% Acetone		

Subfraction 70C43221 showed one UV-active spot on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f value of 0.35. The ¹H NMR spectrum indicated that it was AR5.

Subfraction 70C43222 showed two UV-active spots on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f values of 0.30 and 0.35. The ¹H NMR spectrum indicated that it was AR5 and AR6. No further separation was conducted.

Subfraction 70C43223 showed one UV-active spot on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f value of 0.30. The ¹H NMR spectrum indicated that it was AR6.

Subfraction 70C4323 showed two UV-active spots on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f values of 0.35 and 0.30. It was then purified by precoated TLC with 2% acetone in dichloromethane as a mobile phase (5 runs) to afford AR6 as a white solid (2.5 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f value of 0.30.

m.p.	87-89 ⁰ C			
$\left[\alpha\right]_{\mathrm{D}}^{22}$	+16.0 (c = 1.4, CHCl ₃)			
$UV\lambda_{max}(nm)(MeOH)(\log \boldsymbol{\varepsilon})$	205 (3.54)			
$FTIR(neat) : \upsilon(cm^{-1})$	3283 (O-H stretching)			
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	7.34 (t , J = 6.3 Hz, 2H), 7.26 (d , J = 6.3 Hz,			
	2H), 7.24 $(t,J=6.3$ Hz, 1H), 3.89 $(ddd,J=$			
	10.2, 4.5, 3.0 Hz, 1H), 3.42 (dd , J = 7.2, 4.5			
	Hz, 1H), 2.96 (dd , $J = 13.8$, 3.0 Hz, 1H),			
	2.71 (dd , $J = 13.8$, 10.2 Hz, 1H), 2.10 (brs ,			
	1H), 2.09 (brs, 1H), 1.89 (sext, $J = 7.2$ Hz,			
	1H), 1.05 (d, $J = 7.2$ Hz, 3H), 0.98 (d, $J =$			
	7.2 Hz, 3H)			
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	138.48, 129.44, 128.74, 126.61, 79.05,			
	73.16, 37.20, 29.70, 18.98, 18.31			
CH :	129.44, 128.74, 126.61, 79.05, 73.16, 29.70			
CH ₂ :	37.20			
CH ₃ :	18.98, 18.31			

Subfraction 70C4324 showed two UV-active spots on normal phase TLC using 2% acetone in dichloromethane as a mobile phase with the R_f values of 0.18 and 0.26.

Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70C433 showed three UV-active spots on normal phase TLC using 20% acetone in hexane as a mobile phase with the R_f values of 0.28, 0.50 and 0.59. The ¹H NMR spectrum indicated that it was AR5 and AR6. No further separation was conducted.

Subfraction 70C434 showed four UV-active spots on normal phase TLC using 20% acetone in hexane as a mobile phase with the R_f values of 0.10, 0.18, 0.26 and 0.38. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70C44 showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.19, 0.50 and 0.57. Because of the low quantity, it was not further investigated.

Subfraction 70C5 showed four UV-active spots on normal phase TLC using 10% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.26, 0.38, 0.48 and 0.60. It was further separated by column chromatography over silica gel. Elution was performed with 10% ethyl acetate in dichloromethane and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 23.

Table 23 Subfractions obtained from subfraction 70C5 by columnchromatography over silica gel

Subfraction	Subfraction Elution		Physical appearance
70C51	10% EtOAc/CH ₂ Cl ₂	4.6	Yellow gum
70C52	10-30% EtOAc/CH ₂ Cl ₂	15.1	Yellow gum

Table 23 Continued

Subfraction	Subfraction Elution		Physical appearance
70C53	30% EtOAc/CH ₂ Cl ₂ -	8.1	Yellow gum
	100% MoOH		

Subfraction 70C51 showed five UV-active spots on normal phase TLC using 15% ethyl acetate in petroleum ether as a mobile phase (2 runs) with the R_f values of 0.24, 0.41, 0.46, 0.54 and 0.80. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70C52 showed five UV-active spots on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.18, 0.33, 0.40, 0.55 and 0.58. It was further separated by column chromatography over silica gel. Elution was initially performed with 30% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in **Table 24**.

Table	24	Subfractions	obtained	from	subfraction	70C52	by	column
		chromatography	v over silica	gel				

Subfraction	Elution	Weight (mg)	Physical appearance
70C521	30% EtOAc/Petrol	4.0	Yellow gum
70C522	30% EtOAc/Petrol	6.1	Colorless gum
70C523	30% EtOAc/Petrol-	5.0	Yellow gum
	100%MeOH		

Subfraction 70C521 showed four UV-active spots on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.54, 0.63, 0.71 and 0.76. It contained **AR7** as a major component. No further purification was carried out.

Subfraction 70C522 (AR7) showed one UV-active spot on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.54.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	-31.4 (c = 1.1, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	224 (3.06)
$FTIR(neat) : \upsilon(cm^{-1})$	3448 (O-H stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	5.38 (<i>brd</i> , $J = 5.4$ Hz, 1H), 4.33 (<i>brs</i> , 1H),
	3.82 (d, J = 5.4 Hz, 1H), 3.50 (d, J = 5.4 Hz,
	1H), 3.10 (d , J = 3.9 Hz, 1H), 2.81 (d , J =
	3.9 Hz, 1H), 2.61 (<i>dd</i> , <i>J</i> = 15.6, 7.5 Hz, 1H),
	2.00 (m, 1H), 1.97 (m, 1H), 1.93 (m, 1H),
	1.88 (m, 1H), 1.70 (s, 3H), 1.44 (m, 1H),
	0.85 (s, 3H), 0.80 (s, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	140.14, 118.71, 78.72, 74.05, 70.26, 65.73,
	49.12, 47.56, 40.15, 39.78, 27.99, 24.41,
	23.22, 15.80, 6.20
CH :	118.71, 78.72, 74.05, 70.26
CH ₂ :	47.56, 40.15, 27.99, 24.41
CH ₃ :	23.22, 15.80, 6.20

Subfraction 70C523 showed four UV-active spots on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.14, 0.20, 0.32 and 0.39. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70C53 contained many spots on TLC without major components. No further separation was conducted.

Subfraction 70C6 showed six UV-active spots on normal phase TLC using 40% acetone in hexane as a mobile phase (2 runs) with the R_f values of 0.18, 0.28, 0.33,

0.40, 0.50 and 0.63. It was further separated by column chromatography over silica gel. Elution was performed with 40% acetone in hexane and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in **Table 25**.

Subfraction	Elution	Weight (mg)	Physical appearance
70C61	40% Acetone/Hexane	18.2	Yellow gum
70C62	40-50% Acetone/Hexane	115.0	Yellow gum
70C63	50-60% Acetone/Hexane	41.9	Yellow gum
70C64	70% Acetone/Hexane-	82.8	Brown gum
	100% Acetone		

 Table 25 Subfractions obtained from subfraction 70C6 by column

 chromatography over silica gel

Subfraction 70C61 showed three UV-active spots on normal phase TLC using 40% acetone in hexane as a mobile phase with the R_f values of 0.43, 0.48 and 0.65. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70C62 showed three UV-active spots on reverse phase TLC using 60% methanol in water as a mobile phase with the R_f values of 0.33, 0.48 and 0.70. It was further separated by column chromatography over reverse phase silica gel. Elution was initially performed with 60% methanol in water, followed by reducing the polarity with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford seven subfractions as shown in Table 26.

Subfraction	Elution	Weight (mg)	Physical appearance
70C621	60% MeOH/H ₂ O	13.9	Yellow gum
70C622	60% MeOH/H ₂ O	7.6	Yellow gum
70C623	60% MeOH/H ₂ O	8.2	Yellow gum
70C624	60% MeOH/H ₂ O	43.5	Yellow solid
70C625	60% MeOH/H ₂ O	7.4	Yellow gum
70C626	60-80% MeOH/H ₂ O	24.5	Yellow solid
70C627	80% MeOH/H ₂ O-	9.6	Yellow gum
	100% MeOH		

 Table 26 Subfractions obtained from subfraction 70C62 by column chromatography

 over reverse phase silica gel

Subfraction 70C621 showed three UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.23, 0.38 and 0.68. It contained **AR30** as a major component. No further purification was carried out.

Subfraction 70C622 showed four UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.20, 0.37, 0.49 and 0.63. It was then purified by precoated TLC with 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) to afford **AR8** as a white solid (3.1 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.48.

m.p.	151-153 ^o C
$\left[\alpha\right]_{\mathrm{D}}^{25}$	-21.5 (c = 1.0, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	214 (3.57), 221 (3.59), 259 (3.32), 301
	(3.13)
$FTIR(neat) : v(cm^{-1})$	3352 (O-H stretching), 1738 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.38 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 2.18

Subfraction 70C623 showed four UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.23, 0.43, 0.53 and 0.60. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70C624 showed four UV-active spots on normal phase TLC using 50% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f values of 0.32, 0.49, 0.56 and 0.68. It was further separated by column chromatography over silica gel. Elution was initially performed with 50% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford two subfractions as shown in Table 27.

 Table 27 Subfractions obtained from subfraction 70C624 by column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70C6241	50-70% EtOAc/Petrol	5.8	Yellow gum
70C6242	70% EtOAc/Petrol-	37.2	White solid
	100%MeOH		

Subfraction 70C6241 showed four UV-active spots on normal phase TLC using 50% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f values of 0.34, 0.56, 0.66 and 0.76. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70C6242 showed a long tail under UV-S on normal phase TLC using 50% ethyl acetate in petroleum ether as a mobile phase (3 runs). Its ¹H NMR spectrum indicated that the major compound was **AR1**. No further purification was carried out.

Subfraction 70C625 showed two UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.40 and 0.90. It contained **AR1** as a major component. No further purification was carried out.

Subfraction 70C626 showed five UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase with the R_f values of 0.17, 0.27, 0.34, 0.41 and 0.54. It was further separated by column chromatography over silica gel. Elution was initially performed with 3% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford two subfractions as shown in Table 28.

Table 28 Subfractions obtained from subfraction 70C626 by column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70C6261	3% MeOH/CH ₂ Cl ₂	14.1	Yellow solid
70C6262	3% MeOH/CH ₂ Cl ₂ -	10.2	Yellow gum
	100% MeOH		

Subfraction 70C6261 showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.29, 0.39 and 0.59. It was further separated by column chromatography over silica gel. Elution was initially performed with 2% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 29.

Subfraction	Elution	Weight (mg)	Physical appearance
70C62611	2% MeOH/CH ₂ Cl ₂	1.6	White solid
70C62612	2% MeOH/CH ₂ Cl ₂	1.5	White solid
70C62613	2-3% MeOH/CH ₂ Cl ₂	3.7	White solid
70C62614	10% MeOH/CH ₂ Cl ₂ -	5.8	Yellow solid
	100% MeOH		

 Table 29 Subfractions obtained from subfraction 70C6261 by column

 chromatography over silica gel

Subfraction 70C62611 showed two UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.41 and 0.52. It contained **AR9** as a major component. Thus, it was not further investigated.

Subfraction 70C62612 (AR9) showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f value of 0.51.

m.p.	199-201 ⁰ C
$\left[\alpha\right]_{\mathrm{D}}^{25}$	-67.8 (c = 0.1, MeOH)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	203 (3.48), 226 (3.10), 277 (2.36)
$FTIR(neat) : \upsilon(cm^{-1})$	3176, 3059 (N-H stretching), 1674 (C=O
	stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	7.14 (d , J = 8.7 Hz, 2H), 6.85 (d , J = 8.7 Hz,
	2H), 6.02 (brs, 1H), 5.94 (brs, 1H), 5.47
	(tm, J = 6.9 Hz, 1H), 4.48 (d, J = 6.9 Hz,
	2H), 4.23 (d, $J = 2.1$ Hz, 1H), 3.45 (d, $J =$
	13.8 Hz, 1H), 2.95 (d , J = 13.8 Hz, 1H),
	2.27 (s, 3H), 2.22 (s, 3H), 1.80 (s, 3H), 1.74
	(s, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	165.71, 164.83, 158.75, 138.40, 131.84,
	124.77, 119.47, 114.98, 67.78, 64.83, 58.40,

	44.83, 25.83, 18.23, 13.94, 13.74
CH :	131.84, 119.47, 114.98, 58.40
CH ₂ :	64.83, 44.83
CH ₃ :	25.83, 18.23, 13.94, 13.74

Subfraction 70C62613 (AR10) showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f value of 0.37.

m.p.	208-210 ⁰ C
$\left[\alpha\right]_{\mathrm{D}}^{25}$	-22.2 (c = 0.1, MeOH)
$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	202 (3.51), 228 (2.97), 277 (2.36)
$FTIR(neat) : \upsilon(cm^{-1})$	3176, 3059 (N-H stretching), 1670 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	7.10 (d , J = 8.5 Hz, 2H), 6.78 (d , J = 8.5 Hz, 2H), 6.05 (brs , 1H), 5.97 (brs , 1H), 5.39 (tm , J = 7.0 Hz, 1H), 4.90 (d , J = 1.5 Hz, 1H), 4.41 (d , J = 6.5 Hz, 2H), 3.50 (d , J = 14.0 Hz, 1H), 2.95 (d , J = 14.0 Hz, 1H),
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	2.16 (<i>s</i> , 3H), 1.72 (<i>s</i> , 3H), 1.67 (<i>s</i> , 3H), 1.64 (<i>s</i> , 3H) 165.34, 164.47, 158.77, 138.25, 132.05, 125.08, 119.58, 115.00, 67.75, 64.86, 58.47, 43.03, 25.76, 18.17, 13.28, 11.34
CH :	132.05, 119.58, 115.00, 58.47
CH ₂ :	64.86, 43.03
CH ₃ :	25.76, 18.17, 13.28, 11.34

Subfraction 70C62614 showed a long tail under UV-S on normal phase TLC using 2% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction 70C6262 showed four UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase with the R_f values of 0.28, 0.35, 0.43 and 0.50. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70C627 showed a long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs). Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70C63 showed three UV-active spots on normal phase TLC using 40% acetone in hexane as a mobile phase (3 runs) with the R_f values of 0.38, 0.45 and 0.55. Its ¹H NMR spectrum indicated that the major compound was **AR1**. No further purification was carried out.

Subfraction 70C64 showed a long tail under UV-S on normal phase TLC using 40% acetone in hexane as a mobile phase (3 runs). Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70C7 showed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane as a mobile phase (3 runs). Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70D showed four UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.05, 0.14, 0.29 and 0.51. It was further separated by column chromatography over reverse phase silica gel. Elution was initially performed with 50% methanol in water, followed by reducing the polarity with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford six subfractions as shown in Table 30.

Subfraction	Elution	Weight (mg)	Physical appearance
70D1	50% MeOH/H ₂ O	9.9	Brown gum
70D2	50% MeOH/H ₂ O	17.2	Brown gum
70D3	50-60% MeOH/H ₂ O	15.3	Brown gum
70D4	60-70% MeOH/H ₂ O	13.4	Brown solid
70D5	70-80% MeOH/H ₂ O	9.0	Brown solid
70D6	80% MeOH/H ₂ O-	3.2	Brown gum
	100% MeOH		

Table 30 Subfractions obtained from subfraction 70D by column chromatographyover reverse phase silica gel

Subfraction 70D1 showed two UV-active spots on normal phase TLC using 40% ethyl acetate in dichloromethane as a mobile phase (3 runs) with the R_f values of 0.30 and 0.55. It was then purified by precoated TLC with 40% ethyl acetate in dichloromethane as a mobile phase (5 runs) to afford two bands.

<u>**Band 1**</u> (70D11) was a colorless gum (3.8 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase with the R_f value of 0.48. The ¹H NMR spectrum indicated that it was AR30.

<u>Band 2</u> (70D12) was a white solid (1.3 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase with the R_f value of 0.18. The ¹H NMR spectrum indicated that it was AR11.

Subfraction 70D2 showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (4 runs) with the R_f values of 0.14, 0.26 and 0.43. It was further separated by column chromatography over silica gel. Elution was initially performed with 2% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions as shown in Table 31.

Subfraction	Elution	Weight (mg)	Physical appearance
70D21	2% MeOH/CH ₂ Cl ₂	1.3	Yellow gum
70D22	2% MeOH/CH ₂ Cl ₂	7.1	Yellow gum
70D23	2-3% MeOH/CH ₂ Cl ₂	1.0	Yellow gum
70D24	3-5% MeOH/CH ₂ Cl ₂	2.1	White solid
70D25	10% MeOH/CH ₂ Cl ₂ -	5.6	Yellow gum
	100% MeOH		

Table 31 Subfractions obtained from subfraction 70D2 by columnchromatography over silica gel

Subfraction 70D21 showed two UV-active spots on normal phase TLC using 4% methanol in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.44 and 0.51. Because of the minute quantity, it was not further investigated.

Subfraction 70D22 showed two UV-active spots on normal phase TLC using 4% methanol in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.32 and 0.37. Its ¹H NMR spectrum indicated that the major compound was **AR30**. No further purification was carried out.

Subfraction 70D23 showed three UV-active spots on normal phase TLC using 4% methanol in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.24, 0.29 and 0.37. Because of the minute quantity, it was not further investigated.

Subfraction 70D24 (AR11) showed one UV-active spot on normal phase TLC using 4% methanol in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.24.

m.p.	120-122 ^o C			
$\left[\alpha\right]_{\mathrm{D}}^{25}$	-10.1 (c = 1.0, CHCl ₃)			
$UV\lambda_{max}(nm)(MeOH)(\log \boldsymbol{\varepsilon})$	204 (3.56), 224 (3.40), 261 (3.03), 300			
	(2.81)			
$FTIR(neat) : \upsilon(cm^{-1})$	3362 (O-H stretching), 1738 (C=O stretching)			

¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	6.40 (<i>s</i> , 1H). 3.97 (<i>d</i> , <i>J</i> = 11.5 Hz, 1H), 3.92		
	(s, 3H), 3.86 (s, 3H), 3.78 (d, J = 11.5 Hz,		
	1H), 2.15 (<i>s</i> , 3H)		
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	166.20, 164.99, 158.11, 145.97, 114.91,		
	106.80, 104.12, 96.06, 66.42, 56.20, 56.15,		
	10.25		
CH :	96.06		
CH ₂ :	66.42		
CH3:	56.20, 56.15, 10.25		
EIMS <i>m/z</i> (% relative intensity):	254 (2), 227 (10), 143 (20), 87 (73), 74		
	(100)		

Subfraction 70D25 showed four UV-active spots on normal phase TLC using 4% methanol in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.05, 0.10, 0.24 and 0.44. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70D3 showed five UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.10, 0.15, 0.21, 0.28 and 0.67. It was further separated by column chromatography over silica gel. Elution was initially performed with 1% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions as shown in Table 32.

Table 32 Subfractions obtained from subfraction 70D3 by columnchromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
70D31	1% MeOH/CH ₂ Cl ₂	3.9	Yellow gum
70D32	1% MeOH/CH ₂ Cl ₂	2.0	Yellow gum
Subfraction	Elution	Weight (mg)	Physical appearance
-------------	--	-------------	---------------------
70D33	2-5% MeOH/CH ₂ Cl ₂	3.0	Yellow gum
70D34	5-10% MeOH/CH ₂ Cl ₂	4.3	Yellow gum
70D35	30% MeOH/CH ₂ Cl ₂ -	3.4	Yellow gum
	100% MeOH		

Subfraction 70D31 showed three UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.31, 0.52 and 0.69. It was then purified by precoated TLC with 1% methanol in dichloromethane as a mobile phase (2 runs) to afford **AR12** as a pale yellow gum (2.2 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 1% methanol in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.69.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	$-67.8 (c = 1.0, CHCl_3)$
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	217 (3.84), 268 (3.45), 315 (3.26)
$FTIR(neat) : \upsilon(cm^{-1})$	3432 (O-H stretching), 1716 and 1673 (C=O
	stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	11.59 (s, 1H), 6.52 (s, 1H), 4.50 (s, 1H),
	4.39 (d , $J = 12.0$ Hz, 1H), 4.19 (d , $J = 12.0$
	Hz, 1H), 3.87 (s, 3H), 2.26 (s, 3H), 1.96 (s,
	3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	206.39, 169.36, 165.31, 164.40, 136.89,
	118.30, 100.20, 99.86, 76.06, 71.44, 56.03,
	25.39, 11.35
CH :	99.86
CH ₂ :	71.44
CH ₃ :	56.03, 25.39, 11.35
EIMS m/z (% relative intensity):	266 (22), 223 (81), 206 (32), 195 (100), 165
	(20), 150 (19)

Subfraction 70D32 showed three UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.10, 0.26 and 0.31. It was then purified by precoated TLC with 1% methanol in dichloromethane as a mobile phase (4 runs) to afford two bands.

<u>**Band 1**</u> (AR13) was a pale yellow gum (0.6 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 1% methanol in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.23.

$\left[\alpha\right]_{\mathrm{D}}^{29}$	-24.8 (c = 0.04, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	203 (3.84), 217 (3.81), 268 (3.39), 312
	(3.18)
$FTIR(neat) : v(cm^{-1})$	3394 (O-H stretching), 1652 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	11.52 (s, 1H), 6.39 (s, 1H), 4.44 (q, $J = 6.5$
	Hz, 1H), 4.02 (d , J = 11.0 Hz, 1H), 3.79 (s ,
	3H), 3.72 ($d, J = 11.0$ Hz, 1H), 2.97 ($s, 1$ H),
	2.27 (s, 3H), 1.51 (d , J = 6.5 Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	169.89, 165.18, 163.35, 141.02, 117.30,
	100.30, 98.97, 79.48, 73.42, 62.57, 55.93,
	14.68, 12.22
CH :	98.97, 79.48
CH_2 :	62.57
CH3:	55.93, 14.68, 12.22
EIMS m/z (% relative intensity):	268 (43), 237 (100), 209 (73), 191 (44)

<u>**Band 2</u> (70D322)** was a white solid (0.6 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 1% methanol in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.13. The ¹H NMR spectrum indicated that it was **AR8**.</u>

Subfraction 70D33 showed four UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase with the R_f values of 0.10, 0.15, 0.34 and 0.54. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70D34 showed three UV-active spots on normal phase TLC using 60% ethyl acetate in dichloromethane as a mobile phase (5 runs) with the R_f values of 0.28, 0.33 and 0.38. It was then purified by precoated TLC with 60% ethyl acetate in dichloromethane as a mobile phase (7 runs) to afford **AR14** as a white solid (2.0 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 60% ethyl acetate in dichloromethane as a mobile phase (5 runs) with the R_f value of 0.28.

180-182 ⁰ C
-46.0 (c = 0.05, MeOH)
202 (3.86), 249 (3.75), 305 (2.33), 335
(2.85)
3370 (O-H stretching), 1654 (C=O stretching)
11.85 (s, 1H), 6.58 (s, 1H), 4.68 (d, $J = 12.5$
Hz, 1H), 4.62 (d , J = 12.5 Hz, 1H), 4.43 (d ,
J = 8.0 Hz, 1H), 3.92 (m , 1H), 3.92 (s , 3H),
3.76 (<i>brd</i> , $J = 12.0$ Hz, 1H), 3.66 (t , $J = 9.0$
Hz, 1H), 3.60 (s, 3H), 3.41 (dd , $J = 9.0$, 8.0
Hz, 1H), $3.36 (ddd, J = 9.0, 4.5, 3.0$ Hz,
1H), 3.24 (t , J = 9.0 Hz, 1H), 2.38 (s , 3H),
2.41 (s, 3H)
167.00, 147.00, 165.50, 162.93, 137.50,
115.30, 114.50, 102.11, 100.50, 98.81,
79.06, 76.41, 75.70, 73.96, 66.49, 62.03,
60.70, 56.03, 17.18, 13.69
102.11, 98.81, 79.06, 76.41, 75.70, 73.96
66.49, 62.03

Subfraction 70D35 showed two UV-active spots on normal phase TLC using 5% methanol in dichloromethane (2 runs) as a mobile phase with the R_f values of 0.21 and 0.64. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 70D4 showed three UV-active spots on normal phase TLC using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.08, 0.38 and 0.68. It was then purified by precoated TLC with 20% ethyl acetate in dichloromethane as a mobile phase (4 runs) to afford three bands.

<u>**Band 1**</u> (70D41) was a white solid (1.3 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.63. The ¹H NMR spectrum indicated that it was AR9.

<u>Band 2</u> (70D42) was a white solid (2.0 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 20% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.30. The ¹H NMR spectrum indicated that it was AR10.

<u>**Band 3**</u> (70D43) was a colorless crystals (5.6 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 30% ethyl acetate in dichloromethane as a mobile phase (5 runs) with the R_f value of 0.25. The ¹H NMR spectrum indicated that it was AR1.

Subfraction 70D5 showed two UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.64 and 0.74. It was then purified by precoated TLC with 10% ethyl acetate in petroleum ether as a mobile phase (7 runs) to afford two bands.

<u>**Band 1**</u> (AR15) was a white solid (3.1 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.41.

m.p.	184-186 ⁰ C
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	212 (3.67), 254 (3.08), 296 (2.93)
$FTIR(neat) : \upsilon(cm^{-1})$	1745 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.31 (s, 1H), 5.16 (d, $J = 1.8$ Hz, 1H), 5.11
	(d, J = 1.8 Hz, 1H), 4.95 (d, J = 1.5 Hz,
	1H), 4.86 (d , J = 1.5 Hz, 1H), 3.89 (s , 3H),
	3.88 (<i>s</i> , 3H), 2.10 (<i>s</i> , 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	162.35, 162.27, 158.88, 156.16, 153.33,
	148.90, 114.24, 106.63, 105.00, 97.30,
	92.48, 56.44, 55.79, 7.85
CH :	92.48
CH ₂ :	106.63, 97.30
CH ₃ :	56.44, 55.79, 7.85
EIMS m/z (% relative intensity):	262 (36), 218 (34), 192 (100), 163 (24), 134
	(54)

<u>**Band 2**</u> (AR16) was a white solid (2.7 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.27.

m.p.	167-169 ⁰ C
$UV\lambda_{max}(nm)(MeOH)(\log \boldsymbol{\varepsilon})$	202 (3.55), 240 (3.63), 278 (3.06), 331
	(2.93)
$FTIR(neat) : \upsilon(cm^{-1})$	1774 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	5.30 (<i>d</i> , <i>J</i> = 2.7 Hz, 1H), 5.19 (<i>d</i> , <i>J</i> = 2.7 Hz,
	1H), 4.01 (s, 3H), 3.96 (s, 3H), 2.30 (s, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	164.28, 157.80, 152.36, 139.11, 114.13,
	105.50, 96.00, 95.23, 56.35, 56.13, 10.95
CH ₂ :	95.23
CH ₃ :	56.35, 56.13, 10.95

Subfraction 70D6 showed a long tail under UV-S on normal phase TLC using 2% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction 70E showed six UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.09, 0.20, 0.39, 0.59, 0.66 and 0.86. It was further separated by column chromatography over silica gel. Elution was initially performed with 1% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford six subfractions as shown in Table 33.

Subfraction	Elution	Weight (mg)	Physical appearance
70E1	1% MeOH/CH ₂ Cl ₂	1.0	Yellow gum
70E2	1% MeOH/CH ₂ Cl ₂	5.7	Brown gum
70E3	1-2% MeOH/CH ₂ Cl ₂	5.9	Brown gum
70E4	2-3% MeOH/CH ₂ Cl ₂	8.0	Yellow gum
70E5	3-5% MeOH/CH ₂ Cl ₂	9.7	Yellow gum
70E6	10% MeOH/CH ₂ Cl ₂ -	18.1	Brown gum
	100% MeOH		

 Table 33 Subfractions obtained from subfraction 70E by column chromatography over silica gel

Subfraction 70E1 showed two UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.70 and 0.80. Because of the minute quantity, it was not further investigated.

Subfraction 70E2 showed four UV-active spots on normal phase TLC using 10% ethyl actate in petroleum ether as a mobile phase (3 runs) with the R_f values of 0.12, 0.22, 0.32 and 0.49. It was then purified by precoated TLC with 10% ethyl acetate in petroleum ether as a mobile phase (7 runs) to afford two bands.

<u>**Band 1**</u> (70E21) was a pale yellow gum (2.2 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.54. The ¹H NMR spectrum indicated that it was AR12.

<u>**Band 2**</u> (70E22) was a pale yellow gum (1.0 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.20. The ¹H NMR spectrum indicated that it was AR17.

Subfraction 70E3 showed five UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.25, 0.30, 0.34, 0.55 and 0.59. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 70E4 showed four UV-active spots on normal phase TLC using 30% ethyl actate in petroleum ether as a mobile phase (3 runs) with the R_f values of 0.07, 0.24, 0.50 and 0.62. It was then purified by precoated TLC with 30% ethyl acetate in petroleum ether as a mobile phase (5 runs) to afford two bands.

<u>**Band 1**</u> (70E41) was a yellow solid (1.8 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.61. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

<u>Band 2</u> (70E42) was a yellow gum (2.9 mg). Its chromatogram showed two UV-active spots on normal phase TLC using 10% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f values of 0.32 and 0.49. It was then purified by precoated TLC with 10% ethyl acetate in dichloromethane as a mobile phase (5 runs) to afford two bands.

<u>**Band 1</u> (70E421)** was a colorless gum (0.7 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.41. The ¹H NMR spectrum indicated that it was **AR13**.</u>

<u>**Band 2</u>** (AR17) was a pale yellow gum (0.7 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% ethyl acetate in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.27.</u>

$\left[\alpha\right]_{\mathrm{D}}^{25}$	-33.2 (c = 1.0, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \boldsymbol{\varepsilon})$	204 (3.91), 217 (3.77), 230 (3.47), 270
	(3.35), 314 (3.14)
$FTIR(neat) : \upsilon(cm^{-1})$	3370 (O-H stretching), 1654 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	11.64 (s, 1H), 6.46 (s, 1H), 4.46 (d, $J = 10.5$
	Hz, 1H), 4.17 (q, $J = 6.5$ Hz, 1H), 4.14 (d, J
	= 10.5 Hz, 1H), 3.88 (s, 3H), 2.75 (s, 1H),
	2.42 (s, 3H), 1.20 (d , J = 6.5 Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	169.90, 165.14, 138.97, 117.87, 99.61,
	98.67, 74.32, 70.36, 69.04, 55.85, 17.36,
	12.33
CH :	98.67, 69.04
CH_2 :	70.36
CH ₃ :	55.85, 17.36, 12.33
EIMS m/z (% relative intensity):	268 (32), 224 (70), 206 (100), 195 (54), 178
	(48)

Subfraction 70E5 showed three UV-active spots on normal phase TLC using 30% ethyl actate in petroleum ether as a mobile phase (3 runs) with the R_f values of 0.21, 0.36 and 0.55. It was then purified by precoated TLC with 30% ethyl acetate in petroleum ether as a mobile phase (5 runs) to afford three bands.

<u>Band 1</u> (70E51) was a yellow solid (1.2 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 30% ethyl acetate in

petroleum ether as a mobile phase (3 runs) with the R_f value of 0.54. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

<u>**Band 2**</u> (70E52) was a colorless gum (2.7 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.39. The ¹H NMR spectrum indicated that it was AR30.

<u>**Band 3**</u> (AR18) was a pale yellow gum (1.6 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 30% ethyl acetate in petroleum ether as a mobile phase (3 runs) with the R_f value of 0.17.

$UV\lambda_{max}(nm)(MeOH)(\log \mathcal{E})$	202 (3.80), 249 (3.84), 333 (2.73)
$FTIR(neat) : \upsilon(cm^{-1})$	3352 (O-H stretching), 1666 (C=O stretching)
¹ H NMR(Acetone- d_6)(δ_{ppm}):	11.93 (s, 1H), 6.67 (s, 1H), 4.76 (d, $J = 4.5$
(500 MHz)	Hz, 2H), 4.60 (d , $J = 5.5$ Hz, 2H), 4.94 (m ,
	1H), 4.49 (<i>m</i> , 1H), 3.98 (<i>s</i> , 3H), 2.56 (<i>s</i> , 3H)
¹³ C NMR(Acetone- d_6)(δ_{ppm}):	167.32, 166.67, 163.92, 156.80, 137.69,
(125 MHz)	116.76, 114.79, 101.22, 99.12, 60.34, 57.60,
	56.74, 12.09
CH :	99.12
CH ₂ :	60.34, 57.60
CH ₃ :	56.74, 12.09
EIMS m/z (% relative intensity):	266 (49), 248 (35), 219 (41), 207 (95), 189
	(100), 165 (55)

Subfraction 70E6 showed a long tail under UV-S on normal phase TLC using 1% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction 70F showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.12, 0.32 and

0.44. It was then purified by precoated TLC with 2% methanol in dichloromethane as a mobile phase (8 runs) to afford three bands.

<u>**Band 1**</u> (70F1) was a pale yellow gum (2.1 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (5 runs) with the R_f value of 0.40. The ¹H NMR spectrum indicated that it was AR18.

<u>**Band 2</u>** (AR19) was a pale yellow gum (0.8 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (5 runs) with the R_f value of 0.31.</u>

$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	201 (3.84), 219 (3.41), 246 (3.72), 328
	(2.25)
$FTIR(neat) : \upsilon(cm^{-1})$	3356 (O-H stretching), 1674 (C=O stretching)
¹ H NMR(Acetone- d_6)(δ_{ppm}) :	11.49 (s, 1H), 6.56 (d, $J = 2.0$ Hz, 1H), 6.46
(500 MHz)	(d, J = 2.0 Hz, 1H), 4.65 (m, 1H), 4.51 (d, J)
	= 5.5 Hz, 2H), 2.19 (s, 3H)
¹³ C NMR(Acetone- d_6)(δ_{ppm}):	167.00, 166.63, 165.00, 153.01, 142.00,
(125 MHz)	111.80, 102.71, 102.23, 100.50, 59.64,
	11.95
CH :	102.71, 102.23
CH ₂ :	59.64
CH3:	11.95
EIMS <i>m/z</i> (% relative intensity):	222 (100), 193 (78), 163 (68), 135 (46)

<u>**Band 3**</u> (AR20) was a pale yellow gum (0.8 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (5 runs) with the R_f value of 0.12.

$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	200 (3.86), 247 (3.47)
$FTIR(neat) : \upsilon(cm^{-1})$	3369 (O-H stretching), 1666 (C=O stretching)
¹ H NMR(Acetone- d_6)(δ_{ppm}) :	11.84 (s, 1H), 6.58 (s, 1H), 4.84 (m, 1H),

(500 MHz)	4.78 (d, J = 4.5 Hz, 2H), 4.61 (d, J = 5.5 Hz,
	2H), 4.38 (<i>m</i> , 1H), 2.58 (<i>s</i> , 3H)
¹³ C NMR(Acetone- d_6)(δ_{ppm}):	167.00, 165.40, 163.50, 156.80, 138.80,
(125 MHz)	117.00, 113.90, 102.63, 101.00, 60.39,
	57.55, 12.06
CH :	102.63
CH ₂ :	60.39, 57.55
CH ₃ :	12.06
EIMS <i>m/z</i> (% relative intensity):	252 (75), 234 (50), 205 (47), 193 (100), 175
	(98), 149 (33)

Subfraction 70G showed a long tail under UV-S on normal phase TLC using 1% methanol in dichloromethane as a mobile phase. Its ¹H NMR spectrum indicated that the major compound was **AR1**. No further purification was carried out.

CHAPTER 1.3

RESULTS AND DISCUSSION

Ten new compounds (AR11-20) along with ten known compounds (AR1-10) were isolated from the broth extract.

1.3.1 Compound AR1

Compound **AR1** with the melting point 204-206 ⁰C was obtained as colorless crystals. The UV spectrum displayed an absorption band at 208 nm, indicating the presence of an α,β -unsaturated ester chromophore. The IR spectrum exhibited absorption bands at 3424 cm⁻¹ for a hydroxy group, and 1705 cm⁻¹ for a conjugated ester carbonyl group. Comparision of its ¹H (**Figure 1**) and ¹³C NMR (**Figure 2**) data (**Table 34**), TLC chromatogram and optical rotation, $[\alpha]_D^{29}$ +90.4 (c = 0.2, MeOH), with the previously reported data of (+)-brefeldin A, $[\alpha]_D^{29}$ +89.0 (c = 0.2, MeOH), indicated that compound **AR1** was (+)-brefeldin A which was isolated from broth extract of *Penicillium* sp. PSU-F44 (Trisuwan *et al.*, 2009). The structure was confirmed by X-ray data (**Figure 3**).

Position	AR1		(+)-Brefeldin A	
	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)
1	-	166.18 (C=O)	-	166.19 (C=O)
2	5.71 (<i>dd</i> , 15.6,	116.76 (CH)	5.70 (<i>dd</i> , 15.3,	116.71 (CH)
	1.8)		1.8)	
3	7.34 (<i>dd</i> , 15.6,	154.83 (CH)	7.34 (<i>dd</i> , 15.3,	154.87 (CH)
	2.7)		2.7)	
4	3.93 (<i>m</i>)	74.83 (CH)	3.92 (<i>m</i>)	74.80 (CH)
4-OH	5.13 (<i>d</i> , 5.7)	-	5.16 (<i>d</i> , 5.7)	-
5	1.70 (<i>m</i>)	52.20 (CH)	1.70 (<i>m</i>)	52.17 (CH)
6	a: 1.84 (<i>m</i>)	41.40 (CH ₂)	a: 1.84 (<i>m</i>)	41.35 (CH ₂)
	b: 1.65 (<i>m</i>)		b: 1.65 (<i>m</i>)	
7	4.04 (<i>m</i>)	71.00 (CH)	4.03 (<i>m</i>)	71.01 (CH)
7-OH	4.51 (<i>d</i> , 3.9)	-	4.55 (<i>d</i> , 3.6)	
8	a: 1.97 (<i>m</i>)	43.56 (CH ₂)	a: 1.97 (<i>m</i>)	43.49 (CH ₂)
	b: 1.30 (<i>m</i>)		b: 1.30 (<i>m</i>)	
9	2.31 (qn, 8.1)	43.82 (CH)	2.31 (qn, 8.4)	43.78 (CH)
10	5.20 (<i>dd</i> , 15.0,	137.60 (CH)	5.19 (<i>dd</i> , 15.3,	137.58 (CH)
	9.6)		9.6)	
11	5.66 (<i>ddd</i> , 15.0,	129.71 (CH)	5.66 (<i>ddd</i> , 15.3,	129.71 (CH)
	10.2, 4.5)		10.2, 4.5)	
12	a: 1.92 (<i>m</i>)	31.91 (CH ₂)	a: 1.92 (<i>m</i>)	31.92 (CH ₂)
	b: 1.76 (<i>m</i>)		b: 1.76 (<i>m</i>)	
13	a: 1.78 (<i>m</i>)	26.91 (CH ₂)	a: 1.78 (<i>m</i>)	26.94 (CH ₂)
	b: 0.74 (<i>m</i>)		b: 0.74 (<i>m</i>)	
14	a: 1.70 (<i>m</i>)	33.91 (CH ₂)	a: 1.70 (<i>m</i>)	33.85 (CH ₂)
	b: 1.47 (m)		b: 1.45 (m)	
15	4.70 (sext, 6.3)	71.36 (CH)	4.70 (<i>sext</i> , 6.3)	71.39 (CH)

Table 34 The ¹H and ¹³C NMR data of compound **AR1** and (+)-brefeldin A in DMSO- d_6

Table 34 Continued

Position	AR1		(+)-Brefeldin A	
	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)
16	1.18 (<i>d</i> , 6.3)	21.16 (CH ₃)	1.18 (<i>d</i> , 6.3)	21.17 (CH ₃)

Trisuwan et al., 2009.

1.3.2 Compound AR2

Compound **AR2** with the melting point 252-254 ⁰C was obtained as a white solid. It showed an UV absorption band at 203 nm. The IR spectrum exhibited absorption bands at 3384, 3325, 1746 and 1640 cm⁻¹ for hydroxyl, amino, ester carbonyl and amide carbonyl groups, respectively. The ¹H NMR spectrum (Figure 4) (**Table 35**) contained signals for one 2-oxy-4-methylpentanoyl unit [$\delta_{\rm H}$ 5.00 (dd, J = 8.7, 5.1 Hz, 1H), 1.58 (m, 1H)/0.97 (ddd, J = 14.1, 7.5, 5.1 Hz, 1H), 1.12 (m, 1H), 0.78 (d, J = 6.6 Hz, 3H) and 0.72 (d, J = 6.6 Hz, 3H)], two 2-aminopropenonyl units $[\delta_{\rm H} 8.22 (d, J = 8.7 \text{ Hz}, 1\text{H}), 4.96 (m, 1\text{H}) \text{ and } 1.53 (d, J = 7.5 \text{ Hz}, 3\text{H}); 7.10 (d, J = 7.5 \text{Hz}, 3\text{Hz}); 7.10 (d, J = 7.5 \text{Hz}); 7.10 (d, J =$ 6.9 Hz, 1H), 4.86 (qn, J = 6.9 Hz, 1H), and 1.41 (d, J = 6.9 Hz, 3H)], one 3-hydroxy-2-oxy-3-methylbutanoyl unit [$\delta_{\rm H}$ 5.28 (s, 1H), 5.22 (s, 1H), 1.17 (s, 3H) and 1.25 (s, 3H)], one 2-(methylamino)propanoyl unit [$\delta_{\rm H}$ 3.70 (q, J = 6.9 Hz, 1H), 3.20 (s, 3H) and 1.52 (d, J = 6.9 Hz, 3H)] and one 2-(methylamino)-3-phenylpropanoyl unit [$\delta_{\rm H}$ 7.25 (*m*, 2H), 7.20 (*m*, 1H), 7.16 (*m*, 2H), 5.76 (*dd*, *J* = 11.7, 5.1 Hz, 1H), 3.48 (*dd*, *J* = 15.3, 5.1 Hz, 1H)/2.91 (*dd*, J = 15.3, 11.7 Hz, 1H) and 2.92 (*s*, 3H)]. The ¹³C NMR spectrum (Figure 5) (Table 35) displayed two ester carbonyl carbons ($\delta_{\rm C}$ 172.60 and 168.95), four amide carbonyl carbons ($\delta_{\rm C}$ 172.38, 171.39, 169.78 and 168.50), two quaternary carbons ($\delta_{\rm C}$ 137.12 and 71.77), ten resonances for twelve methine carbons $(\delta_{\rm C}$ 128.63, 128.41, 126.60, 77.19, 70.57, 60.53, 56.61, 47.10, 46.27 and 23.85), two methylene carbons ($\delta_{\rm C}$ 38.83 and 33.18) and nine methyl carbons ($\delta_{\rm C}$ 36.93, 30.14, 26.75, 24.14, 22.84, 22.24, 19.26, 18.10 and 13.53). The methine proton (H-4, $\delta_{\rm H}$ 1.12) exhibited ¹H-¹H COSY cross peaks with H₃-5 ($\delta_{\rm H}$ 0.78), H₃-6 ($\delta_{\rm H}$ 0.72) and H_{ab}-3 ($\delta_{\rm H}$ 1.58 and 0.97) (**Table 36**) which were further coupled with H-2 ($\delta_{\rm H}$ 5.00). H-2

gave the HMBC correlation with C-1 ($\delta_{\rm C}$ 172.38) (**Table 36**), constructing the 2-oxy-4-methylpentanoyl unit (1). The methine proton (H-9, $\delta_{\rm H}$ 4.96) displayed ¹H-¹H COSY cross peaks with H₃-10 ($\delta_{\rm H}$ 1.53) and 11-NH ($\delta_{\rm H}$ 8.22). H-9 gave the HMBC correlation with C-8 ($\delta_{\rm C}$ 172.60), establishing the 2-aminopropenoyl unit (2). The methine proton (H-13, $\delta_{\rm H}$ 5.22) showed the HMBC correlations with C-12 ($\delta_{\rm C}$ 169.78), C-14 ($\delta_{\rm C}$ 71.77), C-15 ($\delta_{\rm C}$ 26.75), and C-16 ($\delta_{\rm C}$ 24.14) and 14-OH ($\delta_{\rm H}$ 5.28) displayed the HMBC correlations with C-14, C-15 and C-16, constructing the 3hydroxy-2-oxy-3-methylbutanoyl unit (3). The methine proton (H-19, $\delta_{\rm H}$ 3.70) exhibited ¹H-¹H COSY cross peaks with H₃-20 ($\delta_{\rm H}$ 1.52). H-19 gave the HMBC correlations with C-18 ($\delta_{\rm C}$ 168.95) and C-22 ($\delta_{\rm C}$ 36.93), establishing the 2-(methylamino)propanoyl unit (4). The methine proton (H-24, $\delta_{\rm H}$ 4.86) displayed ¹H-¹H COSY cross peaks with H₃-25 ($\delta_{\rm H}$ 1.41) and 26-NH ($\delta_{\rm H}$ 7.10). H-24 gave the HMBC correlation with C-23 ($\delta_{\rm C}$ 171.39), constructing the 2-aminopropenoyl unit (5). An aromatic proton (H-33, $\delta_{\rm H}$ 7.20) displayed ¹H-¹H COSY cross peaks with H-31 and H-31' ($\delta_{\rm H}$ 7.16) and H-32 and H-32' ($\delta_{\rm H}$ 7.25), indicating the presence of a monosubstituted benzene. The methine proton (H-28, $\delta_{\rm H}$ 5.76) showed ¹H-¹H COSY cross peaks with H_{ab}-29 ($\delta_{\rm H}$ 3.48 and 2.91). H_{ab}-29 gave the HMBC correlations with C-30 ($\delta_{\rm C}$ 137.12), C-31 and C-31' ($\delta_{\rm C}$ 128.63). The methyl protons (H₃-35, $\delta_{\rm H}$ 2.92) showed the HMBC correlation with C-28 ($\delta_{\rm C}$ 56.61) as well as H-28 displayed the HMBC correlation with C-27 ($\delta_{\rm C}$ 168.50), constructing the 2-(methylamino)-3phenylpropanoyl unit (6).

The subunits 1-6 were sequentially connected on the basis of the ³*J* HMBC correlation of H-2/C-8, H-9/C-12, H-13/C-18, H-19/C-23, H-24/C-27 and H-28/C-1. Consequently, compound **AR2** was identified as guangomide A (Amagata *et al.*, 2006). The observed optical rotation of compound **AR2**, $[\alpha]_D^{28}$ -40.2 (c = 0.8, CHCl₃), was similar to that of guangomide A, $[\alpha]_D^{28}$ -44.6 (c = 0.8, CHCl₃), indicating that all chiral carbons of compound **AR2** possessed the same absolute configuration as those of guangomide A.

Table 35 The ¹H and ¹³C NMR data of compound **AR2** and guangomide A in CDCl₃

Desition	AR2		Guangomide A	
Position	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}({\rm C-type})$
1	-	172.38 (C=O)	-	172.4 (C=O)
2	5.00 (<i>dd</i> , 8.7, 5.1)	70.57 (CH)	5.00 (<i>dd</i> , 8.7, 6.2)	70.5 (CH)
3	a: 1.58 (<i>m</i>)	38.83 (CH ₂)	1.55 (<i>ddd</i> , 14.2,	38.8 (CH ₂)
			8.7, 6.7)	
	b: 0.97 (<i>ddd</i> ,		0.98 (<i>ddd</i> , 14.2,	
	14.1, 7.5, 5.1)		6.2, 5.3)	
4	1.12 (<i>m</i>)	23.85 (CH)	1.15 (<i>m</i>)	23.8 (CH)
5	0.78 (<i>d</i> , 6.6)	22.84 (CH ₃)	0.78 (<i>d</i> , 6.6)	22.8 (CH ₃)
6	0.72 (<i>d</i> , 6.6)	22.24 (CH ₃)	0.72 (<i>d</i> , 6.6)	22.3 (CH ₃)
8	-	172.60 (C=O)	-	172.6 (C=O)

Table 35 Continued

D	AR2		Guangomide A	
Position	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}({\rm C-type})$
9	4.96 (<i>m</i>)	47.10 (CH)	4.97 (<i>dq</i> , 8.7, 7.1)	47.1 (CH)
10	1.53 (<i>d</i> , 7.5)	19.26 (CH ₃)	1.53 (<i>d</i> , 7.1)	19.3 (CH ₃)
11-NH	8.22 (<i>d</i> , 8.7)	-	8.22 (<i>d</i> , 8.7)	-
12	-	169.78 (C=O)	-	169.8 (C=O)
13	5.22 (s)	77.19 (CH)	5.22 (s)	76.5 (CH)
14	-	71.77 (C)	-	71.8 (C)
14-OH	5.28 (s)	-	5.27 (brs)	-
15	1.17 (s)	26.75 (CH ₃)	1.17 (s)	26.7 (CH ₃)
16	1.25 (s)	24.14 (CH ₃)	1.26 (s)	24.1 (CH ₃)
18	-	168.95 (C=O)	-	169.0 (C=O)
19	3.70 (q, 6.9)	60.53 (CH)	3.69 (q, 6.8)	60.5 (CH)
20	1.52 (<i>d</i> , 6.9)	13.53 (CH ₃)	1.52 (<i>d</i> , 6.8)	13.5 (CH ₃)
22	3.20 (s)	36.93 (CH ₃)	3.20 (s)	36.9 (CH ₃)
23	-	171.39 (C=O)	-	171.3 (C=O)
24	4.86 (qn, 6.9)	46.27 (CH)	4.85 (qn, 7.1)	46.2 (CH)
25	1.41 (<i>d</i> , 6.9)	18.10 (CH ₃)	1.41 (<i>d</i> , 6.8)	18.1 (CH ₃)
26-NH	7.10 (<i>d</i> , 6.9)	-	7.09 (<i>d</i> , 7.3)	-
27	-	168.50 (C=O)	-	168.5 (C=O)
28	5.76 (<i>dd</i> , 11.7,	56.61 (CH)	5.76 (<i>dd</i> , 11.9,	56.6 (CH)
	5.1)		5.3)	
29	a: 3.48 (<i>dd</i> , 15.3,	33.18 (CH ₂)	3.49 (<i>dd</i> , 15.3,	33.2 (CH ₂)
	5.1)		5.3)	
	b: 2.91 (<i>dd</i> , 15.3,		2.92 (<i>dd</i> , 15.3,	
	11.7)		11.8)	
30	-	137.12 (C)	-	137.1 (C)
31, 31'	7.16 (<i>m</i>)	128.63 (CH)	7.16 (<i>m</i>)	128.6 (CH)
32, 32'	7.25 (<i>m</i>)	128.41 (CH)	7.24 (<i>m</i>)	128.4 (CH)
33	7.20 (<i>m</i>)	126.60 (CH)	7.19 (<i>m</i>)	126.6 (CH)

Table 35 Continued

Position	AR2		Guangomide A	
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-type)	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}({\rm C-type})$
35	2.92 (s)	30.14 (CH ₃)	2.92 (s)	30.2 (CH ₃)

Amagata et al., 2006.

Table 36 The H	IMBC and CO	SY data of con	mpound AR2	in CDCl ₃
----------------	-------------	----------------	------------	----------------------

Proton	НМВС	COSY
H-2	C-1, C-3, C-4, C-8	H _{ab} -3
H _a -3	C-2, C-4, C-6	H-2, H _b -3, H-4
H _b -3	C-2, C-4, C-6	H-2, H _a -3, H-4
H-4	C-3, C-6	H _{ab} -3, H ₃ -5, H ₃ -6
H ₃ -5	C-3, C-4, C-6	H-4
H ₃ -6	C-3, C-4, C-5	H-4
H-9	C-8, C-10, C-12	H ₃ -10, 11-NH
H ₃ -10	C-8, C-9	H-9
11-NH	C-12	H-9
H-13	C-12, C-14, C-15, C-16, C-18	-
14-OH	C-13, C-14, C-15, C-16	-
H ₃ -15	C-13, C-14, C-16	-
H ₃ -16	C-13, C-14, C-15	-
H-19	C-18, C-20, C-22, C-23	H ₃ -20
H ₃ -20	C-18, C-19	H-19
H ₃ -22	C-19, C-23	-
H-24	C-23, C-25, C-27	H ₃ -25, 26-NH
H ₃ -25	C-23, C-24	H-24
26-NH	C-23, C-27	H-24
H-28	C-1, C-27, C-29, C-30	H _{ab} -29
1		

Table 36 Continued

Proton	НМВС	COSY
H _a -29	C-27, C-28, C-30, C-31, C-31'	H-28, H _b -29
H _b -29	C-27, C-28, C-30, C-31, C-31'	H-28, H _a -29
H-31, H-31'	C-29, C-33	H-32, H-32', H-33
H-32, H-32'	C-30, C-33	H-31, H-31', H-33
H-33	C-31, C-31′	H-31, H-31', H-32, H-32'
H ₃ -35	C-1, C-28	-

1.3.3 Compound AR3

Compound **AR3** with the melting point 218-220 ⁰C was obtained as a white solid and exhibited an UV absorption band similar to that of compound **AR2**. The IR spectrum exhibited absorption bands at 3345, 1744 and 1642 cm⁻¹ for amino, ester carbonyl and amide carbonyl groups, respectively. The ¹H NMR data (**Figure 6**) (**Table 37**) were almost identical to those of compound **AR2** except that a signal of the hydroxyl group (14-OH, $\delta_{\rm H}$ 5.28) was replaced by a signal for a methine proton (H-14, $\delta_{\rm H}$ 2.61, *hept d*, *J* = 6.9, 2.4 Hz). All substitutents were located at the same position as those in compound **AR2** according to the HMBC correlations shown in **Table 38**. Therefore, compound **AR3** was identified as guangomide B (Amagata *et al.*, 2006). The observed optical rotation of compound **AR3**, $[\alpha]_{\rm D}^{28}$ -16.7 (c = 0.9, CHCl₃), was almost identical to that of guangomide B, $[\alpha]_{\rm D}^{28}$ -18.1 (c = 0.9, CHCl₃), indicating that all chiral carbons of compound **AR3** possessed the same absolute configuration as those of guangomide B.

Table 37 The ¹H and ¹³C NMR data of compound AR3 and guangomide Bin CDCl3

Desition	AR3		Guangomide B	
Position	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}({\rm C-type})$
1	-	172.46 (C=O)	-	172.4 (C=O)
2	5.00 (<i>m</i>)	70.34 (CH)	5.00 (<i>dd</i> , 8.9, 6.4)	70.3 (CH)
3	a: 1.56 (<i>m</i>)	38.81 (CH ₂)	1.54 (<i>m</i>)	38.8 (CH ₂)
	b: 0.98 (<i>m</i>)		0.96 (<i>ddd</i> , 14.2,	
			6.4, 5.3)	
4	1.17 (<i>hept</i> , 6.6)	23.84 (CH)	1.19 (<i>hept</i> , 6.7)	23.8 (CH)
5	0.78 (<i>d</i> , 6.6)	22.87 (CH ₃)	0.78 (<i>d</i> , 6.6)	22.9 (CH ₃)
6	0.72 (<i>d</i> , 6.6)	22.20 (CH ₃)	0.72 (<i>d</i> , 6.6)	22.2 (CH ₃)
8	-	172.95 (C=O)	-	172.9 (C=O)
9	4.97 (<i>m</i>)	47.03 (CH)	4.98 (<i>dq</i> , 8.9, 7.4)	47.0 (CH)
10	1.51 (<i>d</i> , 7.2)	19.32 (CH ₃)	1.52 (<i>d</i> , 7.4)	19.3 (CH ₃)
11-NH	7.89 (<i>d</i> , 8.7)	-	7.89 (<i>d</i> , 8.7)	-
12	-	168.52 (C=O)	-	168.5 (C=O)
13	5.23 (<i>d</i> , 2.4)	78.03 (CH)	5.23 (<i>d</i> , 2.5)	78.0 (CH)
14	2.61 (<i>hept d</i> , 6.9,	29.98 (CH)	2.61 (hept d, 6.7,	30.0 (CH)
	2.4)		2.5)	
15	0.93 (<i>d</i> , 6.9)	19.19 (CH ₃)	0.93 (<i>d</i> , 6.7)	19.2 (CH ₃)

Table 37 Continued

Desition	AR.	3	Guangomide B	
Position	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}({\rm C-type})$
16	0.92 (<i>d</i> , 6.9)	15.84 (CH ₃)	0.92 (<i>d</i> , 6.7)	15.8 (CH ₃)
18	-	169.68 (C=O)	-	169.7 (C=O)
19	3.70 (<i>q</i> , 6.9)	60.68 (CH)	3.69 (<i>q</i> , 6.8)	60.7 (CH)
20	1.55 (<i>d</i> , 6.9)	13.62 (CH ₃)	1.54 (<i>d</i> , 6.9)	13.6 (CH ₃)
22	3.19 (<i>s</i>)	36.87 (CH ₃)	3.19 (s)	36.9 (CH ₃)
23	-	171.18 (C=O)	-	171.1 (C=O)
24	4.84 (qn, 6.9)	46.34 (CH)	4.84 (qn, 7.1)	46.3 (CH)
25	1.42 (<i>d</i> , 6.9)	18.05 (CH ₃)	1.42 (<i>d</i> , 6.7)	18.1 (CH ₃)
26-NH	7.13 (<i>d</i> , 6.9)	-	7.12 (<i>d</i> , 7.4)	-
27	-	168.56 (C=O)	-	168.5 (C=O)
28	5.77 (<i>dd</i> , 11.4,	56.53 (CH)	5.76 (<i>dd</i> , 11.8,	56.5 (CH)
	5.4)		5.3)	
29	a: 3.47 (<i>dd</i> , 15.3,	33.17 (CH ₂)	3.47 (<i>dd</i> , 15.1,	33.2 (CH ₂)
	5.4)		5.3)	
	b: 2.89 (<i>m</i>)		2.92 (<i>dd</i> , 15.1,	
			11.8)	
30	-	137.15 (C)	-	137.1 (C)
31, 31'	7.16 (<i>m</i>)	128.64 (CH)	7.16 (<i>m</i>)	128.6 (CH)
32, 32'	7.22 (<i>m</i>)	128.40 (CH)	7.24 (<i>m</i>)	128.4 (CH)
33	7.18 (<i>m</i>)	126.58 (CH)	7.19 (<i>m</i>)	126.6 (CH)
35	2.92 (s)	30.12 (CH ₃)	2.92 (s)	30.1 (CH ₃)

Amagata *et al.*, 2006.

Table 38 The HMBC and COSY data of compound AR3 in CDCl_3

Proton	НМВС	COSY
H-2	C-1, C-3, C-4, C-8	H _{ab} -3
H _a -3	C-1, C-2, C-6	H-2, H _b -3, H-4

Table 38 Continued

Proton	НМВС	COSY
H _b -3	C-1, C-2, C-6	H-2, H _a -3, H-4
H-4	C-2, C-3, C-5, C-6	H _{ab} -3, H ₃ -5, H ₃ -6
H ₃ -5	C-3, C-4, C-6	H-4
H ₃ -6	C-3, C-4, C-5	H-4
H-9	C-8, C-10, C-12	H ₃ -10, 11-NH
H ₃ -10	C-8, C-9	H-9
11-NH	C-12	H-9
H-13	C-12, C-14, C-15, C-16, C-18	H-14
H-14	C-15, C-16	H-13, H ₃ -15, H ₃ -16
H ₃ -15	C-13, C-14, C-16	H-14
H ₃ -16	C-13, C-14, C-15	H-14
H-19	C-18, C-20, C-23	H ₃ -20
H ₃ -20	C-18, C-19	H-19
H ₃ -22	C-19, C-23	-
H-24	C-23, C-25, C-27	H ₃ -25, 26-NH
H ₃ -25	C-23, C-24	H-24
26-NH	C-23, C-27	H-24
H-28	C-1, C-27, C-29, C-30	H _{ab} -29
H _a -29	C-27, C-28, C-30, C-31, C-31'	H-28, H _b -29
H _b -29	C-27, C-28, C-30, C-31, C-31'	H-28, H _a -29
H-31, H-31'	C-29, C-33	H-32, H-32', H-33
H-32, H-32'	C-30, C-33	H-31, H-31', H-33
H-33	C-31, C-31'	H-31, H-31', H-32, H-32'
H ₃ -35	C-1, C-28	-

1.3.4 Compound AR4

Compound AR4 was obtained as a colorless gum. It showed an UV absorption band at 212 nm. A carbonyl absorption band was found at 1715 cm⁻¹ in the IR spectrum. The ¹H NMR spectrum (Figure 8) (Table 39) contained signals for two *cis*-olefinic protons of an α,β -unsaturated carbonyl compound [$\delta_{\rm H}$ 6.35 (dq, J = 9.9, 7.2 Hz, 1H) and 5.83 (dq, J = 9.9, 1.8 Hz, 1H)], three oxymethine protons [$\delta_{\rm H}$ 5.63 (dd, J = 7.8, 3.6 Hz, 1H), 3.83 (d, J = 5.1 Hz, 1H) and 3.63 (d, J = 5.4 Hz, 1H)], oneolefinic proton of a trisubstituted double bond ($\delta_{\rm H}$ 5.42, dd, J = 5.4, 1.2 Hz, 1H), one set of nonequivalent epoxymethylene protons [$\delta_{\rm H}$ 3.12 (d, J = 4.2 Hz, 1H) and 2.83 (d, J = 4.2 Hz, 1H)], three sets of nonequivalent methylene protons [$\delta_{\text{H}} 2.56 (dd, J =$ 15.6, 7.8 Hz, 1H)/2.03 (*ddd*, J = 15.6, 5.1, 3.6 Hz, 1H), 2.02 (m, 1H)/1.99 (m, 1H) and 1.92 (m, 1H)/1.42 (m, 1H)] and four methyl groups [$\delta_{\rm H}$ 2.16 (dd, J = 7.2, 1.8 Hz, 3H), 1.72 (s, 3H), 0.96 (s, 3H) and 0.73 (s, 3H)]. The 13 C NMR spectrum (Figure 9) (Table 39) displayed one typical carbonyl carbon of an α,β -unsaturated ester ($\delta_{\rm C}$ 166.37), four quaternary carbons ($\delta_{\rm C}$ 140.18, 65.58, 49.03 and 40.47), six methine carbons (δ_c 145.46, 120.70, 118.70, 79.21, 74.52 and 70.58), four methylene carbons $(\delta_{\rm C}$ 47.85, 36.85, 28.03 and 24.50) and four methyl carbons ($\delta_{\rm C}$ 23.23, 16.04, 15.44 and 5.97). The nonequivalent epoxymethylene protons at $\delta_{\rm H}$ 3.12 and 2.83 were assigned as H_{ab}-13. They showed the HMBC correlations with C-2 ($\delta_{\rm C}$ 79.21), C-5 $(\delta_{\rm C} 49.03)$ and C-12 $(\delta_{\rm C} 65.58)$ (**Table 40**). H_{ab}-3 $(\delta_{\rm H} 2.56 \text{ and } 2.03)$ gave the ¹H-¹H COSY cross peaks with H-2 ($\delta_{\rm H}$ 3.83) and H-4 ($\delta_{\rm H}$ 5.63) (**Table 40**) and also exhibited the same HMBC correlations as H_{ab}-13. The methyl protons (H₃-14, $\delta_{\rm H}$ 0.73) displayed the HMBC correlations with C-4 (δ_c 74.52), C-5 and C-12. These results together with ^{13}C chemical shifts of C-4, C-12 and C-13 (δ_{C} 47.85) established a cyclopentane with a spiro epoxide, a methyl and an alkoxyl units at C-12, C-5 and C-4, respectively. The *cis*-olefinic proton (H-3', $\delta_{\rm H}$ 6.35) showed ¹H-¹H COSY cross peaks with H-2' ($\delta_{\rm H}$ 5.83) and H₃-4' ($\delta_{\rm H}$ 2.16). Moreover, H-3' gave the HMBC correlations with C-1' ($\delta_{\rm C}$ 166.37) and C-4' ($\delta_{\rm C}$ 15.44). Thus, a 1-butenoyl unit was established. It was then attached to C-4 of the cyclopentane ring on the basis of the HMBC correlation from H-4 to C-1' to establish substructure 1.

Substructure 1

The olefinic proton (H-10, $\delta_{\rm H}$ 5.42) exhibited ¹H-¹H COSY cross peaks with H_{ab}-8 ($\delta_{\rm H}$ 2.02 and 1.99) and H-11 ($\delta_{\rm H}$ 3.63). H_{ab}-8 were further coupled with H_{ab}-7 ($\delta_{\rm H}$ 1.92 and 1.42). The methyl protons (H₃-15, $\delta_{\rm H}$ 0.96) showed the HMBC correlations with C-6 ($\delta_{\rm C}$ 40.47), C-7 ($\delta_{\rm C}$ 24.50) and C-11 ($\delta_{\rm C}$ 70.58) while the methyl protons (H₃-16, $\delta_{\rm H}$ 1.72) displayed the HMBC cross peaks with C-8 ($\delta_{\rm C}$ 28.03), C-9 ($\delta_{\rm C}$ 140.18) and C-10 ($\delta_{\rm C}$ 118.70). Accordingly, substructure unit 2 was formed.

Substructure 2

The oxymethine proton (H-2) and the methyl protons (H₃-14) exhibited the ³*J* HMBC correlations with C-11 and C-6, respectively. Thus, substructure 1 was fused with substructure 2 by forming an ether linkage between C-2 and C-11 and a C-C bond between C-5 and C-6 to construct a tetracyclic skeleton. Irradiation of H_{ab}-13 in the NOEDIFF experiment (**Table 40**) enhanced signal intensity of H-2, while irradiation of H₃-14 affected signal intensity of H_b-13. These results indicated that they had *cis*-relationship. Moreover, irradiation of H₃-15 enhanced signal intensity of H-4 and H-11, indicating that H-4, H-11 and H₃-15 were *cis* but *trans* to H-2, H_{ab}-13 and H₃-14. Therefore, compound **AR4** was identified as 8-deoxytrichothecin (Chinworrungsee *et al.*, 2008). The observed optical rotation of compound **AR4**, $[\alpha]_D^{30}$ -12.8 (c = 1.4, CHCl₃), was similar to that of 8-deoxytrichothecin, $[\alpha]_D^{30}$ -9.1 (c = 1.4, CHCl₃), indicating that all chiral carbons of compound **AR4** possessed the same absolute configuration as those of 8-deoxytrichothecin.

 Table 39 The ¹H and ¹³C NMR data of compound AR4 and 8-deoxytrichothecin in CDCl₃

Position	AR4		8-Deoxytrichothecin	
1 051001	$\delta_{ m H}(mult., J_{ m Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)
2	3.83 (<i>d</i> , 5.1)	79.21 (CH)	3.84 (<i>d</i> , 5.2)	79.2 (CH)
3	a: 2.56 (<i>dd</i> , 15.6,	36.85 (CH ₂)	2.57 (<i>dd</i> , 15.4,	36.8 (CH ₂)
	7.8)		7.8)	
	b: 2.03 (<i>ddd</i> ,		1.90-2.07 (<i>m</i>)	
	15.6, 5.1, 3.6)			
4	5.63 (<i>dd</i> , 7.8, 3.6)	74.52 (CH)	5.64 (<i>dd</i> , 7.8, 3.6)	74.5 (CH)
5	-	49.03 (C)	-	49.0 (C)
6	-	40.47 (C)	-	40.5 (C)
7	a: 1.92 (<i>m</i>)	24.50 (CH ₂)	1.90-2.07 (<i>m</i>)	24.5 (CH ₂)
	b: 1.42 (<i>m</i>)		1.43 (<i>m</i>)	
8	a: 2.02 (<i>m</i>)	28.03 (CH ₂)	1.90-2.07 (<i>m</i>)	28.0 (CH ₂)
	b: 1.99 (<i>m</i>)		1.90-2.07 (<i>m</i>)	
9	-	140.18 (C)	-	140.2 (C)
10	5.42 (<i>dd</i> , 5.4, 1.2)	118.70 (CH)	5.42 (<i>dd</i> , 5.4, 1.3)	118.7 (CH)
11	3.63 (<i>d</i> , 5.4)	70.58 (CH)	3.64 (<i>d</i> , 5.4)	70.6 (CH)
12	-	65.58 (C)	-	65.6 (C)
13	a: 3.12 (<i>d</i> , 4.2)	47.85 (CH ₂)	3.13 (<i>d</i> , 4.1)	47.9 (CH ₂)
	b: 2.83 (<i>d</i> , 4.2)		2.84 (<i>d</i> , 4.1)	
14	0.73 (s)	5.97 (CH ₃)	0.73 (s)	6.0 (CH ₃)
15	0.96 (s)	16.04 (CH ₃)	0.97 (s)	16.0 (CH ₃)
16	1.72 (s)	23.23 (CH ₃)	1.72 (s)	23.3 (CH ₃)
1′	-	166.37 (C=O)	-	166.4 (C=O)

Table 39 Continued

Position	AR4		8-Deoxytrichothecin	
1 Osition	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)
2'	5.83 (<i>dq</i> , 9.9, 1.8)	120.70 (CH)	5.84 (<i>dq</i> , 11.5,	120.7 (CH)
			1.8)	
3'	6.35 (<i>dq</i> , 9.9, 7.2)	145.46 (CH)	6.36 (<i>dq</i> , 11.5,	145.5 (CH)
			7.3)	
4′	2.16 (<i>dd</i> , 7.2, 1.8)	15.44 (CH ₃)	2.17 (<i>dd</i> , 7.3, 1.8)	15.5 (CH ₃)

Chinworrungsee et al., 2008.

Table 40 The HMBC, COSY and NOE data of compound AR4 in CDC	Cl_3
---	--------

Proton	HMBC	COSY	NOE
H-2	C-4, C-5, C-11, C-12	H _{ab} -3	H _b -3, H _a -13
H _a -3	C-2, C-5, C-12	H-2, H _b -3, H-4	*
H_b-3	C-2, C-5, C-12	H-2, H _a -3, H-4	*
H-4	C-1′, C-2, C-5, C-6, C-12	H _{ab} -3	H _a -3, H-11,
			H ₃ -14, H ₃ -15
H _a -7	C-6, C-9	H _b -7, H _{ab} -8	*
H _b -7	C-6, C-9	H _a -7, H _{ab} -8	*
H _a -8	-	H _b -8, H _{ab} -7, H ₃ -16	*
H _b -8	-	H _a -8, H _{ab} -7, H ₃ -16	*
H-10	C-6, C-8, C-16	H _{ab} -8, H-11, H ₃ -16	H-11, H ₃ -16
H-11	C-7, C-9, C-10	H-10	H _b -3, H-4, H-10,
			H ₃ -15
H _a -13	C-2, C-5, C-12	H _b -13	H-2, H _b -13
H _b -13	C-2, C-5, C-12	H _a -13	H-2, H _a -13
H ₃ -14	C-4, C-5, C-6, C-12	-	H _b -13
H ₃ -15	C-5, C-6, C-7, C-11	-	H-4, H-7, H-11
H ₃ -16	C-8, C-9, C-10	-	*
H-2′	C-1', C-4'	H-3', H ₃ -4'	*
		1	

Table 40 Continued

Proton	HMBC	COSY	NOE
H-3′	C-1', C-4'	H-2', H ₃ -4'	*
H ₃ -4′	C-2', C-4'	H-2', H-3'	*

* not determined

1.3.5 Compound AR7

Compound **AR7** was obtained as a colorless gum. It exhibited an UV absorption band at 224 nm. A hydroxyl absorption band was found at 3448 cm⁻¹ in the IR spectrum. The ¹H NMR data (**Figure 10**) (**Table 41**) were almost identical to those of compound **AR4** except for the appearance of an oxymethine proton, H-4, at higher field and the absence of signals for the α , β -unsaturated ester moiety. All substitutents were located at the same position as those in **AR4** according to the HMBC correlations and NOEDIFF data (**Table 42**). Thus, compound **AR7** was identified as trichodermol (Ayer *et al.*, 1993). The observed optical rotation of compound **AR7**, $[\alpha]_D^{25}$ -31.4 (c = 1.1, CHCl₃), was almost identical to that of trichodermol, $[\alpha]_D^{25}$ - 33.0 (c = 1.1, CHCl₃), indicating that all chiral carbons of compound **AR7** possessed the same absolute configuration as those of trichodermol.

Table 41 The ¹H and ¹³C NMR data of compound **AR7** and the ¹H NMR data of trichodermol in CDCl₃

Position	AR7		Trichodermol
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$
2	3.82 (<i>d</i> , 5.4)	78.72 (CH)	3.82 (<i>d</i> , 5.4)
3	a: 2.61 (<i>dd</i> , 15.6, 7.5)	40.15 (CH ₂)	2.60 (<i>dd</i> , 15.6, 7.4)

Table 41 Continued

Position	A	R7	Trichodermol
	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$
	b: 1.88 (<i>m</i>)		1.90-2.00 (<i>m</i>)
4	4.33 (brs)	74.05 (CH)	4.33 (<i>td</i> , 8.6, 2.9)
5	-	49.12 (C)	-
6	-	39.78 (C)	-
7	a: 1.93 (<i>m</i>)	24.41 (CH ₂)	1.90-2.00 (<i>m</i>)
	b: 1.44 (<i>m</i>)		1.44 (<i>m</i>)
8	a: 2.00 (<i>m</i>)	27.99 (CH ₂)	1.90-2.00 (<i>m</i>)
	b: 1.97 (<i>m</i>)		1.90-2.00(<i>m</i>)
9	-	140.14 (C)	-
10	5.38 (brd, 5.4)	118.71 (CH)	5.39 (<i>brd</i> , 5.6)
11	3.50 (<i>d</i> , 5.4)	70.26 (CH)	3.51 (<i>brd</i> , 5.6)
12	-	65.73 (C)	-
13	a: 3.10 (<i>d</i> , 3.9)	47.56 (CH ₂)	3.10 (<i>d</i> , 3.9)
	b: 2.81 (<i>d</i> , 3.9)		2.81 (<i>d</i> , 4.0)
14	0.80 (s)	6.20 (CH ₃)	0.80 (s)
15	0.85 (s)	15.80 (CH ₃)	0.85 (s)
16	1.70 (s)	23.22 (CH ₃)	1.71 (brs)

Ayer et al., 1993.

Table 42 The HMBC, COSY and NOE data of compound AR7 in $CDCl_3$

Proton	HMBC	COSY	NOE
H-2	C-3, C-4, C-11, C-12, C-13	H _{ab} -3	H _{ab} -3, H _a -13
H _a -3	C-2, C-4, C-5, C-11, C-12, C-	H-2, H _b -3, H-4	H-2, H _b -3, H-4
	13		
H _b -3	C-2, C-4, C-5, C-12	H-2, H _a -3, H-4	H-2, H _b -3
H-4	-	H _{ab} -3	H _a -3, H-11,
			H ₃ -15

Table 42 Continued

Proton	НМВС	COSY	NOE
H _a -7	C-6, C-8, C-9, C-11, C-15	H _b -7, H _{ab} -8	*
H _b -7	C-6, C-8, C-9, C-11, C-15	H_{a} -7, H_{ab} -8	*
H _a -8	C-7, C-10	H _b -8, H _{ab} -7, H ₃ -16	*
H _b -8	C-7, C-10	H _a -8, H _{ab} -7, H ₃ -16	*
H-10	C-6, C-8, C-16	H _{ab} -8, H-11, H ₃ -16	H-11, H ₃ -16
H-11	C-7, C-9, C-10, C-15	H-10	H _a -3, H-4, H-10,
			H ₃ -15
H _a -13	C-2, C-5, C-12	H _b -13	H-2, H _b -13
H _b -13	C-2, C-5, C-12	H _a -13	H _a -13, H ₃ -14
H ₃ -14	C-4, C-5, C-6, C-12	-	H _b -13
H ₃ -15	C-5, C-6, C-7, C-11	-	H-4, H-11
H ₃ -16	C-8, C-9, C-10	-	H _{ab} -8, H-10

* not determined

1.3.6 Compound AR5

Compound **AR5** with the melting point 90-92 ⁰C was obtained as a white solid. The UV spectrum displayed absorption bands at 209 and 261 nm, indicating the presence of a benzene chromophore. The IR spectrum exhibited an absorption band at 3296 cm⁻¹ for a hydroxyl group. The ¹H NMR spectrum (**Figure 12**) (**Table 43**) contained signals for one monosubstituted benzene [$\delta_{\rm H}$ 7.33 (d, J = 6.6 Hz, 2H), 7.26 (d, J = 6.6 Hz, 2H) and 7.23, t, J = 6.6 Hz, 1H)] and one 2,3-dihydroxy-4-methylhexyl moiety [$\delta_{\rm H}$ 3.91 (dd, J = 8.1, 2.0 Hz, 1H), 3.52 (dd, J = 8.1, 2.0 Hz, 1H), 2.91 (dd, J = 13.8, 2.4 Hz, 1H), 2.70 (dd, J = 13.8, 8.1 Hz, 1H), 2.26 (brs, 1H), 2.23 (brs, 1H), 1.90 (m, 1H), 1.62 (m, 1H), 1.24 (m, 1H), 0.97 (d, J = 6.9 Hz, 3H) and 0.95 (d, J = 7.2 Hz, 3H)]. The ¹³C NMR spectrum (**Figure 13**) (**Table 43**) contained one quaternary carbon ($\delta_{\rm C}$ 138.59), six resonances for eight methine carbons ($\delta_{\rm C}$ 129.46 (x2), 128.75 (x2), 126.60, 77.74, 73.11 and 36.24), two methylene carbons ($\delta_{\rm C}$ 36.51 and 24.94) and two methyl carbons ($\delta_{\rm C}$ 14.80 and 10.84). The aromatic protons

resonating at $\delta_{\rm H}$ 7.33, 7.26 and 7.23 were assigned as H-2, H-2', H-3, H-3' and H-4, based on their multiplicity and the HMBC correlations. The 2,3-dihydroxy-4methylhexyl unit was established based on the following ¹H-¹H COSY correlations (**Table 43**): H-6 ($\delta_{\rm H}$ 3.91)/H_{ab}-5 ($\delta_{\rm H}$ 2.91 and 2.70) and H-7 ($\delta_{\rm H}$ 3.52) and H-8 ($\delta_{\rm H}$ 1.62)/H-7 and H_{ab}-9 ($\delta_{\rm H}$ 1.90 and 1.24) and H₃-11 ($\delta_{\rm H}$ 0.97) and H₃-10 ($\delta_{\rm H}$ 0.95)/H_{ab}-9. The chemical shifts of C-6 ($\delta_{\rm C}$ 73.11) and C-7 ($\delta_{\rm C}$ 77.74) revealed the presence of hydroxyl groups at C-6 and C-7. The 2,3-dihydroxy-4-methylhexyl unit was attached at C-1 ($\delta_{\rm C}$ 138.59) of the aromatic ring because H_{ab}-5 showed the HMBC correlations with C-1, C-2 ($\delta_{\rm C}$ 128.75), and C-2' ($\delta_{\rm C}$ 128.75). Consequently, compound **AR5** was identified as 4-methyl-1-phenyl-2,3-hexanediol (Kashiyama *et al.*, 2009).

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	COSY
1	-	138.59 (C)	-	-
2, 2'	7.33 (<i>t</i> , 6.6)	128.75 (CH)	C-1, C-3, C-	H-3,H-3′
			3′, C-4, C-5	
3, 3'	7.26 (<i>d</i> , 6.6)	129.46 (CH)	C-1, C-2, C-	H-2, H-2',
			2′, C-4	H-4
4	7.23 (<i>t</i> , 6.6)	126.60 (CH)	C-2, C-2′, C-	H-3,H-3′
			3, C-3′	
5	a : 2.91 (<i>dd</i> , 13.8, 2.4)	36.51 (CH ₂)	C-1, C-2, C-	H _a -5, H-6
			2′, C-6, C-7	
	b : 2.70 (<i>dd</i> , 13.8, 8.1)	-	C-1, C-2, C-	H _b -5, H-6
			2′, C-6, C-7	
6	3.91 (<i>dd</i> , 8.1, 2.0)	73.11 (CH)	C-1	H _{ab} -5,
				6-OH, H-7
6-OH	2.26 (brs)	-	C-5	H-6

Table 43 The NMR data of compound AR5 in CDCl₃

Table 43 Continued

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	COSY
7	3.52 (<i>dd</i> , 8.1, 2.0)	77.74 (CH)	C-5, C-6, C-9	Н-6, 7-ОН,
				H-8
7-OH	2.23 (brs)	-	C-11	H-7
8	1.62 (<i>m</i>)	36.24 (CH)	C-6, C-7,	H-7, H _{ab} -9,
			C-10, C-11	H ₃ -11
9	a : 1.90 (<i>m</i>)	24.94 (CH ₂)	C-7, C-8, C-	H-8, H _b -9,
			10, C-11	H ₃ -10
	b : 1.24 (<i>m</i>)	-	C-7, C-8, C-	H-8, H _a -9,
			10, C-11	H ₃ -10
10	0.95 (<i>d</i> , 7.2)	10.84 (CH ₃)	C-8, C-9	H _{ab} -9
11	0.97 (<i>d</i> , 6.9)	14.80 (CH ₃)	C-7, C-8, C-9	H-8

1.3.7 Compound AR6

Compound **AR6** with the melting point 87-89 ⁰C was obtained as a white solid and exhibited UV and IR absorption bands similar to those of compound **AR5**. The ¹H NMR data (**Figure 14**) (**Table 44**) were almost identical to those of compound **AR5** except for the replacement of the 2,3-dihydroxy-4-methylhexyl group in compound **AR5** with a 2,3-dihydroxy-4-methylpentyl unit. The presence of this side chain was confirmed by ¹H-¹H COSY and the HMBC correlations shown in **Table 44**. Therefore, compound **AR6** was identified as 4-methyl-1-phenyl-2,3-pentanediol (Jiao *et al.*, 2009). The observed optical rotation of compound **AR6**, $[\alpha]_D^{22}$ +16.0 (c = 1.4, CHCl₃), was almost identical to that of (2*R*,3*R*)-4-methyl-1-phenyl-2,3-pentanediol, $[\alpha]_D^{22}$ +15.5 (c = 1.4, CHCl₃) (Jiao *et al.*, 2009), indicating that they possessed the same absolute configuration at all chiral carbons.

Position	$\delta_{ m H} (mult., J_{ m Hz})$	$\delta_{\rm C}$ (C-Type)	HMBC	COSY
1	-	138.48 (C)	-	-
2, 2'	7.34 (<i>t</i> , 6.3)	128.74 (CH)	C-4, C-5	H-3, H-3'
3, 3'	7.26 (<i>d</i> , 6.3)	129.44 (CH)	C-1, C-4	H-2, H-2′,
				H-4
4	7.24 (<i>t</i> , 6.3)	126.61 (CH)	C-2, C-2′	H-3, H-3'
5	a : 2.96 (<i>dd</i> , 13.8, 3.0)	37.20 (CH ₂)	C-1, C-2, C-	H _b -5, H-6
			2′, C-6, C-7	
	b : 2.71 (<i>dd</i> , 13.8, 10.2)	-	C-1, C-2, C-	H _a -5, H-6
			2′, C-6, C-7	
6	3.89 (<i>ddd</i> , 10.2, 4.5,	73.16 (CH)	-	H _{ab} -5,
	3.0)			6-OH, H-7
6-OH	2.10 (brs)	-	-	-
7	3.42 (<i>dd</i> , 7.2, 4.5)	79.05 (CH)	C-5, C-6, C-9,	Н-6, 7-ОН,
			C-10	H-8
7-OH	2.09 (brs)	-	-	-
8	1.89 (sext, 7.2)	29.70 (CH)	C-7, C-9, C-	H-7, H ₃ -9,
			10	H ₃ -10
9	0.98 (<i>d</i> , 7.2)	18.98 (CH ₃)	C-7, C-8, C-	H-8
			10	
10	1.05 (<i>d</i> , 7.2)	18.31 (CH ₃)	C-7, C-8, C-9	H-8

Table 44 The NMR data of compound AR6 in CDCl₃

1.3.8 Compound AR8

Compound **AR8** with the melting point 151-153 0 C was obtained as a white solid. The UV spectrum displayed absorption bands at 214, 221, 259 and 301 nm, indicating the presence of a conjugated benzene chromophore. The IR spectrum exhibited absorption bands at 3352 and 1738 cm⁻¹ for hydroxyl and carbonyl groups, respectively. The ¹H NMR data (**Figure 16**) (**Table 45**) contained signals for one aromatic proton ($\delta_{\rm H}$ 6.38, *s*, 1H), two methoxyl groups [$\delta_{\rm H}$ 3.92 (*s*, 3H) and 3.90 (*s*,

3H)], two methyl groups [$\delta_{\rm H}$ 2.18 (s, 3H) and 1.79 (s, 3H)] and one hydroxyl group ($\delta_{\rm H}$ 1.60, s, 1H). The ¹³C NMR spectrum (Figure 17) (Table 45) contained one carbonyl carbon ($\delta_{\rm C}$ 166.01), five resonances for six quaternary carbons ($\delta_{\rm C}$ 164.84, 157.79, 150.14, 113.90 and 105.37), one methine carbon ($\delta_{\rm C}$ 95.61), two methoxy carbons ($\delta_{\rm C}$ 56.18 and 56.09) and one methyl group ($\delta_{\rm C}$ 10.04). The aromatic proton at $\delta_{\rm H}$ 6.38 was assigned as H-6 and displayed the 2J HMBC correlations with C-5 ($\delta_{\rm C}$ 164.84) and C-7 ($\delta_{\rm C}$ 157.79). The methoxyl groups at $\delta_{\rm H}$ 3.90 (H₃-10) and 3.92 (H₃-11) were attached at C-5 and C-7, respectively, on the basis of the HMBC correlations of H₃-10/C-5 and H₃-11/C-7. The methyl protons at $\delta_{\rm H}$ 2.18 (H₃-9) showed the HMBC correlations with C-3a (δ_C 150.14), C-4 (δ_C 113.90) and C-5, indicating that it was connected to C-4. The methyl protons at $\delta_{\rm H}$ 1.79 (H₃-8) and the hydroxyl group (3-OH, $\delta_{\rm H}$ 1.60) were attached at the same carbon, C-3 ($\delta_{\rm C}$ 105.37) due to the HMBC correlations of H₃-8/C-3 and C-3a as well as the carbon chemical shift of C-3. These also linked C-3 with C-3a. The HMBC correlation of H-6 with the ester carbonyl carbon ($\delta_{\rm C}$ 166.01, C-1) as well as the UV data attached the ester carbonyl moiety at C-7a. The chemical shift of C-3 established a lactone moiety. The ¹H and ¹³C NMR spectra of compound AR8 were almost identical to those of 5,7-dimethoxy-3,4dimethyl-3-hydroxyphthalide (Shim et al., 2008). Therefore, AR8 was identified as 5,7-dimethoxy-3,4-dimethyl-3-hydroxyphthalide.

Desition	AR8		5,7-Dimethoxy-3,4-dimethyl-3- hydroxyphthalide	
Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}({\rm C-Type})$
1	-	166.01 (C=O)	-	165.5 (C=O)
3	-	105.37 (C)	-	104.5 (C)
3-ОН	1.60 (brs)	-	-	-
3a	-	150.14 (C)	-	150.4 (C)
4	-	113.90 (C)	-	114.1 (C)
5	-	164.84 (C)	-	166.4 (C)
6	6.38 (<i>s</i>)	95.61 (CH)	6.38 (<i>s</i>)	95.8 (CH)
7	-	157.79 (C)	-	160.0 (C)
7a	-	105.37 (C)	-	105.6 (C)
8	1.79 (s)	25.50 (CH ₃)	1.82 (s)	25.7 (CH ₃)
9	2.18 (s)	10.04 (CH ₃)	2.21 (s)	10.3 (CH ₃)
10	3.90 (s)	56.18 (CH ₃)	3.90 (s)	56.3 (CH ₃)
11	3.92 (s)	56.09 (CH ₃)	3.92 (s)	56.4 (CH ₃)

Table 45 The ¹H and ¹³C NMR data of compound **AR8** and 5,7-dimethoxy-3,4-dimethyl-3-hydroxyphthalide in CDCl₃

Shim et al., 2008.

Table 46 The HMBC data of compound AR8 in CDCl₃

Proton	НМВС	
3-ОН	-	
H-6	C-1, C-4, C-5, C-7, C-7a	
H ₃ -8	C-3, C-3a	
H ₃ -9	C-3a, C-4, C-5, C-6	
H ₃ -10	C-5	
H ₃ -11	C-6	

1.3.9 Compound AR11

Compound **AR11** with the molecular formula $C_{12}H_{14}O_6$ by EIMS [*m/z* 222 (M-MeOH)⁺] (**Figure 20**) and the melting point 120-122 ⁰C was obtained as a white solid and exhibited UV and IR absorption bands similar to those of compound **AR8**. The ¹H NMR data (**Figure 18**) (**Table 47**) were almost identical to those of compound **AR8** except for replacement of the methyl signal (H₃-8, δ_H 1.79) in compound **AR8** with the hydroxymethyl signals (H_{ab}-8, δ_H 3.97 and 3.78) in compound **AR11**. All substitutents were located at the same position as those in compound **AR8** according to the HMBC correlations. Consequently, compound **AR11** was identified as a new phthalide derivative.

Table 47 The NMR data of compound AR11 in CDCl₃

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC
1	-	166.20 (C=O)	-
3	-	104.12 (C)	-
3a	-	145.97 (C)	-
4	-	114.91 (C)	-
5	-	164.99 (C)	-
6	6.40 (<i>s</i>)	96.06 (CH)	C-4, C-5, C-7, C-7a
7	-	158.11 (C)	-
7a	-	106.80 (C)	-
8	a : 3.97 (<i>d</i> , 11.5)	66.42 (CH ₂)	C-3, C-3a
	b : 3.78 (<i>d</i> , 11.5)		C-3, C-3a
9	2.15 (s)	10.25 (CH ₃)	C-1, C-3a, C-4, C-5
10	3.86 (s)	56.15 (CH ₃)	C-5

Table 47 Continued

Position	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	HMBC
11	3.92 (s)	56.20 (CH ₃)	C-7

1.3.10 Compound AR15

Compound AR15 with the molecular formula $C_{14}H_{14}O_5$ by EIMS (Figure 23) and the melting point 184-186 ⁰C was obtained as a white solid. The UV spectrum displayed absorption bands at 212, 254, and 296 nm, indicating the presence of a benzoyl chromophore. The IR spectrum exhibited an absorption band at 1745 cm⁻¹ for an ester carbonyl group. The ¹H NMR and HMBC data (Figure 21) (Table 48) indicated that it possessed a pentasubstituted benzene, similar to that of Compound **AR8**. The chemical shift of C-6 ($\delta_{\rm C}$ 153.33) in compound **AR15** attached an alkoxyl substituent at this carbon, instead of the alkyl group as found in compound **AR8**. Two sets of terminal olefinic protons [$\delta_{\rm H}$ 5.16 (d, J = 1.8 Hz, 1H)/5.11 (d, J = 1.8 Hz, 1H) and 4.95 (d, J = 1.5 Hz, 1H)/4.86 (d, J = 1.5 Hz, 1H)] were observed. The ¹³C NMR spectrum (Figure 22) (Table 48) contained one carbonyl carbon ($\delta_{\rm C}$ 162.35), seven quaternary carbons ($\delta_{\rm C}$ 162.27, 158.88, 156.16, 153.33, 148.90, 114.24 and 105.00), one methine carbon ($\delta_{\rm C}$ 92.48), two terminal olefinic carbons ($\delta_{\rm C}$ 106.63 and 97.30), two methoxy carbons ($\delta_{\rm C}$ 56.44 and 55.79) and one methyl carbon ($\delta_{\rm C}$ 7.85). All the nonequivalent gem-olefinic protons [H_{ab}-12 ($\delta_{\rm H}$ 5.16 and 5.11) and H_{ab}-13 ($\delta_{\rm H}$ 4.95 and 4.86)] exhibited the same HMBC correlations with C-3 ($\delta_{\rm C}$ 156.16) and C-4 ($\delta_{\rm C}$ 148.90) (**Table 49**). These results along with signal enhancement of H_a-13 and H_a -12 upon irradiation of H_b -13 in the NOEDIFF experiment (Table 49) constructed a 1,3-butadienyl unit with alkoxyl groups at C-3 and C-4. According to the chemical shift of C-6 (δ_C 153.33) as well as the HMBC correlation of H_{ab}-12/C-1 ($\delta_{\rm C}$ 162.35), this unit was linked to C-6 and C-1 through an ether and an ester linkage, respectively. Thus, compound **AR15** was identified as a new lactone derivative.

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	162.35 (C=O)
3	-	156.16 (C)
4	-	148.90 (C)
6	-	153.33 (C)
7	-	114.24 (C)
8	-	162.27 (C)
9	6.31 (<i>s</i>)	92.48 (CH)
10	-	158.88 (C)
11	-	105.00 (C)
12	a : 5.16 (<i>d</i> , 1.8)	106.63 (CH ₂)
	b : 5.11 (<i>d</i> , 1.8)	
13	a : 4.95 (<i>d</i> , 1.5)	97.30 (CH ₂)
	b : 4.86 (<i>d</i> , 1.5)	
14	2.10 (s)	7.85 (CH ₃)
15	3.88 (s)	55.79 (CH ₃)
16	3.89 (<i>s</i>)	56.44 (CH ₃)

 Table 48 The ¹H and ¹³C NMR data of compound AR15 in CDCl₃

Table 49 The HMBC, COSY and NOE data of compound AR15 in $CDCl_3$

Proton	HMBC	COSY	NOE
H-9	C-1, C-7, C-8, C-10, C-11	-	H ₃ -15, H ₃ -16
H _a -12	C-1, C-3, C-4	H _b -12	H _b -12
H _b -12	C-1, C-3, C-4	H _a -12	H _a -12
H _a -13	C-3, C-4	H _b -13	H _b -13, H ₃ -14

Table 49 Continued

Proton	HMBC	COSY	NOE
H _b -13	C-3, C-4	H _a -13	H _a -12, H _a -13
H ₃ -14	C-6, C-7, C-8	-	H _a -13, H ₃ -15
H ₃ -15	C-8	-	H-9, H ₃ -14
H ₃ -16	C-10	-	H-9

1.3.11 Compound AR16

Compound **AR16** with the molecular formula $C_{12}H_{12}O_4$ by EIMS (**Figure 26**) and the melting point 167-169 ⁰C was obtained as a white solid. The UV spectrum displayed absorption bands at 202, 240, 278 and 331 nm, indicating the presence of a benzoyl chromophore. The IR spectrum exhibited an absorption band at 1774 cm⁻¹ for an ester carbonyl group. The ¹H NMR data (**Figure 24**) (**Table 50**) were almost identical to those of compound **AR8** except that signals for the methyl (H₃-8, δ_H 1.79) and hydroxyl (3-OH, δ_H 1.60) groups in **AR8** were replaced by signals of gem-olefinic protons (H_{ab}-10, δ_H 5.30 and 5.19). These gem-olefinic protons were assigned as H_{ab}-10 on the basis of their HMBC correlations with C-3 (δ_C 152.36) and C-4 (δ_C 139.11). Signal enhancement of H_b-10 (δ_H 5.19) after irradiation of H_a-10. Therefore, compound **AR16** was identified as a dehydrated product of **AR8**, a new derivative of phthalide.

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	157.80 (C=O)
3	-	152.36 (C)
4	-	139.11 (C)
5	-	114.13 (C)
6	-	164.28 (C)
7	-	96.00 (C)
8	-	157.80 (C)
9	-	105.50 (C)
10	a : 5.30 (<i>d</i> , 2.7)	95.23 (CH ₂)
	b : 5.19 (<i>d</i> , 2.7)	
11	2.30 (s)	10.95 (CH ₃)
12	3.96 (<i>s</i>)	56.35 (CH ₃)
13	4.01 (s)	56.13 (CH ₃)

Table 50 The ¹H and ¹³C NMR data of compound AR16 in CDCl₃

Table 51 The HMBC, COSY and NOE data of compound AR16 in CDCl₃

Proton	HMBC	COSY	NOE
H-7	C-1, C-5, C-6, C-9	-	H ₃ -12, H ₃ -13
Ha-10	C-3, C-4	H _b -10	H _b -10
H _b -10	C-3, C-4	H _a -10	H _a -10, H ₃ -11
H ₃ -11	C-4, C-5, C-6	-	H _b -10
H ₃ -12	C-6, C-7	-	H-7
H ₃ -13	C-1, C-7, C-8	-	H-7

1.3.12 Compound AR9

Compound **AR9** with the melting point 199-201 0 C was obtained as a white solid. The UV spectrum displayed absorption bands at 203, 226 and 277 nm, indicating the presence of a benzene chromophore. The IR spectrum exhibited absorption bands at 3176 and 3059 cm⁻¹ for amino groups, and 1674 cm⁻¹ for an

amide carbonyl group. Comparision of its ¹H (**Figure 27**) and ¹³C NMR (**Figure 28**) data (**Table 52**) and optical rotation, $[\alpha]_D^{25}$ -67.8 (c = 0.1, MeOH), with the previously reported data of Sch 54794 which was isolated from the broth extract of *Tolypocladium* sp., $[\alpha]_D^{25}$ -70.0 (c = 0.1, DMSO) (Chu *et al.*, 1993), indicated that compound **AR9** was Sch 54794.

Table 52 The ¹H and ¹³C NMR data of compound **AR9** and Sch 54794 in CDCl₃

Position	AR)	Sch 54794	
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}({\rm C-type})$
1-NH	5.94 (brs)	-	-	-
2	-	164.83 (C=O)	-	165.5 (C=O)
3	4.23 (<i>d</i> , 2.1)	58.40 (CH)	4.25 (s)	58.1 (CH)
4-NH	6.02 (<i>brs</i>)	-	-	-
5	-	165.71 (C=O)	-	166.0 (C=O)
6	-	67.78 (C)	-	67.6 (C)
7	a: 3.45 (<i>d</i> , 13.8)	44.83 (CH ₂)	3.49 (<i>d</i> , 13.7)	44.3 (CH ₂)
	b: 2.95 (<i>d</i> , 13.8)		2.97 (<i>d</i> , 13.7)	
8	-	124.77 (C)	-	125.2 (C)
9, 9′	7.14 (<i>d</i> , 8.7)	131.84 (CH)	7.16 (<i>d</i> , 8.6)	131.7 (CH)
10, 10′	6.85 (<i>d</i> , 8.7)	114.98 (CH)	6.86 (<i>d</i> , 8.6)	114.7 (CH)
11	-	158.75 (C)	-	158.4 (C)
12	4.48 (<i>d</i> , 6.9)	64.83 (CH ₂)	4.50 (<i>d</i> , 6.8)	64.7 (CH ₂)
13	5.47 (<i>tm</i> , 6.9)	119.47 (CH)	5.49 (<i>t</i> , 6.8)	119.3 (CH)
14	-	138.40 (C)	-	138.3 (C)
15	1.74 (s)	25.83 (CH ₃)	1.76 (<i>s</i>)	25.6 (CH ₃)
16	1.80 (s)	18.23 (CH ₃)	1.82 (s)	18.0 (CH ₃)
17	2.22 (s)	13.94 (CH ₃)	2.24 (s)	13.9 (CH ₃)

Table 52 Continued

Position	AR9		Sch 54794	
	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)
18	2.27 (s)	13.74 (CH ₃)	2.30 (s)	13.5 (CH ₃)

Chu et al., 1993.

1.3.13 Compound AR10

Compound **AR10** with the melting point 208-210 0 C was obtained as a white solid and exhibited UV and IR absorption bands similar to those of compound **AR9**. The ¹H NMR data (**Figure 29**) (**Table 53**) were almost identical to those of compound **AR9** except for the appearance of a singlet signal for H₃-17 ($\delta_{\rm H}$ 1.64) (**Table 53**) at much higher field. Comparison of its ¹³C NMR data (**Figure 30**) (**Table 53**) and optical rotation, $[\alpha]_{\rm D}^{25}$ -22.2 (c = 0.1, MeOH), with the previously reported data of Sch 54796 which was isolated from the broth extract of *Tolypocladium* sp., $[\alpha]_{\rm D}^{25}$ -25.0 (c = 0.1, DMSO) (Chu *et al.*, 1993), indicated that **AR10** was Sch 54796.

Table 53 The ¹H and ¹³C NMR data of compound **AR10** and Sch 54796 in CDCl₃

Position	AR10		Sch 54796	
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-type)
1-H	5.97 (brs)	-	-	-
2	-	164.47 (C=O)	-	165.6 (C=O)
3	4.90 (<i>d</i> , 1.5)	58.47 (CH)	4.93 (s)	57.8 (CH)
4-H	6.05 (<i>brs</i>)	-	-	-
5	-	165.34 (C=O)	-	165.9 (C=O)
6	-	67.75 (C)	-	68.1 (C)

Table 53 Continued

Position	AR	10	Sch 54796	
1 OSITION	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)
7	a: 3.50 (<i>d</i> , 14.0)	43.03 (CH ₂)	3.60 (<i>d</i> , 13.7)	42.3 (CH ₂)
	b: 2.95 (<i>d</i> , 14.0)		2.95 (<i>d</i> , 13.7)	
8	-	125.08 (C)	-	126.1 (C)
9, 9′	7.10 (<i>d</i> , 8.5)	132.05 (CH)	7.19 (<i>d</i> , 8.7)	132.0 (CH)
10, 10′	6.78 (<i>d</i> , 8.5)	115.00 (CH)	6.83 (<i>d</i> , 8.7)	114.6 (CH)
11	-	158.77 (C)	-	158.5 (C)
12	4.41 (<i>d</i> , 6.5)	64.86 (CH ₂)	4.47 (<i>d</i> , 6.7)	64.5 (CH ₂)
13	5.39 (<i>tm</i> , 7.0)	119.58 (CH)	5.46 (<i>t</i> , 6.7)	119.4 (CH)
14	-	138.25 (C)	-	138.3 (C)
15	1.72 (s)	25.76 (CH ₃)	1.74 (<i>s</i>)	25.1 (CH ₃)
16	1.67 (<i>s</i>)	18.17 (CH ₃)	1.79 (<i>s</i>)	17.5 (CH ₃)
17	1.64 (<i>s</i>)	11.34 (CH ₃)	1.48 (s)	9.8 (CH ₃)
18	2.16 (s)	13.28 (CH ₃)	2.22 (s)	12.2 (CH ₃)

Chu et al., 1993.

1.3.14 Compound AR12

Compound **AR12** with the molecular formula $C_{13}H_{14}O_6$ by EIMS (**Figure 33**) was obtained as a pale yellow gum. The UV spectrum displayed absorption bands at 217, 268 and 315 nm, indicating the presence of a benzene chromophore. The IR spectrum exhibited absorption bands at 3432, 1716 and 1673 cm⁻¹ for hydroxyl, ketone carbonyl and ester carbonyl groups, respectively. The ¹H NMR spectrum (**Figure 31**) (**Table 54**) contained signals for one chelated hydroxy proton (δ_H 11.59, *s*, 1H), one hydroxy proton (δ_H 4.50, *s*, 1H), one aromatic proton (δ_H 6.52, *s*, 1H), one set of nonequivalent oxymethylene protons ([δ_H 4.39 (*d*, *J* = 12.0 Hz, 1H)], one methoxyl group (δ_H 3.87, *s*, 3H) and two methyl groups [δ_H 2.26 (*s*, 3H) and 1.96 (*s*, 3H)]. The ¹³C NMR spectrum (**Figure 32**) (**Table 54**) contained one ketone carbonyl carbon (δ_C 206.39), one ester carbonyl

carbon (169.36), six quaternary carbons ($\delta_{\rm C}$ 165.31, 164.40, 136.89, 118.30, 100.20 and 76.06), one methine carbon ($\delta_{\rm C}$ 99.86), one oxymethylene carbon ($\delta_{\rm C}$ 71.44), one methoxy carbon ($\delta_{\rm C}$ 56.03) and two methyl carbons ($\delta_{\rm C}$ 25.39 and 11.35). The chelated hydroxy proton ($\delta_{\rm H}$ 11.59) was placed at C-9, a *peri* position to the ester carbonyl carbon ($\delta_{\rm C}$ 169.36), and showed the HMBC correlations with C-8 ($\delta_{\rm C}$ 99.86), C-9 ($\delta_{\rm C}$ 164.40) and C-10 ($\delta_{\rm C}$ 100.20). The aromatic proton at $\delta_{\rm H}$ 6.52 was assigned as H-8 according to its HMQC with C-8. Irradiation of H₃-14 ($\delta_{\rm H}$ 3.87) in the NOEDIFF experiment (Table 54) affected signal intensity of H-8 and H₃-13 ($\delta_{\rm H}$ 1.96). These results together with the HMBC correlation of H₃-14/C-7 ($\delta_{\rm C}$ 165.31) and that of H₃-13/C-6 ($\delta_{\rm C}$ 118.30) attached the methoxyl and the methyl groups at C-7 and C-6, respectively. The nonequivalent oxymethylene protons (H_{ab}-3, $\delta_{\rm H}$ 4.39 and 4.19) exhibited the HMBC correlations with C-4 (δ_C 76.06), C-5 (δ_C 136.89) and C-11 (δ_C 206.39) while the methyl protons (H₃-12, $\delta_{\rm H}$ 2.26) exhibited the HMBC correlations with C-4 and C-11. These data together with the HMBC correlation of H_{ab}-3 with C-1 established an isochromanone derivative with a hydroxyl group and an acetyl moiety at C-4. Irradiation of H₃-12 in the NOEDIFF experiment enhanced signal intensity of H₃-13, supporting above assignment. Thus, AR12 was assigned as a new isochromanone derivative.

Table 54 The NMR data of compound AR12 in CDCl₃

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
1	-	169.36 (C=O)	-	*
3	a : 4.39 (<i>d</i> , 12.0)	71.44 (CH ₂)	C-1, C-4, C-5, C-11	*
	b : 4.19 (<i>d</i> , 12.0)		C-1, C-4, C-5, C-11	*
4	-	76.06 (C)	-	*

Table 54 Continued

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
4-OH	4.50 (s)	-	C-3, C-4, C-5	*
5	-	136.89 (C)	-	*
6	-	118.30 (C)	-	*
7	-	165.31 (C)	-	*
8	6.52 (<i>s</i>)	99.86 (CH)	C-1, C-6, C-7, C-9,	*
			C-10	
9	-	164.40 (C)	-	*
9-OH	11.59 (s)	-	C-8, C-9, C-10	*
10	-	100.20 (C)	-	*
11	-	206.39 (C=O)	-	*
12	2.26 (s)	25.39 (CH ₃)	C-1, C-4	H _b -3, H ₃ -13
13	1.96 (<i>s</i>)	11.35 (CH ₃)	C-5, C-6, C-7	H ₃ -12,
				H ₃ -14
14	3.87 (s)	56.03 (CH ₃)	C-7, C-8	H-8, H ₃ -13

* not determined

1.3.15 Compound AR13

Compound **AR13** with the molecular formula $C_{13}H_{16}O_6$ by EIMS (**Figure 36**) was obtained as a pale yellow gum. The UV spectrum displayed absorption bands at 203, 217, 268, and 312 nm. The IR spectrum exhibited absorption bands at 3394 and 1652 cm⁻¹ for hydroxyl and ester carbonyl groups, respectively. The ¹H NMR data (**Figure 34**) (**Table 55**) were almost identical to those of compound **AR12** except for the replacement of signals for nonequivalent oxymethylene protons (H_{ab}-3, δ_H 4.39 and 4.19) and the acetyl group (H₃-12, δ_H 2.26) in compound **AR12** with those for a 1-substituted oxyethyl group (H₃-11, δ_H 1.51, *d*, *J* = 6.5 Hz and H-3, δ_H 4.44, *q*, *J* = 6.5 Hz) and nonequivalent hydroxymethyl group (H_{ab}-12, δ_H 4.02 and 3.72), respectively. The location of the 1-substituted oxyethyl group and the hydroxymethyl unit was confirmed by HMBC correlations of H_{ab}-12/C-3 (δ_C 79.48), C-4 (δ_C 73.42) and C-5 (δ_C 141.02) and those of H₃-11 with C-3 and C-4

(**Table 55**). Irradiation of H_{ab} -12 affected signal intensity of H_3 -11 in the NOEDIFF experiment (**Table 55**), indicating that H_{ab} -12 and H_3 -11 were *cis*. Therefore, compound **AR13** was identified as a new isochromanone derivative.

Table 55 The NMR data of compound AR13 in CDCl₃

Position	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
1	-	169.89 (C=O)	-	*
3	4.44 (q, 6.5)	79.48 (CH)	C-4, C-5, C-11,	H ₃ -11
			C-12	
4	-	73.42 (C)	-	*
4-OH	2.97 (s)	-	C-4, C-5, C-12	*
5	-	141.02 (C)	-	*
6	-	117.30 (C)	-	*
7	-	165.18 (C)	-	*
8	6.39 (s)	98.97 (CH)	C-1, C-6, C-7, C-9,	*
			C-10	
9	-	163.35 (C)	-	*
9-OH	11.52 (s)	-	C-8, C-9, C-10	*
10	-	100.30 (C)	-	*
11	1.51 (<i>d</i> , 6.5)	14.68 (CH ₃)	C-3, C-4	H-3, H _{ab} -12
12	a : 4.02 (<i>d</i> , 11.0)	62.57 (CH ₂)	C-3, C-4, C-5	H _b -12,
				H ₃ -11
	b : 3.72 (<i>d</i> , 11.0)		C-3, C-4, C-5	H _a -12,
				H ₃ -13
13	2.27 (s)	12.22 (CH ₃)	C-5, C-6, C-7	H _b -12,
				H ₃ -14

Table 55 Continued

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
14	3.79 (s)	55.93 (CH ₃)	C-7	H-8, H ₃ -13

* not determined

1.3.16 Compound AR17

Compound **AR17** with the molecular formula $C_{13}H_{16}O_6$ by EIMS (**Figure 39**) was obtained as a pale yellow gum. The UV spectrum displayed absorption bands at 204, 217, 230, 270 and 314 nm. The IR spectrum exhibited absorption bands at 3370 and 1654 cm⁻¹ for hydroxyl and ester carbonyl groups, respectively. The ¹H NMR data (**Figure 37**) (**Table 56**) were almost identical to those of compound **AR12** except for signal replacement of the acetyl group (H₃-12, δ_H 2.26) with a 1-hydroxyethyl unit [H-11 (δ_H 4.17, q, J = 6.5 Hz) and H₃-12 (δ_H 1.20, d, J = 6.5 Hz)]. The ³J HMBC correlations of H-11 with C-3 (δ_C 70.36) and C-5 (δ_C 138.97) (**Table 56**) confirmed the assigned position for the 1-hydroxyethyl group. Irradiation of H₃-12 enhanced signal intensity of H₃-13 (δ_H 2.42) in the NOEDIFF experiment (**Table 56**), supporting above assignment. Consequently, compound **AR17** was identified as a new isochromanone derivative.

Table 56 The NMR data of compound AR17 in CDCl₃

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
1	-	169.90 (C=O)	-	*
3	a : 4.46 (<i>d</i> , 10.5)	70.36 (CH ₂)	C-1, C-4, C-5, C-11	H _b -3, H-11
	b : 4.14 (<i>d</i> , 10.5)		C-1, C-4, C-5, C-11	*

Table 56 Continued

Position	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
4	-	74.32 (C)	-	*
4-OH	2.75 (s)	-	C-4, C-5, C-11	*
5	-	138.97 (C)	-	*
6	-	117.87 (C)	-	*
7	-	165.14 (C)	-	*
8	6.46 (<i>s</i>)	98.67 (CH)	C-1, C-6, C-7, C-9,	*
			C-10	
9-OH	11.64 (s)	-	C-8, C-9, C-10	*
10	-	99.61 (C)	-	*
11	4.17 (q, 6.5)	69.04 (CH)	C-3, C-5, C-12	*
12	1.20 (<i>d</i> , 6.5)	17.36 (CH ₃)	C-4, C-11	H-11, H ₃ -13
13	2.42 (s)	12.33 (CH ₃)	C-5, C-6, C-7	H ₃ -12
14	3.88 (s)	55.85 (CH ₃)	C-7	*

* not determined

1.3.17 Compound AR18

Compound **AR18** with the molecular formula $C_{13}H_{14}O_6$ by EIMS (**Figure 42**) was obtained as a pale yellow gum. The UV spectrum displayed absorption bands at 202, 249 and 333 nm, indicating the presence of a benzene chromophore. The IR spectrum exhibited absorption bands at 3352 and 1666 cm⁻¹ for hydroxyl and ester carbonyl groups, respectively. The ¹H (**Figure 40**) and ¹³C (**Figure 41**) NMR data (**Table 57**) indicated that compound **AR18** possessed a pentasubstituted benzene, identical to that of **AR12**, **AR13**, and **AR17**. In addition the ¹H NMR spectrum consisted of signals for two hydroxyl groups [δ_H 4.94 (*m*, 1H) and 4.49 (*m*, 1H)] and two sets of hydroxymethyl protons [δ_H 4.76 (*d*, *J* = 4.5 Hz, 2H) and 4.49 (*m*, 1H); 4.60 (*d*, *J* = 5.5 Hz, 2H) and 4.94 (*m*, 1H)]. The ¹³C NMR spectrum (**Figure 41**) (**Table 57**) contained, apart from the ¹³C signals of the pentasubstituted benzoyl moiety, two quarternary *sp*² carbons (δ_C 156.80 and 116.76) and two oxymethylene carbons (δ_C 60.34 and 57.60). The hydroxymethyl protons (H₂-11, δ_H

4.60) exhibited the HMBC correlations with C-3 ($\delta_{\rm C}$ 156.80), C-4 ($\delta_{\rm C}$ 116.76) and C-12 ($\delta_{\rm C}$ 57.60) while the other hydroxymethyl protons (H₂-12, $\delta_{\rm H}$ 4.76) displayed the same correlation with C-3, C-4 and C-5 ($\delta_{\rm C}$ 137.69) (**Table 58**). These data established an isochromenone unit having two hydroxymethyl groups at C-3 and C-4. Signal enhancement of H₃-13 ($\delta_{\rm H}$ 2.56) and H₂-11 upon irradiation of H₂-12 in the NOEDIFF experiment (**Table 58**) confirmed this assignment. Therefore, **AR18** was assigned as a new isochromenone derivative.

Table 57 The ¹H and ¹³C NMR data of compound **AR18** in Acetone- d_6

δ_{H} (mult., J_{Hz})	$\delta_{\rm C}$ (C-Type)
-	167.32 (C=O)
-	156.80 (C)
-	116.76 (C)
-	137.69 (C)
-	114.79 (C)
-	166.67 (C)
6.67 (<i>s</i>)	99.12 (CH)
-	163.92 (C)
11.93 (s)	-
-	101.22 (C)
4.60 (<i>d</i> , 5.5)	60.34 (CH ₂)
4.94 (<i>m</i>)	-
4.76 (<i>d</i> , 4.5)	57.60 (CH ₂)
4.49 (<i>m</i>)	-
2.56 (s)	12.09 (CH ₃)
	$\delta_{\rm H} (mult., J_{\rm Hz})$

Table 57 Continued

Position	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)
14	3.98 (s)	56.74 (CH ₃)

Table 58 The HMBC, COSY and NOE data of compound AR18 in Acetone-d₆

Proton	НМВС	COSY	NOE
H-8	C-6, C-7, C-9, C-10	-	*
9-OH	C-7, C-8, C-9, C-10	-	*
H ₂ -11	C-3, C-4, C-12	11-OH	H ₂ -12
11-OH	C-11	H ₂ -11	*
H ₂ -12	C-3, C-4, C-5	12-OH	H ₂ -11, H ₃ -13
12-OH	C-4, C-12	H ₂ -12	*
H ₃ -13	C-5, C-6, C-7	-	H ₂ -12
H ₃ -14	C-7	-	H-8

* not determined

1.3.18 Compound AR14

Compound **AR14** with the molecular formula $C_{20}H_{26}O_{10}$ by EIMS (**Figure 45**) and the melting point 180-182 ⁰C was obtained as a white solid. The UV spectrum displayed absorption bands at 202, 249, 305 and 335 nm. The IR spectrum exhibited absorption bands similar to those of **AR18**. The ¹H NMR data (**Figure 43**) (**Table 59**) were almost identical to those of compound **AR18** except for the presence of typical signals for β -glucopyranose unit [δ_{H} 4.43 (d, J = 8.0 Hz, 1H), 3.92 (m, 1H)/3.76 (brd, J = 12.0 Hz, 1H), 3.66 (t, J = 9.0 Hz, 1H), 3.41 (dd, J = 9.0, 8.0 Hz, 1H), 3.36 (ddd, J = 9.0, 4.5, 3.0 Hz, 1H) and 3.24 (t, J = 9.0 Hz, 1H)] (Bunyapaiboonsri *et al.*, 2008) and signal replacement for one of the hydroxymethyl group with a methyl group (δ_{H} 2.41, s, 3H). The methyl group was located at C-4 (δ_{C} 115.30) on the basis of their HMBC correlations with C-3 (δ_{C} 147.00), C-4 and C-5 (δ_{C} 137.50) (**Table 60**). The anomeric proton, H-1' (δ_{H} 4.43), displayed the ³*J* HMBC correlation with C-11 (δ_{C} 66.49), thus connecting the glucose unit at C-11. In

addition, the ¹H NMR spectrum displayed an addition signal of a methoxyl group ($\delta_{\rm H}$ 3.60, *s*, 3H). These methoxy protons established the ³J HMBC correlation with C-4' ($\delta_{\rm C}$ 79.06), thus linking the methoxyl group at C-4'. Consequently, compound **AR14** was identified as a new isochromenone glucoside.

Table 59 The ¹H and ¹³C NMR data of compound **AR14** in CDCl₃

Position	δ_{H} (<i>mult.</i> , J_{Hz})	$\delta_{\rm C}$ (C-Type)
1	-	167.00 (C=O)
3	-	147.00 (C)
4	-	115.30 (C)
5	-	137.50 (C)
6	-	114.50 (C)
7	-	165.50 (C)
8	6.58 (<i>s</i>)	98.81 (CH)
9	-	162.93 (C)
9-OH	11.85 (s)	-
10	-	100.50 (C)
11	a : 4.68 (<i>d</i> , 12.5)	66.49 (CH ₂)
	b : 4.62 (<i>d</i> , 12.5)	
12	2.41 (s)	17.18 (CH ₃)
13	2.38 (s)	13.69 (CH ₃)
14	3.92 (s)	56.03 (CH ₃)
1′	4.43 (<i>d</i> , 8.0)	102.11 (CH)
2'	3.41 (<i>dd</i> , 9.0, 8.0)	73.96 (CH)
3'	3.66 (<i>t</i> , 9.0)	76.41 (CH)
4′	3.24 (<i>t</i> , 9.0)	79.06 (CH)
5'	3.36 (<i>ddd</i> , 9.0, 4.5, 3.0)	75.70 (CH)

Table 59 Continued

Position	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)
6'	a : 3.92 (<i>m</i>)	62.03 (CH ₂)
	b : 3.76 (<i>brd</i> , 12.0)	
7′	3.60 (<i>s</i>)	60.70 (CH ₃)

Table 60 The HMBC, COSY and NOE data of compound AR14 in CDC	$\mathbb{C}l_3$
--	-----------------

Proton	НМВС	COSY	NOE
H-8	C-6, C-7, C-9, C-10	-	*
9-OH	C-8, C-9, C-10	-	*
H _a -11	C-3, C-4, C-1'	H _b -11	*
H _b -11	C-3, C-4, C-1'	H _a -11	*
H ₃ -12	C-3, C-4, C-5	-	*
H ₃ -13	C-5, C-6, C-7	-	*
H ₃ -14	C-7	-	H-8
H-1′	C-11	H-2′	H-3', H-5', H _{ab} -11
H-2′	C-1', C-3'	H-1', H-3'	*
H-3′	C-2', C-4'	H-2', H-4'	*
H-4′	C-3', C-5', C-7'	H-3', H-5'	H ₃ -7′
H-5′	C-4′	H-4', H _{ab} -6'	*
H _a -6′	-	H-5', H _b -6'	*
H _b -6′	-	H-5′, H _a -6′	*
H ₃ -7′	C-4'	-	H-4', H _a -6'

* not determined

1.3.19 Compound AR20

Compound **AR20** with the molecular formula $C_{12}H_{12}O_6$ by EIMS (**Figure 48**) was obtained as a pale yellow gum. The UV spectrum displayed absorption bands at 200 and 247 nm. The IR spectrum exhibited absorption bands similar to those of compound **AR18**. The ¹H NMR data (**Figure 46**) (**Table 61**) were

almost identical to those of compound **AR18** except for the disappearance of the methoxy signal in compound **AR20**. The chemical shift of C-7 ($\delta_{\rm C}$ 165.40) established a hydroxyl substituent at this carbon. All substitutents were located at the same position as those in compound **AR18** according to the HMBC correlations and NOEDIFF data (**Table 61**). Thus, compound **AR20** was identified as a demethylated **AR18**, a new isochromenone derivative.

Table 61 The NMR data of compound AR20 in Acetone-d₆

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-Type)	HMBC	NOE
1	-	167.00 (C=O)	-	*
3	-	156.80 (C)	-	*
4	-	117.00 (C)	-	*
5	-	138.80 (C)	-	*
6	-	113.90 (C)	-	*
7	-	165.40 (C)	-	*
8	6.58 (s)	102.63 (CH)	C-6, C-7, C-9, C-10	*
9	-	163.50 (C)	-	*
9-OH	11.84 (s)	-	C-8, C-9, C-10	*
10	-	101.00 (C)	-	*
11	4.61 (<i>d</i> , 5.5)	60.39 (CH ₂)	C-3, C-4	H ₂ -12
11-OH	4.84 (<i>m</i>)	-	-	*
12	4.78 (<i>d</i> , 4.5)	57.55 (CH ₂)	C-3, C-4, C-5	H ₂ -11, H ₃ -13
12-OH	4.38 (<i>m</i>)	-	-	*
13	2.58 (s)	12.06 (CH ₃)	C-5, C-6, C-7	H ₂ -12

* not determined

1.3.20 Compound AR19

Compound **AR19** with the molecular formula $C_{11}H_{10}O_5$ by EIMS (**Figure 51**) was obtained as a pale yellow gum. The UV spectrum displayed absorption bands at 201, 219, 246, and 328 nm. The IR spectrum exhibited absorption bands similar to those of compound **AR20**. The ¹H NMR data (**Figure 49**) (**Table 62**) were almost identical to those of compound **AR20** except for signal replacement of one hydroxymethyl group in compound **AR20** with a methyl group (δ_H 2.19) in compound **AR19**. The ³*J* HMBC correlations of the methyl protons with C-3 (δ_C 153.01) and C-5 (δ_C 142.00) (**Table 62**) indicated the attachment of the methyl group at C-4 (δ_C 111.80). Signal enhancement of H-6 (δ_H 6.56) and H₂-11 (δ_H 4.51) in the NOEDIFF experiment upon irradiation of H₃-12 (**Table 62**) supported the assigned location of the methyl group. Accordingly, compound **AR19** was identified as a new isochromenone derivative.

Table 62 The ¹H and ¹³C NMR data of compound **AR19** in Acetone- d_6

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	167.00 (C=O)
3	-	153.01 (C)
4	-	111.80 (C)
5	-	142.00 (C)
6	6.56 (<i>d</i> , 2.0)	102.23 (CH)
7	-	166.63 (C)
8	6.46 (<i>d</i> , 2.0)	102.71 (CH)
9	-	165.00 (C)
9-OH	11.49 (s)	-

Table 62 Continued

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
10	-	100.50 (C)
11	4.51 (<i>d</i> , 5.5)	59.64 (CH ₂)
11-OH	4.65 (<i>m</i>)	-
12	2.19 (s)	11.95 (CH ₃)

Table 63 The HMBC, COSY and NOE data of compound AR19 in Acetone- d_6

Proton	НМВС	COSY	NOE
H-6	C-1, C-4, C-8, C-10	H-8	H ₃ -12
H-8	C-6, C-7, C-9, C-10	H-6	*
9-OH	C-8, C-9, C-10	-	*
H ₂ -11	C-3, C-4	11-OH	H ₃ -12
11-OH	C-11	H ₂ -11	*
H ₃ -12	C-3, C-4, C-5	-	H-6, H ₂ -11

* not determined

PART II

METABOLITES FROM THE MANGROVE-DERIVED FUNGUS PESTALOTIOPSIS SP. PSU-MA92

CHAPTER 2.1

INTRODUCTION

2.1.1 Introduction

In the literatures, the research on metabolites from fungi in the genus *Pestalotiopsis* has displayed that these fungi produce many types of secondary metabolites. Some of them showed interesting biological activities such as antifungal jesterone (Li *et al.*, 2001), antibacterial 6-hydroxypunctaporonin A (Deyrup *et al.*, 2006), and anti-HIV-1 pestalazine A (Ding *et al.*, 2008). Based on SciFinder Scholar Database, secondary metabolites isolated from the genus *Pestalotiopsis* since the year 2000 are summarized in **Table 64** The ethyl acetate extract from the broth of *Pestalotiopsis* sp. PSU-MA92 exhibited no antibacterial activity against *S. aureus*, *P. aeruginosa* and *E. coli* at the concentration of 200 μ g/mL. However, it showed antioxidant activity in DPPH[•] assay with the IC₅₀ value of 2.97 mg/mL.

Pestalotiopsis sp. PSU-MA92 was isolated from the twigs of *R. apiculata*, collected from Trang province, Thailand in the year 2006. It was deposited at the Department of Microbiology, Faculty of Science, Prince of Songkla University.

Scientific name	Compound	Activity	Reference
P. adusta	Pestalachloride A, 49	Antifungal	Li et al., 2008
	Pestalachloride B, 50		
	Pestalachloride C, 51		
P. disseminata	6-Hydroxypunctaporonin A,	Antibacterial	Deyrup et al.,
	52		2006
	6-Hydroxypunctaporonin B, 53		
	6-Hydroxypunctaporonin E, 54		

Table 64 Compounds isolated from the Pestalotiopsis genus

Table 64 Continued

Scientific name	Compound	Activity	Reference
P. fici	Pestaloficiol A, 55	Anti-HIV-1	Liu et al.,
	Pestaloficiol B, 56		2008
	Pestaloficiol C, 57		
	Pestaloficiol D, 58		
	Pestaloficiol E, 59		
	Pestalofone A, 60	Anti-HIV-1	Liu et al.,
	Pestalofone B, 61	and antifungal	2009
	Pestalofone C, 62		
	Pestalofone D, 63		
	Pestalofone E, 64		
	Isosulochrin, 65		
	Isosulochrin dehydrate, 66		
	iso-A82775C, 67		
	Chloropestolide A, 68	Anti-HIV-1	Liu et al.,
	Chloropupukeananin, 69	and anticancer	2009
	Pestaloficiol F, 70	Anti-HIV-1	Liu et al.,
	Pestaloficiol G, 71	and cytotoxic	2009
	Pestaloficiol H, 72		
	Pestaloficiol I, 73		
	Pestaloficiol J, 74		
	Pestaloficiol K, 75		
	Pestaloficiol L, 76		
P. foedan	Pestafolide A, 77	Antifungal	Ding et al.,
	Pestaphthalide A, 78		2008
	Pestaphthalide B, 79		
P. jesteri	Jesterone, 80	Antimycotic	Li et al., 2001
	Hydroxyjesterone, 81		

Table 64 Continued

Scientific name	Compound	Activity	Reference
P. microspora	Pestacin, 82	Antifungal	Harper et al.,
		and	2003
		antioxidant	
	Isopestacin, 83	Antifungal	Strobel et al.,
		and	2002
		antioxidant	
P. photiniae	Photinide A, 84	Cytotoxic	Ding et al.,
	Photinide B, 85		2009
	Photinide C, 86		
	Photinide D, 87		
	Photinide E, 88		
	Photinide F, 89		
Pestalotiopsis	Ambuic acid, 90	Antibacterial	Ding et al.,
sp.	(2 <i>E</i>)-4-[(1 <i>R</i> ,5 <i>R</i> ,6 <i>R</i>)-4-		2009
	[(acetyloxy)methyl]-3-(1 <i>E</i>)-1-		
	hepten-1-yl-5-hydroxy-2-oxo-		
	7-oxabicyclo[4.1.0]hept-3-en-		
	1-yl]-2-methyl-2-butenoic		
	acid, 91		
	(2 <i>E</i>)-4-[(1 <i>R</i> ,5 <i>R</i> ,6 <i>R</i>)-5-		
	hydroxy-4-(hydroxymethyl)-2-		
	oxo-3-[(1 <i>E</i>)-5-oxo-1-hepten-1-		
	yl]-7-oxabicyclo[4.1.0]hept-3-		
	en-1-yl]-2-methyl-2-butenoic		
	acid, 92		
	(2 <i>E</i>)-4-[(1 <i>R</i> ,5 <i>R</i> ,6 <i>R</i>)-3-heptyl-		
	5-hydroxy-4-(hydroxymethyl)-		
	2-oxo-7-oxabicyclo[4.1.0]-		
	hept-3-en-1-yl]-2-methyl-2-		

Table 64 Continued

Scientific name	Compound	Activity	Reference
	butenoic acid, 93		
	(2 <i>E</i>)-4-[(1 <i>R</i> ,5 <i>R</i> ,6 <i>R</i>)-3-(1 <i>E</i> ,3 <i>E</i>)-		
	1,3-heptadien-1-yl-5-hydroxy-		
	4-(hydroxymethyl)-2-oxo-7-		
	oxabicyclo[4.1.0]hept-3-en-1-		
	yl]-2-methyl-2-butenoic acid,		
	94		
	(2 <i>E</i>)-4-[(6a <i>R</i> ,7a <i>R</i> ,7b <i>R</i>)-5-(1 <i>E</i>)-		
	1-hepten-1-yl-4,6,7a,7b-		
	tetrahydro-2,2-dimethyl-6-oxo-		
	6aH-oxireno[h]-1,3-		
	benzodioxin-6a-yl]-2-methyl-		
	2-butenoic acid, 95		
	(2 <i>E</i>)-4-[(1 <i>R</i> ,2 <i>S</i>)-3-(1 <i>E</i>)-1-		
	hepten-1-yl-1,2-dihydroxy-4-		
	(hydroxymethyl)-5-oxo-3-		
	cyclohexen-1-yl]-2-methyl-2-		
	butenoic acid, 96		
	(2E,2'E)-4,4'-[(1aR,5R,5aS,-		
	6 <i>R</i> ,7a <i>S</i> ,8a <i>S</i> ,9 <i>S</i> ,10 <i>R</i> ,10a <i>S</i> ,11a <i>S</i> ,-		
	13 <i>S</i>)-1a,2,5a,6,7,8a,9,10-		
	octahydro-9-hydroxy-2,7,11-		
	trioxo-5,13-dipentyl-10,6-		
	(epoxymethano)bisoxireno-		
	[4,5]benzo[1,2-d:1',2'-g][2]-		
	benzopyran-7a,11a(5H,11H)-		
	diyl]bis[2-methyl-2-butenoic		
	acid, 97		

Table 64 Continued

Scientific name	Compound	Activity	Reference
	Pestalodiopsolide A, 98	-	Magnani, et
	Taedolidol, 99		al., 2003
	6-Epitaedolidol, 100		
	Pestalotiopsone A, 101	Cytotoxic	Xu et al.,
	Pestalotiopsone B, 102		2009
	Pestalotiopsone C, 103		
	Pestalotiopsone D, 104		
	Pestalotiopsone E, 105		
	Pestalotiopsone F, 106		
	7-Hydroxy-2-(2-		
	hydroxypropyl)-5-		
	methylchromone, 107		
	Cytosporone C, 108	Cytotoxic	Xu et al.,
	Cytosporone J, 109		2009
	Cytosporone K, 110		
	Cytosporone L, 111		
	Cytosporone M, 112		
	Cytosporone N, 113		
	Dothiorelone B, 114		
	Pestalasin A, 115		
	Pestalasin B, 116		
	Pestalasin C, 117		
	Pestalasin D, 118		
	Pestalasin E, 119		
	3-Hydroxymethyl-6,8-		
	dimethoxycoumarin, 120		
	Pestalotiopsiod A, 121		

Table 64 Continued

Scientific name	Compound	Activity	Reference
P. theae	Pestalazine A, 122	Antifungal	Ding <i>et al.</i> ,
	Pestalazine B, 123	and anti-HIV-	2008
	Pestalamide A, 124	1	
	Pestalamide B, 125		
	Asperazine, 126		
	Pestalamide C, 127		
	Aspernigrin A, 128		
	Carbonarone A, 129		
	Pestalotheol A, 130	Anti-HIV-1	Li et al., 2008
	Pestalotheol B, 131		
	Pestalotheol C, 132		
	Pestalotheol D, 133		
	Chloroisosulochrin, 134	Plant growth	Shimada, et
	Chloroisosulochrin dehydrate,	reculators	al., 2001
	135		
	Pestheic acid, 136		

Structures of the metabolites isolated from the Pestalotiopsis genus

49 : Pestalachloride A

50 : Pestalachloride B

51 : Pestalachloride C

55 : Pestaloficiol A

58 : R = H : Pestaloficiol D **59** : $R = CH_3$: Pestaloficiol E

52 : 6-Hydroxypunctaporonin A

54 : 6-Hydroxypunctaporonin E

56 : R = H : Pestaloficiol B

57 : $R = CH_3$: Pestaloficiol C

60 : Pestalofone A

61 : Pestalofone B

63 : Pestalofone D

65 : Isosulochrin

67 : *iso*-A82775C

64 : Pestalofone E

66 : Isosulochrin dehydrate

69 : Chloropupukeananin

71 : Pestaloficiol G

73 : Pestaloficiol I

75 : Pestaloficiol K

70 : Pestaloficiol F

72 : Pestaloficiol H

74 : Pestaloficiol J

76 : Pestaloficiol L

77 : Pestafolide A

79 : Pestaphthalide B

84 : R = CH₃ : Photinide A **86** : R = H : Photinide C

88 : Photinide E

78 : Pestaphthalide A

80 : R = H : Jesterone

81 : R = OH : Hydroxyjesterone

83 : Isopestacin

85 : R = CH₃ : Photinide B **87** : R = H : Photinide D

89 : Photinide F

- **90** : R = H : Ambuic acid
- **91** : R = Ac : (2*E*)-4-[(1*R*,5*R*,6*R*)-4-[(acetyloxy)methyl]-3-(1*E*)-1hepten-1-yl-5-hydroxy-2-oxo7oxabicyclo[4.1.0]hept-3-en-1yl]-2-methyl-2-butenoic acid

: (2*E*)-4-[(1*R*,5*R*,6*R*)-3-heptyl-5hydroxy-4-(hydroxymethyl)-2-oxo-7oxabicyclo[4.1.0]hept-3-en-1-yl]-2-methyl-2-butenoic acid

95 : (2*E*)-4-[(6a*R*,7a*R*,7b*R*)-5-(1*E*)-1hepten-1-yl-4,6,7a,7b-tetrahydro-2,2-dimethyl-6-oxo-6a*H*oxireno[h]-1,3-benzodioxin-6ayl]-2-methyl-2-butenoic acid

$$\mathbf{92}: \mathbf{R'} = \mathbf{H_3C} \underbrace{\mathbf{CH_3}}_{\mathbf{OH}}$$

: (2*E*)-4-[(1*R*,5*R*,6*R*)-5hydroxy-4-(hydroxymethyl)-2-oxo-3-[(1*E*)-5-oxo-1-hepten-1-yl]-7-oxabicyclo-[4.1.0]hept-3-en-1-yl]-2methyl-2-butenoic acid

: (2*E*)-4-[(1*R*,5*R*,6*R*)-3-(1*E*,3*E*)-1,3heptadien-1-yl-5-hydroxy-4-(hydroxymethyl)-2-oxo-7oxabicyclo[4.1.0]hept-3-en-1-yl]-2methyl-2-butenoic acid

96 : (2*E*)-4-[(1*R*,2*S*)-3-(1*E*)-1-hepten-1-yl-1,2-dihydroxy-4-(hydroxymethyl)-5-oxo-3cyclohexen-1-yl]-2-methyl-2butenoic acid

100: 6-Epitaedolidol

: 7-Hydroxy-2-(2-hydroxypropyl)-5-methylchromone

: Asperazine

132 : Pestalotheol C

124 : R = O : Pestalamide A

125 : R = NH : Pestalamide B

127 : Pestalamide C

128 : R = NH : Aspernigrin A

129: R = O : Carbonarone A

130 : R = OH : Pestalotheol A

131 : R = H : Pestalotheol B

133 : Pestalotheol D

135 : Chloroisosulochrin dehydrate

136 : Pestheic acid

2.1.2 The Objectives

1. To isolate the secondary metabolites from the mangrove-derived fungus *Pestalotiopsis* sp. PSU-MA92.

2. To elucidate the structures of the isolated compounds.

CHAPTER 2.2

EXPERIMENTAL

2.2.1 Fermentation and extraction

The flask culture of the fungus PSU-MA92 (15 L) in potato dextrose broth was filtered to separate into the filtrate and wet mycelia. The filtrate was divided into 37 portions. Each portion was extracted twice with an equal amount of EtOAc (2 x 300 mL). The organic layer was dried over anhydrous Na_2SO_4 and evaporated in *vacuo* to obtain a dark brown gum (340 mg). The crude extract was subjected to chromatographic purification.

2.2.2 Purification of the broth extract

The crude EtOAc extract was separated by column chromatography over Sephadex LH-20. Elution was performed with 100% methanol. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four fractions, as shown in **Table 65**.

 Table 65 Fractions obtained from the crude EtOAc extract by column

 chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
92A	36.4	Brown gum
92B	87.9	Brown gum
92C	68.1	Brown gum
92D	86.4	Brown gum

Fraction 92A did not show any UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum displayed signals in high field region. Thus, it was not investigated.

Fraction 92B showed two UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.25 and 0.53. It was further separated by column chromatography over reverse phase silica gel. Elution was performed initially with 50% methanol in water, followed by pure methanol. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions, as shown in **Table 66**.

 Table 66 Subfractions obtained from fraction 92B by column chromatography over reverse phase silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
92B1	50% MeOH/H ₂ O	24.6	Yellow gum
92B2	50% MeOH/ H ₂ O	13.9	Yellow gum
92B3	50% MeOH/ H ₂ O	4.1	Yellow gum
92B4	50% MeOH/ H ₂ O	19.2	Yellow gum
92B5	50% MeOH/ H ₂ O -100%	25.3	Brown gum
	MeOH		

Subfraction 92B1 showed one UV-active spot on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f value of 0.71. Its ¹H NMR spectrum displayed sugar signals. Thus, it was not investigated.

Subfraction 92B3 showed three UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.29, 0.43 and 0.55. It was further separated by column chromatography over silica gel. Elution was performed initially with 2% methanol in dichloromethane, followed by increasing the polarity with methanol and finally with pure methanol. Fractions with similar
chromatogram were combined and evaporated to dryness under reduced pressure to afford seven subfractions, as shown in **Table 67**.

Subfraction	Elution	Weight (mg)	Physical appearance
92B21	2% MeOH/CH ₂ Cl ₂	3.0	Yellow gum
92B22	2% MeOH/CH ₂ Cl ₂	4.2	Yellow gum
92B23	2% MeOH/CH ₂ Cl ₂	0.4	Yellow gum
92B24	2% MeOH/CH ₂ Cl ₂	1.4	Yellow gum
92B25	2% MeOH/CH ₂ Cl ₂	2.0	Yellow gum
92B26	2-5% MeOH/CH ₂ Cl ₂	0.2	Yellow gum
92B27	100% MeOH	2.7	Yellow gum

 Table 67 Subfractions obtained from subfraction 92B2 by column chromatography over silica gel

Subraction 92B21 showed three UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.73, 0.85 and 0.93. Because of the low quantity, it was not further investigated.

Subfraction 92B22 showed two UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.61, and 0.71. It was then purified by precoated TLC with 10% ethyl acetate in chloroform as a mobile phase (10 runs) to afford two bands.

<u>**Band 1**</u> (AR21) was a colorless gum (1.6 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% ethyl acetate in chloroform as a mobile phase (10 runs) with the R_f value of 0.60.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	+38.2 (c = 1.0, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	207 (3.03), 254 (3.45)
$FTIR(neat) : \upsilon(cm^{-1})$	3407 (O-H stretching), 1679 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	4.40 (dd, $J = 12.0, 1.5, Hz, 1H$), 4.28 (dd, J
	= 12.0, 3.6, Hz, 1H), 4.16 (qn , J = 6.9 Hz,

	1H), $3.88 (s, 3H)$, $2.69 (dd, J = 6.9, 3.6, Hz,$
	1H), 1.83 (<i>s</i> , 3H), 1.36 (<i>d</i> , <i>J</i> = 6.9 Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz):	167.64, 166.87, 105.24, 67.81, 65.29, 56.52,
	40.92, 20.97, 9.28
CH :	67.81, 40.92
CH ₂ :	65.29
CH ₃ :	56.52, 20.97, 9.28
EIMS <i>m/z</i> (% relative intensity):	186 (7), 142 (100), 124 (24), 109 (19), 97
	(10)

<u>**Band 2**</u> (AR22) was a colorless gum (1.4 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% ethyl acetate in chloroform as a mobile phase (10 runs) with the R_f value of 0.53.

$[\alpha]_{D}^{25}$	-29.3 (c = 1.0, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	207 (3.18), 250 (3.51)
$FTIR(neat) : \upsilon(cm^{-1})$	3405 (O-H stretching), 1679 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	4.58 (d, $J = 11.7$, Hz, 1H), 4.24 (dd, $J =$
	11.7, 3.6, Hz, 1H), 4.05 (m, 1H), 3.83 (s,
	3H), 2.62 (brs, 1H), 1.93 (brs, 1H), 1.84 (s,
	3H), 1.32 (d , J = 6.6, Hz, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	167.73, 165.83, 107.39, 67.12, 65.49, 57.05,
	40.90, 21.35, 9.54
CH :	67.12, 40.90
CH ₂ :	65.49
CH ₃ :	57.05, 21.35, 9.54
EIMS <i>m/z</i> (% relative intensity):	186 (5), 142 (100), 124 (25), 109 (21), 97
	(15)

Subfraction 92B23 showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.59. Its ¹H NMR spectrum displayed many signals. Thus, it was not further investigated.

Subfraction 92B24 showed two UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.05 and 0.10. Because of the minute quantity and the presence of proton signals in high field region, it was not further investigated.

Subfraction 92B25 showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.41. Because of the minute quantity and the presence of signals in high field region, it was not further investigated.

Subfraction 92B26 showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.32. Because of the minute quantity, it was not further investigated.

Subfraction 92B27 showed two UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.17 and 0.29. Because of the low quantity and the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction 92B3 showed two UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.24 and 0.29. It contained AR24 as a major component. No further purification was carried out.

Subfraction 92B4 showed three UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f values of 0.34, 0.59, and 0.76. It was further separated by column chromatography over silica gel. Elution was performed initially with 30% ethyl acetate in petroleum ether, followed by increasing the polarity with ethyl acetate and then methanol and finally with pure

methanol. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford nine subfractions, as shown in **Table 68**.

Subfraction	Elution	Weight (mg)	Physical appearance
92B41	30-40% EtOAc/Petrol	1.3	Yellow gum
92B42	40-50% EtOAc/Petrol	0.6	Yellow gum
92B43	50% EtOAc/Petrol	0.6	Yellow gum
92B44	50-60% EtOAc/Petrol	1.4	Yellow gum
92B45	60-70% EtOAc/Petrol	0.5	Yellow gum
92B46	70-80% EtOAc/Petrol	2.1	Colorless gum
92B47	80-90% EtOAc/Petrol	0.5	Yellow gum
92B48	90% EtOAc/Petrol-100%	11.7	Colorless gum
	EtOAc		
92B49	100% EtOAc-100% MeOH	0.5	Yellow gum

Table 68 Subfractions obtained from subfraction 92B4 by columnchromatography over silica gel

Subfraction 92B41 did not show any UV-active spots on normal phase TLC using 1% methanol in dichloromethane but showed two spots after dipping the TLC plate in anisaldehyde reagent and subsequently heating the plate with the R_f values of 0.24 and 0.56. Because of the minute quantity, it was not further investigated

Subfraction 92B42 showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.79. Because of the minute quantity and the absence of olefinic and aromatic protons in the ¹H NMR spectrum, it was not further investigated.

Subfraction 92B43 did not show any UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs). Because of the minute quantity, it was not further investigated.

Subfraction 92B44 showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.67. Unfortunately, it was decomposed.

Subfraction 92B45 did not show any UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs). Because of the minute quantity, it was not further investigated.

Subfraction 92B46 (AR23) showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.50.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	-44.07 (c = 0.33, MeOH)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	210 (3.96), 287 (3.40)
$FTIR(neat) : v(cm^{-1})$	3410 (O-H stretching), 1722, 1711 (C=O
	stretching)
¹ H NMR(Acetone- d_6)(δ_{ppm}):	7.64 (d , $J = 0.9$ Hz, 1H), 5.69 (<i>hept</i> , $J = 1.2$
(300 MHz)	Hz, 1H), 5.05 (s, 2H), 4.81 (m, 1H), 4.42 (d,
	J = 4.5 Hz, 1H), 4.15 (s, 3H), 2.16 (d, $J =$
	1.2 Hz, 3H), 1.90 (d , $J = 1.2$ Hz, 3H), 1.40
	(d, J = 6.3 Hz, 3H)
¹³ C NMR(Acetone- d_6)(δ_{ppm}):	169.23, 165.62, 163.95, 157.13, 148.63,
(75 MHz)	122.42, 115.32, 106.14, 62.30, 61.67, 56.22,
	26.29, 23.24, 19.23
CH :	148.63, 115.32, 62.30
CH ₂ :	56.22
CH ₃ :	61.67, 26.29, 23.24, 19.23
EIMS m/z (% relative intensity):	282 (1), 199 (100), 183 (28), 153 (9), 139
	(10), 83 (54)

Subfraction 92B47 did not show any UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) but showed one spot, after dipping the TLC plate in anisaldehyde reagent and subsequently heating the plate, with the R_f value of 0.36. Because of the minute quantity, it was not further investigated.

Subfraction 92B48 (AR24) showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs) with the R_f value of 0.33.

$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	212 (3.54), 273 (3.79)
$FTIR(neat) : \upsilon(cm^{-1})$	3414 (O-H stretching), 1720, 1712 (C=O
	stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	5.68 (s, 1H), 5.07 (s, 2H), 4.46 (s, 2H), 4.09
	(s, 3H), 2.35 (s, 3H), 2.17 (s, 3H), 1.88 (s,
	3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	170.52, 166.31, 164.37, 161.86, 157.74,
	148.63, 115.50, 113.07, 104.99, 62.41,
	56.26, 56.03, 27.41, 20.29, 17.37
CH :	115.50
CH ₂ :	56.26, 56.03
CH ₃ :	62.41, 27.41, 20.29, 17.37
EIMS m/z (% relative intensity):	282 (1), 199 (100), 183 (13), 153 (9), 139
	(5), 123 (14), 83 (58)

Subfraction 92B49 displayed a long tail under UV-S on normal phase TLC using 40% ethyl acetate in petroleum ether as a mobile phase (5 runs). Because of the minute quantity, it was not further investigated.

Subfraction 92B5 displayed a long tail under UV-S on reverse phase TLC using 50% methanol in water as a mobile phase. Because the ¹H NMR spectrum showed broad signals, it was not further investigated.

Fraction 92C showed three UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.43, 0.64 and 0.77. It was further separated by column chromatography over reverse phase silica gel. Elution was performed initially with 50% methanol in water, followed by reducing the polarity with methanol and finally with pure methanol. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions, as shown in **Table 69**.

 Table 69 Subfractions obtained from fraction 92C by column chromatography over reverse phase silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
92C1	50% MeOH/ H ₂ O	42.4	Brown gum
92C2	50% MeOH/ H ₂ O	9.2	Brown gum
92C3	50-60% MeOH/ H ₂ O	4.9	Brown gum
92C4	100% MeOH	12.0	Brown gum

Subfraction 92C1 showed three UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.38, 0.55 and 0.72. It was further separated by column chromatography over reverse phase silica gel. Elution was performed initially with 50% methanol in water, followed by reducing the polarity with methanol and finally with pure methanol. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford six subfractions, as shown in Table 70.

Subfraction	Elution	Weight (mg)	Physical appearance
92C11	50% MeOH/ H ₂ O	22.3	Brown gum
92C12	50% MeOH/ H ₂ O	9.3	Brown gum
92C13	50% MeOH/ H ₂ O	3.5	Brown gum
92C14	50% MeOH/ H ₂ O	1.7	Brown gum
92C15	50% MeOH/ H ₂ O	1.5	Brown gum
92C16	50% MeOH/ H ₂ O -100%	4.3	Brown gum
	MeOH		

 Table 70 Subfractions obtained from subfraction 92C1 by column chromatography

 over reverse phase silica gel

Subfraction 92C11 showed two UV-active spots on normal phase TLC using 10% methanol in dichloromethane as a mobile phase with the R_f values of 0.07 and 0.22. The ¹H NMR spectrum displayed sugar signals. Thus, it was not investigated.

Subfraction 92C12 showed four UV-active spots on normal phase TLC using 10% methanol in dichloromethane as a mobile phase with the R_f values of 0.15, 0.29, 0.41 and 0.49. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions, as shown in Table 71.

Table 71 Subfractions obtained from subfraction 92C12 by columnchromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
92C121	1.0	Brown gum
92C122	4.1	Brown gum
92C123	1.1	Brown gum
92C124	3.5	Brown gum

Subfraction 92C121 showed two UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase (3 runs) with the R_f values of 0.20 and 0.28. Because of the minute quantity, it was not further investigated.

Subfraction 92C122 showed three UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase (3 runs) with the R_f values of 0.13, 0.23 and 0.33. Because of the low quantity, it was not further investigated.

Subfraction 92C123 showed two UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase (3 runs) with the R_f values of 0.13 and 0.33. Because of the minute quantity, it was not further investigated.

Subfraction 92C124 showed two UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase (3 runs) with the R_f values of 0.13 and 0.23. Because of the low quantity, it was not further investigated.

Subfraction 92C13 showed three UV-active spots on normal phase TLC using 10% methanol in dichloromethane as a mobile phase with the R_f values of 0.46, 0.56 and 0.71. Because of the low quantity, it was not further investigated.

Subfraction 92C14 showed two UV-active spots on normal phase TLC using 10% methanol in dichloromethane as a mobile phase with the R_f values of 0.44 and 0.56. Because of the minute quantity, it was not further investigated.

Subfraction 92C15 showed one UV-active spot on normal phase TLC using 10% methanol in dichloromethane as a mobile phase with the R_f value of 0.54. Because of the minute quantity, it was not further investigated.

Subfraction 92C16 did not show any UV-active spots on normal phase TLC using 10% methanol in dichloromethane as a mobile phase. Because of the low quantity and the presence of proton signals in high field region, it was not further investigated.

Subfraction 92C2 showed six UV-active spots on normal phase TLC using 2% methanol in dichloromethane (2 runs) as a mobile phase with the R_f values of 0.15, 0.22, 0.34, 0.41, 0.51 and 0.78. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions, as shown in Table 72.

 Table 72 Subfractions obtained from subfraction 92C2 by column chromatography over Sephadex LH-20

Subfraction	Elution	Weight (mg)	Physical appearance
92C21	50% MeOH/CH ₂ Cl ₂	1.3	Colorless gum
92C22	50% MeOH/CH ₂ Cl ₂	1.7	Brown gum
92C23	50% MeOH/CH ₂ Cl ₂	4.1	Brown gum
92C24	50% MeOH/CH ₂ Cl ₂	1.0	Brown gum
92C25	50% MeOH/CH ₂ Cl ₂	1.1	Brown gum

Subfraction 92C21 (AR25) showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (3 runs) with the R_f value of 0.08.

$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	253 (3.18), 273 (2.98)
$FTIR(neat) : \upsilon(cm^{-1})$	3373 (O-H stretching), 1650 (C=O stretching)
¹ H NMR(Acetone- d_6)(δ_{ppm}) :	7.93 (d , J = 8.7 Hz, 2H), 6.93 (d , J = 8.7 Hz,
(300 MHz)	2H)
¹³ C NMR(Acetone- d_6)(δ_{ppm}):	166.87, 161.75, 131.84, 121.73, 115.09
(75 MHz)	
CH :	131.84, 115.09

Subfraction 92C22 showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (3 runs) with the R_f value of 0.58. It contained AR24 as a major component. No further purification was carried out.

Subfraction 92C23 showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (3 runs) with the R_f value of 0.30. It was then purified by precoated TLC with 3% methanol in dichloromethane as a mobile phase (6 runs) to afford **AR26** as a brown gum (2.3 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 3% methanol in dichloromethane as a mobile phase with the R_f value of 0.24.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	+25.6 (c = 0.17, CHCl ₃)	
$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	206 (3.91), 246 (3.30), 273 (2.88)	
$FTIR(neat) : \upsilon(cm^{-1})$	3395 (O-H stretching), 1734 (C=O stretching)	
¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	7.60 (d , J = 8.5 Hz, 1H), 6.84 (d , J = 8.5	
	Hz, 1H), 6.79 (brs, 1H), 6.32 (brs, 1H), 5.02	
	(d, J = 6.5 Hz, 1H), 4.98 (brs, 2H), 4.87	
	(brs, 1H), 4.83 (brs, 1H), 4.27 (d, J = 6.5)	
	Hz, 1H), 3.93 (s, 3H), 2.18 (s, 3H), 1.67 (s,	
	3H)	
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	167.40, 155.55, 152.04, 147.27, 144.31,	
	141.50, 135.11, 132.36, 132.17, 125.79,	
	120.94, 119.50, 117.50, 117.42, 114.30,	
	78.61, 69.21, 68.85, 62.87, 20.83, 18.44	
CH :	132.17, 120.94, 117.50, 117.42, 78.61,	
	69.21	
CH ₂ :	114.30, 68.85	
CH ₃ :	62.87, 20.83, 18.44	

Subfraction 92C24 showed two UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (3 runs) with the R_f values of 0.13 and 0.30. Because of the minute quantity, it was not investigated.

Subfraction 92C25 did not show any UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (3 runs). Because of the minute quantity, it was not further investigated.

Subfraction 92C3 showed one UV-active spot on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (2 runs) with the R_f value of 0.54. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction 92C4 showed a long tail under UV-S on normal phase TLC using 2% methanol in dichloromethane as a mobile phase (2 runs). Because of the absence of olefinic and aromatic protons in the ¹H NMR spectrum, it was not further investigated.

Fraction 92D showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane (2 runs) as a mobile phase with the R_f values of 0.05, 0.12 and 0.21. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions, as shown in **Table 73**.

Subfraction	Elution	Weight (mg)	Physical appearance
92D1	50% MeOH/CH ₂ Cl ₂	6.0	Brown gum
92D2	50% MeOH/CH ₂ Cl ₂	9.9	Brown gum
92D3	50% MeOH/CH ₂ Cl ₂	70.5	Brown gum

Table 73 Subfractions obtained from fraction 92D by column chromatography overSephadex LH-20

Subfraction 92D1 showed four UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.24, 0.37, 0.44 and 0.93. Because of the low quantity, it was not further investigated.

Subfraction 92D2 showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.15, 0.24 and 0.32. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction 92D3 did not show any UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase and displayed a long tail under UV-S on reverse phase TLC using 70% methanol in water as a mobile phase. The ¹H NMR spectrum exhibited the broad signals. Therefore, no further purification was performed.

CHAPTER 2.3

RESULTS AND DISCUSSION

Four new compounds (AR21-24) and two known compounds (AR25-26) were isolated from the broth extract.

2.3.1 Compound AR21

Compound AR21 with the molecular formula $C_9H_{14}O_4$ by EIMS (Figure 54) was obtained as a colorless gum. It exhibited UV absorption bands at 207 and 254 nm while hydroxyl and carbonyl absorption bands were found at 3407 and 1679 cm⁻¹, respectively, in the IR spectrum. The ¹H NMR spectrum (Figure 52) (**Table 74**) contained signals for one set of nonequivalent oxymethylene protons $[\delta_{\rm H}]$ 4.40 (*dd*, J = 12.0, 1.5, Hz, 1H)/4.28 (*dd*, J = 12.0 and 3.6, Hz, 1H)], one oxymethine proton ($\delta_{\rm H}$ 4.16, qn, J = 6.9 Hz, 1H), one methoxyl group ($\delta_{\rm H}$ 3.88, s, 3H), one methine proton ($\delta_{\rm H}$ 2.69, dd, J = 6.9 and 3.6, Hz, 1H) and two methyl groups [$\delta_{\rm H}$ 1.83 (s, 3H) and 1.36 (d, J = 6.9 Hz, 3H)]. The ¹³C NMR spectrum (Figure 53) (Table 74) displayed one typical carbonyl carbon of an α,β -unsaturated ester moiety ($\delta_{\rm C}$ 167.64), two quaternary carbons ($\delta_{\rm C}$ 166.87 and 105.24), one oxymethine carbon ($\delta_{\rm C}$ 67.81), one oxymethylene carbon ($\delta_{\rm C}$ 65.29), one methoxy carbon ($\delta_{\rm C}$ 56.52), one methine carbon ($\delta_{\rm C}$ 40.92), and two methyl carbons ($\delta_{\rm C}$ 20.97 and 9.28). The methyl protons at $\delta_{\rm H}$ 1.83 (H₃-7) gave the ³J HMBC correlations (**Table 75**) with C-2 ($\delta_{\rm C}$ 167.64) and C-4 ($\delta_{\rm C}$ 166.87) while the methoxy protons at $\delta_{\rm H}$ 3.88 (H₃-8) showed the ³J HMBC correlation with C-4. These data indicated the attachment of the methyl and methoxyl groups at C-3 ($\delta_{\rm C}$ 105.24) and C-4, respectively. The following ¹H-¹H COSY correlations (**Table 75**): H-5 ($\delta_{\rm H}$ 2.69)/H_{ab}-6 ($\delta_{\rm H}$ 4.40 and 4.28) and H-9 ($\delta_{\rm H}$ 4.16) and H₃-10 ($\delta_{\rm H}$ 1.36)/H-9, as well as the HMBC correlations of H-5/C-4 and H_{ab}-6/C-2, constructed a 5,6-dihydropyrone having a 1-hydroxyethyl unit at C-5 ($\delta_{\rm C}$ 40.92). Signal enhancement of H_{ab}-6, H₃-8 and H₃-10 upon irradiation of H-5 in the

NOEDIFF experiment confirmed the assigned location of the 1-hydroxyethyl group. Futhermore, these results suggested that H-5 and H-9 were located at opposite direction. As compounds **AR21** and **AR23** were co-metabolites, we proposed that C-9 in compound **AR21** would have S-configuration. Consequently, C-5 was assigned to possess S-configuration. Therefore, **AR21** was identified as a new α -pyrone derivative.

Table 74 The ¹H and ¹³C NMR data of compound AR21 in CDCl₃

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
2	-	167.64 (C=O)
3	-	105.24 (C)
4	-	166.87 (C)
5	2.69 (<i>dd</i> , 6.9, 3.6)	40.92 (CH)
6	a: 4.40 (<i>dd</i> , 12.0, 1.5)	65.29 (CH ₂)
	b: 4.28 (<i>dd</i> , 12.0, 3.6)	
7	1.83 (s)	9.28 (CH ₃)
8	3.88 (s)	56.52 (CH ₃)
9	4.16 (qn, 6.9)	67.81 (CH)
10	1.36 (<i>d</i> , 6.9)	20.97 (CH ₃)

Table 75 The HMBC, COSY and NOE data of compound AR21 in CDCl₃

Proton	HMBC	COSY	NOE
H-5	C-4, C-9	H _{ab} -6, H-9	H _{ab} -6, H ₃ -8, H ₃ -10
H _a -6	C-2, C-4, C-5, C-9	H-5, H _b -6	*
H _b -6	C-2, C-4, C-5, C-9	H-5, H _a -6	*
H ₃ -7	C-2, C-3, C-4	-	*

Proton	HMBC	COSY	NOE
H ₃ -8	C-4	-	H-5
H-9	C-6	H-5, H ₃ -10	H ₃ -10
H ₃ -10	C-5, C-9	H-9	*

* not determined

2.3.2 Compound AR22

Compound **AR22** was obtained as a colorless gum and possessed the same molecular formula as **AR21** from EIMS (**Figure 57**). It exhibited UV and IR absorption bands similar to those of **AR21**. The ¹H and ¹³C NMR spectra (**Figure 55** and **56**) (**Table 76**) were also similar to those of compound **AR21**. In addition, all substitutents were attached at the same position as those in **AR21** according to the HMBC correlations. In contrast, irradiation of H-9 in the NOEDIFF experiment did enhance signal intensity of H-5 and vice versa, suggesting their close proximity. Thus, compound **AR22** was a diastereomer of compound **AR21** with the *R*-configuration at C-5. Therefore, **AR22** was identified as a new α -pyrone derivative.

Table 76 The ¹H and ¹³C NMR data of compound AR22 in CDCl₃

Position	$\delta_{ m H} (mult., J_{ m Hz})$	$\delta_{\rm C}$ (C-Type)
2	-	167.73 (C=O)
3	-	107.39 (C)
4	-	165.83 (C)
5	2.62 (<i>brs</i>)	40.90 (CH)
6	a: 4.58 (<i>d</i> , 11.7)	65.49 (CH ₂)

Table 76 Continued

Position	$\delta_{ m H} (mult., J_{ m Hz})$	$\delta_{\rm C}$ (C-Type)
	b: 4.24 (<i>dd</i> , 11.7, 3.6)	
7	1.84 (s)	9.54 (CH ₃)
8	3.83 (s)	57.05 (CH ₃)
9	4.05 (<i>m</i>)	67.12 (CH)
9-OH	1.93 (brs)	-
10	1.32 (<i>d</i> , 6.6)	21.35 (CH ₃)

Table 77 The HMBC, COSY and NOE data of compound AR22 in CDCl₃

Proton	HMBC	COSY	NOE
H-5	-	H _{ab} -6	H _{ab} -6, H ₃ -8, H-9
H _a -6	C-2, C-4, C-9	H _b -6, H-5	*
H _b -6	C-2, C-4, C-9	H _a -6, H-5	*
H ₃ -7	C-2, C-3, C-4	-	H ₃ -8
H ₃ -8	C-4	-	H-5, H ₃ -7, H ₃ -10
H-9	-	H ₃ -10	H-5, H ₃ -10
H ₃ -10	C-5, C-9	H-9	*

* not determined

2.3.3 Compound AR23

Compound **AR23** with the molecular formula $C_{14}H_{18}O_6$ by EIMS (**Figure 60**) was obtained as a colorless gum. It exhibited UV absorption bands at 210 and 287 nm. A hydroxyl absorption band was found at 3410 cm⁻¹ while carbonyl ones were found at 1722 and 1711 cm⁻¹ in the IR spectrum. The ¹H NMR and ¹H-¹H COSY spectra (**Figure 58**) (**Table 78**) contained signals for two olefinic protons [δ_H 7.64 (*d*, J = 0.9 Hz, 1H) and 5.69 (*hept*, J = 1.2 Hz, 1H)], one set of oxymethylene protons (δ_H 5.05, *s*, 2H), a 1-hydroxyethyl group [δ_H 4.81 (*m*, 1H), 4.42 (*d*, J = 4.5 Hz, 1H) and 1.40 (*d*, J = 6.3 Hz, 3H)], one methoxyl group (δ_H 4.15, *s*, 3H) and two methyl

groups [$\delta_{\rm H}$ 2.16 (d, J = 1.2 Hz, 3H) and 1.90 (d, J = 1.2 Hz, 3H)]. The ¹³C NMR spectrum (Figure 59) (Table 78) displayed one typical carbonyl carbon of a α -pyrone unit ($\delta_{\rm C}$ 163.95), one ester carbonyl carbon ($\delta_{\rm C}$ 165.62), four quaternary carbons ($\delta_{\rm C}$ 169.23, 157.13, 122.42 and 106.14), three methine carbons ($\delta_{\rm C}$ 148.63, 115.32 and 62.30), one oxymethylene carbon ($\delta_{\rm C}$ 56.22), one methoxy carbon ($\delta_{\rm C}$ 61.67) and three methyl carbons ($\delta_{\rm C}$ 26.29, 23.24 and 19.23). One of the olefinic protons at $\delta_{\rm H}$ 7.64 was assigned as H-6 of the α -pyrone unit on the basis of its HMBC correlation (Table 79) with C-2 (δ_c 163.95). The 1-hydroxyethyl unit was attached at C-5 of the α -pyrone moiety because H-6 displayed the ³J HMBC correlation with C-15 ($\delta_{\rm C}$ 62.30). This assignment was confirmed by a ¹H-¹H COSY correlation of H-6 and H-15. In addition, both H-6 and the methoxy protons at $\delta_{\rm H}$ 4.15 (H₃-14) showed the ${}^{3}J$ HMBC correlation with C-4 ($\delta_{\rm C}$ 169.23), indicating that the methoxyl group was attached at C-4. The oxymethylene protons (H₂-7, $\delta_{\rm H}$ 5.05) displayed the HMBC correlations (**Table 79**) with C-3 ($\delta_{\rm C}$ 106.14) and C-4, indicating its location at C-3. The remaining olefinic proton ($\delta_{\rm H}$ 5.69, H-10) exhibited ¹H-¹H COSY cross peaks with H₃-12 ($\delta_{\rm H}$ 1.90) and H₃-13 ($\delta_{\rm H}$ 2.16). Furthermore, H-10 displayed the ³J HMBC correlations with C-12 ($\delta_{\rm C}$ 26.29) and C-13 ($\delta_{\rm C}$ 19.23). These data indicated the presence of a 2-methyl-1-propenyl unit. The HMBC correlations of H₃-12, H₃-13 and H₂-7 with the ester carbonyl carbon (C-9, $\delta_{\rm C}$ 165.62) connected the methylene substituent of the α -pyrone moiety and the 2-methyl-1-propenyl unit through an ester linkage. Signal enhancement of H-15 and H-7 upon irradiation of H₃-14 in the NOEDIFF experiment confirmed the assigned location of all substituents on the α pyrone unit. Since it was obtained in minute quantity, no attempts were made to identify the absolute configuration at C-15. However, the observed optical rotation of **AR23**, $[\alpha]_D^{25}$ -44.07 (c = 0.33, MeOH), was almost identical to that of taiwapyrone, $\left[\alpha\right]_{D}^{22}$ -48.50 (c = 0.33, MeOH), We proposed that a chiral carbon of **AR23** would possess S configuration, the same as that of taiwapyrone (Camarda et al., 1976). Therefore, **AR23** was identified as a new α -pyrone derivative.

Table 78 The ¹H and ¹³C NMR data of compound **AR23** in Acetone- d_6

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
2	-	163.95 (C=O)
3	-	106.14 (C)
4	-	169.23 (C)
5	-	122.42 (C)
6	7.64 (<i>d</i> , 0.9)	148.63 (CH)
7	5.05 (s)	56.22 (CH ₂)
9	-	165.62 (C=O)
10	5.69 (<i>hept</i> , 1.2)	115.32 (CH)
11	-	157.13 (C)
12	1.90 (<i>d</i> , 1.2)	26.29 (CH ₃)
13	2.16 (<i>d</i> , 1.2)	19.23 (CH ₃)
14	4.15 (<i>s</i>)	61.67 (CH ₃)
15	4.81 (<i>m</i>)	62.30 (CH)
15-OH	4.42 (<i>d</i> , 4.5)	-
16	1.40 (<i>d</i> , 6.3)	23.24 (CH ₃)

Table 79 The HMBC, COSY and NOE data of compound AR23 in Acetone- d_6

Proton	HMBC	COSY	NOE
H-6	C-2, C-4, C-5, C-15	H-15	H-15, H ₃ -16
H ₂ -7	C-2, C-3, C-4, C-9	-	H ₃ -14
H-10	C-11, C-12, C-13	H ₃ -12, H ₃ -13	*
H ₃ -12	C-9, C-10, C-11, C-13	H-10	*
H ₃ -13	C-9, C-10, C-11, C-12	H-10	*

Table 79 Continued

Proton	HMBC	COSY	NOE
H ₃ -14	C-4	-	H ₂ -7, H-15
H-15	C-16	H-6, 15-OH, H ₃ -16	H-6, H ₃ -14, 15-OH,
			H ₃ -16
15-OH	-	H-15	*
H ₃ -16	C-5, C-15	H-15	H ₃ -14, H-15

* not determined

2.3.4 Compound AR24

Compound **AR24** was obtained as a colorless gum and possessed the same molecular formula as **AR23** from EIMS (**Figure 63**). It also exhibited UV and IR absorption bands similar to those of **AR23**. The ¹H and ¹³C NMR data (**Figure 61** and **62**) (**Table 80**) were almost identical to those of compound **AR23** except for the replacement of signals for the 1-hydroxyethyl unit and the α -pyrone proton (H-6) in compound **AR23** with those of one hydroxymethyl unit ($\delta_{\rm H}$ 4.46, *s*, 2H) and one methyl group ($\delta_{\rm H}$ 2.35, *s*, 3H), respectively. The HMBC correlations of H₃-16 ($\delta_{\rm H}$ 2.35) to C-5 ($\delta_{\rm C}$ 113.07) and C-6 ($\delta_{\rm C}$ 161.86) indicated that the methyl group was attached at C-6 of the α -pyrone unit. Irradiation of the above methyl protons enhanced signal intensity of H₂-15 ($\delta_{\rm H}$ 4.46), thus indicating that the 1-hydroxymethyl unit was attached at C-5. The remaining substitutents were located at the same position as those in **AR23** according to the HMBC correlations and NOEDIFF data. Therefore, **AR24** was identified as a new α -pyrone derivative.

Position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
2	-	164.37 (C=O)
3	-	104.99 (C)
4	-	170.52 (C)
5	-	113.07 (C)
6	-	161.86 (C)
7	5.07 (<i>s</i>)	56.26 (CH ₂)
9	-	166.31 (C=O)
10	5.68 (s)	115.50 (CH)
11	-	157.74 (C)
12	1.88 (s)	27.41 (CH ₃)
13	2.17 (s)	20.29 (CH ₃)
14	4.09 (s)	62.41 (CH ₃)
15	4.46 (<i>s</i>)	56.03 (CH ₂)
16	2.35 (s)	17.37 (CH ₃)

Table 80 The 1 H and 13 C NMR data of compound AR24 in CDCl₃

Table 81 The HMBC, COSY and NOE data of compound AR24 in CDCl_3

Proton	HMBC	COSY	NOE
H ₂ -7	C-2, C-3, C-4, C-9	-	H ₃ -14
H-10	-	H ₃ -12, H ₃ -13	H ₃ -12
H ₃ -12	C-10, C-11, C-13	-	H-10, H ₃ -13
H ₃ -13	C-9, C-10, C-11, C-12	H ₃ -12	H ₃ -12
H ₃ -14	C-2	-	H ₂ -7, H ₂ -15
H ₂ -15	C-4, C-5, C-6	-	H ₃ -14, H ₃ -16
H ₃ -16	C-4, C-5, C-6	-	H ₂ -15

2.3.5 Compound AR25

Compound **AR25** was obtained as a colorless gum. The UV spectrum showed absorption bands at λ_{max} 253 and 273 nm, indicating the presence of a benzene chromophore. The IR spectrum exhibited absorption bands at 3372 and 1650 cm⁻¹ for hydroxyl and carbonyl groups, respectively. The ¹H NMR spectrum displayed characteristic signals of a 1,4-disubstituted benzene [δ_{H} 7.93 (d, J = 8.7 Hz, 2H) and 6.93 (d, J = 8.7 Hz, 2H)]. The presence of a carbonyl carbon at δ_{C} 166.9 in the ¹³C NMR spectrum related to the IR data. Comparison of its ¹H and ¹³C NMR data with those of 4-hydroxybenzoic acid indicated that compound **AR25** was 4hydroxybenzoic acid which was isolated from the rice hulls of *Oryza sativa* (Cho *et al.*, 1998).

Table 82 The ¹H and ¹³C NMR data of compound **AR25** in Acetone- d_6 and4-hydroxybenzoic acid in DMSO- d_6

Position	AR25		4-Hydroxybenzoic acid		
	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	
1	-	166.87 (C=O)	-	169.4 (C=O)	
2	-	121.73 (C)	-	127.5 (C)	
3, 7	7.93 (<i>d</i> , 8.7)	131.84 (CH)	7.73 (<i>d</i> , 8.0)	131.1 (CH)	
4,6	6.93 (<i>d</i> , 8.7)	115.09 (CH)	6.71 (<i>d</i> , 8.6)	114.4 (CH)	
5	-	161.75 (C)	-	159.9 (C)	

Cho et al., 1998.

2.3.6 Compound AR26

Compound AR26 was obtained as a brown gum. It showed UV absorption bands at 206, 246 and 273 nm. A hydroxyl absorption band was found at 3395 cm^{-1} while a carbonyl one was observed at 1734 cm⁻¹ in the IR spectrum. The ¹H NMR spectrum (Figure 66) (Table 83) contained signals for two-ortho-coupled aromatic protons [$\delta_{\rm H}$ 7.60 (d, J = 8.5 Hz, 1H) and 6.84 (d, J = 8.5 Hz, 1H)], two metacoupled ones [$\delta_{\rm H}$ 6.79 (brs, 1H) and 6.32 (brs, 1H)], one set of oxymethylene protons $(\delta_{\rm H} 4.98, brs, 2{\rm H})$, one set of nonequivalent gem-olefinic protons [$\delta_{\rm H} 4.87$ (brs, 1{\rm H}) and 4.83 (brs, 1H)], two coupled oxymethine protons [$\delta_{\rm H}$ 5.02 (d, J = 6.5 Hz, 1H) and 4.27 (d, J = 6.5 Hz, 1H)], one methoxyl group ($\delta_{\rm H}$ 3.93, s, 3H) and two methyl groups $[\delta_{\rm H} 2.18 (s, 3H) \text{ and } 1.67 (s, 3H)]$. The ¹³C NMR spectrum (Figure 67) (Table 83) displayed one typical carbonyl carbon of a lactone ring ($\delta_{\rm C}$ 167.40), nine quaternary carbons ($\delta_{\rm C}$ 155.55, 152.04, 147.27, 144.31, 141.50, 135.11, 132.36, 125.79 and 119.50), six methine carbons ($\delta_{\rm C}$ 132.17, 120.94, 117.50, 117.42, 78.61 and 69.21), two methylene carbons ($\delta_{\rm C}$ 114.30 and 68.85), one methoxy carbon ($\delta_{\rm C}$ 62.87) and two methyl carbons ($\delta_{\rm C}$ 20.83 and 18.44). The *ortho*-coupled aromatic protons at $\delta_{\rm H}$ 6.84 and 7.60 were assigned as H-1 and H-2, respectively. The ester carbonyl functionality was connected to C-4a ($\delta_{\rm C}$ 119.50) on the basis of the HMBC correlation of H-1/C-5 and the ¹H chemical shift of H-2. A 1,2-dihydroxy-3-methyl-3-butenyl unit was established based on the following ¹H-¹H COSY correlations (**Table 84**): H-1' ($\delta_{\rm H}$ 5.02)/H-2' ($\delta_{\rm H}$ 4.27) and H_{ab}-4' ($\delta_{\rm H}$ 4.87 and 4.83)/H₃-5' ($\delta_{\rm H}$ 1.67) as well as the HMBC correlations of H-2' to C-3' ($\delta_{\rm C}$ 144.31) and C-4' ($\delta_{\rm C}$ 114.30) and those of H_{ab}-4' to C-2' (δ_C 78.16) and C-5' (δ_C 18.44). This substituent was attached at C-3 of the aromatic ring because H-1' displayed the ³J HMBC correlations with C-2 ($\delta_{\rm C}$ 132.17) and C-4 ($\delta_{\rm C}$ 155.55). H₃-13 ($\delta_{\rm H}$ 3.93) showed the ³J HMBC correlation with C-4, indicating its attachment at C-4. This assignment was confirmed by signal enhancement of H-1' upon irradiation of H₃-13. According to the HMBC correlation of H-1 to C-5 ($\delta_{\rm C}$ 167.40) and the chemical shift of C-12a ($\delta_{\rm C}$ 152.04), substructure 1 was established.

Substructure 1

The *meta*-coupled aromatic protons at $\delta_{\rm H}$ 6.32 and 6.79 were assigned as H-8 and H-10, respectively. In the NOEDIFF experiment, irradiation of H-8 enhanced signals intensity of H₂-7 ($\delta_{\rm H}$ 4.98) and H₃-14 ($\delta_{\rm H}$ 2.18), indicating that the oxymethylene and methyl groups were connected to C-7a ($\delta_{\rm C}$ 125.79) and C-9 ($\delta_{\rm C}$ 135.11), respectively. The ³J HMBC correlations of H₃-14 with C-8 ($\delta_{\rm C}$ 120.94) and C-10 ($\delta_{\rm C}$ 117.50) confirm this assignment. A hydroxyl group was attached at C-11 ($\delta_{\rm C}$ 147.27) according to its chemical shift. Thus, substructure 2 was proposed.

Substructure 2

Substructure 1 was connected with substructure 2 by forming an ester bond between C-5 and C-7 and an ether linkage between C-11a and C-12a to afford an octacyclic lactone ring on the basis of the ¹H chemical shift of H₂-7. The observed optical rotation of compound **AR26**, $[\alpha]_D^{25}$ +25.6 (c = 0.17, CHCl₃), was almost identical to that of 2'-hydroxy-3',4'-didehydropenicillide, $[\alpha]_D^{25}$ +29.1 (c = 0.17, CHCl₃), indicating that all chiral carbons of compound **AR26** possessed the same configuration as those of 2'-hydroxy-3',4'-didehydropenicillide (Kawamura *et al.*, 2000).

Table 83 The ¹H and ¹³C NMR data of compound **AR26** and 2'-hydroxy-3',4'-didehydropenicillide in CDCl3

Position	4.0.2	6	2'-Hydrox	y-3',4'-
1 0510011	AK2	0	didehydrop	enicillide
	$\delta_{\rm H}(mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}({\rm C-type})$
1	6.84 (<i>d</i> , 8.5)	117.42 (CH)	6.99 (<i>d</i> , 8.8)	118.8 (CH)
2	7.60 (<i>d</i> , 8.5)	132.17 (CH)	7.72 (<i>d</i> , 8.8)	133.9 (CH)
3	-	132.36 (C)	-	135.2 (C)
4	-	155.55 (C)	-	156.8 (C)
4a	-	119.50 (C)	-	120.9 (C)
5	-	167.40 (C=O)	-	169.9 (C=O)
7	4.98 (brs)	68.85 (CH ₂)	a: 5.13 (<i>brd</i> , 14.6)	70.3 (CH ₂)
			b: 5.05 (<i>brd</i> , 14.6)	
7a	-	125.79 (C)	-	128.2 (C)
8	6.32 (brs)	120.94 (CH)	6.40 (<i>d</i> , 2.0)	121.1 (CH)
9	-	135.11 (C)	-	135.9 (C)
10	6.79 (brs)	117.50 (CH)	6.77 (<i>d</i> , 2.0)	119.2 (CH)
11	-	147.27 (C)	-	149.7 (C)
11a	-	141.50 (C)	-	143.3 (C)
12a	-	152.04 (C)	-	153.4 (C)
13	3.93 (s)	62.87 (CH ₃)	3.93 (s)	63.4 (CH ₃)
14	2.18 (s)	20.83 (CH ₃)	2.20 (s)	20.8 (CH ₃)
1'	5.02 (<i>d</i> , 6.5)	69.21 (CH)	5.04 (<i>d</i> , 7.3)	69.2 (CH)
2'	4.27 (<i>d</i> , 6.5)	78.61 (CH)	4.24 (<i>d</i> , 7.3)	79.5 (CH)
3'	-	144.31 (C)	-	146.5 (C)

Table 83 Continued

Position	AF	826	2'-Hydro didehydro	oxy-3',4'- openicillide
	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}({\rm C-type})$
4'	a: 4.87 (brs)	114.30 (CH ₂)	4.86 (brs)	114.1 (CH ₂)
	b: 4.83 (<i>brs</i>)			
5'	1.67 (s)	18.44 (CH ₃)	1.80 (s)	18.4 (CH ₃)

Kawamura et al., 2000.

Table 84 The HMBC	, COSY and NOE data of c	compound AR26 in CDCl ₃
-------------------	--------------------------	------------------------------------

Proton	HMBC	COSY	NOE
H-1	C-2, C-4a, C-5, C-12a	H-2	*
H-2	C-Í, C-4, C-12a	H-1	H-1
H ₂ -7	-	-	*
H-8	C-7, C-10, C-11a, C-14	-	H ₂ -7, H ₃ -14
H-10	C-8, C-9, C-11, C-11a, C-14	-	*
H ₃ -13	C-4	-	H-1'
H ₃ -14	C-8, C-9, C-10	-	H-8, H-10
H-1′	C-2, C-2', C-3', C-4	H-2'	*
H-2′	C-1', C-3', C-4', C-5'	H-1′	H-1', H _b -4'
H _a -4′	C-2', C-5'	H _b -4', H ₃ -5'	*
H _b -4′	C-2', C-5'	H _a -4', H ₃ -5'	*
H-5′	C-2', C-3', C-4'	-	H-1', H _b -4'

* not determined

PART III

METABOLITES FROM THE MANGROVE-DERIVED FUNGUS PESTALOTIOPSIS SP. PSU-MA119

CHAPTER 3.1

INTRODUCTION

3.1.1 Introduction

Metabolites of the genus *Pestalotiopsis* are summarized in the **Table 64**. The mangrove-derived fungus *Pestalotiopsis* sp. PSU-MA119 was isolated from the twigs of *R. mucronata*, collected from Satun province, Thailand in the year 2007. It was deposited at the Department of Microbiology, Faculty of Science, Prince of Songkla University. The ethyl acetate extract from the broth of *Pestalotiopsis* sp. PSU-MA119 displayed no antibacterial activity against *S. aureus*, *P. aeruginosa* and *E. coli* at the concentration of 200 μ g/mL. However, it showed antioxidant activity in DPPH[•] assay with the IC₅₀ value of 2.21 mg/mL.

3.1.2 The Objectives

1. To isolate the secondary metabolites from the mangrove-derived fungus *Pestalotiopsis* sp. PSU-MA119.

2. To elucidate the structures of the isolated compounds.

CHAPTER 3.2

EXPERIMENTAL

3.2.1 Fermentation and extraction

The flask culture of the fungus PSU-MA119 (15 L) in potato dextrose broth was filtered to separate into the filtrate and wet mycelia. The filtrate was divided into 37 portions. Each portion was extracted twice with an equal amount of EtOAc (2 x 300 mL). The organic layer was dried over anhydrous Na_2SO_4 and evaporated in *vacuo* to obtain a dark brown gum (976 mg). The extract was subjected to chromatographic fractionation.

3.2.2 Purification of the broth extract

The crude EtOAc extract was separated by column chromatography over Sephadex LH-20. Elution was performed with 100% methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in **Table 85**.

Table 85 Fractions obtained from the crude EtOAc extract by columnchromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
ZA	52.4	Brown gum
ZB	96.4	Brown gum
ZC	501.2	Brown gum
ZD	101.2	Brown gum
ZE	217.8	Brown gum

Fraction ZA did not show UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Fraction ZB displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Therefore, it was not further investigated.

<u>Fraction ZC</u> showed four UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.27, 0.36, 0.42 and 0.80. It was further separated by column chromatography over reverse phase silica gel. Elution was initially performed with 50% methanol in water, followed by reducing the polarity with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford nine subfractions as shown in **Table 86**.

 Table 86 Subfractions obtained from fraction ZC by column chromatography

 over reverse phase silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC1	50% MeOH/H ₂ O	101.3	Brown gum
ZC2	50% MeOH/H ₂ O	131.3	Brown gum
ZC3	50% MeOH/H ₂ O	57.5	Brown gum
ZC4	50% MeOH/H ₂ O	36.3	Brown gum
ZC5	50% MeOH/H ₂ O	6.6	Brown gum
ZC6	50% MeOH/H ₂ O	15.6	Brown gum
ZC7	50-60% MeOH/H ₂ O	6.3	Brown gum
ZC8	60-70% MeOH/H ₂ O	5.5	Brown gum
ZC9	70% MeOH/H ₂ O-	127.5	Brown gum
	100% MeOH		

Subfraction ZC1 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. The ¹H NMR spectrum indicated the presence of sugar signals. Thus, it was not investigated.

Subfraction ZC2 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in **Table 87**.

 Table 87 Subfractions obtained from subfraction ZC2 by column chromatography

 over Sephadex LH-20

Carle frage still a re		D1
Subtraction	weight (mg)	Physical appearance
ZC21	25.2	Yellow gum
ZC22	84.9	Brown gum
ZC23	15.2	Colorless gum
ZC24	3.0	Brown gum

Subfraction ZC21 displayed a long tail under UV-S on reverse phase TLC using 50% methanol in water as a mobile phase. This subfraction was subjected to acetylation reaction. Unfortunately, the reaction mixture was decomposed.

Subfraction ZC22 showed two UV-active spots on normal phase TLC using 3% methanol in dichloromethane as a mobile phase with the R_f values of 0.25 and 0.33. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 88.

Subfraction	Weight (mg)	Physical appearance
ZC221	2.4	Brown gum
ZC222	79.3	Brown gum
ZC223	3.5	Brown gum

 Table 88 Subfractions obtained from subfraction ZC22 by column chromatography

 over Sephadex LH-20

Subfraction ZC221 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum displayed signals of plasticizer. Thus, it was not further investigated.

Subfraction ZC222 showed two UV-active spots on normal phase TLC using 40% ethyl acetate in petroleum ether (5 runs) as a mobile phase with the R_f values of 0.40 and 0.53. It was further separated by flash column chromatography over silica gel. Elution was initially performed with 40% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions as shown in Table 89.

Table 89	Subfractions	obtained	from	subfraction	ZC222	by	flash	column
	chromatography	over silica	gel					

Subfraction	Elution	Weight (mg)	Physical appearance
ZC2221	40-60% EtOAc/Petrol	3.3	Brown gum
ZC2222	60-70% EtOAc/Petrol	2.1	Yellow gum
ZC2223	70-80% EtOAc/Petrol	19.4	Yellow gum
ZC2224	80-90% EtOAc/Petrol	33.6	Colorless gum
ZC2225	100% EtOAc-100% MeOH	20.1	Brown gum

Subfraction ZC2221 displayed a long tail under UV-S on normal phase TLC using 40% ethyl acetate in petroleum ether (5 runs) as a mobile phase. The ¹H NMR spectrum displayed signals of plasticizer. Thus, it was not further investigated.

Subfraction ZC2222 showed one UV-active spot on normal phase TLC using 40% ethyl acetate in petroleum ether (5 runs) as a mobile phase with the R_f value of 0.46. Because of the minute quantity, it was not further investigated.

Subfraction ZC2223 showed two UV-active spots on normal phase TLC using 30% ethyl acetate in petroleum ether (5 runs) as a mobile phase with the R_f values of 0.35 and 0.60. It was further separated by flash column chromatography over silica gel. Elution was initially performed with 30% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 90.

 Table 90 Subfractions obtained from subfraction ZC2223 by flash column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC22231	30-50% EtOAc/Petrol	2.9	Yellow gum
ZC22232	50-70% EtOAc/Petrol	14.0	Yellow gum
ZC22233	70% EtOAc/Petrol –	2.4	Yellow gum
	100% MeOH		

Subfraction ZC22231 showed one UV-active spot on normal phase TLC using 30% ethyl acetate in petroleum ether (7 runs) as a mobile phase with the R_f value of 0.81. Because of the minute quantity, it was not further investigated.

Subfraction ZC22232 displayed a long tail under UV-S on normal phase TLC using 30% ethyl acetate in petroleum ether (7 runs) as a mobile phase. This subfraction was subjected to acetylation reaction. After working up, the reaction mixture was obtained

as a yellow gum (24.9 mg) and showed three UV-active spots on normal phase TLC using 10% acetone in petroleum ether as a mobile phase with the R_f values of 0.29, 0.43 and 0.55. It was then purified by flash column chromatography over silica gel. Elution was initially performed with 10% acetone in petroleum ether and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford six subfractions as shown in **Table 91**.

 Table 91 Subfractions obtained from subfraction ZC22232 by flash column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC222321	10% Acetone/Petrol	0.5	Colorless gum
ZC222322	10% Acetone/Petrol	10.4	Colorless gum
ZC222323	10% Acetone/Petrol	2.0	Colorless gum
ZC222324	10% Acetone/Petrol	4.7	Colorless gum
ZC222325	10-30% Acetone/Petrol	2.2	Yellow gum
ZC222326	50% Acetone/Petrol –	5.1	Yellow gum
	100% Acetone		

Subfraction ZC222321 showed one UV-active spot on normal phase TLC using 10% acetone in petroleum ether (7 runs) as a mobile phase with the R_f value of 0.56. The ¹H NMR spectrum indicated that it was a triacetate derivative of AR29.

Subfraction ZC222322 showed two UV-active spots on normal phase TLC using 10% acetone in petroleum ether (7 runs) as a mobile phase with the R_f values of 0.46 and 0.56. It was then purified by precoated TLC with 10% acetone in petroleum ether as a mobile phase (7 runs) to afford two bands.

<u>Band 1</u> (the triacetate derivative of AR29) was a colorless gum (3.9 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% acetone in petroleum ether (7 run) as a mobile phase with the R_f value of 0.54.

$\left[\alpha\right]_{\mathrm{D}}^{26}$	-11.9 (c = 1.0, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	208 (3.69)
$FTIR(neat) : \upsilon(cm^{-1})$	3372 (O-H stretching), 1738 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.93 (<i>dd</i> , $J = 15.9$, 9.0 Hz, 1H), 6.46 (<i>d</i> , $J =$
	15.9, Hz, 1H), 5.96 (<i>dd</i> , $J = 9.9$, 2.4 Hz,
	1H), 5.54 (<i>td</i> , <i>J</i> = 9.9, 5.1 Hz, 1H), 5.45 (<i>dd</i> ,
	J = 9.0, 3.6 Hz, 1H), 5.16 (t, $J = 9.9$ Hz,
	1H), 5.01 (m , 1H), 4.97 (dd , $J = 8.7$, 2.4 Hz,
	1H), 4.46 (<i>dd</i> , $J = 8.7$, 3.6 Hz, 1H), 2.55 (<i>m</i> ,
	1H), 2.17 (s, 3H), 2.14 (s, 3H), 2.12 (s, 3H),
	1.87 (m, 1H), 1.85 (m, 1H), 1.69 (m, 1H),
	1.51 (m , 1H), 1.32 (d , J = 6.3 Hz, 3H), 1.13
	(<i>m</i> , 1H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	170.47, 169.65, 169.38, 165.09, 136.22,
	136.06, 130.11, 122.94, 74.21, 73.98, 71.49,
	67.23, 60.75, 34.84, 30.42, 25.82, 20.85,
	20.76, 20.73, 20.51
CH :	136.22, 136.06, 130.11, 122.94, 74.21,
	73.98, 71.49, 67.23, 60.75
CH ₂ :	34.84, 30.42, 25.82
CH ₃ :	20.85, 20.76, 20.73, 20.51

<u>Band 2</u> (the diacetate derivative of AR28) was a colorless gum (3.3 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% acetone in petroleum ether (7 run) as a mobile phase with the R_f value of 0.45.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	+65.8 (c = 1.45, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	208 (3.60)
$FTIR(neat) : \upsilon(cm^{-1})$	1743 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.77 (dd, $J = 15.6$, 7.5 Hz, 1H), 6.13 (dd, J
	= 15.6, 1.2 Hz, 1H), 5.51 (<i>td</i> , <i>J</i> = 10.1, 3.0

	Hz, 1H), 5.38 (t , J = 9.6 Hz, 1H), 5.33 (m ,
	1H), 5.28 (m, 1H), 4.98 (m, 1H), 3.26 (dd, J
	= 6.3, 4.2 Hz, 1H), 3.02 (<i>dd</i> , $J = 8.4, 4.2$ Hz,
	1H), 2.44 (m, 1H), 2.07 (s, 3H), 2.05 (m,
	1H), 2.02 (s, 3H), 1.81 (m, 1H), 1.75 (m,
	1H), 1.43 (m , 1H), 1.21 (d , $J = 6.3$ Hz, 3H),
	1.17 (<i>m</i> , 1H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	169.82, 169.34, 165.30, 138.51, 137.96,
	126.09, 123.73, 73.09, 72.89, 66.01, 58.88,
	55.79, 33.34, 28.77, 24.94, 21.00, 20.80,
	19.78
CH :	138.51, 137.96, 126.09, 123.73, 73.09,
	72.89, 66.01, 58.88, 55.79
CH ₂ :	33.34, 28.77, 24.94
CH ₃ :	21.00, 20.80, 19.78

Subfraction ZC222323 showed one UV-active spot on normal phase TLC using 10% acetone in petroleum ether (7 runs) as a mobile phase with the R_f value of 0.46. The ¹H NMR spectrum indicated that it was the diacetate derivative of AR28.

Subfraction ZC222324 showed two UV-active spots on normal phase TLC using 10% acetone in petroleum ether (7 runs) as a mobile phase with the R_f values of 0.39 and 0.46. It was then purified by precoated TLC with 10% acetone in petroleum ether as a mobile phase (7 runs) to afford two bands.

<u>Band 1</u> (ZC2223241) was a colorless gum (1.4 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% acetone in petroleum ether (7 run) as a mobile phase with the R_f value of 0.45. The ¹H NMR spectrum indicated that it was **the diacetate derivative of AR28**.

<u>**Band 2</u>** (AR27) was a colorless gum (2.0 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 10% acetone in petroleum ether (7 run) as a mobile phase with the R_f value of 0.38.</u>
$\left[\alpha\right]_{\mathrm{D}}^{25}$	+69.9 (c = 1.45, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \boldsymbol{\varepsilon})$	208 (3.61)
$FTIR(neat) : \upsilon(cm^{-1})$	1715 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(500 MHz) :	7.01 (<i>dd</i> , <i>J</i> = 15.5, 4.5 Hz, 1H), 6.16 (<i>ddd</i> , <i>J</i>
	= 15.5, 10.0, 5.5 Hz, 1H), 5.95 (<i>dd</i> , J =
	15.5, 2.0 Hz, 1H), 5.47 (dd , $J = 15.5$, 8.5
	Hz, 1H), 5.34 (<i>ddd</i> , $J = 6.0$, 4.5, 2.0 Hz,
	1H), 5.14 (t , J = 8.5 Hz, 1H), 4.78 (dqd , J =
	10.0, 6.0, 2.0 Hz, 1H), 3.25 (<i>dd</i> , <i>J</i> = 6.5, 4.5
	Hz, 1H), 3.22 (<i>dd</i> , <i>J</i> = 8.5, 4.5 Hz, 1H), 2.20
	(s, 3H), 2.16 (m, 1H), 2.12 (s, 3H), 2.06 (m,
	1H), 1.90 (m, 1H), 1.80 (m, 1H), 1.56 (m,
	1H), 1.27 (d , J = 6.0 Hz, 3H), 1.13 (m , 1H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(125 MHz) :	169.88, 169.79, 164.91, 140.89, 139.48,
	124.46, 122.40, 73.02, 72.37, 72.34, 58.02,
	55.29, 34.37, 33.13, 24.46, 21.22, 20.71,
	20.17
CH :	140.89, 139.48, 124.46, 122.40, 73.02,
	72.37, 72.34, 58.02, 55.29
CH ₂ :	34.37, 33.13, 24.46
CH ₃ :	21.22, 20.71, 20.17
EIMS <i>m/z</i> (% relative intensity):	352 (1), 310 (7), 268 (6), 250 (28), 167 (54),
	126 (53), 97 (83), 81 (100)

Subfraction ZC222325 displayed a long tail under UV-S on normal phase TLC using 10% acetone in petroleum ether (7 runs) as a mobile phase. Because of the minute quantity and the absence of olefinic and aromatic protons in the ¹H NMR spectrum, it was not further investigated.

Subfraction ZC222326 displayed a long tail under UV-S on normal phase TLC using 10% acetone in petroleum ether (7 runs) as a mobile phase. The ¹H NMR spectrum displayed signals in the high field region. Thus, it was not investigated.

Subfraction ZC22233 did not show any UV-active spots on normal phase TLC using 30% ethyl acetate in petroleum ether (7 runs) but showed one spot after dipping the TLC plate in anisaldehyde reagent and subsequently heating with the R_f value of 0.17. Because of the minute quantity, it was not further investigated.

Subfraction ZC2224 showed two UV-active spots on normal phase TLC using 3% methanol in dichloromethane (7 runs) as a mobile phase with the R_f values of 0.36 and 0.46. It was further separated by column chromatography over silica gel. Elution was initially performed with 3% methanol in dichloromethane and gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in **Table 92**.

Table 92 Subfractions obtained from subfraction ZC2224 by column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC22241	3% MeOH/CH ₂ Cl ₂	2.7	Colorless gum
ZC22242	3% MeOH/CH ₂ Cl ₂	16.6	Colorless gum
ZC22243	3-10% MeOH/CH ₂ Cl ₂	6.2	Colorless gum
ZC22244	30% MeOH/CH ₂ Cl ₂ -	6.7	Yellow gum
	100% MeOH		

Subfraction ZC22241 (AR28) showed one UV-active spot on normal phase TLC using 3% methanol in dichloromethane (2 runs) as a mobile phase with the R_f value of 0.32.

$\left[\alpha\right]_{\mathrm{D}}^{25}$	+64.1 (c = 1.45, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	209 (3.58)
$FTIR(neat) : \upsilon(cm^{-1})$	3395 (O-H stretching), 1715 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.85 (<i>dd</i> , $J = 15.9$, 6.6 Hz, 1H), 6.15 (<i>dd</i> , J
	= 15.6, 1.5 Hz, 1H), 5.57 (<i>td</i> , $J = 10.5$, 3.6
	Hz, 1H), 5.39 (<i>tdd</i> , $J = 10.5$, 2.4, 1.5 Hz,
	1H), 4.95 (m, 1H), 4.32 (t, $J = 6.3$ Hz, 1H),
	4.23 (t, $J = 8.7$ Hz, 1H), 3.26 (dd, $J = 6.3$,
	4.5 Hz, 1H), 3.03 (dd , $J = 8.7$, 4.5 Hz, 1H),
	$2.45~(m,~1{\rm H}),~2.09~(m,~1{\rm H}),~1.90~(m,~1{\rm H}),$
	1.77 (m, 1H), 1.47 (m, 1H), 1.30 (d, $J = 6.0$
	Hz, 3H), 1.22 (<i>m</i> , 1H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	165.70, 142.44, 135.69, 127.20, 123.86,
	73.08, 72.13, 64.40, 62.58, 58.80, 33.56,
	28.95, 25.13, 19.95
CH :	142.44, 135.69, 127.20, 123.86, 73.08,
	72.13, 64.40, 62.58, 58.80
CH ₂ :	33.56, 28.95, 25.13
CH ₃ :	19.95

Subfraction ZC22242 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane (2 runs) as a mobile phase. This subfraction was subjected to acetylation reaction. After working up, the reaction mixture was obtained as a yellow gum (21.4 mg) and showed three UV-active spots on normal phase TLC using 1% methanol in dichloromethane as a mobile phase with the R_f values of 0.10, 0.20 and 0.68. It was then purified by column chromatography over silica gel. Elution was initially performed with 1% methanol in dichloromethane and gradually enriched methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in **Table 93**.

Subfraction	Elution	Weight (mg)	Physical appearance
ZC222421	1% MeOH/CH ₂ Cl ₂	16.1	Colorless gum
ZC222422	2-30% MeOH/CH ₂ Cl ₂	2.0	Colorless gum
ZC222423	30% MeOH/CH ₂ Cl ₂ -	3.3	Yellow gum

 Table 93 Subfractions obtained from subfraction ZC22242 by column chromatography over silica gel

Subfraction ZC222421 showed three UV-active spots on normal phase TLC using 10% ethyl acetate in petroleum ether (5 runs) as a mobile phase with the R_f values of 0.36, 0.49 and 0.59. It was further separated by column chromatography over silica gel. Elution was initially performed with 10% ethyl acetate in petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford six subfractions as shown in **Table 94**.

 Table 94 Subfractions obtained from subfraction ZC222421 by column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC2224211	10% EtOAc/Petrol	1.2	Colorless gum
ZC2224212	10% EtOAc/Petrol	1.4	Colorless gum
ZC2224213	10-30% EtOAc/Petrol	1.2	Colorless gum
ZC2224214	30-50% EtOAc/Petrol	2.4	Colorless gum
ZC2224215	50-70% EtOAc/Petrol	1.2	Colorless gum
ZC2224216	70% EtOAc/Petrol –	8.5	Yellow gum
	100% MeOH		

Subfraction ZC2224211 showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether (2 runs) as a mobile phase with the R_f value of 0.62. The ¹H NMR spectrum indicated that it was the triacetate derivative of AR29.

Subfraction ZC2224212 showed two UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether (2 runs) as a mobile phase with the R_f values of 0.51 and 0.62. Because of the minute quantity, it was not further investigated.

Subfraction ZC2224213 showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether (2 runs) as a mobile phase with the R_f value of 0.51. The ¹H NMR spectrum indicated that it was the diacetate derivative of AR28.

Subfraction ZC2224214 showed two UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether (2 runs) as a mobile phase with the R_f values of 0.44 and 0.51. Because of the low quantity, it was not further investigated.

Subfraction ZC2224215 showed one UV-active spot on normal phase TLC using 20% ethyl acetate in petroleum ether (2 runs) as a mobile phase with the R_f value of 0.44. Because of the minute quantity, it was not further investigated.

Subfraction ZC2224216 did not show any UV-active spots on normal phase TLC using 20% ethyl acetate in petroleum ether (2 runs) but showed long tail after dipping the TLC plate in anisaldehyde reagent and subsequently heating. The ¹H NMR spectrum displayed signals in the high field region. Thus, it was not investigated.

Subfraction ZC222422 displayed a long tail under UV-S on normal phase TLC using 2% methanol in dichloromethane as a mobile phase. Because of the minute quantity, it was not further investigated.

Subfraction ZC222423 contained many spots on TLC without major components. No further separation was conducted.

Subfraction ZC22243 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane (2 runs) as a mobile phase. Its ¹H NHR spectrum was similar to that of **ZC22242**. No further purification was carried out.

Subfraction ZC22244 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane (2 runs) as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction ZC2225 displayed a long tail under UV-S on normal phase TLC using 40% ethyl acetate in petroleum ether (5 runs) as a mobile phase. The ¹H NMR spectrum displayed signals of plasticizer. Thus, it was not further investigated.

Subfraction ZC223 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum displayed signals of plasticizer. Thus, it was not further investigated.

Subfraction ZC23 showed four UV-active spots on normal phase TLC using 40% acetone in petroleum ether as a mobile phase with the R_f values of 0.12, 0.39, 0.49 and 0.66. It was further separated by column chromatography over silica gel. Elution was initially performed with 40% acetone in petroleum ether and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 95.

 Table 95 Subfractions obtained from subfraction ZC23 by column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC231	40% Acetone/Petrol	4.9	Colorless gum
ZC232	40-50% Acetone/Petrol	5.8	Colorless gum
ZC233	70% Acetone/Petrol-	2.7	Yellow gum
	100% Acetone		

Subfraction ZC231 showed two UV-active spots on normal phase TLC using 40% acetone in petroleum ether as a mobile phase with the R_f values of 0.48 and 0.68. The

¹H NMR spectrum indicated that it contained **AR29** as a major componant. Thus, it was not further investigated.

Subfraction ZC232 showed two UV-active spots on normal phase TLC using 40% acetone in petroleum ether as a mobile phase with the R_f values of 0.40 and 0.49. It was then purified by precoated TLC with 3% methanol in dichloromethane as a mobile phase (6 runs) to afford **AR29** as a colorless gum (2.5 mg). Its chromatogram showed one UV-active spot on normal phase TLC using 3% methanol in dichloromethane (2 runs) as a mobile phase with the R_f value of 0.43.

$\left[\alpha\right]_{\mathrm{D}}^{27}$	-13.1 (c = 1.0, CHCl ₃)
$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	208 (3.66)
$FTIR(neat) : \upsilon(cm^{-1})$	3404 (OH stretching), 1722 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	6.86 (<i>dd</i> , $J = 15.6$, 5.7 Hz, 1H), 6.26 (<i>d</i> , $J =$
	15.6, Hz, 1H), 5.57 (m, 1H), 5.47 (m, 1H),
	5.02 (m, 1H), 4.73 (brs, 1H), 4.45 (brs, 1H),
	4.42 (brs, 1H), 3.59 (dd, $J = 6.0$, 1.5 Hz,
	1H), 2.20 (m, 1H), 1.95 (m, 1H), 1.84 (m,
	1H), 1.57 (m, 1H), 1.49 (m, 1H), 1.30 (d, J
	= 6.3 Hz, 3H), 1.11 (<i>m</i> , 1H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	165.64, 143.03, 132.98, 129.00, 125.59,
	73.84, 73.17, 71.91, 68.57, 68.16, 35.03,
	29.83, 26.03, 20.55
CH :	143.03, 132.98, 129.00, 125.59, 73.84,
	73.17, 71.91, 68.57, 68.16
CH ₂ :	35.03, 29.83, 26.03
CH ₃ :	20.55
EIMS <i>m/z</i> (% relative intensity):	286 (1), 251 (7), 144 (23), 125 (61), 109
	(67), 95 (66), 81 (100)

Subfraction ZC233 showed two UV-active spots on normal phase TLC using 40% acetone in petroleum ether as a mobile phase with the R_f values of 0.17 and 0.27. Because the ¹H NMR spectrum showed broad signals, it was not further investigated.

Subfraction ZC24 did not show UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase. The ¹H NMR spectrum displayed signals of plasticizer. Thus, it was not further investigated.

Subfraction ZC3 showed four UV-active spots on normal phase TLC using 30% acetone in petroleum ether (5 runs) as a mobile phase with the R_f values of 0.20, 0.44, 0.56 and 0.71. It was then purified by flash column chromatography over silica gel. Elution was initially performed with 30% acetone in petroleum ether and gradually enriched with acetone until pure acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford seven subfractions as shown in Table 96.

 Table 96 Subfractions obtained from subfraction ZC3 by flash column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZC31	30% Acetone/Petrol	4.1	Yellow gum
ZC32	30% Acetone/Petrol	2.6	Yellow gum
ZC33	30% Acetone/Petrol	15.8	Yellow gum
ZC34	30% Acetone/Petrol	3.2	Yellow gum
ZC35	30-50% Acetone/Petrol	3.3	Yellow gum
ZC36	50-70% Acetone/Petrol	1.8	Brown gum
ZC37	100% Acetone	22.7	Brown gum

Subfraction ZC31 displayed a long tail under UV-S on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase. The ¹H NMR spectrum displayed signals in high field region. Thus, it was not investigated.

Subfraction ZC32 showed two UV-active spots on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase with the R_f values of 0.44 and 0.66. Because the ¹H NMR spectrum showed broad signals, it was not further investigated.

Subfraction ZC33 showed two UV-active spots on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase with the R_f values of 0.27 and 0.49. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction ZC34 displayed a long tail under UV-S on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase. Because of low quantity, it was not further investigated.

Subfraction ZC35 displayed a long tail under UV-S on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction ZC36 showed one UV-active spot on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase with the R_f value of 0.22. The ¹H NMR spectrum indicated that it was AR26.

Subfraction ZC37 displayed a long tail under UV-S on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase. Because of the presence of broad signals in the ¹H NMR spectrum, it was not further investigated.

Subfraction ZC4 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. Its ¹H NMR spectrum indicated that the major compound was **AR29**. No further purification was carried out.

Subfraction ZC5 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. Because the ¹H NMR spectrum indicated the presence of many components, it was not further investigated.

Subfraction ZC6 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. Its ¹H NMR spectrum indicated that the major compound was **AR28**. Thus, it was not further investigated.

Subfraction ZC7 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction ZC8 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. Because the ¹H NMR spectrum showed broad signals, it was not further investigated.

Subfraction ZC9 displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Fraction ZD showed three UV-active spots on reverse phase TLC using 50% methanol in water as a mobile phase with the R_f values of 0.19, 0.29 and 0.44. It was further separated by column chromatography over reverse phase silica gel. Elution was initially performed with 50% methanol in water, followed by reducing the polarity with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions as shown in **Table 97**.

Subfraction	Elution	Weight (mg)	Physical appearance
ZD1	50% MeOH/H ₂ O	37.8	Brown gum
ZD2	50% MeOH/H ₂ O	12.3	Brown gum
ZD3	50% MeOH/H ₂ O	17.2	Brown gum
ZD4	50-80% MeOH/H ₂ O	8.7	Brown gum
ZD5	80% MeOH/H ₂ O-	25.2	Brown gum
	100% MeOH		

 Table 97 Subfractions obtained from fraction ZD by column chromatography over reverse phase silica gel

Subfraction ZD1 showed three UV-active spots on normal phase TLC using 2% methanol in dichloromethane (2 runs) as a mobile phase with the R_f values of 0.07, 0.56 and 0.73. It was further separated by column chromatography over Sephadex LH-20. Elution was performed with 50% methanol in dichloromethane. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford five subfractions as shown in **Table 98**.

Table 9	98	Subfractions	obtained	from	subfraction	ZD1	by	column	chroma	tography
		over Sephad	ex LH-20)						

Subfraction	Elution	Weight (mg)	Physical appearance
ZD11	50% MeOH/CH ₂ Cl ₂	8.0	Brown gum
ZD12	50% MeOH/CH ₂ Cl ₂	2.3	Brown gum
ZD13	50% MeOH/CH ₂ Cl ₂	11.4	Brown gum
ZD14	50% MeOH/CH ₂ Cl ₂	2.6	Colorless gum
ZD15	50% MeOH/CH ₂ Cl ₂	12.4	Brown gum

Subfraction ZD11 did not show UV-active spots on normal phase TLC using 5% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction ZD12 showed three UV-active spots on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f values of 0.56, 0.64 and 0.69. Because of low quantity, it was not further investigated.

Subfraction ZD13 showed three UV-active spots on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f values of 0.10, 0.56 and 0.62. It was then purified by flash column chromatography over silica gel. Elution was performed initially with 5% methanol in dichloromethane, followed by increasing the polarity with methanol until pure methanol. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford three subfractions as shown in Table 99.

 Table 99 Subfractions obtained from subfraction ZD13 by flash column

 chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZD131	5% MeOH/CH ₂ Cl ₂	1.0	Yellow gum
ZD132	5-50% MeOH/CH ₂ Cl ₂	1.6	Colorless gum
ZD133	70% MeOH/CH ₂ Cl ₂ -	8.6	Yellow gum
	100% MeOH		

Subfraction ZD131 showed two UV-active spots on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f values of 0.63 and 0.55. Because of the minute quantity, it was not further investigated.

Subfraction ZD132 (AR30) showed one UV-active spot on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f value of 0.38.

$UV\lambda_{max}(nm)(MeOH)(\log \varepsilon)$	207 (2.97), 221 (3.00), 277 (2.40)
$FTIR(neat) : \upsilon(cm^{-1})$	3422 (O-H stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	7.11 (d, $J = 9.0$ Hz, 2H), 6.79 (d, $J = 9.0$

Hz, 2H), 3.83 (
$$d$$
, $J = 6.0$ Hz, 2H), 2.81 (d , $J = 6.0$ Hz, 2H)
= 6.0 Hz, 2H)
¹³C NMR(CDCl₃)(δ_{ppm})(75 MHz) : 154.22, 130.55, 130.15, 115.45, 63.80,
38.27
CH : 130.15, 115.45
CH₂ : 63.80, 38.27

Subfraction ZD133 showed two UV-active spots on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f values of 0.25 and 0.18. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction ZD14 (AR31) showed one UV-active spot on normal phase TLC using 5% methanol in dichloromethane as a mobile phase with the R_f value of 0.33.

$UV\lambda_{max}(nm)(MeOH)(\log \epsilon)$	207 (3.60), 252 (3.52)
$FTIR(neat) : \upsilon(cm^{-1})$	3366 (O-H stretching), 1686 (C=O stretching)
¹ H NMR(CDCl ₃)(δ_{ppm})(300 MHz) :	7.90 (d, $J = 9.0$ Hz, 2H), 6.85 (d, $J = 9.0$
	Hz, 2H), 2.20 (s, 3H)
¹³ C NMR(CDCl ₃)(δ_{ppm})(75 MHz) :	196.92, 160.10, 130.94, 130.48, 115.29,
	26.30
CH :	130.94, 115.29
CH ₃ :	26.30

Subfraction ZD15 did not show UV-active spots on normal phase TLC using 5% methanol in dichloromethane as a mobile phase. Its ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Subfraction ZD2 showed two UV-active spots on normal phase TLC using 2% methanol in dichloromethane as a mobile phase with the R_f values of 0.20 and 0.39.

Its ¹H NMR spectrum indicated that the major compound was **AR29**. Thus, it was not further investigated.

Subfraction ZD3 showed three UV-active spots on normal phase TLC using 30% acetone in petroleum ether (3 runs) as a mobile phase with the R_f values of 0.20, 0.37 and 0.68. It was then purified by flash column chromatography over silica gel. Elution was initially performed with 30% acetone in petroleum ether and gradually enriched with acetone until pure Acetone. Fractions with the similar chromatogram were combined and evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 100.

 Table 100 Subfractions obtained from subfraction ZD3 by flash column chromatography over silica gel

Subfraction	Elution	Weight (mg)	Physical appearance
ZD31	30% Acetone/Petrol	1.9	Yellow gum
ZD32	30-40% Acetone/Petrol	2.5	Colorless gum
ZD33	40-60% Acetone/Petrol	4.8	Colorless gum
ZD34	60% Acetone/Petrol-	7.8	Brown gum
	100% Acetone		

Subfraction ZD31 showed one UV-active spot on normal phase TLC using 30% acetone in petroleum ether (2 runs) as a mobile phase with the R_f value of 0.71. Because of the minute quantity, it was not further investigated.

Subfraction ZD32 showed one UV-active spot on normal phase TLC using 30% acetone in petroleum ether (2 runs) as a mobile phase with the R_f value of 0.46. Because the ¹H NMR spectrum showed broad signals, it was not further investigated.

Subfraction ZD33 showed one UV-active spot on normal phase TLC using 30% acetone in petroleum ether (2 runs) as a mobile phase with the R_f value of 0.37. Its ¹H

NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction ZD34 showed a long tail under UV-S on normal phase TLC using 30% acetone in petroleum ether (2 runs) as a mobile phase. Because the ¹H NMR spectrum showed broad signals, it was not investigated.

Subfraction ZD4 showed two UV-active spots on normal phase TLC using 2% methanol in dichloromethane (2 runs) as a mobile phase with the R_f values of 0.24 and 0.39. Its ¹H NMR spectrum indicated the presence of many components. Thus, it was not further investigated.

Subfraction ZD5 displayed a long tail under UV-S on normal phase TLC using 2% methanol in dichloromethane. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

Fraction ZE displayed a long tail under UV-S on normal phase TLC using 3% methanol in dichloromethane as a mobile phase. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further investigated.

CHAPTER 3.3

RESULTS AND DISCUSSION

Two new compounds (AR27 and 29) and three known compounds (AR28 and AR 30-31) were isolated from the broth extract. Furthermore, compound AR27 was isolated as its acetate derivative.

3.3.1 Compound AR28 and its diacetate derivative

Compound AR28 was obtained as a colorless gum. The UV spectrum showed an absorption band at λ_{max} 209 nm. The IR spectrum displayed absorption bands at 3395 and 1715 cm⁻¹ for hydroxyl and ester carbonyl groups, respectively. The ¹H NMR spectrum (Figure 68) (Table 101) contained signals for two *trans*olefinic protons of an α,β -unsaturated carbonyl unit [$\delta_{\rm H}$ 6.85 (dd, J = 15.6, 6.6 Hz, 1H) and 6.15 (*dd*, J = 15.6, 1.5 Hz, 1H)], two *cis*-olefinic protons [$\delta_{\rm H}$ 5.57 (*td*, J =10.5, 3.6 Hz, 1H) and 5.39 (tdd, J = 10.5, 2.4, 1.5 Hz, 1H)], three oxymethine protons $[\delta_{\rm H} 4.95 \ (m, 1 {\rm H}), 4.32 \ (t, J = 6.3 {\rm Hz}, 1 {\rm H}) \text{ and } 4.23 \ (t, J = 8.7 {\rm Hz}, 1 {\rm H})], \text{ two cis-}$ epoxymethine protons [$\delta_{\rm H}$ 3.26 (*dd*, J = 6.3, 4.5 Hz, 1H) and 3.03 (*dd*, J = 8.7, 4.5 Hz, 1H)], three sets of nonequivalent methylene protons [$\delta_{\rm H}$ 2.45 (m, 1H)/2.09 (m, 1H), 1.90 (m, 1H)/1.47 (m, 1H) and 1.77 (m, 1H)/1.22 (m, 1H)] and one methyl group ($\delta_{\rm H}$ 1.30, d, J = 6.0 Hz, 3H). The ¹³C NMR spectrum (Figure 69) (Table 101) displayed one carbonyl carbon of the α,β -unsaturated ester ($\delta_{\rm C}$ 165.70), four methine carbons $(\delta_{\rm C}$ 142.44, 135.69, 127.20 and 123.86), five oxymethine carbons ($\delta_{\rm C}$ 73.08, 72.13, 64.40, 62.58 and 58.80), three methylene carbons ($\delta_{\rm C}$ 33.56, 28.95 and 25.13) and one methyl carbon ($\delta_{\rm C}$ 19.95). The *trans*-olefinic protons resonating at $\delta_{\rm H}$ 6.13 and 6.77 were assigned to H-2 and H-3, respectively, on the basis of their HMBC correlations with C-1 ($\delta_{\rm C}$ 165.70) as well as their chemical shifts. The oxymethine proton, H-4 ($\delta_{\rm H}$ 4.32), showed the ¹H-¹H COSY correlations with H-3 and one of *cis*-epoxymethine protons, H-5 ($\delta_{\rm H}$ 3.26). The other *cis*-epoxymethine proton, H-6 ($\delta_{\rm H}$ 3.03), displayed the same correlations with H-5 and H-7 ($\delta_{\rm H}$ 4.23). The *cis*-olefinic proton, H-8 ($\delta_{\rm H}$ 5.39), was coupled with H-7 and H-9 ($\delta_{\rm H}$ 5.57). The nonequivalent methylene protons, H_{ab}-10 ($\delta_{\rm H}$ 2.45 and 2.09), showed the ¹H-¹H COSY cross peaks with H-9 and H_{ab}-11 ($\delta_{\rm H}$ 1.77 and 1.22). The methylene protons, H_{ab}-12 ($\delta_{\rm H}$ 1.90 and 1.47), displayed the same correlations with H_{ab}-11 and H-13 ($\delta_{\rm H}$ 4.95) which was further coupled with H₃-14 ($\delta_{\rm H}$ 1.30). In addition, H-13 showed the HMBC correlation with the ester carbonyl carbon, C-1, constructing a 14-membered lactone ring. Compound **AR28** was identified as seiricuprolide (Ballio *et al.*, 1988). The observed optical rotation of **AR28**, [α]_D²⁵ +64.1 (c = 1.45, CHCl₃), was almost identical to that of seiricuprolide, [α]_D²⁵ +67.2 (c = 1.45, CHCl₃), indicating that all chiral carbons of **AR28** possessed the same absolute configuration (4*R*,5*S*,6*R*,7*S*,13*S*) as those of seiricuprolide (Ballio *et al.*, 1988).

The diacetate derivative of **AR28** was obtained as a colorless gum and exhibited UV and IR absorption bands similar to those of **AR28**. The ¹H NMR data (**Figure 70**) (**Table 103**) were almost identical to those of compound **AR28** except for the appearance of the oxymethine protons, H-4 ($\delta_{\rm H}$ 5.33) and H-7 ($\delta_{\rm H}$ 5.38) at much lower field. Two singlets of the acetoxyl groups were also observed. The HMBC correlations of H₃-16 ($\delta_{\rm H}$ 2.07) to C-4 ($\delta_{\rm C}$ 73.09) and H₃-18 ($\delta_{\rm H}$ 2.02) to C-7 ($\delta_{\rm C}$ 66.01) indicated that the acetoxyl groups ($\delta_{\rm H}$ 2.07 and 2.02) were attached at C-4 and C-7 of the 14-membered lactone ring. Irradiation of H-6 in the NOEDIFF experiment (**Table 103**), enhanced signal intensity of H-5 and H-7, indicating their *cis*relationship. In addition, irradiation of H-5 affected signal intensity of H-6, but not H-4, indicating that H-5 was *cis* to H-6 but *trans* to H-4. These NOEDIFF data confirmed that compound **AR28** and its diacetate derivative had the absolute configuration identical to that of seiricuprolide.

position	AR28		Seiricuprolide	
	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	165.70 (C=O)	-	166.0 (C=O)
2	6.15 (<i>dd</i> , 15.6,	123.86 (CH)	6.14 (<i>dd</i> , 15.4,	123.8 (CH)
	1.5)		1.5)	
3	6.85 (<i>dd</i> , 15.6,	142.44 (CH)	6.84 (<i>dd</i> , 15.4,	142.9 (CH)
	6.6)		6.1)	
4	4.32 (<i>t</i> , 6.3)	72.13 (CH)	4.32 (<i>ddd</i> , 6.3,	71.9 (CH)
			6.1, 1.5)	
5	3.26 (<i>dd</i> , 6.3, 4.5)	62.58 (CH)	3.23 (<i>dd</i> , 6.3, 4.4)	62.6 (CH)
6	3.03 (<i>dd</i> , 8.7, 4.5)	58.80 (CH)	3.01 (<i>dd</i> , 7.8, 4.4)	58.9 (CH)
7	4.23 (<i>t</i> , 8.7)	64.40 (CH)	4.23 (<i>dd</i> , 8.5, 8.5)	64.4 (CH)
8	5.39 (<i>tdd</i> , 10.5,	127.20 (CH)	5.37 (<i>ddd</i> , 11.0,	127.4 (CH)
	2.4, 1.5)		8.5, 2.6)	
9	5.57 (td, 10.5,	135.69 (CH)	5.54 (<i>ddd</i> , 11.0,	135.5 (CH)
	3.6)		9.6, 3.3)	
10	a: 2.45 (<i>m</i>)	28.95 (CH ₂)	a: 2.43 (<i>m</i>)	28.8 (CH ₂)
	b: 2.09 (<i>m</i>)		b: 2.07 (<i>m</i>)	
11	a: 1.77 (<i>m</i>)	25.13 (CH ₂)	a: 1.78 (<i>m</i>)	25.1 (CH ₂)
	b: 1.22 (<i>m</i>)		b: 1.23 (<i>m</i>)	
12	a: 1.90 (<i>m</i>)	33.56 (CH ₂)	a: 1.86 (<i>ddd</i> , 13.6,	35.0 (CH ₂)
			10.6, 2.5)	
	b: 1.47 (<i>m</i>)		b: 1.44 (<i>ddd</i> ,	
			13.6, 7.4, 7.4)	
13	4.95 (<i>m</i>)	73.08 (CH)	4.91 (<i>ddq</i> , 7.4,	73.1 (CH)
14	1.30 (<i>d</i> , 6.0)	19.95 (CH ₃)	6.6, 2.5) 1.26 (<i>d</i> , 6.6)	19.8 (CH ₃)

Table 101 The ¹H and ¹³C NMR data of compound AR28 and seiricuprolide in $CDCl_3$

Ballio et al., 1988.

position	HMBC Correlation	COSY
H-2	C-1, C-3, C-4	H-3, H-4
H-3	C-1, C-2, C-4, C-5	H-2, H-4
H-4	C-2, C-3, C-5	H-2, H-3, H-5
H-5	C-4, C-6, C-7	H-4,H-6
H-6	C-4, C-5, C-7, C-8	H-5, H-7
H-7	C-5, C-6, C-8, C-9	H-6, H-8, H-9
H-8	C-6, C-9, C-10	H-7, H-9, H _b -10
H-9	C-7, C-8, C-10, C-11	H-7, H-8, H _{ab} -10
H _a -10	C-8, C-9, C-11	H-9, H _b -10, H _{ab} -11
H _b -10	C-8, C-9, C-11	H-8, H-9, H _a -10, H _{ab} -11
H _a -11	C-9, C-10, C-12	H_{ab} -10, H_{b} -11, H_{ab} -12
H _b -11	C-9, C-10, C-12	H _{ab} -10, H _a -11, H _{ab} -12
H _a -12	C-10, C-11, C-13, C-14	H _{ab} -11, H _b -12, H-13
H _b -12	C-10, C-11, C-13, C-14	H _{ab} -11, H _a -12, H-13
H-13	C-1, C-11, C-12, C-14	H ₃ -14, H _{ab} -12
H ₃ -14	C-12, C-13	H-13

Table 102 The HMBC and COSY data of compound AR28 in CDCl₃

Table 103 The NMR data of the diacetate derivative of AR28 in $CDCl_3$

position	Diacetate derivative of AR28		HMBC	NOE
	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	Correlation	
1	-	165.30 (C=O)	-	*
2	6.13 (<i>dd</i> , 15.6,	126.09 (CH)	C-1, C-4	H-4, H ₃ -16
	1.2)			
3	6.77 (<i>dd</i> , 15.6,	138.51 (CH)	C-1, C-2, C-4	H-4, H-5, H-7
	7.5)			
4	5.33 (<i>m</i>)	73.09 (CH)	C-2, C-3, C-5,	H-2, H-3,
			C-15	H ₃ -16

Table 103 Continued

position	Diacetate derivative of AR28		HMBC	NOE
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}$ (C-Type)	Correlation	
5	3.26 (<i>dd</i> , 6.3, 4.2)	58.88 (CH)	C-6, C-7	H-3, H-6
6	3.02 (<i>dd</i> , 8.4, 4.2)	55.79 (CH)	C-5, C-7, C-8	H-5, H-7
7	5.38 (<i>t</i> , 9.6)	66.01 (CH)	C-5, C-6, C-8,	H-3, H-6
			C-9, C-17	
8	5.28 (<i>m</i>)	123.73 (CH)	C-9, C-10	*
9	5.51 (<i>td</i> , 10.1,	137.96 (CH)	C-7, C-10, C-11	H-8
	3.0)			
10	a: 2.44 (<i>m</i>)	28.77 (CH ₂)	C-8, C-9, C-11	*
	b: 2.05 (<i>m</i>)		C-8, C-9, C-11	*
11	a: 1.75 (<i>m</i>)	24.94 (CH ₂)	C-9	*
	b: 1.17 (<i>m</i>)		C-9	*
12	a: 1.81 (<i>m</i>)	33.34 (CH ₂)	C-10, C-11, C-13,	*
			C-14	
	b: 1.43 (<i>m</i>)		C-10, C-11, C-13,	*
			C-14	
13	4.98 (<i>m</i>)	72.89 (CH)	C-1, C-14	*
14	1.21 (<i>d</i> , 6.3)	19.78 (CH ₃)	C-12, C-13	H-13
15	-	169.34 (C=O)	-	*
16	2.07 (s)	20.80 (CH ₃)	C-4, C-15	*
17	-	169.82 (C=O)	-	*
18	2.02 (s)	21.00 (CH ₃)	C-7, C-17	*

* not determined

3.3.2 Compound AR27

Compound **AR27** with the molecular formula $C_{18}H_{24}O_7$ by EIMS [*m/z* 310 (M-C₂H₂O)⁺] (**Figure 74**) was obtained as a colorless gum and exhibited UV and IR absorption bands similar to those of the diacetate derivative of **AR28**. The ¹H NMR data (**Figure 72**) (**Table 104**) were almost identical to those of the diacetate

derivative of **AR28** except for the replacement of signals for two *cis*-olefinic protons ($\delta_{\rm H}$ 5.51, H-9 and 5.28, H-8) in the diacetate derivative of **AR28** with those for two *trans*-olefinic protons ($\delta_{\rm H}$ 6.16 and 5.47). The ³J HMBC correlations of H-8/C-6 ($\delta_{\rm C}$ 55.29) and C-10 ($\delta_{\rm C}$ 33.13) and those of H-9/C-7 ($\delta_{\rm C}$ 73.02) and C-11 ($\delta_{\rm C}$ 24.46) confirmed above conclusion. The remaining substitutents were located at the same position as those in the diacetate derivative of **AR28** according to the HMBC correlation data. The observed optical rotation of **AR27**, $[\alpha]_{\rm D}^{25}$ +69.9 (c = 1.45, CHCl₃), was almost identical to that of the diacetate derivative of **AR28**. Therefore, **AR27** was identified as the diacetate derivative of a new seiricuprolide.

Table 104 The ¹H and ¹³C NMR data of compound **AR27** and the diacetate derivative of **AR28** in CDCl₃

position	AR27		Diacetate deriva	tive of AR28
	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	164.91 (C=O)	-	165.30 (C=O)
2	5.95 (<i>dd</i> , 15.5,	122.40 (CH)	6.13 (<i>dd</i> , 15.6,	126.09 (CH)
	2.0)		1.2)	
3	7.01 (<i>dd</i> , 15.5,	140.89 (CH)	6.77 (<i>dd</i> , 15.6,	138.51 (CH)
	4.5)		7.5)	
4	5.34 (<i>ddd</i> , 6.0,	72.37 (CH)	5.33 (<i>m</i>)	73.09 (CH)
	4.5, 2.0)			
5	3.25 (<i>dd</i> , 6.5, 4.5)	58.02 (CH)	3.26 (<i>dd</i> , 6.3, 4.2)	58.88 (CH)
6	3.22 (<i>dd</i> , 8.5, 4.5)	55.29 (CH)	3.02 (<i>dd</i> , 8.4, 4.2)	55.79 (CH)

Table 104 Continued

position	AR27		Diacetate derivative of AR28	
	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)
7	5.14 (<i>t</i> , 8.5)	73.02 (CH)	5.38 (<i>t</i> , 9.6)	66.01 (CH)
8	5.47 (<i>dd</i> , 15.5,	124.46 (CH)	5.28 (<i>m</i>)	123.73 (CH)
	8.5)			
9	6.16 (<i>ddd</i> , 15.5,	139.48 (CH)	5.51 (td, 10.1,	137.96 (CH)
	10.0, 5.5)		3.0)	
10	a: 2.16 (<i>m</i>)	33.13 (CH ₂)	a: 2.44 (<i>m</i>)	28.77 (CH ₂)
	b: 2.06 (<i>m</i>)		b: 2.05 (<i>m</i>)	
11	a: 1.90 (<i>m</i>)	24.46 (CH ₂)	a: 1.75 (<i>m</i>)	24.94 (CH ₂)
	b: 1.13 (<i>m</i>)		b: 1.17 (<i>m</i>)	
12	a: 1.80 (<i>m</i>)	34.37 (CH ₂)	a: 1.81 (<i>m</i>)	33.34 (CH ₂)
	b: 1.56 (<i>m</i>)		b: 1.43 (<i>m</i>)	
13	4.78 (dqd, 10.0,	72.34 (CH)	4.98 (<i>m</i>)	72.89 (CH)
	6.0, 2.0)			
14	1.27 (<i>d</i> , 6.0)	20.17 (CH ₃)	1.21 (<i>d</i> , 6.3)	19.78 (CH ₃)
15	-	169.79 (C=O)	-	169.34 (C=O)
16	2.20 (s)	20.71 (CH ₃)	2.07 (s)	20.80 (CH ₃)
17	-	169.88 (C=O)	-	169.82 (C=O)
18	2.20 (s)	21.22 (CH ₃)	2.02 (s)	21.00 (CH ₃)

Table 105 The HMBC and COSY data of compound AR27 in $CDCl_3$

position	HMBC Correlation	COSY
H-2	C-1, C-3, C-4	H-3, H-4
H-3	C-1, C-2, C-4, C-5	H-2, H-4
H-4	C-2, C-5, C-15	H-3, H-5
H-5	C-7, C-8	H-4,H-6
H-6	C-7, C-8	H-5, H-7

Table 105 Continued

position	HMBC Correlation	COSY
H-7	C-5, C-8, C-9, C-17	H-6, H-8
H-8	C-6, C-7, C-10	H-7, H-9
H-9	C-7, C-10, C-11	H-8, H _{ab} -10
H _a -10	C-8, C-9	H-9, H _b -10, H _{ab} -11
H _b -10	C-8, C-9	H-9, H _a -10, H _{ab} -11
H _a -11	C-9, C-10, C-12, C13	H _{ab} -10, H _b -11, H _{ab} -12
H _b -11	C-9, C-10, C-12, C-13	H _{ab} -10, H _a -11, H _{ab} -12
H _a -12	C-10, C-11, C-13	H _{ab} -11, H _b -12, H-13
H _b -12	C-10, C-11, C-13	H _{ab} -11, H _a -12, H-13
H-13	C-1, C-11	H ₃ -14, H _{ab} -12
H ₃ -14	C-12, C-13	H-13
H ₃ -16	C-4, C-15	-
H ₃ -18	C-7, C-17	-

3.3.3 Compound AR29 and its triacetate derivative

Compound **AR29** with the molecular formula $C_{14}H_{22}O_6$ by EIMS [*m/z* 268 (M-H₂O)⁺] (**Figure 77**) was obtained as a colorless gum. It exhibited UV and IR absorption bands similar to those of **AR28**. The ¹H NMR data (**Figure 75**) (**Table 106**) were almost identical to those of **AR28** except for the replacement of signals for two *cis*-epoxymethine protons in compound **AR28** with those of two hydroxymethine protons (H-5, δ_H 4.42 and H-6, δ_H 3.59). The ³J HMBC correlations of H-5/C-3 (δ_C 143.03) and C-7 (δ_C 68.57) and those of H-6/C-4 (δ_C 71.91) supported the conclusion. Therefore, **AR29** was a new 4,5-dihydroxy derivative of seiricuprolide.

A triacetate derivative of **AR29** was obtained as a colorless gum and exhibited UV and IR absorption bands similar to those of **AR29**. The ¹H NMR data (**Figure 78**) (**Table 106**) were almost identical to those of compound **AR29** except for the appearance of signals for three oxymethine protons H-4 ($\delta_{\rm H}$ 5.45), H-6 ($\delta_{\rm H}$ 4.97) and H-7 ($\delta_{\rm H}$ 5.96) at much lower field and three additional singlets for three acetoxyl groups, H₃-16 ($\delta_{\rm H}$ 2.12), H₃-18 ($\delta_{\rm H}$ 2.14) and H₃-20 ($\delta_{\rm H}$ 2.17). The HMBC correlations of H₃-16 to C-4 ($\delta_{\rm C}$ 71.49), H₃-18 to C-6 ($\delta_{\rm C}$ 73.98) and H₃-20 to C-7 ($\delta_{\rm C}$ 67.23) indicated that the acetoxyl groups were attached at C-4, C-6 and C-7. The remaining substitutents were located at the same position as those in **AR29** according to the HMBC correlations. Irradiation of H-5 in the NOEDIFF experiment (**Table 108**) enhanced signal intensity of H-4, while irradiation of H-7 affected signal intensity of H-6. These results indicated *cis*-relationship of H-4/H-5 and H-6/H-7 as well as *trans*-relationship of H-5/H-6. Consequently, compound **AR29** possessed the same relative configuration as its triacetate derivative. As compounds **AR28** and **AR29** were co-metabolites, we proposed that the absolute configuration of C-4 and C-7 in compound **AR29** would have *R* and *S* configuration, respectively, identical to those of compound **AR28**. Thus, both C-5 and C-6 would possess *R*-configuration.

Table 106 The ¹H and ¹³C NMR data of compound **AR29** and its triacetate derivative in CDCl₃

position	AR29		Triacetate derivative of AR29	
	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	165.64 (C=O)	-	165.09 (C=O)
2	6.26 (<i>d</i> , 15.6)	125.59 (CH)	6.46 (<i>d</i> , 15.9)	130.11 (CH)
3	6.86 (<i>dd</i> , 15.6,	143.03 (CH)	6.93 (<i>dd</i> , 15.9,	136.22 (CH)
	5.7)		9.0)	

Table 106 Continued

position	AR29		Triacetate derivative of AR29	
	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)
4	4.73 (brs)	71.91 (CH)	5.45 (<i>dd</i> , 9.0, 3.6)	71.49 (CH)
5	4.42 (brs)	68.16 (CH)	4.46 (<i>dd</i> , 8.7, 3.6)	60.75 (CH)
6	3.59 (<i>dd</i> , 6.0, 1.5)	73.84 (CH)	4.97 (<i>dd</i> , 8.7, 2.4)	73.98 (CH)
7	4.45 (brs)	68.57 (CH)	5.96 (<i>dd</i> , 9.9, 2.4)	67.23 (CH)
8	5.57 (<i>m</i>)	129.00 (CH)	5.16 (<i>t</i> , 9.9)	122.94 (CH)
9	5.47 (<i>m</i>)	132.98 (CH)	5.54 (<i>td</i> , 9.9, 5.1)	136.06 (CH)
10	a: 2.20 (<i>m</i>)	29.83 (CH ₂)	a: 2.55 (<i>m</i>)	30.42 (CH ₂)
	b: 1.95 (<i>m</i>)		b: 1.87 (<i>m</i>)	
11	a: 1.57 (<i>m</i>)	26.03 (CH ₂)	a: 1.69 (<i>m</i>)	25.82 (CH ₂)
	b: 1.11 (<i>m</i>)		b: 1.13 (<i>m</i>)	
12	a: 1.84 (<i>m</i>)	35.03 (CH ₂)	a: 1.85 (<i>m</i>)	34.84 (CH ₂)
	b: 1.49 (<i>m</i>)		b: 1.51 (<i>m</i>)	
13	5.02 (<i>m</i>)	73.17 (CH)	5.01 (<i>m</i>)	74.21 (CH)
14	1.30 (<i>d</i> , 6.3)	20.55 (CH ₃)	1.32 (<i>d</i> , 6.3)	20.73 (CH ₃)
15			-	169.65 (C=O)
16			2.12 (s)	20.51 (CH ₃)
17			-	169.38 (C=O)
18			2.14 (s)	20.76 (CH ₃)
19			-	170.47 (C=O)
20			2.17 (s)	20.85 (CH ₃)

Table 107 The HMBC and COSY data of compound AR29 in $CDCl_3$

position	HMBC Correlation	COSY
H-2	C-1, C-4, C-5	H-3, H-4
H-3	C-1, C-2, C-4, C-5	H-2, H-4
H-4	C-2, C-3, C-5	H-2, H-3, H-5
H-5	C-3, C-4, C-7	H-4, H-6

Table 107 Continued

position	HMBC Correlation	COSY
H-6	C-4, C-5, C-7	H-5, H-7
H-7	C-8, C-9	H-6, H-8
H-8	C-10	H-7, H-9
H-9	C-7, C-10, C-11	H-8, H _{ab} -10
H _a -10	C-8, C-9	H-9, H _b -10, H _{ab} -11
H _b -10	C-8, C-9	H-9, H _a -10, H _{ab} -11
H _a -11	C-10, C-12, C-13	H_{ab} -10, H_{b} -11, H_{ab} -12
H _b -11	C-10, C-12, C-13	H_{ab} -10, H_{a} -11, H_{ab} -12
H _a -12	C-10, C-11	H _{ab} -11, H _b -12, H-13
H _b -12	C-10, C-11	H _{ab} -11, H _a -12, H-13
H-13	C-1, C-12, C-14	H ₃ -14, H _{ab} -12
H ₃ -14	C-12, C-13	H-13

 Table 108 The HMBC, COSY and NOE data of the triacetate derivative of compound AR29 in CDCl3

position	HMBC Correlation	COSY	NOE
H-2	C-1, C-4, C-5	H-3, H-4	*
Н-3	C-1, C-2, C-4, C-5	H-2, H-4	*
H-4	C-2, C-3, C-5, C-15	H-2, H-3, H-5	H-3, H-5
H-5	C-3, C-4, C-7	H-4, H-6	H-4
H-6	C-4, C-5, C-7, C-17	H-5, H-7	H-7
H-7	C-8, C-9, C-19	H-6, H-8	H-6, H-8
H-8	C-10	H-7, H-9	*
H-9	C-7, C-10, C-11	H-8, H _{ab} -10	*
H _a -10	C-8, C-9	H-9, H _b -10, H _{ab} -11	*
H _b -10	C-8, C-9	H-9, H _a -10, H _{ab} -11	*

Table 108 Continued

position	HMBC Correlation	COSY	NOE
H _a -11	C-10, C-12, C-13	H _{ab} -10, H _b -11, H _{ab} -12	*
H _b -11	C-10, C-12, C-13	H_{ab} -10, H_{a} -11, H_{ab} -12	*
H _a -12	C-10, C-11	H _{ab} -11, H _b -12, H-13	*
H _b -12	C-10, C-11	H _{ab} -11, H _a -12, H-13	*
H-13	C-1, C-12, C-14	H ₃ -14, H _{ab} -12	*
H ₃ -14	C-12, C-13	H-13	H-13
H ₃ -16	C-4, C-15	-	*
H ₃ -18	C-6, C-17	-	*
H ₃ -20	C-7, C-19	-	*

* not determined

3.3.4 Compound AR30

Compound **AR30** was obtained as a colorless gum. The UV spectrum showed absorption bands at λ_{max} 207, 221 and 277 nm, indicating the presence of an aromatic chromophore. The IR spectrum displayed an absorption band at 3422 cm⁻¹ for a hydroxyl group. The ¹H NMR spectrum showed characteristic signals for a 1,4disubstituted benzene [δ 7.11 (d, J = 9.0 Hz, 2H) and 6.79 (d, J = 9.0 Hz, 2H)] and a hydroxyethyl group [δ 3.83 (t, J = 6.0 Hz, 2H) and 2.81 (t, J = 6.0 Hz, 2H)]. These data together with the chemical shift of C-1 (δ 154.22) indicated that the other substituent of the 1,4-disubstituted benzene was a hydroxyl group. The HMBC data supported the assigned structure. Therefore, **AR30** was identified as tyrosol (Guzmán-López *et al.*, 2007).

position	AR30		Tyrosol	
	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)
1	-	154.22 (C)	-	154.1 (C)
2,6	6.79 (<i>d</i> , 9.0)	115.45 (CH)	6.77 (<i>d</i> , 8.0)	115.4 (CH)
3, 5	7.11 (<i>d</i> , 9.0)	130.15 (CH)	7.09 (<i>d</i> , 8.0)	130.0 (CH)
4	-	130.55 (C)	-	130.2 (C)
7	2.81 (<i>t</i> , 6.0)	38.27 (CH ₂)	2.82 (<i>t</i> , 6.4)	38.3 (CH ₂)
8	3.83 (<i>t</i> , 6.0)	63.80 (CH ₂)	3.83 (<i>t</i> , 6.4)	63.8 (CH ₂)

Table 109 The ¹H and ¹³C NMR data of compound AR30 and tyrosol in CDCl₃

Guzmán-López et al., 2007.

3.3.5 Compound AR31

Compound **AR31** was obtained as a colorless gum. The UV spectrum showed absorption bands at λ_{max} 207 and 252 nm, indicating the presence of an aromatic chromophore. The IR spectrum showed absorption bands at 3366 and 1686 cm⁻¹ for hydroxyl and conjugated carbonyl groups, respectively. The ¹H NMR spectral data exhibited signals for a *para*-disubstituted benzene [δ_{H} 7.90 (d, J = 9.0Hz, 2H) and 6.85 (d, J = 9.0 Hz, 2H)] and one acetyl group (δ_{H} 2.20, s, 3H). The aromatic protons at δ_{H} 7.90 and 6.85 were attributed to H-2, H-6 and H-3, H-5, respectively, on the basis of their chemical shifts. A signal of carbonyl carbon at δ_{C} 196.92 in the ¹³C NMR spectrum supported the IR data. The chemical shifts of C-1 (δ_{C} 130.48) and C-4 (δ_{C} 160.10) attached the acetyl unit and a hydroxyl group at C-1 and C-4, respectively. Therefore, compound **AR31** was assigned as 4hydroxyacetophenone which was isolated from the bark of *Salix hulteni* (Jeon *et al.*, 2008).

position	AR31		4-Hydroxyacetophenone	
	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$ (C-Type)
1	-	130.48 (C)	-	128.84 (C)
2,6	7.90 (<i>d</i> , 9.0)	130.94 (CH)	7.93 (<i>d</i> , 7.8)	133.05 (CH)
3, 5	6.85 (<i>d</i> , 9.0)	115.29 (CH)	6.97 (<i>d</i> , 7.8)	114.44 (CH)
4	-	160.10 (C)	-	161.23 (C)
7	-	196.92 (C=O)	-	195.23 (C=O)
8	2.20 (s)	26.30 (CH ₃)	2.53 (s)	24.65 (CH ₃)

Table 110 The ¹H and ¹³C NMR data of compound **AR31** in CDCl₃ and 4-
hydroxyacetophenone in DMSO- d_6

Jeon et al., 2008.

REFERENCES

- Abdel-Lateff, A., König, G.M., Fisch, K.M., Höller, U., Jones, P.G. and Wright, A.D. 2002. New antioxidant hydroquinone derivatives from the algicolous marine fungus *Acremonium* sp. J. Nat. Prod. 65, 1605-1611.
- Amagata, T., Morinaka, B.I., Amagata, A., Tenney, K., Valeriote, F.A., Lobkovsky, E., Clardy, J. and Crews, P. 2006. A chemical study of cyclic depsipeptides produced by a sponge-derived fungus. J. Nat. Prod. 69, 1560-1565.
- Ayer, W.A. and Miao, S. 1993. Secondary metabolites of the aspen fungus *Stachybotrys cylindrospora*. Can. J. Chem. 71, 487-493.
- Ballio, A., Evidente, A., Graniti, A., Randazzo, G. and Sparapano, L. 1988. Seiricuprolide, a new phytotoxic macrolide from a strain of *Seiridium Cupressi* infecting cypress. Phytochemistry 27, 3117-3121.
- Bunyapaiboonsri, T., Yoiprommarat, S., Khonsanit, A. and Komwijit, S. 2008.Phenolic glycosides from the filamentous fungus *Acremonium* sp. BCC 14080.J. Nat. Prod. 71, 891-894.
- Camarda, L., Merlini, L. and Nasini, G. 1976. Metabolites of *Cercospora*.
 Taiwapyrone, an α-pyrone of unusual structure from *Cercospora taiwanensis*.
 Phytochemistry 15, 537-539.
- Chinworrungsee, M., Wiyakrutta, S., Sriubolmas, N., Chuailua, P. and Suksamrarn,A. 2008. Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order Hypocreales. Arch. Pharm. Res. 31, 611-616.

- Cho, J.-Y., Moon, J.-H., Seong, K.-Y. and Park, K-H. 1998. Antimicrobial activity of 4-hydroxybenzoic acid and *trans* 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci. Biotechnol. Biochem. 62, 2273-2276.
- Chu, M., Mierzwa, R., Truumees, I., Gentile, F., Patel, M., Gullo, V., Chan, T.-M. and Puar, M.S. 1993. Two novel diketopiperazines isolated from the fungus *Tolypocladium* sp. Tetrahedron Lett. 34, 7537-7540.
- Deyrup, S.T., Swenson, D.C., Gloer, J.B. and Wicklow, D.T. 2006. Caryophyllene sesquiterpenoids from a fungicolous isolate of *Pestalotiopsis disseminate*. J. Nat. Prod. 69, 608-611.
- Ding, G., Jiang, L., Guo, L., Chen, X., Zhang, H. and Che, Y. 2008. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus *Pestalotiopsis theae*. J. Nat. Prod. 71, 1861–1865.
- Ding, G., Li, Y., Fu, S., Liu, S., Wei, J. and Che, Y. 2009. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus *Pestalotiopsis* sp. J. Nat. Prod. 72, 182–186.
- Ding, G., Liu, S., Guo, L., Zhou, Y. and Che, Y. 2008. Antifungal metabolites from the plant endophytic fungus *Pestalotiopsis foedan*. J. Nat. Prod. 71, 615–618.
- Ding, G., Zheng, Z., Liu, S., Zhang, H., Guo, L. and Che, Y. 2009. Photinides A-F, cytotoxic benzofuranone-derived γ-lactones from the plant endophytic fungus *Pestalotiopsis photiniae*. J. Nat. Prod. 72, 942–945.
- Gallardo, G.L., Butler, M., Gallo, M.L., Rodríguez, M.A., Eberlin, M.N. and Cabrera,G. M. 2006. Antimicrobial metabolites produced by an intertidal *Acremonium furcatum*. Phytochemistry 67, 2403-2410.

- Guzmán-Lopéz, O., Trigos, A., Fernández, F.J., Yañez-Morales, M.deJ. and Saucedo-Castañeda, G. 2007. Tyrosol and tryptophol produced by *Ceratocystis adiposa*. World J. Microbiol. Biotechnol. 23, 1473-1477.
- Harper, J.K., Arif, A.M., Ford, E.J., Strobel, G.A., Porco, Jr., J.A., Tomer, D.P., Oneill, K.L., Heider, E.M. and Grant, D.M. 2003. Pestacin: a 1,3-dihydro isobenzofuran from *Pestalotiopsis microspora* possessing antioxidant and antimycotic activities. Tetrahedron 59, 2471–2476.
- Isaka, M., Palasarn, S., Auncharoen, P., Komwijit, S. and Jones, E.B.G. 2009. Acremoxanthones A and B, novel antibiotic polyketides from the fungus *Acremonium sp.* BCC 31806. Tetrahedron Lett. 50, 284-287.
- Jang, J-H., Kanoh, K., Adachi, K. and Shizuri, Y. 2006. New dihydrobenzofuran derivative, awajanoran, from marine-derived *Acremonium* sp. AWA16-1. J. Antibiot. 59, 428-431.
- Jiao, P., Kawasaki M. and Yamamoto, H. 2009. A sequential *o*-nitrosoaldol and Grignard addition process: An enantio- and diastereoselective entry to chiral 1,2-diols. Angew. Chem. Int. Ed. 48, 3333-3336.
- Joen, S.H., Chun, W., Choi, Y.J. and Kwon, Y.S. 2008. Cytotoxic constituents from the bark of *Salix hulteni*. Arch. Pharm. Res. 31, 978-982.
- Kashiyama, Y., Yoshikuni, Y., Baker, D. and Siegel, J.B. 2009. (Bio Architecture Lab, Inc., USA). Recombinant microbial systems for converting polysaccharides into commodity products such as biofuels. WO 2009046370 A2, April 09.
- Kawamura, H., Kaneko, T., Koshino, H., Esumi, Y., Uzawa, J. and Sugawara F. 2000. Penicillides from *Penicillium* sp. isolated from *Taxus cuspidata*. Nat. Prod. Lett. 14, 477-484.

- Li, E., Jiang, L., Guo, L., Zhang, H. and Che, Y. 2008. Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus *Pestalotiopsis adusta*. Bioorg. Med. Chem. 16, 7894–7899.
- Li, E., Tian, R., Liu, S., Chen, X., Guo, L. and Che, Y. 2008. Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus *Pestalotiopsis theae*. J. Nat. Prod. 71, 664–668.
- Li, J.Y. and Strobel, G.A. 2001. Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus *Pestalotiopsis jesteri*. Phytochemistry 57, 261–265.
- Liu, L., Li, Y., Liu, S., Zheng, Z., Chen, X., Zhang, H., Guo, L. and Che, Y. 2009. Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from *Pestalotiopsis fici*. Org. Lett. 11, 2836-2839.
- Liu, L., Liu, S., Chen, X., Guo, L. and Che, Y. 2009. Pestalofones A–E, bioactive cyclohexanone derivatives from the plant endophytic fungus *Pestalotiopsis fici*. Bioorg. Med. Chem. 17, 606–613.
- Liu, L., Liu, S., Niu, S., Guo, L., Chen, X. and Che, Y. 2009. Isoprenylated chromone derivatives from the plant endophytic fungus *Pestalotiopsis fici*. J. Nat. Prod. 72, 1482–1486.
- Liu, L., Tian, R., Liu, S., Chen, X., Guo, L. and Che, Y. 2008. Pestaloficiols A–E, bioactive cyclopropane derivatives from the plant endophytic fungus *Pestalotiopsis fici.* Bioorg. Med. Chem. 16, 6021–6026.
- Magnani, R.F., Rodrigues-Fo, E., Daolioa, C., Ferreira, A.G. and de Souza, A.Q.L. 2003. Three highly oxygenated caryophyllene sesquiterpenes from *Pestalotiopsis* sp., a fungus isolated from bark of *Pinus taeda*. Z. Naturforsch. 58, 319-324.

- Mori, H., Urano, Y., Abe, F., Furukawa, S., Furukawa, S., Tsurumi, Y., Sakamoto, K., Hashimoto, M., Takase, S., Hino, M. and Fujii, T. 2003. FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). J. Antibiot. 56, 72-79.
- Poling, S.M., Wicklow, D.T., Rogers, K.D. and Gloer J.B. 2008. Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7hydroxydihydroresorcylides. J. Agric. Food. Chem. 56, 3006-3009.
- Pontius, A., Mohamed, I., Krick, A., Kehraus, S. and König, G.M. 2008. Aromatic polyketides from marine algicolous fungi. J. Nat. Prod. 71, 272-274.
- Shim, S.H., Sy, A.A., Gloer, J.B. and Wicklow, D.T. 2008. Isolation of an isocoumarin and an isobenzofuran derivatives from a fungicolous isolate of *Acremonium crotocinigenum*. Bull. Korean Chem. Soc. 29, 863-865.
- Shimada. A., Takahashi. I., Kawano, T. and Kimura, Y. 2001. Chloroisosulochrin, chloroisosulochrin dehydrate, and pestheic acid, plant growth regulators, produced by *Pestalotiopsis theae*. Z. Naturforsch. 56, 797-803.
- Strobel, G., Ford, E., Worapong, J., Harper, J.K., Arif, A.M., Grant, D.M., Fung, P.C.
 W. and Chaud, R.M.W. 2002. Isopestacin, an isobenzofuranone from *Pestalotiopsis microspora*, possessing antifungal and antioxidant activities. Phytochemistry 60, 179–183.
- Trisuwan, K., Rukachaisirikul, V., Sukpondma Y., Phongpaichit, S., Preedanon, S. and Sakayaroj, J. 2009. Lactone derivatives from the marine-derived fungus *Penicillium* sp. PSU-F44. Chem. Pharm. Bull. 57, 1100-1102.
- Xu, J., Kjer, J., Sendker, J., Wray, V., Guan, H., Edrada, R., Lin, W., Wu, J. and Proksch, P. 2009. Chromones from the endophytic fungus *Pestalotiopsis* sp.

isolated from the Chinese mangrove plant *Rhizophora mucronata*. J. Nat. Prod. 72, 662–665.

- Xu, J., Kjer, J., Sendker, J., Wray, V., Guan, H., Edrada, R., Müller, W.E.G., Bayer, M., Lin, W., Wu, J. and Proksch, P. 2009. Cytosporones, coumarins, and an alkaloid from the endophytic fungus *Pestalotiopsis* sp. isolated from the Chinese mangrove plant *Rhizophora mucronata*. Bioorg. Med. Chem. 17, 7362–7367.
- Zhang, P., Bao, B., The Dang, H., Hong, J., Lee, H.J., Yoo, E.S., Bae, K.S. and Jung, J.H. 2009. Anti-inflammatory sesquiterpenoids from a spongederived fungus *Acremonium* sp. J. Nat. Prod. 72, 270-275.

APPENDIX

Figure 12 The 300 MHz ¹H NMR spectrum of compound **AR5** in CDCl₃

Figure 15 The 75 MHz 13 C NMR spectrum of compound **AR6** in CDCl₃

Figure 20 The mass spectrum of compound AR11

Figure 23 The mass spectrum of compound AR15

205

ppm

Figure 38 The 125 MHz ¹³C NMR spectrum of compound AR17 in CDCl₃

Figure 39 The mass spectrum of compound AR17

Figure 42 The mass spectrum of compound AR18

217

Figure 45 The mass spectrum of compound AR14

Figure 54 The mass spectrum of compound AR21

225

Figure 63 The mass spectrum of compound AR24

Figure 65 The 75 MHz 13 C NMR spectrum of compound **AR25** in Acetone- d_6

Figure 77 The mass spectrum of compound AR29

VITAE

NameMr. Aekkachai RodglinStudent ID5110220107Educational AttainmentVear of GraduationDegreeName of InstitutionB.Sc.Thaksin University(Chemistry)

Scholarship Awards during Enrolment

The Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC)

List of Publication and Proceedings

Proceedings

1. Rodglin, A., Rukachaisirikul, V., Phongpaichit, S. and Buatong, J. 2009. Seiricuprolide, tyrosol and 4-hydroxyacetophenone from the broth extract of the mangrove-derived fungus *Pestalotiopsis* sp. PSU-MA119. Proceeding of the 14th National Graduate Research Conference. King Mongkut's University of Technology North Bangkok, September 10-11, 2009. pp.71.

2. Rodglin, A., Rukachaisirikul, V., Phongpaichit, S. and Buatong, J. 2009. Metabolites from mangrove-derived fungus *Pestalotiopsis* sp. PSU-MA119. Proceeding of the 35th Congress on Science and Technology of Thailand. The Tide Resort (Bangsaen Beach), Chonburi, Thailand, October 15-17, 2009. pp.150.