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ABSTRACT 

 

 In this study, a mixed culture of Clostridium butylicum TISTR 1032 

with a high amylase producing Bacillus subtilis WD 161 was attempted to enhance 

acetone-butanol-ethanol (ABE) production from starch. The possibility for culturing B. 

subtilis WD 161 and C. butylicum TISTR 1032 using 20 g/L of soluble starch as a 

carbon source under culture conditions with and without anaerobic pretreatment was 

first investigated. The pure culture of B. subtilis WD 161 produced 2.6 U/mL and 14 

U/mL of amylase activity with and without anaerobic pretreatment, respectively. 

While the pure culture of C. butylicum TISTR 1032 produced  amylase activity less 

than 1.5 U/mL either with or without anaerobic pretreatment and resulted in low ABE 

production (< 0.94 g/L). The mixed culture of C. butylicum TISTR 1032 and B. 

subtilis WD 161 incubated under condition without anaerobic pretreatment was found 

successfully enhanced amylase activity up to 17 U/mL and the ABE production up to 

4.2 g/L or about 4 folds higher than that of the pure culture of C. butylicum TISTR 

1032.  

 The enhancements in amylase and ABE production compared to the 

pure culture of C. butylicum TISTR 1032 was also observed when using cassava starch 

as a carbon source instead of soluble starch. The mixed culture of C. butylicum TISTR 

1032 and B. subtilis WD 161 produced 37 U/mL amylase and 7.4 g/L ABE from 40 

g/L of cassava starch which were about 10 and 9 folds higher than those of the pure 

culture of C. butylicum TISTR 1032. The benefits of using this high amylase 

producing aerobic Bacillus in a co-culture with anaerobic Clostridium were not only 

increasing substrate utilization and ABE production but there was also no requirement 
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to add any costly reducing agent to the medium or flushing with N2 to ensure 

anaerobic condition. This thus makes the anaerobic fermentation more economical and 

cost effective.  

 The medium optimization for ABE production by the mixed culture 

without anaerobic pretreatment revealed that cassava starch concentration of 40 g/L, 

C/N ratio of 4 and the mixed nitrogen sources of 265 mM (33 g/L) yeast extract with 

100 mM (4 g/L) ammonium nitrate gave the highest ABE production in terms of final 

concentration and productivity (9.71 g/L and 0.135 g/L/h, respectively). The use of 

yeast extract or ammonium nitrate alone had a negative effect on ABE production. 

Further investigation on the interaction effect of medium components including 

cassava starch, yeast extract, and ammonium nitrate on the performance of the mixed 

culture were carried out using response surface methodology (RSM). Among three 

investigated components, cassava starch concentration contributed a significant effect 

on amylase and ABE production while yeast extract had less effect. Moderately 

positive interactions of cassava starch and ammonium nitrate concentrations were 

observed in amylase activity and consequently ABE production. Based on the response 

surface plots and economic benefit, the optimum medium components with the 

minimum requirement of nitrogen sources for ABE production by the mixed culture 

were 40 g/L of cassava starch, 5 g/L of yeast extract and 8 g/L of ammonium nitrate at 

which 9.02 g/L of ABE production was obtained. 

 ABE production by the mixed culture of C. butylicum TISTR 1032 and 

B. subtilis WD 161 was performed in an 1 L anaerobic bioreactor for further process 

optimization. The study on pH control revealed that the culture maintained at pH 6.0 

was optimum for ABE production (10 g/L) compared to pH 6.5, 5.5 and 5.0. On the 

other hands, pH at 6.5 was favored for acids (butyric and acetic) and amylase 

production. When the culture was controlled at pH 6.0 and the substrate was fed at the 

24 and 36 h in fed-batch culture, the ABE production was increased up to 13.4 g/L. 

Interestingly, when the substrate was fed every 12 h from 12 to 72 h in semi-

continuous culture, the total ABE production reached 15.2 g/L. Moreover, when the 

cultures were integrated with gas stripping for product recovery, the enhancement of 

ABE especially butanol production and substrate utilization were observed. Then, the 
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ABE production was enhanced up to 16.2 g/L and 17.7 g/L, respectively, for fed-batch 

and semi-continuous cultures. 

 Cassava pulp waste with and without cellulase pretreatment was used 

for ABE production by the mixed culture of C. butylicum TISTR 1032 and B. subtilis 

WD 161 in fed-batch culture. It was found that, there were considerable amounts of 

ABE productions from cassava pulp waste either with or without cellulase 

pretreatment (8.9 and 8.0 g/L, respectively). When semi-continuous fermentation was 

employed, the ABE production from cassava pulp waste without cellulase pretreatment 

was increased from 8.0 to 8.7 g/L. These results indicated that mixed culture of aerobic 

Bacillus and anaerobic Clostridium may play the key role for developing the 

industrialized fermentation of ABE from starchy biomass and its waste.  
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CHAPTER 1 

 

INTRODUCTION 

  

 The use of energy derived from biological reactions (bio-energy) 

provides many advantages, perhaps the most important being the reduced dependence 

on a non renewable fossil fuel source. Also it can provide a good opportunity to convert 

renewable organic waste materials into energy (Parekh et al., 1999). The most 

commonly used metabolically derived liquid bio-energy compounds are ethanol and n-

butanol. Butanol, along with small amounts of acetone and ethanol, are produced 

biologically from renewable biomass by Clostridium spp. under strictly anaerobic 

condition. This process is named “the acetone-butanol-ethanol (ABE) fermentation” 

(Jones and Woods, 1986) and has a high theoretical potential for replacing petro-

chemical derived energy. Butanol is more valuable than ethanol as it possesses many 

favorable physical properties such as a higher energy content, higher boiling point and a 

reduced need to modify combustion engines made for petroleum compounds. Butanol 

also has numerous applications in other fields e.g. food, plastics, and other industries 

(Jesse et al., 2002). This has resulted in a high demand for butanol, but the market for it 

is still tight due to its high production costs by fermentation reactions. Substrate costs 

can make up to about 63% of the total cost of butanol production (Dürre, 1998). This is 

not because of the expense of the substrate itself, but mainly because of the low 

efficiency of clostridium to convert substrate into butanol (Tashiro et al., 2004). This 

means that the yield of butanol is often low, and this together with the formation of by-

products leads to higher costs for butanol recovery (Dürre, 1998; Jesse et al., 2002). In 

addition, the maintenance of strictly anaerobic conditions for clostridium to grow 

requires special conditions such as addition of costly reducing agents into the medium 

and flushing with N2 gas during the early stages. These are the factors that additionally 

increase the cost of the fermentation process.  

 There are several possible ways to reduce the costs of producing 

butanol by fermentation such as by using a lower cost fermentation substrate, by using 
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a simple and low cost medium or by optimizing the fermentation conditions to 

improve the efficiency of converting substrate to butanol. Genetic engineering has 

been highly effective in producing strains able to utilize substrates more efficiently, so 

that the need to pretreat substrates is reduced (Dürre, 1998). However, genetic 

engineering may require that the genetically modified bacteria should be contained to 

allay fears that there could be problems with safety concerns for human health or their 

potential effects on the environment (Zaldivar et al., 2001). Among the cheap and 

highly available substrates for ABE production, starch is one of the possible better 

choices, but starch utilization can be low due to the low activity of the amylases 

produced by most clostridia. Mutation or genetic engineering can result in a strain with 

a higher capacity to utilize starch. In addition to the above concerns for negative 

effects on the environment, some mutated genes do not maintain their activity over a 

long period of time, and in addition, there is sometimes a need to supply special media 

and conditions to maintain the transformed or modified genes (Zaldivar et al., 2001). 

The pre-hydrolysis of starch by either commercial enzymes or by acids with high 

concentration at high temperature both have negative feedback consequences e.g. 

processes are costly, produce difficulties in handling procedures, and the treatment of 

substrate by acids results in a low sugar yield and formation of harmful by-products 

such as formate, furfurol, melanoids that can seriously inhibit the growth of the 

butanol producing clostridia (Zverlov et al., 2006). Thus, to increase substrate 

utilization and butanol yield, there have been several reports of using clostridia and 

other organisms to first facilitate hydrolyses of the substrates such as by a 

fungus/clostridial mixture. The fungus first hydrolyses the starch by producing 

amylase, and then butanol production was achieved separately by adding another 

clostridium species (Soni et al., 1982; Fond et al., 1983; Yu et al., 1985). However, all 

these mixed culture experiments were carried out under strictly anaerobic conditions 

and the cultures were randomly established. There has been one report of butanol 

production by the simultaneous co-culture of a Clostridium with a Bacillus that had 

been randomly isolated from the same soil sample as the Clostridium but the role of 

the Bacillus in the co-culture was not clearly mentioned (Stevens et al., 1988) and 

there was no suggestion on how to set up this mixed culture for enhancement of the 

target product(s).  
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 The utilization of starch for ABE production by a Clostridium spp 

includes two processes, starch hydrolysis by amylolytic enzymes to produce glucose for 

the cells growth together with acid (acetic and butyric) production (acidogenesis) and 

the conversion of these acids into ABE products (solventogenesis). These two processes 

are influenced by a number of factors e.g. the amylolytic activities and ABE producing 

capacity of Clostridium both being influenced by the medium composition (starch 

concentration, nitrogen source, and C/N ratio). A high sugar concentration (160 g/L) 

was found to be toxic to clostridial cells (Jones and Woods, 1986); but with a low sugar 

concentration organic acid reassimilation is terminated due to an insufficient amount of 

energy-rich metabolites e.g. ATP or NADH (Shinto et al,., 2007). In the presence of 

excessive amounts nitrogen (corresponding to a low C/N ratio); carbon utilization is 

completed more rapidly and cells grow better. In contrast, when the nitrogen supply 

becomes limiting carbon utilization is less effective. However, the relationship between 

the C/N ratio and ABE production is quite complicated. It was found that better growth 

and ABE production are normally observed at a lower C/N ratio. At higher C/N ratios 

(> 7.27), cell growth and ABE production were decreased (Lai and Traxler, 1994). On 

the other hand, the absolute concentrations of carbon and nitrogen were found to have 

more effect than the C/N ratio in the research of Madihah et al. (2001).  

 The conventional method for optimizing a process is to change one 

variable at a time while keeping the others at constant levels (Liu and Tzeng, 1998). 

Thus, the interactions between many variables are not considered. This limitation can be 

overcome by using response surface methodology (RSM) where the combined effects of 

all variables are determined through mathematical and statistical inference from 

experimental design to the  analysis of results (Silva and Roberto, 2001). There have 

been several research programs that have used conventional method to optimize ABE 

production from starch using pure cultures of Clostridium (Linden et al., 1985; McNeil 

and Kristiansen, 1986; Lai and Traxler, 1994; Madihah et al., 2001). Only in the 

research of Badr and Hamdy (1992), was RSM used to optimize ABE production from 

sweet potato using the pure culture of C. acetobutylicum P262. 

 In addition, the onset of ABE production is normally associated with a 

decrease in the pH of the medium, and this is related to the accumulation of 

undissociated acids (acetic and butyric). At a pH 6.0 only 6% of the total amount of 
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butyric acid is in the undissociated form, whereas at pH of 4.5, 66% occurs in the 

undissociated form (Haggstrom, 1985). Solventogenesis is triggered when the 

undissociated butyric acid reaches a critical concentration (1.5-1.9 g/L) that initiates 

solvent production only after the pH of the mash had decreased to around 4.5 to 5.0. 

During solventogenesis butyric and acetic acids are utilized and ABE are produced 

resulting in a pH increase of the broth. It has been reported that organic acids are 

produced more rapidly at a higher pH whereas solvent production is enhanced at lower 

pH (Jone and Woods, 1986). As, butyric and acetic acids are growth associated 

products, and Clostridium normally grows better at a high pH value; a low pH value is 

not suitable for Clostridial growth therefore acids production, but at low pH value acids 

exist in the form of undissociated forms which would stimulate ABE. Thus, the effect of 

controlling the pH on growth, amylase, acids and ABE production should be 

investigated.  

 In addition to the problems of low substrate utilization and production of 

by- products; product and substrate inhibition are also among the factors that cause 

limitations for butanol production. When butanol in the culture reaches 13 g/L or 

substrate  is provided at  more than 160 g/L, conditions will become toxic to the cells 

and the fermentation process ceases, but when the carbon is limited (e.g. glucose is 

below 7 g/L), only acids are formed (Jone and Woods, 1986). It has been suggested that 

using high substrate concentration would increase productivity, and shorten the 

fermentation time. However, in the case of using starch as the substrate, high starch 

concentrations cause a higher viscosity that hinders amylase excretion and ABE 

production (Madihah et al., 2001). To maintain a sufficient amount of substrate in the 

culture to allow for optimum cell growth, amylase and ABE production over the 

fermentation process, and to reduce the product inhibition problems, fed-batch 

integrated with gas stripping to remove the product from the culture has been employed. 

Gas stripping was selected due to a number of advantages over the other techniques e.g. 

simpler to handle, and more economically beneficial (Ezeji et al., 2004). There have 

been a few reports on investigating the efficiency of a fed batch fermentation (Tashiro et 

al., 2004; Zains et al., 2007). This differs from the batch system in that the substrate 

concentration within the reactor can be maintained at a lower level and introducing 

fresh medium can prevent product inhibition caused by product accumulation.  
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 In this study, screening for a suitable medium and culture conditions for 

cell growth and ABE production of a pure culture of Clostridium butylicum TISTR 

1032 various medium types and conditions with and without anaerobic pretreatment 

were tested. A high amylase producing Bacillus subtilis WD 161 was used to co-culture 

with C. butylicum. Firstly, cell growth and amylase production of B. subtilis was 

investigated under aerobic and anaerobic conditions. Then, the mixed culture of C. 

butylicum and B. subtilis were evaluated for enhancement of ABE production from 

cassava starch. The medium components for ABE production by the mixed culture were 

optimized by using conventional methods. Additionally, the effect of each medium 

component as well as their interaction on amylase and ABE production by the mixed 

culture was determined by using RSM. The mixed culture was set up in an anaerobic 

bioreactor. Optimizing the process including pH control, fed-batch mode, and product 

recovery by gas stripping techniques were employed for further enhancement of ABE 

production. 

 

Objectives of the study  

 

1. To study the growth and ABE production of a pure culture of Clostridium 

butylicum TISTR 1032 under conditions with and without anaerobic 

pretreatment using various media. 

2. To enhance ABE production using a mixed culture of C. butylicum TISTR 1032 

with the amylase producing Bacillus subtilis WD 161. 

3. To optimize the medium components for ABE production from cassava starch 

by the mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161. 

4. To determine the effect of each medium component as well as their interactions 

on amylase and ABE production by the mixed culture of C. butylicum TISTR 

1032 and B. subtilis WD 161 using Response Surface Methodology (RSM). 

5. To optimize the process for ABE production by the mixed culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 from cassava starch and its pulp 

waste.  
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CHAPTER 2 

 

LITERATURE REVIEWS 

 

1. Overview on butanol 

 

 Butanol is a four carbon alcohol classified in the same family with 

methanol (1-carbon), ethanol (2-carbon) and propanol (3-carbon). Butanol is used 

primarily as an industrial solvent e.g. in producing synthetic rubber, lacquer, paint, 

rayon, detergents, and brake fluids and as solvents for fat, waxes, and resins 

(http://www.butanol.com). Besides sharing the common advantages of biological fuels 

with ethanol butanol provides significant additional environmental benefits: forming no 

green house gases, no sulfur oxide (SOx) or nitrogen oxide (NOx) when burned; 

reducing the dependence on fossil fuels, and opening of new markets for agricultural 

and diary food wastes. Butanol has more advantageous over ethanol due to its more 

favorable physical properties such as low vapor pressure, low solubility with water, and 

complete solubility with diesel fuel. Butanol has a higher energy content than ethanol 

and almost the same level as gasoline: 110,000 Btu’s per gallon for butanol vs. 84,000 

Btu per gallon for ethanol, while gasoline produces about 115,000 Btu’s per gallon. 

Butanol is six times less “evaporative” than ethanol and 13.5 times less evaporative than 

gasoline, making it safer to use in high temperature areas. Butanol can be shipped 

through existing fuel pipelines whereas ethanol must be transported via rail, barge or 

truck. Butanol can be used as a complete replacement for gasoline e.g. 100%, or any 

other percentage. Ethanol can only be used as an additive to gasoline up to about 85% 

and then only after significant modifications to the gasoline engines 

(http://www.butanol.com). The world market for butanol is about 350 million gallons 

per year. In the US butanol currently sells for about US $ 3.70 per gallon in bulk (barge) 

and US $ 6.80 in 55 gallon drums (http://www.butanol.com). Butanol can be produced 

by the anaerobic fermentation process of the strictly anaerobic bacterium clostridia in 

which butanol is produced along with acetone and a small amount of ethanol. This 

process is named as the ABE fermentation. An alternative way to produce butanol is by 

chemical synthesis from fossil-oil-derived ethylene, propylene, and triethyl-aluminum 
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or carbon monoxide and hydrogen (Zverlov et al., 2006). However, the production of 

butanol by chemical synthesis has a number of disadvantages e.g. dependence on 

materials from fossil oil, forming green house gases: carbon dioxide, and 

hydrofluorocarbons (HFCs) (http:www.butanol.com).   

 

2. History of butanol production from biological source 

 

 The formation of butanol in a bacterium was first reported by Pasteur in 

1861. At the beginning of the 20th century, when the prices for natural rubber 

drammatically increased due to the high demand this led to efforts to produce synthetic 

substitutes.  Chaim Weizmann, a chemist, realized that the key to the success of a 

synthetic rubber manufacturing process was the production of butanol or isoamyl 

alcohol by fermentation. Between 1919 and 1914, he successfully screened several 

productive strains, one of them, later named as Clostridium acetobutylicum produced 

the highest amounts of acetone and butanol from various starchy substrates (Jones and 

Woods, 1986). Weizmann is the person who first ran the production plant for butanol 

from starches. During the World War I, due to the need for acetone for the production of 

munitions, the first large scale industrial plants were set up in Canada and USA, by that 

time butanol was considered an unimportant by-product and kept in storage tanks. 

However, when new methods of automobile production were introduced in the USA, 

there were more cars produced and these needed to be painted and it was found that 

butanol was the ideal solvent for lacquer paints. Thus, more new butanol plants were 

built, but due to the constraint of substrate price, most of the industrial plants changed 

the substrate to molasses and screened for new clostridial strains, and one of the best 

isolated strains was C. sacchaributylicum (Keis et al., 2001). In the 1950s, butanol 

production in Western countries was very productive, but because of the persistent 

problems with bacteriophage infections, and the unavailability of molasses (as the sugar 

processing was improved and molasses was also used as feed addictive for pig 

breeding), the production declined. Moreover, cheaper butanol was being produced 

from chemicals and fuels so ABE fermentation ceased in Western industrialized 

countries during the 1960s. Even after the oil crisis in the 1970s, the potential utilization 

of renewable resources e.g. cane molasses, corn, soft wood  and by-products e.g. whey 
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from the dairy industries  to produce biological fuels were raised, and much research 

was carried out to investigate the production of ABE from various different sources of 

biomass (Jones and Woods, 1986). However only a few plants survived into the 1980s, 

including the plant in Germiston, South Africa. Now, only China still runs biological 

ABE, and about 50% of acetone requirements are still met by fermentation processes 

(Dürre, 1998; Zverlov et al., 2006). 

 The acetone-butanol-ethanol (ABE) fermentation industry in China was 

started in the early 1950s in Shanghai and expanded rapidly thereafter. At its peak, there 

were about 30 plants all over the country and the total annual production of solvents 

reached 170,000 tons. But due to the same factors that existed  in other areas in the 

world, at the end of the 20th century due to the rapid increase of petrochemicals, the 

production of butanol also decreased and by the end of the 1990’s all fermentation 

plants were closed . In general the strategies of the plants in China were to operate 

continuous fermentation processes, to maintain the maximal growth and acid production 

phase, with adoption of multiple stages in the solvent phase to allow gradual adaptation 

to increasing solvent, and the incorporation of stillage to offer enough nutrients to delay 

cell degeneration (Chiao and Sun, 2007; Ni and Sun, 2009). 

 

3. General characteristics of Clostridium 

 

 A member of the genus Clostridium is characterized as: a Gram positive, 

anaerobic, rod shaped bacterium forming heat-stable endospores. About 120-160 

species have been described since the establishment of the genus in 1880. Between 70 

to 80% of these species are saprophytic bacteria that are harmless to animals. 

Nevertheless, up to 25 species represent minor pathogens and 13 species can be 

regarded as major pathogens. Solvents producing Clostridium are harmless saprophytes 

and have been investigated from various sources e.g. broad bean roots, market potatoes, 

broken maize grains (Calam, 1980) and soil from different depths in Colombia 

(Montoya et al., 2000). Among these, the best strains for butanol production in the 

research of Calam (1980) came from bean roots and potatoes. Result in the research of 

Montoya et al. (2000) showed the best chance to find good solvent producing 

Clostridium was soil from cultures of tubers, chrysanthemum and grass. 



9 
 

 So far, a large number of solventogenic clostridia have been described, 

but of them only about 40 solventogenic strains have been deposited in public strain 

collection (Zverlov et al., 2006). It has generally been accepted that the industrial 

clostridial strains are classified as Clostridium acetobutylicum as they are all phenotypic 

similar. But, the research of Woods (1995) based on DNA hybridization and 16 S 

ribosomal RNA gene- sequencing studies concluded that the solventogenic strains could 

be differentiated into at least two different groups named as amylolytic and 

saccharolytic clostridia (Woods, 1995). Lately, the clostridial solventogenic strains have 

been classified into four genetically distinct groups including C. acetobutylicum 

(Weizman strain and the type strain ATCC 824 are in this group), C. beijerinkii, and  

two other groups of unnamed species. Differences were also found in butanol producing 

capacity (ranging from 10 to 24 g/L) and solvent yield (between 6.8 and 33.2%) of these 

four species (Zverlov et al., 2006).  

 

4. Butanol formation 

 

      4.1 Solvent production pathway of Clostridium  

 ABE are produced during the later stages of a batch fermentation of 

clostridial culture under the appropriate conditions. There are two distinct phases in the 

ABE formation pathway acidogenesis followed by solventogenesis. Typically, during 

acidogenesis, cells grow exponentially with the formation of acetic and butyric acids 

and ATP. The formation of these acids causes the pH of culture broth to decrease. When 

the culture enters the stationary phase, the metabolism of the cells is shifted to solvent 

production (solventogenic phase), acetone, ethanol and butanol are produced. The 

solventogenesis is initiated by the accumulation of undissociated fatty acids. During the 

solventogenic phase, the organic acids are reutilized and converted into the reduced end 

products butanol and acetone that result in an increase in pH of the broth (Jones and 

Woods, 1986). It is reported that organic acids (butyric and acetic) production is 

enhanced at higher pH, while solvents are mainly produced at a lower pH. The organic 

acids in broth have been proved to trigger the metabolic switch from the acidogenic 

stage to solventogenesis since the addition of organic acids into the fermentation 
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medium can stimulate solvents production (Jones and Woods, 1986; Tashiro et al., 

2004). However, the exact mechanism of this is still not fully understood.   

 The solvent producing Clostridium spp ferment glucose, sucrose, and 

starch via the Embden-Meyerhof pathway (EMP) (Figure 1). Moreover, they also utilize 

glycerol, other hexoses, pentoses, and oligosaccharides e.g. cellobiose, lactose, 

raffinose, mannose, xylose and arabinose (Woods et al., 1995). The pentoses are 

metabolized through the pentose phosphate pathway via pentose-5-phosphate resulting 

in the formation of fructose 6- phosphate and glyceraldehydes-3 phosphate that join the 

glycolytic pathway. 

 In the primary metabolism of C. acetobutylicium, hexoses and pentoses 

are converted to pyruvate, ATP and NADH are formed. Subsequently, pyruvate is 

oxidatively decarboxylated to acetyl-CoA by a pyruvate-ferredoxin oxidoreductase. 

Some of the reducing equivalents generated in this step are converted to hydrogen by an 

iron-only hydrogenase. Acetyl-CoA is the branch-point intermediate, leading to the 

production of organic acids (acetate and butyrate) and solvents (acetone, butanol and 

ethanol). Acety-CoA is converted to acetate by phosphotransacetylase and acetate 

kinase. In the central pathway, thiolase catalyses the condensation of two acety-CoA 

molecules to form one acetoacetyl-CoA molecule, the precursor of the four carbon 

solvents. This reaction plays an important role in determining the ratio between the two-

carbon (acetate, ethanol) and the three- carbon (acetone) and four-carbon products-

(butyrate and butanol). The activity of thiolase is regulated in vivo by the coenzyme-A 

to acetyl-CoA ratio. In three consecutive steps, acetoacetyl-CoA is further reduced to 

butyryl- CoA by butyryl-CoA hydroxybutyryl-CoA dehydrogenase, crotonase and 

butyryl-CoA dehydrogenase. Butyryl-CoA is converted to butyrate by 

phosphotransbutyrylase and butyrate kinase. Acetone formation from acetoacetyl-CoA 

involves a CoA transferase and an acetoacetate decarboxylase. Ethanol and butanol are 

produced from acetyl-CoA and butyryl-CoA, respectively, in two reductive steps 

catalysed by aldehyde and alcohol dehydrogenases.  
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Figure 1. Biochemical pathways in Clostridium acetobutylicum. 

 

 

 

 

 

 

 

Source: Woods (1995) 

  

 The solventogenetic genes of C. acetobutylicum are located on a large 

plasmid thus it is unstable and easily causes degeneration of the solventogenesis during 

Reactions that predominate during the solventogenic phase of the fermentation are shown by thick arrows. 
(a) glyceraldehyde-3-phosphate dehydrogenase; (b) pyruvate-ferredoxin oxidoreductase;(c) NADH-
ferredoxin oxidoreductase; (d) NADPH-ferredoxin oxidoreductase; (e) NADH-rubredoxin oxidoreductase; 
(f) hydrogenase; (g) phosphate acetyltransferase (phosphotransacetylase); (h) acetate kinase; g) thiolase 
(acetylCoA acetyltransferase); (i) 3 hydroxybutyryi CoA dehydrogenase; (k) crotonase; (I) butyryl-CoA 
dehydrogenase; (m) phosphate butyltransferase (phosphotransbutyrylase); (n) butyrate kinase; (m) 
acetyldehyde dehydrogenase; (p) ethanol dehydrogenase; (q) butyraldehyde dehydrogenase; (r) butanol 
dehydrogenase; (s) acetoacetyl-CoA:acetate/butyrate:CoA transferase; (t) acetoacetate decarboxylase; (II) 
phosphoglucomutase; (v) ADP-glucose pyrophosphorylase; (w) granulose (glycogen) synthase; (x) 
granulose phosphorylase. Abbreviations: CoA, coenzyme A; Pi, inorganic phosphate; Rd Ox, rubredoxin 
oxidase; Rd Red, rubredoxin reductase; Fd Ox, ferredoxin oxidase; Fd Red, ferredoxin reductase. Dotted 
lines indicate pathways that are not operational under these conditions; numbers in brackets represent the  
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long fermentations which is characterized by acid accumulation without a switch to 

solventogenesis (Kashket and Cao, 2007). Moreover, sporulation genes of this species 

are also located on the plasmid. So, degeneration is commonly found in this species 

group. In Clostridium beijerinckii and possibly also other butanologenic strains the 

solventogenic genes are located on the chromosome (Wilkinson et al., 1995). The 

solventogenic degeneration observed with these strains may have other causes and/or be 

less dominant. 

 

4.2 Factors affecting solvent production  

 4.2.1 pH and butyric acid   

 pH has been considered to be a key factor in determining the productivity 

of ABE fermentation. Along with some other factors e.g. undissociated butyrate 

concentration, it is most likely the trigger that shifts from acidogenesis to 

solventogenesis. A number of reports have confirmed that cultures maintained at high 

pH produce mainly acids, whereas in cultures maintained at a low pH solvent 

production is usually predominant (Jones and Woods, 1986; Kim et al., 1984; Stevens 

et al., 1988). However, the pH range over which solvent formation may occur appears 

to vary quite widely depending on the particular strain and the culture conditions used. 

 It is found that the pH range in which solvents production occurred was 

around 4.5 to 5.0. However, this also varies with particular strains and culture 

conditions used. Bahl et al. (1982) found that when C. acetobutylicum was grown in 

continuous culture under glucose limitation at neutral pH and varying dilution rates the 

only fermentation products formed were acetate, butyrate, carbon dioxide and molecular 

hydrogen. Acetone and butanol were only formed when the pH was decreased below 

5.0 (optimum pH was 4.3). The addition of butyric acid (20 to 80 mM) to the medium 

with a pH of 4.3 resulted in a switch from acidogenesis to solventogenesis (Bahl et al., 

1982). 

 Kim et al. (1984) reported that in a pH controlled batch fermentations, no 

solvents were produced at pH 5.8 whereas good solvent levels were obtained at a pH of 

4.5 (Kim et al., 1984). The optimum pH range for solvent production is much higher for 

C. acetobutylicum P262 and related strains (P265, P270) (Robson et al., 1982). In 

laboratory scale experiments, these strains provided good levels of solvent production 
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within the pH range of 5.0 to 6.5, and when it was decreased to a pH below 4.5, during 

the early part of the fermentation, growth and metabolism of the cells were inhibited 

and no solvents were produced. In the industrial fermentation the initial pH of the 

fermentation medium was about pH 6.0, and during the initial phase of the fermentation 

the pH decreased to about 5.2 at the breakpoint, after which it increased, reaching about 

5.8 at the end of the fermentation. 

  An Egyptian isolate of C. acetobutylicum was reported to produce more 

solvents when the cultures were maintained at a pH of 6.4 (Fouad et al., 1982). The 

production of solvents by a strain of C. beijerinckii (VPI 13436) maintained at a pH of 

6.8 was reported by George and Chen (1983). Other research work on C. 

thermosaccharolyticum showed that the butanol/butyrate ratio was higher during the 

growth at neutral pH (7.0) than at acidic pH (4.5) and the production of butanol could be 

further stimulated by the addition of butyrate (Jones and Woods, 1986). 

  In an experiment of Marchal et al. (1985) the pH of the unbuffered broth 

was initially decreased by self-acidification to a value of 5. Then, the pH was brought 

back to 6.5-6.7 stepwise and then freed of control. This resulted in a solvent 

concentration of 23-24 g/L (Marchal et al., 1985). The switch from acidogenesis to 

solventogenesis is normally associated with a fall in the pH of the medium to about 5 

linked to the accumulation of acid end products e.g. butyric, acetic acids. At pH 6.0 only 

6% of the total amount of butyric acid is in the undissociated form, whereas at pH 4.5, 

66% occurs in the undissociated form (Jones and Woods, 1986). Butyric, especially in 

its undissociated form has been found to play an important role in triggering solvent 

formation. The presence of a critical concentration of undissociated butyric acid (1.5-1.9 

g/L) was also reported to be required for the triggering of solvent formation (Jones and 

Woods, 1986). Gottschal and Morris (1981) reported that the addition of acetate and 

butyrate (10 mM each) to batch culture of C. acetobutylicum maintained at pH 5.0 

resulted in a rapid induction of solventogenesis, and this was accompanied by a 

decrease in the specific growth rate and the rate of hydrogen production. The addition of 

butyric acid (20 to 80 mM) to the medium with a pH of 4.3 resulted in a switch of 

acidogenesis to solventogenesis (Bahl et al., 1982). However, the excretion of butyric 

acid ceased when the total butyric acid concentration reached 8.7 g/L (Soni et al., 1982) 

or the undissociated butyric acid reached 1.7 to 1.9 g/L (Monot et al., 1984). 
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 Besides butyric acids, acetic acid has also been found to have certain 

effects on the production of butanol. The addition of acetate or propionate to an 

uncontrolled-pH batch culture of C. acetobutylicum does not affect the initiation of 

solventogenesis but does enhance the final solvent concentration. When 30 mM acetate 

was added at 14 h the final concentration of butanol and acetone were 37 mM and 28 

mM, respectively, higher than those in the control (18 mM, and 4.6 mM, respectively) 

(Hüsemann and Eleftherios, 1990). Chen and Hans (1999) found that the addition of 

sodium acetate to MPS medium increased and stabilized solvent production of C. 

beijerinckii. When growing C. beijerinckii BA 101, a mutant derived from C. 

beijerinckii NCIMB 8052, in MP2 medium containing 60 mM sodium actate and 8 % 

glucose the concentration reached 32.6 g/L total solvents and of this 20.9 g/L was 

butanol. This is the highest solvent and butanol concentration produced by that strain 

when grown in batch culture (Chen and Hans, 1999; Zverlov et al., 2007). However, 

Tashiro et al. (2004) found that addition of acetate to the culture of C. acetobutylicum 

did not enhance specific butanol production rate significantly, but specific acetone 

production rate was enhanced from 0.02 g/g/h to 0.088 g/g/h. 

 The effect of pH (between 5.0 and 6.3) on butyric acid fermentation of 

xylose by Clostridium tyrobutyricum was studied. At pH 6.3, the fermentation gave a 

high butyrate production of 57.9 g/g/h with a yield of 0.38–0.59 g/g/h xylose and a 

reactor productivity up to 3.19 g/g/h. However, at low pHs (<5.7), the fermentation 

produced more acetate and lactate as the main products, with only a small amount of 

butyric acid (Zhu and Yang, 2004). 

 It is obvious that the pH and organic acid like undissociated butyric acid 

are the key factors for formation of solvents, but the mechanism of how they work still 

remains unclear. However it has been confirmed that the influence of pH could be 

correlated with the control by undissociated butyric acid (Jones and Woods, 1986). 

4.2.2 Temperature  

 Some research has been carried out to determine the effect of 

temperature on solvent production. McCutchan and Hickey (1954) found that solvents 

productivity by three different solvent-producing strains remained fairly constant at 

around 31% at 30 and 33°C, but decreased to 23-25% at 37°C. Similar results were 

obtained in the study with C. acetobutylicum NCIB 8052, in which solvent yields were 
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found to decrease from 29% at 25oC to 24% at 40°C, although the fermentation time 

decreased as the temperature was increased, but reduction was found for only acetone 

production, while the yield of butanol was unaffected. This is in contrast to earlier 

findings in which an increase in the butanol ratio was obtained by decreasing the 

temperature of the fermentation from 30 to 24°C after 16 h. This result was found in the 

research of Carnarius on the  U.S. Patent 2,198,104, 1940 (Jones and Woods, 1986) and 

other experiments with C. acetobutylicum fermentation in which the temperature ranged 

from 25 to 40oC  it was found that the solvent productivity reached maximum when the 

fermentation temperature was 35oC (McNeil and Kristiansen, 1985).  

 Low temperature was found to be the cause of retrogradation when using 

starch solution as feed for ABE production. The continuous reactor fed with cornstarch 

solution (feed temperature 19°C) produced approximately 6.0 g /L total ABE. 

Increasing the feed storage temperature to 37 °C improved ABE production to 7.2 g/ L 

suggesting that retrogradation was occurring more rapidly at 19 °C. The use of soluble 

starch, which is less prone to retrogradation, resulted in the production of 9.9 g/ L ABE 

at 37 °C feed storage temperature, as compared to 7.2 g/ L ABE when cornstarch was 

used (Ezeji et al., 2004). 

4.2.3 Butanol concentration 

 During the solvent-producing phase, cell metabolism usually continues 

until the concentration of the total ABE  reaches inhibitory levels of around 20 g/ L (or 

butanol concentration of 13 g/L), after which further cell metabolism ceases (Jones and 

Woods, 1986; Ezeji et al., 2004). This causes a major limitation in the industrial scale 

production. Of the solvents produced, butanol is the most toxic, and it is the only one 

produced in inhibitory concentrations during the fermentation. Solvent production 

ceases when the concentration of butanol reaches about 13 g/L in the industrial 

fermentation process (Jones and Woods, 1986). Butanol at the level of 13 g/L was 

completely inhibitory to the growth of C. saccharoperbutylacetonicum (Soni et al., 

1982). The concentrations of acetone and ethanol, on the other hand, do not appear to 

reach inhibitory levels during the fermentation. The addition of acetone and ethanol 

reduced growth by approximately 50% at a concentration of around 40 g/L, and total 

growth inhibition occurred at a concentration of about 70 g of acetone and 50 to 60 g of 

ethanol per liter (Costa and Moreira, 1983). Butanol (and other aliphatic alcohols with 
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more than four carbon atoms) caused an increase in the ratio of saturated to unsaturated 

fatty acids of the cell membrane. This resulted in an increase in membrane fluidity that 

led to the destabilization of the membrane due to the disruption of the phospholipid 

components and disruption of membrane-linked functions. However, the sequence and 

relationship of these events are not known (Jones and Woods, 1986; Ezeji et al., 2004). 

4.2.4 Roles of C and N 

 Only acids were formed when carbon limited growth. In batch culture, 

when glucose was below 7 g/L or in fed batch culture with a feed rate less then 4 g/L 

per day no solvent was produced. It is generally accepted that under carbon limited 

conditions, the amount of acid end products formed was not sufficient to induce the 

switch from acidogenesis to solventogenesis or organic acid reassimilation is terminated 

due to an insufficient amount of energy-rich metabolites e.g. ATP or NADH (Shinto et 

al., 2007). A sufficient amount of sugar (glucose higher than 7 g/L) is determined to be 

essential for maintaining of solvent production, with the presence of a large amount of 

sugar. However, a high sugar concentration (160 g/L) has been shown to be toxic to 

clostridial cells (Jones and Woods, 1986; Ezeji et al., 2005b).  

 There have been a few reports on the optimum starch concentration for 

direct fermentation of starches into ABE this aspect by pure culture of Clostridium, but 

there has not been any research using mixed culture for direct fermentation of ABE 

from starch. It was reported that corn starch at a concentration of 5-6.5% (w/v) was 

found suitable for solvent production up to 3.8% (w/w) based on sugar consumed 

(McNeil and Kristiansen, 1986). Maize and potato starch at a concentration of 5% (w/v) 

have also been used for solvent fermentation to give the yield ranging from 1.6 to 2.6% 

(w/v) (Linden et al., 1985).  Sago starch at the concentration of 50 g/L was found 

optimum for ABE production (18.82 g/L) by the pure culture of C. acetobutylicum 

(Madihah et al., 2001). 

 The C/N ratio in the medium has been determined to be one of the 

important factors that affect the growth and solvent production of Clostridium. Lai and 

Traxler (1994) found that cells grew well and more solvents were produced at a lower 

C/N ratio e.g. 0.2. When the ratio is higher than 0.2, the cell growth and sugar 

utilization was reduced and no solvents were produced due to the limitation of nitrogen 

even when sugar was abundant (Long et al., 1984; Lai et al., 1994). Roose et al. (1985) 
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also found that, at a very low C/N ratio (1.25) with a pH of 4.5, acids were 

predominantly produced. However, when pH was controlled at 3.7, solvent production 

was enhanced at a low C/N ratio. Recently, Madihah et al. (2001) reported that when C. 

acetobutylicum was grown in gelatinized sago starch to produce ABE, the individual 

concentrations of nitrogen and carbon influenced solvent production to a greater extent 

than did the C/N ratio. In fermentations using a fixed concentration of starch of 50 g/L, 

total solvent concentration decreased from 26.98 (g/L) to 2.63 (g/L) along with an 

increasing C/N ratio from 3.6 to 42.8. In contrast, for a fermentation using a fixed 

concentration of nitrogen (5 g of yeast extract and 2 g of NH4NO3) total solvent 

increased with increasing C/N ratio up to a value of 20 and then decreased slightly 

above this value (Madihah et al., 2001). 

 

5. Overview on mixed culture for ABE production 

 

 Clostridia and Bacilli are commonly associated in nature e.g. water and 

sludge. Some research work that has investigated the feasibility of growing bacilli in 

anaerobic conditions found that anaerobic growth of strains of B. anthracis, B. cereus, 

and B. subtilis occurred in both synthetic and nonsynthetic glucose-containing media. 

No spores were formed by either organism under anaerobic conditions, but there was 

production of lactic, succinic, formic, and acetic acids; acetylmethylcarbinol, 2, 3-

butylene glycol and glycerol as fermentation products of glucose (King and Stein, 1950; 

Puziss and Rittenberg, 1957). These confirmed that oxygen limited Bacillus would still 

survive. 

 Several types of mixed culture have been used. The earliest co-cultures 

used to try to increase butanol production were with fungi either separately or together 

with a fungus that hydrolyzed cellulose and hemicelluloses. Mixed-culture filtrates from 

the cellulolytic fungi Trichoderma reesei and Aspergillus wentii were used to obtain 

fermentable sugars from bagasse and rice straw. After treatment to remove undesired 

impurities, C. saccharoperbutylacetonicum produced 16 g/L from the hydrolysate. 

Fermentation of alkali-pretreated wheat straw, using C. acetobutylicum in a 

fermentation medium supplemented with a cellulase preparation from T. reesei, 



18 
 

produced solvent concentrations of 17.3 g/L and solvent yields of 18.3% with respect to 

pretreated wheat straw. These results were obtained after 36 h (Soni et al., 1982). 

 C. thermocellum cocultured with C. acetobutylicum showed an efficient 

utilization of all hydrolysis products derived from the lignocellulose substrates but the 

majority of the fermentation products were acids, and little or no solvent was detected 

just as happened in the case of Fond et al. (1983). The results did not change even with 

the addition of glucose into the culture (Yu et al., 1985). Berstrom and Foutch (1983a) 

designed a series of mixed cultures and found that using the co-culture of C. butylicum 

and C. pasteurianum they obtained consistently higher product concentrations  when 

compared with the mono cultures. In their system, the butyric acids produced by an acid 

producing species (C. butylicum) was then converted into butanol by the second species 

(C. pasteurianum). But the total butanol concentration yield from their research was 

lower when compared to the single-culture fermentation reported in the literature. Other 

clostridial species have been co-cultured with other organisms such as C. 

thermolacticum with Methanothermobacter thermoautotrophicus and Moorella 

thermoautotrophica  in an acetate fermentation  from lactose (Collet et al., 2003) or C. 

butyricum and Enterobacter aerogenes for hydrogen production from sweet potato 

starch (Yokoi et al., 2001). In both these cases, the target products obtained from mixed 

cultures were higher than those of the monoculture. However, references on butanol 

production by mixed cultures of a clostridia and an aerobe are very poor. We are aware 

of only one research report on the production of butanol from mixed cultures of C. 

beijerinkii and Bacillus cereus under a controlled pH of 5.5. This research obtained 

higher butanol concentrations (2.00 g/L) than that of the monoculture of C. beijerinkii 

(0.8 g/L) (Stevens et al., 1988). Recently, Chang et al. (2008) employed mixed culture 

of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen 

production. The mixed culture enhanced Hydrogen production from 40 mL/L of the 

pure culture of Clostridium to 90 mL/L (Chang et al., 2008) 
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6. Overview on the production of butanol from starch 

 

       6.1 Characteristics of starch  

 Starch is the major reserve carbohydrate in higher plants that exists in the 

form of water soluble granules and includes two types of polymers: amylose (normally 

20-30%) and amylopectin (normally 70-80%) (Madihah et al., 2001). Amylose is made 

up of glucose units linked by an α -1, 4-glycosidic bond. The carbon 1 of a glucose unit 

is linked to carbon 4 of the other glucose unit. The majority of linear chains are 

interlinked at branch points by α -l, 6 glycosidic bonds to form a lightly branched 

structure but compared to amylopectin the degree of branching in amylose is very much 

less. In amylopectin, there are the same α -1, 4 glycosidic linkages between two glucose 

units but linear chains contain about 20-25 α -1, 4 linked glucose residues interlinked by 

α -l, 6 glycosidic linkages to form a multibranched structure (Manners, 1989). The 

major impurities in commercial starch are fats, proteins and ash. Fats and proteins are 

present at levels of up to 1 and 0.5% dry basis respectively. The small quantities of 

minerals present are usually less than 0.2%. 

 The association of polymers by glycosidic linkage within the granules 

produces crystals that prevent the starch from being diluted in water. To provide a 

suitable substrate for rapid enzymatic hydrolysis it is necessary to disrupt the starch 

granules. This can be done by heating the starch in the presence of excess water at 55-

90oC when starch is gelatinized. Gelatinized starch gels are thermo-dynamically 

unstable structures, and on cooling re-association of the starch molecules through H-

bonding involving both amylose and amylopectin occurs, with a corresponding increase 

in viscosity, a phenomenon termed retrogradation. The rate of retrogradation depends 

on a number of variables including the structure of the amylose and amylopectin, the 

ratio of amylose to amylopectin, temperature, concentration of starch, botanical source 

of starch, and the presence and concentration of other ingredients (Kim et al., 1997; 

Jacobson et al., 1997). Retrogradation has been shown to significantly lower the 

enzymatic susceptibility of gelatinized starch to hydrolysis and this is a considerable 

problem especially in the production of butanol by fed-batch fermentation process when 

the fed medium is stored for a period of time before being used. 



20 
 

 The utilization of starch for solvent production involves a two-step 

process: breaking down internal α-1,4-glycosidic linkages of starch by α-amylase to 

oligosaccharides and hydrolysis of oligosaccharides by de-branching enzymes such as 

glucoamylase or amyloglucosidases that cut α- 1,4- and α-1,6-glycosidic linkages to 

release glucose from the none reducing ends of starch, and the subsequent fermentation 

of the glucose to solvents. 

 Cassava (Manihot esculenta), also called manioc, tapioca or yuca, is one 

of the most important food crops in the humid tropics, being particularly suited to 

conditions of low soil nutrient availability and able to survive drought. In Thailand 

Cassava starch is an important export commodity of Thailand, about 2x106 tonnes are 

exported annually, with cassava being mainly processed to meal and flour (Kosugi et 

al., 2009). Cassava contains 17-21% amylose. Due to the high market demand for 

cassava products, the Thai cassava starch industry is well established and has developed 

from small to large-scale with improved processing technology. At present, a 

production capacity of one factory is, on average, 200 tonnes starch per day (Sriroth et 

al., 2000). 

 

6.2 Amylolytic enzymes from Bacillus and Clostridium 

 In order to optimize the fermentation of the mixed culture, it is necessary 

to understand the characteristics of the amylolytic enzymes from each organism in the 

mixed culture. Because the excretions and activities of these enzyme will determine the 

level of substrate formation which directly affects the product formation. Amylases 

have been derived from different sources e.g. fungi, plants, bacteria but for commercial 

applications α-amylase is mainly derived from the genus Bacillus: B. licheniformis, B. 

stearothermophilus, B. amyloliquefaciens (Priest, 1977; Konsula and Liakopoulou-

Kyriakide, 2004). The characteristics of amylases from different hosts are different, in 

general amylases from bacilli are unstable at low pH, quite stable at high temperature, 

and perform best on potato starch e.g. an amylase isolated from a moderately 

thermophilic B. subtilis strain displayed maximal activity at 135oC and a pH 6.5 (Priest, 

1977). Potato starch hydrolysis resulted in a higher yield of reducing sugars in 

comparison to the other starches including rice, corn and oat (the amylase activity 

ranged from 30- 50 U/mL) (Konsula and Liakopoulou-Kyriakide, 2004). However, α- 
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amylase from B. acidocaldarius is stable at an acidic pH but very sensitive to thermal 

inactivation (Priest, 1977). 

 From Clostridia, several amylases are also found, such as an α-amylase 

from C. acetobutylicum ATCC 824, with an optimal pH of 5.6 and temperature of 45°C, 

was stable at an acidic pH but very sensitive to thermal inactivation (Swamy and 

Seenayya, 1996). Shih and Labbe (1995) found from C. perfringens NCTC 8679 

produced an α-amylase that showed a maximal activity (0.40 U/mL) at a pH of 6.5 and 

30oC in the absence of calcium. Swamy and Seenayya (1996) found another α-amylase 

produced by Clostridium thermosulfurogenes SV9 with optimal temperature and pH 

values for its formation of 60°C and 7.0, respectively. Maximum amounts of α-amylase 

(0.60 U/mL) were produced at the end of the exponential growth phase (12 h).  

 Glucoamylases have been found in some Clostridium including 

Clostridium thermohydrosuffuricum, C. acetobutylicum and C. thermosaccharolyticum. 

Notably, the glucoamylases produced by these bacteria, are thermostable. These 

enzymes allowed the hydrolysis of starch without significant a-amylase activity (Specka 

and Mayer, 1993). There are only a few references on glucoamylase from bacilli and it 

is possible that such an enzyme may be completely absent from bacilli (Priest, 1977; 

Rowe and Agyrios, 2004). 

 

6.3 Butanol production from starch  

 Initially, maize mash served as the main fermentation substrate for 

industrial production of butanol and provided a very positive amount of product (the 

original Weizmann strain, C. acetobutylicum, produced a yield of 28-30% solvents from 

3.8% starch) but later due to the shortage of substrate, by the beginning of the 1930s 

most fermentation processes were switched to molasses (Ennis and Maddox, 1985). The 

molasses based fermentations lasted until the beginning of the 1960s when the 

petroleum industry started to be dominant. Since then there have been few works on 

using starches as the substrate for butanol production (Grobben et al., 1993; Gutierrez et 

al., 1998, Nimcevic et al., 1998, and Madihah et al., 2001). 

 With the revival of interest in producing butanol from biological sources 

and with the huge availability of cheap starches, several research workers have 

attempted to employ different types of starch as the fermentation substrate for the 
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production of butanol. Starches recently investigated include potato, sago, corn, and 

tapioca (Grobben et al., 1993; Gutierrez et al., 1998, Nimcevic et al., 1998, and 

Madihah et al., 2001; Ezeji et al., 2004). Sago starch seems to be a more productive 

source than potato and tapioca starch due to its higher amylose content, 27-18% 

compared to 17-21%. The highest total solvent production (18.82 g/L) was obtained 

using a sago starch concentration of 50 g/L (Madihah et al., 2001). These results have 

confirmed that starch could serve as a promising source of substrate for butanol 

production.  

 

7. Overview on fermentation modes and product recovery by gas stripping 

 

       7.1 Fermentation mode 

 Butanol can be produced by either a batch fermentation mode, fed batch, 

immobilized cells or continuous fermentation. Of these the batch fermentation mode has 

been widely applied in industrial butanol production. Batch fermentation does not 

require much equipment and can provide higher final concentrations of butanol than a 

continuous fermentation process. However, it does suffer from a number of drawbacks. 

 As butanol is highly toxic to biological systems at quite low 

concentration (13 g/L), thus, the level of solvents obtainable in the final fermentation 

broth could reach only the maximum concentration of 2% maximum this is equal to 20 

g/L of total solvents (13 g/L of butanol). At higher concentrations cell growth is 

inhibited. This causes profound effects on the economics of product recovery and also 

limits the sugar concentration in the fermentation medium resulting in the requirement 

for large process volumes and reactor sizes and as the result, the ratio of products is 

sometimes not desirable. In addition, the fermentation process is quite complex and 

needs to be run under sterile conditions. Contamination, particularly due to phage 

infections, causes problems and evaporative loss of solvents is also encountered (Jones 

and Woods, 1986). 

 A fermentation process operated in a continuous mode may provide 

some advantages over a batch process e.g. only one batch of inoculum culture would be 

needed over the course of the acetone-butanol-ethanol (ABE) production period, the 

volume of the fermentor can be reduced without a reduction in productivity, and the 
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time necessary for cleaning and sterilization of the equipment would be drastically 

reduced. In addition, the continuous flow culture system is an important research tool 

for the determination of parameters responsible for changes in the physiology and 

activity of solvent-producing clostridia (Qureshi et al., 2000a). 

 Fed-batch systems with continuous feeding of concentrated substrate 

solution can be used, coupled with simultaneous product removal. This differs from the 

conventional system in that the sugar concentration within the reactor can always be 

maintained at low levels. However, the product formation in this system does still not 

proceed effectively, possibly due to the accumulation of mineral salts in the 

fermentation medium (Maddox et al., 1994). 

 Immobilized cell systems able to maintain high cell concentrations, 

generally have improved reaction rates, and are stable at high dilution rates with little 

cell washout and simplicity of operation. Other advantages are that the process can be 

relatively simple, and support structures can often be reused (Jones and Woods, 1986). 

However, the residence time of the fermentation medium inside the reactor will be low; 

starch hydrolysis may not be carried out efficiently and within the reactor separate 

hydrolysis may be necessary and reactor blockage may occur due to excessive cell 

growth (Ezeji et al., 2005). 

 Ezeji et al. (2005) compared the productivity of different fermentation 

modes including batch fermentation, fed-batch with integrated evaporative recovery cell 

immobilization and continuous fermentation. They found that cell immobilization and 

continuous fermentation can improve the economics of butanol fermentation. Because 

these provided higher productivity (15.8 g/L/h) compared to 0.39 g/L/h in batch 

fermentation and then the size of the reactor could be reduced by a factor of 40 (Ezeji et 

al., 2005). Batch fermentation is the most cost intensive, followed by fed-batch 

fermentation and immobilized-cell continuous fermentation. The productivities are in 

order of 0.39, 0.98 and 15.8 g/L/h. At the productivity of 15.8 g/L/h with the dilution 

rate 2.0/h, solvent concentration would be 7.9 g/L as compared to 26.5 g/L in a batch 

reactor with low membrane flux that would require a larger membrane area. 
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7.2 Study on fed-batch fermentation 

 Fed-batch fermentation is the technique that industry employs to produce 

chemicals and biochemicals. In fed-batch mode, the reactor is started with a small 

volume of fermentation medium and when the sugar is utilized a new amount of 

concentrated sugar will be added. This fermentation is especially beneficial in the 

production of butanol as butanol accumulation is toxic to the culture. However, the 

removal of product is necessarily carried out simultaneously.  

 To the best of our knowledge, the research of Ezeji et al. (2004) would 

be the most intensive research on the operation of a fed batch mode for ABE production 

by C. beijerinckii BA101. Starch was used as the feed with a dilution rate of 0.02 h-1, 

the operated temperature was 37oC and starch solution/feed volume (3 L) was replaced 

every 72 h. This system provided the best ABE concentrations with a 30 g/L starch 

solution. The effect of feed storage temperature was investigated and the results showed 

that at the feed storage temperature of 19oC produced approximately 6.0 g/L of total 

ABE, but when the feed storage temperature was increased to 37oC ABE production of 

7.2 g/L was obtained. At the lower temperature, retrogradation of starch occurred, and 

this caused a reduction in hydrolysis of the starch. 

 Several research workers have used the fed batch fermentation process 

for butanol production using substrates other than starch with positive results. Qureshi 

et al. (2000b) used a glucose-based P2 medium as the feed medium for the fermentation 

of C. beijerinckii BA101 (mutant strain) and C. beijerinckii 8052 (wild type) and found 

that the solvent productivity increased from 0.35 in a batch reactor to 0.98 g/L/h in fed-

batch reactor. In another research paper of Qureshi et al. (2000 a), a fed-batch mode 

along with the removal of butanol by using a pervaporation membrane the solvent yield 

was higher (0.34–0.37 g/L/h) than with the batch reactor (0.29–0.30 g/L/h). 

 Tashiro et al. (2004) employed a pH-stat fed-batch culture and fed 

butyric acid and glucose to C. saccharoperbutylacetonicum N1-4. They found that 

feeding only butyric acid alone did not support butyric acid utilization and butanol 

production, but by feeding a mixture of butyric acid and glucose, butyric acid was 

utilized and butanol was produced. The maximum butanol production was 16 g/L and 

the residual glucose concentration in the fermentation broth was very low at a butyric 

acid/glucose ratio of 1.4. Moreover, yields of butanol in relation to cell mass and 
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glucose utilization were 54% and 72% respectively, much higher in pH-stat fed-batch 

culture with butyric acid than that of a conventional batch culture (24 % and 32 %, 

respectively) 

 

7.3 Overview on gas stripping techniques 

 A number of butanol removal techniques including membrane-based 

systems, such as pervaporation (Groot et al., 1984; Qureshi and Maddox, 1990; Qureshi 

et al., 2000a; Qureshi and Blaschek, 2001), reverse osmosis, adsorption (Ennis et al., 

1987), liquid–liquid extraction and gas stripping (Groot et al., 1984) have been 

examined. The application of some of these recovery techniques can allow the use of 

concentrated sugar solutions in the fermentation medium thereby reducing the volumes 

of the process streams (Maddox et al., 1995; Qureshi et al., 2001). In such systems, up 

to 100% utilization of the available sugar has been demonstrated. Among these 

techniques gas stripping has a number of advantages e.g. simpler to handle, causes no 

harm to cells, and most of all it is more economically beneficial (Ezeji et al., 2004; 

Groot et al., 1992). In a batch reactor C. beijerinckii BA101 utilized 45.4 g /L glucose 

and produced 17.7 g/L ABE  while in the integrated process it utilized 161.7 g/L  

glucose and produced total ABE of 75.9 g/L (Ezeji et al., 2004). 

  Gas stripping allows for selectively removing volatiles from the 

fermentation medium and uses no membranes or expensive chemicals. Gas (CO2 and 

H2) is sparged into the bioreactor through a sparger that will form bubbles. Bubbles 

formed or broken in the bioreactor will result in vibrations that remove volatiles from 

the reaction mixture. The volatiles can then be condensed and separated from the 

condensate. Bubbles size has profound impact on the transfer and mixing 

hydordynamics in a gas-liquid agitated vessel. Small gas bubble sizes provide maximal 

mass transfer but large gas bubble size provides maximal recirculation and mixing in 

the bioreactor. 

 It has been found that gas recycle rates of 80 cm3 /s and a Ksa of 0.058/h 

are sufficient for keeping the butanol concentration below toxic levels in a 2-L 

bioreactor (1-L reaction volume) during the course of the ABE fermentation. It was also 

demonstrated that bubble sizes < 0.5 and 0.5–5.0 mm had no effect on the stripping rate 

of butanol, smaller bubbles size (<0.5 mm) led to larger amounts of foam in the reactor, 



26 
 

which required the addition of high levels of antifoam thus affecting ABE production 

negatively. The ABE productivities of the bioreactor using an impeller (larger size 

bubble delivery system) or sparger (smaller size bubble delivery system) based gas 

delivery systems were 0.47 and 0.25 g/L/h, respectively. The presence of acetone, and 

ethanol (using a model solution) had no affect on the butanol removal rate. It is 

recommended that a gas bubble size in the range of 0.5–5 mm in diameter (produced by 

the impeller) be used for gas stripping to provide good mass transfer and avoid 

problems associated with excessive foaming. 

 

8. Anaerobic metabolisms of Bacillus 

 

 It is reported that Bacillus anthracis and Bacillus cereus could grow 

anaerobically in both synthetic and nonsynthetic glucose containing medium. Under 

anaerobic condition, Bacillus produced lactic, succinic, formic, and acetic acids, 

acetylmethylcarbinol, 2, 3-butylene glycol and glycerol as fermentation products of 

glucose (data shown in  Table 1) (Puziss and Rittenberg, 1957). Several research reports   

have determined anerobic growth and identified end-products of B. subtilis. The results 

prove that B. subtilis can grow in the absence of oxygen using nitrate as terminal 

electron acceptor (Nakano et al., 1997; Ramos et al., 2000). When the cells were grown 

in the minimal medium with glycerol in the absence of nitrate, no anaerobic growth was 

observed after the optical density at the wave length of 600 nm (OD600) doubled and the 

cells began to lyse. The cells grew well when the glycerol medium was supplemented 

with nitrate but not when it was supplemented with fumarate (Clements et al., 2002). 

 B. subtilis grows anaerobically by fermentation either when both glucose 

and pyruvate were provided or when glucose and mixtures of amino acids were present. 

However, it was found that the fermentation process was stimulated in the presence of 

pyruvate. In the presence of glucose, B. subtilis cells were unable to grow well under 

anaerobic condition. The same fermentation products including lactate, acetate and 2,3-

butanediol were identified in the presence of glucose and pyruvate was observed in 

much lower amounts. Since pyruvate was produced by fermentation of glucose, the 

stimulatory effect of pyruvate was not easy to explain (Nakano et al., 1997; Ramos et 

al., 2000). 



27 
 

 

Table 1. Anaerobic fermentation products in mg per 100 ml of medium, quantitative 

 assays on 72-h-old cultures 

Bacillus anthracis strains Product Assayed Bacillus subtilis 

Weybridgea Vollumea 

2,3-Butylene glycol 12.2 17.1 8.3 

Acetylmethylcarbinol 3.6 1.8 1.7 

Glycerol 1.6 1.4 2.8 

Lactic acid 6.1 3.1 8.0 

Succinic acid 6.3 5.6 9.5 

Formic acid 3.1 6.5 5.0 

Acetic acid 7.8 8.8 10.7 

Butyric acid Nil Nil Nil 

aName of bacillus strain. 

Source: Puziss and Rittenberg (1957). 

 

 Ramos et al. (2000) studied the anaerobic fermentation of B. subtilis 

strains in defined minimal media using 50 mM glucose and 50 mM pyruvate as carbon 

sources. They proposed the pathways for anaerobic fermentation and related catabolism 

in B. subtilis as shown in Figure 3. Total product concentration (56.4 mM) included 

lactate (23.3 mM), acetate (16.4 mM), 2,3-butanediol (16.7 mM) and the concentration 

of cells was 8.0 (g [wet wt]/L). A few studies have determined the formation and 

activities of amylases of Bacillus under anaerobic condition. However, the results were 

different from each research. Thus, it has not been possible to answer the question if the 

lack of oxygen has any effect on the amylase enzymes. Nomura et al. (1957) whose 

results implied that α-amylase formation by stationary-phase cells of B. subtilis does not 

require oxidative phosphorylation, in contrast, Coleman and Elliot, (1961) found the 

opposite results. 
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Figure 2. Proposed pathways for anaerobic fermentation and related catabolism in B.  

subtilis. 

Note: Enzymes with known coding genes are as follows: LctE, lactate dehydrogenase; AlsS, 

acetolactate synthase; AlsD, acetolactate decarboxylase; Pta, phosphotransacetylase; Ack, 

acetate kinase; AcoABC, acetoin dehydrogenase; Pdh, pyruvate dehydrogenase; PycA, pyruvate 

carboxylase; AcsA, acetyl-CoA synthetase. TCA, tricarboxylic acid  

Source: Ramos et al. (2000) 

 

9. Cassava starch waste 

 

 Annual cassava production in Asia is about 48 million tonnes, mainly in 

Thailand (18), Indonesia (15), India (6), China (4) and Vietnam (2). In Thailand, the 

total annual cassava production (about 18 million tonnes) is converted to 4 million 

tonnes of chips/pellets, and about 1.6-1.8 million tonnes of starch (Sriroth et al., 2000). 

Like the other starch type production process, there are two types of waste derived from 

cassava starch production which includes solid and liquid form (waste water and 

effluent). Solid waste from cassava starch processing is divided into three categories: 
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peelings from the initial processing, fibrous by-products from crushing and sieving 

(pulp waste) and starch residues after starch settling. An indication of the proportion of 

solid waste produced during cassava processing is shown in Figure 4. In starch 

processing, pulp waste is the main problem, especially for the bigger factories, that 

produce massive quantities (each year the 51 starch processors in Thailand will generate 

about 1 million tonnes of pulp waste). Table 2 shows the composition of cassava pulp 

produced after starch extraction at a starch factory in Thailand. Significant amounts of 

starch (60.6%) and non-starch polysaccharide (29% as fiber) were detected in the pulp. 

Analysis of the non-starch polysaccharides indicated that glucans, such as cellulose, 

were the major polysaccharide. The analyzed compounds accounted for 94.7% of the 

total dry pulp weight (Kosugi et al., 2009).  

  

Table 2. Composition of cassava pulp 

Components g/100 Dry pulp 

Starch 60.6 

Reducing sugars (glucose)   4.7 

Nitrogen   0.4 

Non-starch polysaccharides  

Glucan 19.1 

Xylan   4.2 

Arabinan   1.4 

Galactan   0.5 

Mannan    0.7 

Others    0.9 

Klason lignin     2.2 

Total   94.7 

Source: Kosugi et al. (2009) 

 

 Dealing with this waste is difficult, as it is not easily dried, due to its 

high moisture and starch contents (Sriroth et al., 2000). In Thailand, most fiber waste is 

sun dried and mixed with ground chips to be used as animal fed. As starch production 
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increases in the future this may not take care of the problem. Finding an alternative 

ways to use pulp waste is in high demand. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flow chart for large-scale production of cassava starch.   

Source: Sriroth et al. (2000) 
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CHAPTER 3 

 

MATERIALS AND METHODS 

 

Materials 

 

1. Microorganisms 

 

 Clostridium butylicum TISTR 1032 was purchased from the Culture 

Collection of the Thailand Institute of Scientific and Technological Research, Bangkok, 

Thailand. The stock culture was maintained in the form of a spore suspension in 25% 

glycerol and frozen at -20oC. 

 Bacillus subtilis WD 161 was a generous gift from Associate Professor 

Dr. Poonsuk Prasertsan, (Environmental Biotechnology Laboratory, Department of 

Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University). The 

stock culture was maintained at 4oC on a nutrient agar slant and subcultured monthly. 

 

2. Cassava starch and cassava starch pulp waste 

 

 Cassava starch was purchased from local markets in Hat-Yai, Songkhla 

Province, Thailand. 

 Cassava pulp waste was obtained from Srima Inter Product Co., Ltd, 

located in Cha-Choeng Sao Province, Thailand. 

 

3. Media employed for primary studies  

 

 To investigate the economic feasibility of the medium type on ABE 

production, AB medium, B medium, TPS medium and modified Reinforced Clostridia 

Medium (RCM) were employed; 20 g/L soluble starch was used as the sole carbon 

source in all media.  The original Reinforced Clostridia Medium (RCM, Oxoid) medium 

(1 L RCM medium contains: 10 g meat extract; 5 g peptone; 3 g yeast extract; 5 g 
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glucose; 1 g soluble starch; 5 g sodium chloride; 3 g sodium acetate; 0.5 g L-cysteine).  

The components of each medium are listed in Table 3. 

 

Table 3. Components of starch based AB medium, B medium, TPS medium and RCM      

medium 

amodified RCM with 20 g/L of soluble starch and no L- cysteine. 

Source: bBard et al. (2001); c Chauvatcharin et al. (1997). 

Initial pH of all media was adjusted to 6.5. To create anaerobic culture, 0.5 g L- 

cysteine was added into each medium. 

 

 

 

 

 

 

Medium Component 

(g/L) ABb Bc TPSb Modified RCMa 

Tryptone 10 - 5 - 

Peptone - - 5 5.0 

Yeast extract 2 3 10 3.0 

Meat extract - - - 10 

Soluble starch 20 20 20 20 

KH2PO4 - 0.5 1 - 

K2HPO4 - - 1 - 

NaCl - 0.02 - 5.0 

CH3COONa - - - 3.0 

NH4Cl - 1.5 - - 

MgSO4·H2O - 0.3 - - 

MnSO4 - 0.02 - - 

FeSO4 0.2 0.02 - - 

Na2SO3 0.05 - - - 

Na2S2O3 0.05 - - - 
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Methods 

 

1. Inoculum preparation 

 

 A stock culture of C. butylicum TISTR 1032 was maintained as a spore 

suspension in glycerol 25% at – 20oC. Spores (0.5 mL) was heat shocked at 75 oC for 

3.5 minutes and on ice for 1 minute (Quireshi et al., 2001). The heat shocked spores 

then was anaerobically pre-cultured in RCM medium. It was then incubated under static 

condition at 37oC for 18-24 h when the log phase was reached (OD 660 of 2.0). B. 

subtilis WD 161 was aerobically pre-cultured in a nutrient broth (NB) medium 

(HiMedia) under shaking condition at 200 rpm and 37oC  for 18 h when  the log phase 

was reached (OD 660 of 2.0) (Yokoi et al., 2001; Chang et al., 2008). 

 

2.  Fermentation  

  

 B medium was employed throughout the study (Table 3) (Chauvatcharin 

et al., 1997). Where noted, NH4Cl was replaced with the same weight amount of 

NH4NO3. Under aerobic condition, B. subtilis WD 161 was grown in 100 mL B medium 

in a 250 mL flask and shaken on a rotary shaker at 200 rpm. The culture conditions with 

and without anaerobic pretreatment by addition of reducing agent (L-cysteine) and 

flushing with N2 gas over the medium were established in 120 mL butyl rubber seal-

serum bottles.  Starch based media were liquefied by boiling (dissolved oxygen in the 

medium was supposed to be removed by this step), then as soon as the process was 

complete, 90 ml of the medium was quickly dispersed into the 120 ml serum bottle, and 

then the serum cap was tightly sealed. The conditions without anaerobic pretreatment 

were stirred at 120 rpm during the fermentation process. The working volume of all 

cultures was 100 mL, and the fermentation process was carried out at 37oC. The mixed 

culture was prepared by dispersing a 5% inoculum of each organism (C. butylicum 

TISTR 1032 and B. subtilis WD 161) grown as previously described. All experiments 

were performed at least in duplicate. 
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3. Cassava starch pulp waste pretreatment 

   

 Cassava starch pulp was suspended in water at the starch concentration 

of 40 g/L (equal to 66.0 g/L cassava pulp waste) and autoclaved at 121oC for 60 min. 

The pH of the slurry was then adjusted to 5.0 with sodium hydroxide, and 3 M sodium 

acetate buffer at pH 5.0 was added at a final concentration of 50 mM. Cellulase (LAB-

SCAN) was used in the ratio of 3 U/ g dry pulp, the cellulose hydrolysis was conducted 

at 50o C for 72 h, and pH of the slurry was readjusted to 6.0 before fermentation 

(Kosugi et al., 2008). 

 

4. Optimization of medium components using RSM 

  

 The effect of three variables including cassava starch concentration (x1), 

yeast extract concentration (x2) and ammonium nitrate concentration (x3) with three 

levels (low: -1; medium: 0; and high: +1) for each variable  on ABE (Y1), butanol (Y2) 

and amylase production (Y3) were investigated. A Box-Behnken design was employed 

for study of the interactions between these three variables. Response surface plots for 

the models were obtained by using the Statistica for Window version 5.0 by plotting as 

a function of two variables, while keeping other variables at a constant value (Box and 

Behnken, 1960). 

 

5. Process optimization  

  

 The mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161 

was performed up in a 1 L anaerobic bioreactor that had a pH probe and the temperature 

was controlled at 37oC. The medium was stirred at 120 rpm using a magnetic bar. To 

study the effect of pH on ABE production, the initial pH was first adjusted and 

controlled at 5.0, 5.5, 6.0 and 6.5 through the fermentation for each treatment using 3M 

sodium hydroxide. For fed-batch fermentations, the culture was operated in batch mode 

for 24 h with a 700 mL working volume (1 L medium contains: 40 g/L cassava starch; 5 

g/L yeast extract; 8 g/L ammonium nitrate; 0.5 g KH2PO4; 0.3 g MgSO4⋅7H2O; 0.02 g 

MnSO4⋅7H2O; 0.02 g FeSO4⋅7H2O; 0.02 g  NaCl). 100 mL of 80 g/L cassava starch (the 



35 
 

maximum starch concentration which could be dissolved in water) with optimum C/N 

ratio was fed at the 24 and 36 h time after initiation of the culture. For the semi-

continuous fermentations, the culture was operated in batch mode for 12 h with a 900 

mL working volume (1 L medium contains: 40 g/L cassava starch; 5 g/L yeast extract; 8 

g/L ammonium nitrate; 0.5 g KH2PO4; 0.3 g MgSO4⋅7H2O; 0.02 g MnSO4⋅7H2O; 0.02 g 

FeSO4⋅7H2O; 0.02 g  NaCl). Then, 200 mL of medium containing 80 g/L cassava starch 

was added every 12 hours from the 12 h to 72 h. Each time, before adding the new 

medium, 200 mL culture broth was taken out, and the pH of culture was controlled at 

6.0. The cassava starch used for the fed-batch experiments was contained in Duran-

bottle and placed at 37oC after being autoclaved to reduce the possibility of 

retrogradation. For the fed- batch fermentation with gas stripping, gas stripping was 

initiated from about 36 h by recycling oxygen free N2 gas through the system to create 

gas bubbles in the culture using a twin-head peristaltic pump. The ABE vapors were 

cooled (to 5oC) in a condenser which had been previously fluxed with oxygen free N2. 

The stripped ABE was collected into the solvent collector (125 mL flask). To maintain a 

constant liquid level inside the reactor, O2-free distilled water was regularly added to the 

reactor (as some water was lost due to gas stripping). Samples were withdrawn at 

intervals for amylase, organic acids and ABE analysis (Ezeji et al., 2004). 
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Figure 4. A schematic diagram of butanol production and in situ recovery by gas 

 stripping. Pump A: gas recycle pump; pump B: condensed solvent 

 removal pump. 

Source: Ezeji et al. (2004) 

 

6. Analytical methods  

  

 Cell growth was determined by measurement of the optical density at 

660 nm (OD660) by a spectrophotometer. Where noted, Colony Forming Unit (CFU) of 

Clostridium and Bacillus were determined by sample serial dilution followed by spread 

plate technique for Bacillus and pour plate technique for Clostridium. Clostridial plates 

were placed into an anaerobic jar. All the samples were incubated at 37oC for 5-7 days. 

For sampling, during the fermentation period (72 h), a 3.0 ml sample was taken every 

12 h using a syringe and centrifuged at 8000 rpm, 4 oC for 25 min. The supernatant was 

used to analyze for ABE, organic acids, residual reducing sugar concentrations and 

amylase activity. ABE and organic acids were measured by gas chromatography 

(Hewlett Packard) using a glass column (HP- INNOWax Polyethylene Glycol) and a 



37 
 

flame ionization detector with helium as the carrier gas. The temperature of the detector 

and injector were maintained at 270oC and 230oC, respectively (Gapes et al., 1996). The 

reducing sugar amounts were estimated by the dinitrosalicylic acid (DNS) method of 

Miller (1959) using a glucose standard calibration curve.  

 Amylase activity was determined by the method of Okolo et al. (1995). 

The reaction mixture consisted of 1.25 mL of 1 % soluble starch, 0.5 mL of 0.2 M 

acetate buffer (pH 5.0), and a 0.25 mL sample. After 10 min of incubation at 50°C, the 

reaction was stopped by boiling at 100°C for 10 min. The control was carried out in the 

same manner using a sample previously inactivated by boiling for 15 min. The liberated 

reducing sugars were estimated by the DNS method as previously mentioned. One unit 

(U) of amylase is defined as the amount of enzyme that releases one µmole of glucose 

equivalent per min under the assay conditions. The C/N ratio was calculated based on a 

molar basis. One gram of starch/L was assumed to be converted into 1.1 gram of 

glucose/L. The formula then used for the conversion of the mass concentration of starch 

(g/L) to mM concentration of carbon was [starch (g/L) × 36.7 = mM carbon]. The total 

nitrogen content in the yeast extract used in this study was 11.1% (data was provided by 

the LAB-SCAN company). The conversion of yeast extract mass concentration (g/L) to 

mM concentration of nitrogen was [yeast extract (g/L) × 7.93 = mM nitrogen] (Madihah 

et al., 2001). 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

1. Growth and ABE production by pure cultures of C. butylicum TISTR 1032 

incubated under various conditions 

 

 As mentioned previously, the main obstacle that prevents bio-butanol 

from being marketable is the high cost of the product. Substrate cost is a major factor 

that has a major impact on the economics of butanol production (Dürre, 1998). To 

improve the economics of butanol production, searching for a low-cost medium is 

essential. Previous research work on the ABE production process mostly had the same 

purpose of reducing the cost of the butanol product; however there has been little 

attempt to use a low-cost medium for ABE fermentation. As documented earlier, 

addition of vitamins, amino acids, and reducing agents were often required in their 

research (Badr et al., 2001; Madihah et al., 2001; Ezeji et al., 2004; Hipolito et al., 

2008). These components are remarkably costly, so addition of them will definitely 

increase the overall cost of the product. In this study, several medium types (AB 

medium, B medium, TPS medium and modified RCM) were employed for 

investigations of ABE production by pure cultures of C. butylicum in order to select one 

that will be the most economic for further studies. 

 On the other hands, Clostridia are considered to be obligate anaerobes; 

for example, oxygen is harmful or lethal to these bacteria. However, it was known that 

some of them have shown some tolerance to oxygen and they can survive limited 

exposure to air (Hillmann et al., 2008). It was thought that the culture without anaerobic 

pretreatment (with addition of L-cysteine and flushing N2) would be beneficial to 

improve the cost effectiveness of ABE production since then there was no need to add 

any costly reducing agents or flush with oxygen free N2 gas. The possibility of culturing 

this C. butylicum TISTR 1032 under condition without anaerobic pretreatment was 

tested. C. butylicum TISTR 1032 was cultured under condition with and without 

anaerobic pretreatment.   
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1.1 Effect of anaerobic pretreatment on pure culture of C. butylicum TISTR 

1032  

 C. butylicum TISTR 1032 was cultured in conditions with and without 

anaerobic pretreatment by addition of a reducing agent (L-cysteine) and flushing with 

N2. The results are shown in Figures 5 and 6. It is interesting to note that even though 

Clostridia are well-known as strictly anaerobic organisms, the clostridial strain in our 

research grew reasonably well in all the investigated media where no nitrogen sparging 

or addition of reducing agent was used (without anaerobic pretreatment). However, the 

presence of small amounts of oxygen in the culture in all media tested did have some 

negative impact on the growth profiles of this strain as the lag phase under this 

condition was longer than that under condition with anaerobic pretreatment. As the lag 

phase was longer then the time for the culture to obtain its maximum growth under the 

condition without anaerobic pretreatment was also longer and the maximum growth was 

lower than when cultures were incubated under conditions with anaerobic pretreatment. 

Under anaerobic pretreated conditions, every culture reached the maximum OD660 

values after just 48 h, but for those under conditions without anaerobic pretreatment the 

maximum OD660 values were obtained in the range of 48-72 h. A longer lag phase 

phenomenon with the clostridium culture under conditions without anaerobic 

pretreatment was also found in the research of Hipolito et al. (2007). This is 

understandable since Clostridium spp are strictly anaerobic; the presence of oxygen in 

the culture does not provide the ideal conditions for their growth.  However in either 

this research or the research of Hipolito, the amount of oxygen in the culture was 

probably not high enough to have a serious effect on the growth of this Clostridium spp.  

 In our research, the starch based media were liquefied by boiling 

(dissolved oxygen in the medium was supposed to be removed by this step), then as 

soon as the liquefaction was complete, 90 mL of the medium was quickly dispersed into 

the 120 mL serum bottle, and then the serum cap was tightly sealed. Therefore, there 

would not be much oxygen either in the form of dissolved or un-dissolved form in the 

medium.  
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Figure 5. Growth profiles of pure culture of C. butylicum TISTR 1032 in various media: 

AB medium (A), B medium (B), TPS medium (C), RCM medium (D) with 

either anaerobic pretreatment (with addition of L-cysteine and N2 flushing) or 

without anaerobic pretreatment (without N2 flushing). 
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 Besides that, in the culture without anaerobic pretreatment, as the 

medium was being stirred during the fermentation process by employing a magnetic bar 

and stirrer at the speed of 160 rpm cells became well dispersed throughout the medium 

that positively supported cell growth and prevented them from sedimenting whereas, the 

anaerobic cultures did not have this advantage. This somehow narrowed the differences 

in the growth of Clostridium under conditions with and without anaerobic pretreatment.  

 In terms of ABE production, all media with anaerobic pretreatment 

provided higher ABE production compared to that without anaerobic pretreatment. This 

again would be explained by the effect of oxygen in the condition without anaerobic 

pretreatment (Figure 6). The presence of oxygen may influence ABE production of the 

culture without anaerobic pretreatment in two ways. One was as mentioned above in 

that oxygen causes a longer lag phase and less growth resulting in lower  amounts of the 

ABE precursors: acetic and butyric acids. In another way, oxygen is supposed to have a 

negative effect on the functions of some enzymes in the ABE pathway and prevents 

them from working properly to produce precursors for ABE or converting precursors 

into ABE (Hipolito et al., 2007). The effect of the types of media on the growth and 

ABE production of C. butylicum TISTR will be discussed in the next section. 

 

1.2 Effect of the medium composition on pure cultures C. butylicum TISTR 

1032  

 In terms of growth, C. butylicum TISTR 1032 grew best in TPS medium, 

followed by modified RCM, AB and finally B medium. Some factors that we anticipate 

might have affected the growth of the Clostridium are sources and amount of organic 

nitrogen, buffer capacity, and the presence and the amount of mineral salt in the 

medium. In a poorly bufferred medium (AB medium), when high amount of acids are 

produced and this rapidly reduced pH of the medium and caused toxicity to cells. A 

medium with a high buffering capacity (modified RCM) could achieve a higher 

concentration of acids over a longer period of time without a rapid decrease of pH and 

this would probably increase the growth and carbohydrate utilization (Ezeji et al., 

2005b; Hüsemann and Eleftherios, 1990). The amount of nitrogen source affects the 

utilization of carbohydrate. Normally, the presence of higher amount of nitrogen makes 

the utilization of carbon source more complete, and better growth would be obtained.  
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Mineral salts are well-known as co-factors for many enzymes. The presence and amount 

of them affect the activities of enzymes (Ezeji et al., 2005b). TPS medium is the 

medium that contains three nitrogen types with higher total amounts compared to the 

other media (tryptone 5 g, peptone 5 g and yeast extract 10 g). That the best growth was 

obtained from this medium is possibly reasonable. These three organic nitrogen sources 

not only provide nitrogen, but also various amino acids, vitamins, minerals and growth 

factors that promote good growth of the bacteria.  

 Modified RCM medium contains smaller amount of organic nitrogen 

(peptone: 5 g and yeast extract: 3 g) compared to TPS medium, but it is the only 

medium containing CH3COONa. This is present as both a buffer and a solvent 

enhancing factor (Chen and Blaschek, 1999). That is probably the reason why modified 

RCM medium showed better growth than AB medium that has a higher amount of an 

organic nitrogen source (tryptone 10 g and yeast extract 2 g) but no CH3COONa or 

mineral salts. B medium is poor in organic nitrogen (B medium comprises only 3 g of 

yeast extract), but it contains various minerals that are required as cofactors for enzymes 

in the ABE pathway thus the B medium still allowed for normal growth, even though 

the content of nitrogen was less than the other media (Table 3). 
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Figure 6. Maximum OD 660 (A), butyric acid concentration (B) and ABE production 

(C) by a pure culture of C. butylicum TISTR 1032 in various media either 

with anaerobic pretreatment with addition of L-cysteine and N2 flushing) or 

without anaerobic pretreatment (without N2 flushing), at 72 h. 

 

 Acetone-ethanol-butanol (ABE) and acid production by C. butylicum 

TISTR 1032 in different media under conditions with and without anaerobic 

pretreatment are shown in Figure 6. In terms of total ABE formation, either under 

conditions with or without anaerobic pretreatment, the most productive medium was 

TPS medium (2.20 g/L and 1.60 g/L under conditions with and without anaerobic 

pretreatment, respectively), followed by modified RCM medium (1.49 g/L and 1.15 
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g/L), AB (1.20 g/L and 0.97 g/L) and B medium (1.10 g/L and 1.01 g/L). In terms of 

butanol production, the same order was observed: TPS medium (1.84 g/L and 1.58 g/L 

under anaerobic condition with and without N2, respectively), modified RCM medium 

(1.14 g/L and 0.91 g/L), AB medium (1.00 g/L and 0.80 g/L) and B medium (0.93 g/L 

and 0.790 g/L) (Figure 6). Although, ABE are not growth associated products, their 

precursors i.e. acetic and butyric acids are. In general, factors affecting growth such as 

the nitrogen content, mineral salts, and buffer would also affect ABE production, as 

better growth would result in a higher amount of acid concentrations then subsequently 

higher amounts of ABE. Besides the factors governing the growth of Clostridia 

mentioned above, CH3COONa and FeSO4 are determined to be very important 

components that cause significant effects on ABE formation. It was found, (Hüsemann 

and Eleftherios, 1990; Chen and Blaschek, 1999) that additions of sodium acetate to the 

fermentation medium increased and stabilized solvent production. The conversion of 

pyruvate to acetyl-CoA in the solventogenesis reactions of clostridia involves a 

ferredoxin oxidoreductase iron-sulfur protein that accepts and donates electrons at a 

very low potential, thus the maintenance of a low redox potential is important for the 

ABE production. Therefore, the supplementation of some mineral salts in the medium is 

necessary (Ezeji et al., 2005b). Parekh et al. (1999) reported that the addition of 

FeSO4·H2O to 6% glucose and 1.6% solids corn steep water medium resulted in a 26% 

increase in butanol concentration, and the butanol and acetone ratio was higher than that 

of the culture without ferrous ion addition. In general, ferrous iron has a dramatic effect 

on the butanol concentration and butanol/acetone ratio, therefore ABE production. 

Thus, even though the B medium is much poorer in nitrogen source compared to the 

other media, it does contain various types of mineral salts thus the amount of ABE 

obtained from the B medium was comparable to the AB and modified RCM medium. 

Considering the yield of ABE, B medium contains only 3 g yeast extract, but produced 

0.93 g/ L butanol in the total 1.10 g/L ABE under conditions with anaerobic 

pretreatment. While the TPS medium produced higher amounts, 1.84 g/ L butanol in the 

total 2.20 g/L ABE, the medium contained yeast extract 5 g/L, tryptone 5 g/L and meat 

extract 10 g/L. The nitrogen content of the TPS medium is about 6.5 fold higher than 

that of the B medium, but butanol and the total ABE produced from the TPS medium 

are only two fold higher than those from the B medium. As the same amount of soluble 
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starch (20 g/L) was used for both media, and because the price of the media are mainly 

decided by the price of organic nitrogen, the amounts of ABE over the amount of 

nitrogen were compared. It was found that the B medium is definitely more economic 

than the other investigated media as it gave the highest yield of ABE production per unit 

of nitrogen. It should be noted here that all these four media in this research provided 

lower amount of ABE compared to most of the reported data elsewhere (6-10 fold 

lower). This may be due to the lower concentration of starch used in this study. 

Therefore further optimization of the starch concentration is needed.  

 

2. Enhancement of ABE production from cassava starch by a mixed culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 

 

 Bacilli are aerobic microorganisms, but some species are able to grow 

under anaerobic condition especially in the presence of nitrate that can act as the 

terminal electron acceptor to facilitate growth and metabolic activities of Bacillus in the 

absence of oxygen (Coleman and Elliott 1962; Nakano and Hullet 1997; Clements et 

al., 2002). In this study, the growth and amylase production of a pure culture of B. 

subtilis WD 161 under conditions with and without anaerobic pretreatment by addition 

of a reducing agent and flushing with N2 were compared to those under aerobic 

conditions with the presence of either ammonium nitrate (NH4NO3) or ammonium 

chloride (NH4Cl) as the inorganic nitrogen source. Then, a preliminary study of co-

culturing B. subtilis with C. butylicum TISTR 1032 and its effect on ABE production 

from soluble starch was performed under conditions with and without anaerobic 

pretreatment.   

 

2.1 Effect of O2 on growth and amylase production of B. subtilis WD 161  

 To investigate the possibility of using B. subtilis WD 161 for co-

culturing with C. butylicum, it was cultured under aerobic and condition with and 

without anaerobic pretreatment and the culture medium was assayed for amylase 

activity and growth (OD660). Previous reports on the anaerobic growth of Bacillus have 

shown that some Bacillus species grow in the presence of NH4NO3. NO-
3

 replaced 

oxygen as an electron acceptor and the NO-
3 is reduced to N2 gas, a process known as 
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denitrification (Coleman and Elliott, 1962; Nakano and Hullet, 1997; Clements et al., 

2002). Thus, the initial inorganic nitrogen source, NH4Cl, of the soluble starch based B 

medium was replaced by the same weight amount of NH4NO3 (1.5 g/L) and the growth 

and amylase production of B. subtilis in the two media were compared (Figures 7 and 

8). B. subtilis grew well under aerobic condition with NH4Cl as inorganic nitrogen 

source and produced 20 U amylase/mL after 24 h then increased up to 26 U/mL after 72 

h. With NH4NO3 as inorganic nitrogen source growth was slightly better and amylase 

production increased from 14 U/mL at 24 h and after growth ceased up to 45 U/mL at 

48 h. The phenomenon that the amylase production is not always associated with 

bacillus growth was also found by Nomura et al. (1957) and this is quite distinghished 

from the other bacilli of which amylase production is growth associated product 

(Coleman and Elliot, 1961; Konsula and Liakopoulou-Kyriakide, 2004). 

 Under conditions without anaerobic pretreatment, some growth did occur 

over the first 12 h but then ceased and the increased growth with NH4NO3
 compared to 

that with NH4Cl  was only small (Figure 7b). However, the amylase activity with 

NH4NO3 as inorganic nitrogen source, increased from 5 U/mL at 12 h up to 14 U/mL at 

36 h after growth ceased, while the amylase levels of the NH4Cl culture did not increase 

beyond 5 U/mL (Figure 8b). There was no growth under conditions with anaerobic 

pretreatment and only 2.6 U/mL of amylase was produced within the first 12 h with 

NH4Cl and this did not increase further whereas with NH4NO3, amylase increased to 4.8 

U/mL (Figure 8c). It could be assumed that without anaerobic pretreatment, some 

oxygen did gain access to the anaerobic medium and allowed some growth of B. subtilis 

and amylase production in the same way as when it was grown aerobically but this was 

prevented with anaerobic pretreatment when no oxygen was present.  

 There has been very little published work about amylase production by 

Bacillus under oxygen limited conditions. Coleman and Elliott (1962) determined the 

effects of anaerobiosis on amylase formation by B. subtilis. Their results showed that 

amylase formation was reduced 93% (from 64 to 4.6 U/mL) when B. subtilis was 

cultured under anaerobic instead of aerobic conditions. The decrease of amylase 

formation under oxygen limitation was thought to be due to the loss of the respiratory 

energy required for enzyme production. This would indicate that although B. subtilis 

WD 161 used in our experiments could not produce enough energy to grow 
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anaerobically with nitrate as terminal electron acceptor, the presence of nitrate in some 

way did facilitate the production of amylase after growth ceased.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Growth of B. subtilis WD 161 with different inorganic nitrogen sources 

under aerobic conditions (a), conditions without anaerobic pretreatment (b) 

and conditions with anaerobic pretreatment (c). 
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Figure 8. Amylase profiles of B. subtilis WD 161 with different inorganic                

nitrogen sources under aerobic conditions (a), conditions without anaerobic 

pretreatment (b) and conditions with anaerobic pretreatment (c). 

 

 Of most interest for our work was the finding that B. subtilis could 

produce amylase under conditions without anaerobic pretreatment and its activity was 

relatively stable over a period of 72 h (Figure 8b). It was thus possible that a culture of 

B. subtilis under conditions without anaerobic pretreatment would produce amylase and 

thus provide the clostridium with a ready supply of reducing sugar to carry out the ABE 
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fermentation. A further study was then carried out to investigate whether the clostridium 

would survive under conditions without anaerobic pretreatment in the presence of B. 

subtilis.                 

                                                              

2.2 ABE production of C. butylicum TISTR 1032 under conditions with and 

without anaerobic pretreatment  

 As mentioned previously, Clostridia are considered to be obligate 

anaerobes, e.g. oxygen is harmful or lethal to these bacteria. Nevertheless, it is known 

that some of them can survive limited exposure to air (Hillmann et al., 2008).This 

information indicates a possibility for co-culturing a clostridium with an aerobic 

organism for enhancement of ABE without paying much effort to maintain strictly 

anaerobic condition, as the aerobic organism will quickly consume oxygen and create 

the anaerobic conditions for clostridium (Yokoi et al., 1998). The aim of this 

experiment was to again check the oxygen tolerating capacity of clostridium to 

investigate the possibility of culturing C. butylicum under conditions without anaerobic 

pretreatment, before setting up a co-culture with B. subtilis. ABE and acid (acetic and 

butyric) production by a pure culture of C. butylicum in a soluble starch based B 

medium with NH4NO3 as the inorganic nitrogen source under conditions without and 

with anaerobic pretreatment were compared (Figure 9). With anaerobic pretreatment, a 

slightly higher amount of ABE (0.94 g/L) was produced compared to that without 

pretreatment (0.78 g/L). The same results were observed in the case of using NH4Cl as 

the inorganic nitrogen source (data not shown). This was most likely due to the presence 

of a small amounts of oxygen. This effect of anaerobic pretreatment was similar to that 

found by Hipolito et al. (2008) and also see Figs 5 and 6. Although, the C. butylicum in 

this research produced comparatively low amount of ABE, it did show a capacity to 

tolerate low amounts of oxygen.  

 Since the difference in the ABE production of C. butylicum with or 

without anaerobic pretreatment was small and B. subtilis cultured under condition 

without anaerobic pretreatment could survive and produce amylase at up to 14 U/mL 

and its activity was stable for 72 h of cultivation, these results indicated the possibility 

of studying the effects of amylase activity produced by B. subtilis on the ability of C. 

butylicum to produce ABE from starch. Preliminary work has indicated that C. 



50 
 

0.0

0.5

1.0

1.5

2.0

0 12 24 36 48 60 72

C
o

n
c

e
n

tr
a

ti
o

n
 (

g
/L

)

Acetone Butanol Ethanol 

Acetic Butyric ABE

0.0

0.5

1.0

1.5

2.0

0 12 24 36 48 60 72

Time (h)

C
o

n
c

e
n

tr
a

ti
o

n
 (

g
/L

)

(b)

(a)

Acetone Butanol Ethanol 

Acetic Butyric ABE

butylicum does not produce very active amylases. Therefore, we decided to use these 

two organisms to investigate the hypothesis of product enhancement using a syntrophic 

co-culture system. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. ABE production by a pure culture of C. butylicum TISTR incubated with 20 

g/L soluble starch medium using NH4NO3 as an inorganic nitrogen source 

under conditions without (a) and with anaerobic pretreatment (b). 

 

2.3 A mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161  

 A mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161 

was established under conditions with and without anaerobic pretreatment. The growth, 

amylase activity, ABE, acids (acetic and butyric) is shown in Figures 10-12. Compared 

to the pure cultures of C. butylicum either with or without anaerobic pretreatment and 

even the mixed culture with anaerobic pretreatment, the mixed culture without 
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anaerobic pretreatment (Figure 10a) had a much faster rate of increase of OD660 up to a 

final value of 5.0 compared to about 2.5 by the mixed culture with anaerobic 

pretreatment (Figure 10b). This difference in OD is most likely due to the fact that in 

the mixed culture without anaerobic pretreatment some oxygen from the empty space of 

the serum bottle and from the aerobically pre-cultured inoculum of B. subtilis allowed 

some growth and amylase production that had an enhancing effect on cell growth and 

metabolism of the C. butylicum.  

 From Figures 11 and 12, it is quite clear that the mixed culture without 

anaerobic pretreatment produced much higher amounts of ABE (4.2 g/L), than that of 

any other cultures especially the pure culture of C. butylicum grown with anaerobic 

pretreatment (0.94 g/L). The mixed culture with anaerobic pretreatment produced higher 

amount of butyric and acetic acids during the first 12 h  (Figure 11b) compared to those 

of the mixed culture without anaerobic pretreatment (Figure 11a), but neither culture, at 

this early time, produced much butanol. After 12 h when the butyric acid concentrations 

increased up to 2 g/L, butanol production occurred in both cultures but more quickly in 

the mixed culture without anaerobic pretreatment and in this culture the amount of 

butanol increased until 72 h. whereas in the mixed culture with anaerobic pretreatment, 

the amount of butanol during 24-72 h was almost unchanged. Of most interest was that 

the main effect of B. subtilis in the mixed culture without anaerobic pretreatment was an 

increase of butanol production. The amount of butanol was 3.9 g/L, whereas the amount 

of acetone and ethanol were 0.1 and 0.2 g/L, respectively. The ratio of these products is 

interesting as it is reported that pure culture of clostridium normally produces ABE with 

the ratio of 2:3:1 (Jones and Wood 1986). Since butanol was the dominant product in 

the mixed culture, product recovery would be much easier to handle. This also appears 

to be another advantage of the mixed culture. 

 The amylase levels in the pure culture of C. butylicum without and with 

anaerobic pretreatment did not exceed 1.5 U/mL and 1.8 U/mL, respectively (Figure 

12). In the mixed culture with anaerobic pretreatment, the amylase level was slightly 

higher than that of the pure culture but did not exceed 2.5 U/mL (Figure 12a) whereas 

with no anaerobic pretreatment, the amylase level reached about 13.5 U/mL after 12 h 

and increased further to 17 U/mL after 24 h and thereafter remained fairly constant 

(Figure 12 a). This confirms that the production of amylase by B. subtilis did increase 
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with a small amount of oxygen. This is consistent with the evidence obtained with the 

results from the pure B. subtilis culture grown without anaerobic pretreatment (Figure 

8). The production of ABE in the mixed culture without anaerobic pretreatment was 

about 4 fold greater than that of the other cultures (Figure 11a). It seems as though in 

the mixed culture without anaerobic pretreatment the extracellular bacillus amylase 

rapidly converted starch to glucose and this available sugar soon stimulated the 

metabolism of the C. butylicum to grow and eventually have enhanced ABE production.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Growth and pH profiles of a pure culture of C. butylicum TISTR 1032   

incubated with 20 g/L soluble starch medium under conditions without (a) 

and with anaerobic pretreatment (b). 

 



53 
 

0.0

1.0

2.0

3.0

4.0

5.0

0 12 24 36 48 60 72

C
o

n
c

e
n

tr
a

ti
o

n
 (
g

/L
)

Time (h)

0.0

1.0

2.0

3.0

4.0

5.0

0 12 24 36 48 60 72

C
o

n
c

e
n

tr
a

ti
o

n
 (
g

/L
)

(a)

(b)

Acetone Butanol Ethanol 

Acetic Butyric ABE

Acetone Butanol Ethanol 

Acetic Butyric ABE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Acids and ABE production by a mixed culture of C. butylicum TISTR 10321 

and B. subtilis WD 16 (a) and a pure culture of C. butylicum TISTR 1032 

(b) incubated with 20 g/L soluble starch medium under conditions without 

anaerobic pretreatment. 

 

 

 

 

 

 

 

 



54 
 

0

5

10

15

20

0 12 24 36 48 72

A
m

y
la

s
e

 a
c

ti
v
it

y
 (
U

/m
L

) Amylase Mixed culture 

Amylase Pure culture 

(a)

0

2

4

6

0 12 24 36 48 72

A
m

y
la

s
e

 a
c

ti
v
it

y
 (
U

/m
L

)

Time(h)

Mixed culture 

Pure culture 

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Amylase production by a pure culture of C. butylicum TISTR 1032 incubated 

with 20 g/L soluble starch medium under conditions without (a) and with 

anaerobic pretreatment (b). 

 

2.4 Application of a mixed culture of C. butylicum TISTR 1032 and B. subtilis 

WD 161 for ABE production from cassava starch 

 The production of amylase and the enhancement of ABE by the mixed 

culture of C. butylicum TISTR 1032 and B. subtilis WD 161 when using 40 g/L of 

cassava starch as carbon source was investigated under conditions without anaerobic 

pretreatment. The results are shown in Figure 13. Enhancement of amylase, butyric 

acid, and ABE productions by the mixed culture of Clostridium and Bacillus compared 

to those of the pure culture of Clostridium were observed. In the mixed culture of 

Clostridium and Bacillus, the amylase activity (36.7 U/mL) and ABE production (7.4 

g/L) was increased 10 fold and 6.5 fold, respectively, over those of the pure culture of 

Clostridium. This result also indicated that the amylase activity was the key factor in 
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ABE production from starch. Hence, as increased amylase activity was produced in the 

mixed culture of Clostridium and Bacillus in this study, a rapid starch hydrolysis to 

sugar would ensue. Consequently, the availability of sugar in the culture was high and 

encouraged the Clostridium to grow rapidly and produce large amounts of acids and 

ABE products in a short period of time. It was noted that the fermentation time where 

the optimum ABE was obtained by the mixed culture of our research was shorter (48 h) 

compared to that of the other research (72 h) using pure culture of Clostridium at the 

same starch concentration of 40 g/L (Madihah et al., 2001). This is another advantage of 

using a mixed culture for ABE production, since the fermentation time is shorter, the 

cost of ABE products are accordingly expected to be reduced. In accordance with Gapes 

(2000), if the batch fermentation can be maintained for 40-60 h, the acetone-butanol 

fermentation should be industrially viable. Therefore, in terms of the economical 

benefits, the ABE production by the mixed culture in this research is most encouraging.  

 

 

 

 

 

 

 

 

Figure 13. Growth and metabolic activity of pure culture of C. butylicum TISTR (A) 

1032 and a co-culture of C. butylicum TISTR 1032 and B. subtilis WD 16 

(B) incubated with 40 g/L cassava starch medium under condition without 

anaerobic pretreatment. Symbols: (○) OD660; (◊) amylase activity; (*) 

reducing sugar; (∆) butyric and acetic acid; (●) ABE. Values are means and 

standard deviations of duplicates. 
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3. Optimizing the mixed culture of C. butylicum TISTR 1032  and B. subtilis WD 

161  for ABE production from cassava starch 

 

 The utilization of starch for ABE production by a Clostridium includes 

two processes, starch hydrolysis by amylolytic enzymes to produce glucose for the cells 

growth and production of acids (acidogenesis by acetic and butyric) and the conversion 

of these acids into ABE products (solventogenesis). These two processes are influenced 

by a number of factors e.g. the amylolytic activities and ABE producing capacity of 

Clostridium and especially the medium composition (starch concentration, nitrogen 

source, and C/N ratio). A high sugar concentration (160 g/L) has been shown  to be 

toxic to clostridial cells (Jones and Woods, 1986); but with a low sugar concentration 

organic acid reassimilation is terminated due to an insufficient amount of energy-rich 

metabolites e.g. ATP or NADH (Shinto et al., 2007). With the presence of an excessive 

amount of nitrogen (corresponding to a low C/N ratio); carbon utilization is carried out 

more rapidly and completely, cells then can grow better. In contrast, the lack of nitrogen 

makes carbon utilization less effective. However, the relationship between the C/N ratio 

and ABE production is thought to be quite complicated; it has been found that better 

growth and ABE production was observed at a lower C/N ratio. At a higher C/N ratio (> 

7.27), cell growth and ABE production were decreased (Lai and Traxler, 1994). On the 

other hand, the absolute concentrations of carbon and nitrogen were found to have more 

effect than the C/N ratio in the research of Madihah et al. (2000). 

 In our preliminary study, a mixed culture of C. butylicum TISTR 1032 

with B. subtilis WD 161 for ABE production from soluble starch was successfully 

established under anaerobic condition without the addition of L-Cysteine or N2 flushing. 

When B. subtilis WD 161 was co-cultured with C. butylicum TISTR 1032 the amylase 

activity was increased and ABE production of C. butylicum TISTR 1032 was enhanced 

up to 4.2 g/L compared to 0.94 g/L by the pure culture (Figure 11). This present work 

was designed to optimize ABE production by the mixed culture of these two organisms 

using cassava starch as a carbon source as this is highly available and of low cost in 

Thailand. Besides the important roles of starch concentration and C/N ratio on ABE 

production as mentioned above, the investigation of the ratio of yeast extract and 

ammonium nitrate was expected to obtain useful information for the strategy to reduce 
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medium costs. Even thought yeast extract will provide various amino acids, vitamins, 

minerals and factors that promote the growth of microorganisms, it was previously 

shown that the Bacillus subtilis grown in the presence of ammonium nitrate produced 

amylase under anaerobic conditions that directly influenced starch utilization and ABE 

production in the Clostridium mixed culture (Coleman and Elliott, 1961; Nakano et al., 

1997; Clements et al., 2002).  

 

3.1 Effect of cassava starch concentration  

 The ability of amylase and enhancement of ABE by the mixed culture of 

C. butylicum TISTR 1032 and B. subtilis WD 161 when using cassava starch as carbon 

source was evaluated. The mixed culture was cultured with various cassava starch 

concentrations (from 20 g/L to 50 g/L) under condition without anaerobic pretreatment. 

The yeast extract and NH4NO3 were used as organic and inorganic nitrogen sources, 

respectively, with the ratio of 39.755/50.0 mM/mM (5.0/2.0 g/g). The results are shown 

in Figures 14-17 and Table 4. The activity of the amylase and presence of reducing 

sugar increased with increasing starch concentration (from 30.5 to 45.8 U/mL, and from 

1.7 to 10.1 g/L, respectively). The highest amylase activity and reducing sugar level 

were obtained at 50 g/L starch concentration (45.8 U/mL and 10.1 g/L, respectively) 

(Figure 17). This would be because high starch concentration could induce the 

production of amylase and resulted in a high rate of hydrolysis of starch to sugar. It is 

well-known that higher amylase activity results in higher available sugar from starch for 

production of acids and ABE by the Clostridium. An excess of sugar is determined to be 

essential for the triggering and maintainance of ABE production (Long et al., 1984). 

With support from the high amylase activity in the mixed culture, the ABE production 

from cassava starch increased from 4.0 to 7.4 g/L when the starch concentration was 

increased from 20 to 40 g/L but a decrease in ABE production to 6.5 g/L was observed 

at 50 g/L starch concentration. The metabolism of Clostridium for ABE production 

involves first the acidogenic phase followed by a shift to the solventogenic phase. In the 

mixed culture, the most effective conversion of acids to ABE was observed at 40 g/L 

starch concentration. The high ABE production (7.4 g/L) correlated with a low 

accumulation of acids (1.93 g/L) at 40 g/L starch concentration (Figure 16).  
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Figure 14. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at 20 g/L cassava 

starch. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; 

(*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) 

ethanol. Values are means and standard deviations of duplicates. 
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Figure 15. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at 30 g/L cassava 

starch. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; 

(*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) 

ethanol. Values are means and standard deviations of duplicates. 
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Figure 16. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at 40 g/L cassava 

starch. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; 

(*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) 

ethanol. Values are means and standard deviations of duplicates. 

 

 

 

 

 

 

 

0

2

4

6

8

0 12 24 36 48 60 72

P
ro

d
u

ct
s 

(g
/L

) 

Time (h)

B

0

10

20

30

40

50

0

2

4

6

8

A
m

y
la

se a
ctiv

ity
 (U

/m
L

)
R

ed
u

cin
g
 su

g
a

r (g
/L

)  

O
D

6
6

0
 (
-)

, 
p

H
 (

-)
 

A
ci

d
s 

(g
/L

) 

A



61 
 

0

2

4

6

8

0 12 24 36 48 60 72

P
ro

d
u

ct
s 

(g
/L

) 

Time (h)

B

0

10

20

30

40

50

0

2

4

6

8

A
m

y
la

se a
ctiv

ity
 (U

/m
L

)

R
ed

u
cin

g
 su

g
a
r (g

/L
)  

O
D

6
6
0
 (

-)
, 

p
H

 (
-)

 

A
ci

d
s 

(g
/L

) 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Growth and metabolic activity of mixed cultures of C. butylicum TISTR 

1032 and B. subtilis WD 161 without anaerobic pretreatment at 50 g/L 

cassava starch. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) 

butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) 

acetone; (♦) ethanol. Values are means and standard deviations of 

duplicates.  
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Table 4. The performance of ABE production from cassava starch by the mixed culture 

of C. butylicum TISTR 1032 and B. subtilis WD 161 with various culture conditions 

 

Culture condition 

Amylase     

 activityb 

 (U/mL) 

       ABE 

concentrationc  

       (g/L) 

ABE 

productivity 

(g/L/h) 

ABE yield  

(g/g) 

Butanol  

Ratioe 

(-) 

Starch conc. (g/L)      

20 30.5        4.01 0.082 0.200 0.80 

30 33.2        4.99 0.104 0.166 0.74 

40  36.9 (3.8)d  7.40 (1.1)d 0.103(0.01)d  0.18(0.02)d 0.72(0.78)d 

50 45.8        6.59 0.092 0.131 0.72 

C/N       

32 18.9        4.22 0.090 0.105 0.65 

16 36.9        7.40 0.103 0.185 0.72 

8 49.1        8.04 0.112 0.201 0.65 

4 53.9        8.89 0.123 0.222 0.66 

YEa/NH4NO3       

115/250 73.7        8.45 0.112 0.211 0.65 

165/200    53.9        8.89 0.123 0.222 0.65 

265/100    49.3        9.71 0.135 0.242 0.69 

365/0    17.4        3.45 0.048 0.086 0.82 

0/365      5.4     2.51 0.035 0.062 0.69 

aYeast extract/ NH4NO3 ratio (mM/mM). 

bindicates the maximum values attained during the fermentation ( at 24 - 36 h). 

cindicates the final concentration at 72 h.  

dvalues in parentheses are the results of the pure culture of C. butylicum TISTR 1032. 

eindicates the ratio of butanol to total ABE at 72 h. 

Values are means of at least duplicate experiments. 

 

 Although, a high concentration of reducing sugar at 50 g/L starch 

concentration enhanced acid production during the acidogenic phase, the conversion of 

acids to ABE during solventogenic phase was less effective and reflected in a low 
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consumption rate of the reducing sugar (Figure 17). This result indicated that the ABE 

production was not stimulated by the higher amount of acids. One possibility might be 

because the nitrogen source was used up during the high production rate of acids in the 

acidogenic phase and it was apparently insufficient for cells to further convert acids to 

ABE in the solventogenic phase. It was also reported that the high production rate and 

accumulation of an excessive amount of acids in the culture could be toxic to the cells 

leading to less sugar consumption and cell growth, hence reducing the total ABE 

production (Madihah  et al., 2001; Ezeji et al., 2004). In the study of Madihah et al. 

(2001), they found that the ABE production appeared to depend on the amount of the 

undissociated form of the acids rather than the total amounts of acids.  

 Table 4 also shows that the amylase activity increased with the starch 

concentration. The ABE production in terms of the final concentration increased with 

increasing starch concentration and reached a maximum value at 40 g/L starch 

concentration. The highest ABE productivity at 30 g/L starch concentration was not 

much different from that at 40 g/L. It is interesting to note that the butanol ratio (the 

ratio of butanol to total ABE product) in this study was higher (from 0.71-0.8) 

compared to the commonly reported ratio (0.5-0.6). This means that butanol was the 

dominant component of the three fermentation products, acetone, butanol, and ethanol. 

Increasing the total ABE production without seriously interfering with the butanol ratio 

is a valuable property, because when butanol is dominant, the recovery of it from the 

culture will be easier to handle.  

 

3.2 Effect of C/N ratio 

 It has been reported that the C/N ratio plays an important role in carbon 

utilization; at a low C/N ratio, carbon utilization is carried out more rapidly and 

completely, and cells can then grow better. In contrast, a high C/N ratio makes carbon 

utilization less effective. Generally, a low C/N ratio is required to achieve high levels of 

ABE production (Lai and Traxler, 1994). In order to investigate the effects of the C/N 

ratio on ABE productions by the mixed culture, the C/N ratio was varied from 32, 16, 8 

and 4. The results are shown in Figures 18-20 and Table 4.   

 The amylase activity increased when the C/N ratio decreased from 32 to 

4, as a result of the increase in nitrogen sources. It is well-known that enzyme 
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production strongly depends on the amounts of the nitrogen source. At the high C/N 

ratio of 32, low amylase activity consequently resulted in lower sugar consumption rate. 

Low ABE production at this high C/N ratio was clearly due to the deficiency of the 

nitrogen source that limited both the amylase activity and the ABE production. The 

increase in amylase activity with decreasing C/N ratio enhanced the sugar consumption 

rate and ABE production. The maximum ABE production was obtained at a C/N ratio 

of 4. The increased amount of nitrogen accelerated the carbon utilization (Figures 18-

20). Although high amounts of ABE were obtained at this C/N ratio, high amount of 

acids also accumulated. The cessation of the conversion of acids to ABE might be due 

to the depletion of sugar resulting in an insufficient amount of energy-rich metabolites 

such as ATP or NADH. This result was consistent with the result of Shinto et al. (2007). 

Therefore, the right balance of carbon and nitrogen sources is necessary to further the 

conversion of acids to ABE. Another factor that affects the conversion of acids to ABE 

would be the amount of inorganic nitrogen. It has been reported that the anions from an 

inorganic nitrogen source such as NH4NO3 could be metabolized by Clostridium with a 

positive effect on the accumulated acids being converted to ABE (Welsh and Valiky, 

1987). Although the highest butanol ratio was obtained at a C/N ratio of 16, the final 

concentration (7.4 g/L) and productivity of ABE (0.103) at this C/N ratio were lower 

than those (8.89 g/L and 0.123, respectively) from a C/N ratio of 4 (Table 4). Generally, 

the result of this research was coincided with that of Lai and Traxler (1994) which 

reported that butanol production was favored at low C/N ratio, and reduced at a C/N 

ratio above 7.23. However, Madihah et al. (2001) reported that the individual 

concentrations of nitrogen and carbon influenced ABE production by C. acetobutylicum 

to a greater extent than did the C/N ratio. As for the fermentation using a fixed 

concentration of starch (50 g/L), the ABE concentration decreased (26.9 to 2.63 g/L) 

along with the increasing of C/N ratio (3.6 to 42.8). In contrast, for a fermentation using 

a fixed concentration of nitrogen, ABE increased with increasing C/N ratio up to value 

of 20 and decreased slightly above this value (Madihah et al., 2001). 
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Figure 18. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a C/N ratio of 4. 

A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) 

reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 

Values are means and standard deviations of duplicate experiments. 
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Figure 19. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a C/N ratio of 8. 

A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) 

reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) 

ethanol. Values are means and standard deviations of duplicate 

experiments. 
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Figure 20. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a C/N ratio of 16. 

A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) 

reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 

Values are means and standard deviations of duplicate experiments. 
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Figure 21. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a C/N ratio of 32. 

A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) 

reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 

Values are means and standard deviations of duplicate experiments. 

 

3.3 Effect of organic and inorganic nitrogen sources 

 Yeast extract is well-known for providing various amino acids, vitamins, 

minerals and factors that promote the growth of microorganisms. Previously the 

presence of NH4NO3 was found to support growth and amylase production by Bacillus. 

In this study yeast extract and NH4NO3 were used as organic and inorganic nitrogen 

sources, respectively. A further investigation on the  ratio of yeast extract to NH4NO3 

was expected to determine the best ratio for optimum ABE production and also useful 

information that could reduce the costs since NH4NO3 is much less expensive than yeast 
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extract. The ratio of yeast extract to NH4NO3 was varied at 0/365, 115/250, 165/200, 

265/100 and 365/0 mM/mM. The results are shown in Figures 21-24 and Table 4.  

 An increase in NH4NO3 enhanced amylase activity and sugar 

consumption. The use of yeast extract alone resulted in a low amylase activity and low 

sugar consumption and, consequently, low ABE production (Figures 22). The use of 

NH4NO3 only (365 Mm) was also found to have a negative effect on both amylase and 

ABE production (Figure 25). The final concentration and productivity of ABE increased 

with increasing yeast extract to 265 mM with the combination of 100 mM NH4NO3 

(Table 4). This result was acceptable since yeast extract contains various amino acids, 

vitamins, minerals and growth factors that promote the growth of bacteria. On the other 

hand, NH4NO3 was previously found to enhance the growth and amylase production of 

Bacillus. This has direct effects on starch hydrolysis and the availability of sugar for 

growth and ABE production by Clostridium. Thus, a mixture of organic and inorganic 

nitrogen sources was required to maximize ABE production by the mixed culture of 

Clostridium and Bacillus. Although the 115/250 ratio of yeast extract/ NH4NO3 resulted 

in the highest amylase activity and production rate of acids, the ABE production was 

lower compared to the 265/100 ratio. These results could be explained by the lower 

yeast extract content reducing the ability of the microbial activity to further convert 

acids to ABE. The results of this present study coincide with those of other researchers 

that reported that using a mixture of yeast extract and NH4NO3 for the pure culture of C. 

acetobutylicum resulted in a lower accumulation of undissociated acids and increased 

the ABE production (18.78 g/L) about 4.5-fold higher over that using yeast extract 

alone (3.75 g/L) (Madihah et al., 2001). This result again demonstrated that the 

presence of NH4NO3 enhanced amylase production but also assisted with ABE 

production by the Clostridium. As the content of yeast extract increased so did the ratio 

of butanol to the other fermentation products increase. However although this ratio was 

highest (0.85) when using yeast extract alone the yields were then unacceptably low. 

The most suitable ratio of yeast extract/NH4NO3 in terms of the final concentration 

(9.71 g/L) and productivity of ABE (0.135) (Table 4) was 265 mM /100 mM, 

respectively. 
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Figure 22. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a yeast 

extract/NH4NO3 ratio of 365/0. A. (○) OD660; (◊) amylase activity; (□) 

acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) 

butanol; (■) acetone; (♦) ethanol. Values are means and standard 

deviations of duplicate experiments. 
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Figure 23. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a yeast 

extract/NH4NO3 ratio of 265/100. A. (○) OD660; (◊) amylase activity; (□) 

acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) 

butanol; (■) acetone; (♦) ethanol. Values are means and standard 

deviations of duplicate experiments. 
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Figure 24. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a yeast 

extract/NH4NO3 ratio of 115/250. A. (○) OD660; (◊) amylase activity; (□) 

acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) 

butanol; (■) acetone; (♦) ethanol. Values are means and standard 

deviations of duplicate experiments.  

.  
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Figure 25. Growth and metabolic activity of mixed cultures of C. butylicum TISTR1032 

and B. subtilis WD 161 without anaerobic pretreatment at a yeast 

extract/NH4NO3 ratio of 0/365. A. (○) OD660; (◊) amylase activity; (□) 

acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) 

butanol; (■) acetone; (♦) ethanol. Values are means and standard 

deviations of duplicate experiments.  
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4. Optimizing a syntrophic co-culture of TISTR 1032 and B. subtilis WD 161 for 

ABE production from cassava starch using RSM 

 

 The utilization of starch for ABE production by Clostridium actually 

includes two processes, starch hydrolysis by amylolytic enzymes to produce glucose for 

cells growth and producing acids (acidogenesis, acetic and butyric) production and the 

conversion of these acids into ABE products (solventogenesis). Medium components 

such as the substrate or starch concentration, nitrogen source and content, have been 

reported to have profound effects on these two processes (Linden et al., 1985; McNeil 

and Kristiansen, 1986; Lai and Traxler, 1994; Madihah et al., 2001). Thus, optimizing 

the medium components to create the most favorable condition for substrate hydrolysis, 

acids and ABE production is extremely important.  

 The conventional method optimizes a process by changing one variable 

at a time and keeping the others at constant levels (Liu and Tzeng, 1998). Thus, any 

interactions between variables are not considered. This limitation can be overcome by 

using response surface methodology (RSM) where the combined effects of all variables 

are determined through mathematical and statistical inferences from experimental 

design to analysis of results (Silva and Roberto, 2001). The aim of this research was to 

determine the effect of each medium component as well as their interaction on amylase 

and ABE production from cassava starch by a syntrophic co-culture of Clostridium 

butylicum TISTR 1032 with amylase producing Bacillus subtilis WD 161 using RSM. It 

is known that starch concentration is important for the production of amylase and ABE. 

In addition to starch concentration, the combination of organic nitrogen source and 

inorganic nitrogen source is also important for enhancement of amylase and ABE 

production. In this study, yeast extract and ammonium nitrate were used as organic and 

inorganic nitrogen source, respectively. Yeast extract can provide various amino acids, 

vitamins, minerals and growth factors that promote growth of microorganisms. While, 

ammonium nitrate has been previously found to support growth and amylase production 

by Bacillus under anaerobic condition (Coleman and Elliott, 1961; Nakano et al., 1997; 

Clements et al., 2002). Thus, the effects of these three factors on ABE, butanol and 

amylase production were investigated using RSM.  
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4.1 Response surface methodology for optimizing co-culture of C. butylicum 

TISTR 1032 and B. subtilis WD 161  

Experimental design 

 The effect of three variables including cassava starch concentration (x1), 

yeast extract concentration (x2) and ammonium nitrate concentration (x3) with three 

levels (low: -1; medium: 0; and high: +1) for each variable were investigated. The Box-

Behnken design was employed to study the interaction between these three variables; 

the complete design consisting of 15 trials in total each containing three replicates at the 

central point for estimating the purely experimental uncertainty variance (Table 5) (Box 

and Behnken, 1960). Responses under observation included total acetone-butanol-

ethanol concentration (ABE) (Y1), butanol concentration (butanol) (Y2) and amylase 

activity (amylase) (Y3). The experimental values were compared with the predicted 

values from the models. In addition, the butanol ratio was also calculated by Y2/Y1. 

 

Statistical analysis 

 The response surface analysis was based on multiple linear regressions 

taking into account the main, quadratic and interactive effects, according to the 

following equation: 

 Y = βo + ∑ βixi + ∑βiix
2

i + ∑βijxixj                                       (1)  

where Y is the predicted response; xi and xj are input variables that influence the 

response variable Y; βo is the offset term; βi is the i th linear coefficient; βii is the i th 

quadratic coefficient and βij is the ij th interaction coefficient.  

  

 

 

 

 

 

 

 



76 
 

Table 5. Experimental data for the three-factor with three level response surface 

analysis  

Independent variables Dependent variables 

Cassava 

starch 

Yeast 

extract 

Ammonium 

nitrate 
ABE Butanol B ratio Amylase Trial 

(g/L) (g/L) (g/L) (g/L) (g/L) (-) (U/mL) 

 x1 x2 x3 Y1 Y2 Y2/Y1 Y3 

1  1(60.0)  1(20.0)      0(7.0) 4.37 2.50 0.57 46.0 

2  1(60.0) -1(5.0)      0(7.0) 5.49 2.17 0.51 39.0 

3 -1(20.0)  1(20.0)      0(7.0) 3.15 2.89 0.91 20.1 

4 -1(20.0) -1(5.0)      0(7.0) 3.20 2.50 0.78 25.6 

5  1(60.0)  0(12.5)      1(12.0) 3.50 2.00 0.64 33.4 

6  1(60.0)  0(12.5)     -1(2.0) 2.80 1.80 0.57 27.0 

7 -1(20.0)  0(12.5)      1(12.0) 2.70 1.75 0.65 26.4 

8 -1(20.0)  0(12.5)     -1(2.0) 1.92 1.81 0.94 15.0 

9  0(40.0)  1(20.0)      1(12.0) 9.37 6.12 0.71 75.0 

10  0(40.0)  1(20.0)     -1(2.0) 8.10 5.60 0.69 64.6 

11  0(40.0) -1(5.0)      1(12.0) 8.90 5.80 0.72 67.2 

12  0(40.0) -1(5.0)     -1(2.0) 6.70 5.00 0.75 36.0 

13  0(40.0)  0(12.5)      0(7.0) 9.00 6.00 0.71 69.0 

14  0(40.0)  0(12.5)      0(7.0) 9.05 5.90 0.69 67.3 

15  0(40.0)  0(12.5)      0(7.0) 9.13 6.00 0.70 66.7 

 
Note: values in parentheses are the un-coded independent variables. 

x1: cassava starch concentration; x2: yeast extract concentration; x3: ammonium nitrate 

concentration. Y1: ABE; Y2: butanol; B ratio: the ratio of butanol to total ABE; Y3: 

amylase. 
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 Responses surface plots for these three models were carried out by using 

the Statistica for Window version 5.0 by plotting as a function of two variables, while 

keeping other variables at the constant value. The combined effect of three variables; 

cassava starch concentration (x1), yeast extract concentration (x2) and ammonium nitrate 

concentration (x3) on ABE, butanol and amylase production was examined by 

performing the 15 trials designed by the Box-Behnken. The experimental design and 

respective experimental results are given in Table 5. The regression coefficients (β) and 

analysis of variances are shown in Table 6. The polynomial equations for ABE (Y1), 

butanol (Y2) and amylase production (Y3) are listed as follows:  

 

Y1 = –6.6998 + 0.6820x1 – 0.0404x2 + 0.2652x3 – 0.0078x1
2 + 0.0011x2

2 –  0.0086x3
2 

 + 0.0018 x1x2 – 0.0011x1x3 – 0.0020 x2x3  

Y2 = –4.2271+ 0.4091x1 + 0.0614x2 + 0.2360x3 – 0.0049x1
2 – 0.0027 x2

2 –  0.0137 x3
2 

 + 0.0006 x1x2 + 0.0003 x1x3 + 0.0008 x2x3 

Y3 = –89.0804+ 6.0833x1 – 0.7859x2 + 5.3586x3 – 0.0784 x1
2 + 0.0247x2

2 – 0.1536x3
2 

 + 0.0541 x1 x2  –  0.0254 x1x3 – 0.1524 x2 x3  

 

 Generally, the adequacy of a model is determined through R2 (multiple 

correlation coefficient), CV (coefficient of variation) and P value. R2 values closer to 1 

denote better correlation between the experimental and predicted values. As shown in 

Table 5 these three models above are adequate since their R2 values were found to be 

close to 1: 0.99, 0.97, and 0.98, respectively, for models of ABE, butanol and amylase 

indicating that 99 %, 97% and 98% of the variability in the response could be explained 

by the model of ABE, butanol and amylase, respectively. The CV value indicates the 

degree of precision with which the experiments are compared. The lower reliability of 

the experiment is usually indicated by high value of CV (> 20). In the present case, 

acceptable CV values were observed for the model of ABE, butanol and amylase (6.7, 

10.1 and 10.3, respectively) denoting that the experiments performed are reliable. The P 

values of these three models were ≤ 0.05 to indicate the significance of the coefficients. 
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Table 6.  Regression of coefficients and analysis of variance of the second order     

               polynomial for response variables 

 

x1, x2, x3 are cassava starch, yeast extract and ammonium nitrate concentrations, 

respectively.* means significant at 5% level. 

 

Coefficient   ABE (g/L) Butanol (g/L) Amylase (U/mL) 

         Y1       Y2         Y3 

βo  - 6.6998* - 4.2271*   - 89.0804* 

Linear    

x1    0.6820*   0.4091*       6.0833* 

x2  - 0.0404   0.0614     - 0.7859  

x3    0.2652   0.2300       5.3586* 

Interaction    

x1x2    0.0018   0.0006      0.0541* 

x1x3  - 0.0011   0.0003     - 0.0254* 

x2x3  - 0.0020   0.0008    - 0.1524  

Quadratic    

x1
2  - 0.0078* - 0.0049*    - 0.0784* 

x2
2    0.0011 - 0.0027      0.0247 

x3
2  - 0.0086 - 0.0137    - 0.1536 

Variability    

R
2 of model    0.99   0. 97      0.98 

F value of model  63.17   4.19     29.95 

P >F    0.016   0.002      0.032 

CV of model    6.7 10.1    10.3 
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 In terms of determination of the interaction between the variables, P 

values can provide understanding of the pattern of the mutual interactions between the 

variables, as well as the effect of each variable on the investigated responses. Further 

statistical analysis showed that only cassava starch concentration (x1) had a significant 

effect on all the responses (P<0.05). In the case of amylase production, besides cassava 

starch concentration, ammonium nitrate (x3) also had a significant effect (P<0.05). The 

quadratic effect of cassava starch concentration (x1
2) also had a significant effect for the 

three investigated responses. Among those significant affecting terms, cassava starch 

concentration (x1) had the largest effect which is referred to as the highest value of the 

coefficient (for ABE, butanol, and amylase production were 0.6500, 0.4091 and 6.0833, 

respectively). A high value of coefficient for ammonium nitrate (x3) was also observed 

for amylase production (5.3587). In addition, the interactive terms of x1x2 and x1x3 were 

found to be significant for amylase production (Table 6).  In the research of Bard and 

Hamdy (1992) where RSM was employed to investigate the interactive effect of a 

number of medium components for ABE production by C. acetobutylicum P262, the 

obtained statistical analyses indicated that the concentration of starch and calcium 

carbonate significantly affected yields and productivities, while phosphate and nitrogen 

did not.  

  

4.2 Optimal condition for ABE production 

 The effect of starch concentration on ABE, butanol and amylase were 

studied using a response surface plot (Figures 26-28). When the concentration of starch 

was increased higher than the optimal level, a reduction in ABE, butanol and amylase 

were observed. This might be due to the high viscosity of the culture and it may hinder 

mass transfer for enzyme hydrolysis and microbial reactions (Bard et al., 2007; 

Madihah et al., 2001). The production of ABE from starch includes two steps, starch 

hydrolysis by amylolytic enzymes to produce glucose for cells growth and acids 

production during acidogenesis phase and the conversion of these acids into ABE 

products during solventogenesis phase. Therefore, the amylolytic enzymes were 

determined to be a key factor in ABE production (Lin and Blaschek, 1983). When the 

amylase activity in the culture was high, starch hydrolysis would be more complete. The 

availability of sugars for cell growth, acids and ABE production would also be high. It 



80 
 

was reported that maize, potato, sago and tapioca starch at a concentration of 50 g/L 

was optimum for solvent production by a pure culture of C. acetobutylicum (Linden et 

al., 1985; Madihah et al., 2001). At lower concentrations of starch less sugar is 

available for cells due to the lack of carbon, but higher starch concentrations causes a 

high viscosity of medium that hinders amylolytic enzymes excretion and proper 

function. Moreover, it was also found that a higher starch concentration caused a higher 

accumulation of organic acids that would cause toxicity to cells (Madihah et al., 2001).  

 The interactive effects and optimal levels of cassava starch, yeast extract, 

and ammonium nitrate concentration were determined by plotting the response surface 

curves. Based on the statistical analysis, among the three investigated variables, yeast 

extract had the least effect on all responses (Table 6). Thus, response surface curves of 

two variables, cassava starch and ammonium nitrate concentrations were plotted by 

fixing the yeast extract concentration at three values in the selected range (5.0, 12.5 and 

20 g/L). The shapes of the response surface curves showed a positive interaction 

between the two variables on the production of ABE, butanol and amylase. These 

products were found to increase with a simultaneous increase of both variables. In the 

ABE fermentation, acetone, butanol, and ethanol are normally produced in the ratios of 

2:3:1 (Jones and Woods, 1986). Increasing the ABE concentration without any 

reduction in the proportion of butanol is the target for most optimizing work on the 

ABE fermentation process. When butanol is present as the major product in the culture, 

the recovery process is much easier to handle. Thus, in this research in addition to the 

total ABE production, the butanol concentration was also taken into account for the 

selection of the optimal conditions that provided both high ABE and butanol 

concentrations, namely a high butanol ratio.  

 Figure 28 shows that the amylase activity increased with increasing yeast 

extract concentration. Although, the highest amylase activity (55 U/mL) was achieved 

at 20 g/L of yeast extract, a comparable level of amylase activity (46 U/mL) was also 

obtained at a 5 g/L yeast extract concentration by increasing the amount of ammonium 

nitrate to 14 g/L. This result indicates that at the 5 g/L yeast extract concentration the 

synergic effect of cassava starch and ammonium nitrate were more obvious than those 

at 12.5 and 20 g/L yeast extract concentration. This also means that at high yeast extract 

concentration, the amylase production mostly depends on the concentration of cassava 
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starch. The ABE and butanol production was also increased in line with the increasing 

ammonium nitrate concentration. This is probably due to the effect of it on the growth 

and amylase production of the Bacillus in the mixed culture. However, it is noted here 

that even though the amylase concentration increased along with the increase in 

ammonium nitrate, a concentration of ammonium nitrate higher than 8 g/L no enhanced 

effect was observed on either ABE or butanol concentrations. This is possibly due to a 

requirement to limit the amount of amylase for the optimum ABE or butanol 

production. It was found that the presence of ammonium nitrate supported the growth of 

B. subtilis under anaerobic condition. It has also been reported that, NO-
3 could replace 

oxygen as an electron acceptor in the absence of oxygen (Coleman and Elliott, 1961; 

Nakano et al., 1997; Clements et al., 2002).  

 In addition to the information on the interaction between the studied 

variables, results that come from this RSM study would also provide necessary 

information to determine the optimal process for producing product and for economic 

purposes. The finding that the ABE and butanol production were mainly influenced by 

the concentration of cassava starch rather than yeast extract or ammonium nitrate was 

important for a strategy to maximize ABE and butanol production with minimum cost. 

As the adjustment of medium composition could be focused only on cassava starch. 

Then, the concentration of ammonium nitrate would be adjusted in the range suitable for 

the achievement of a sufficient amylase concentration. Additionally, RSM provided not 

only an optimal point, but also an optimal area from which the suitable point from the 

economic view point could be selected. Figures 26 and 27 show that the maximum ABE 

and butanol concentrations obtained in the selected range of yeast extract concentration 

(5.0, 12.5 and 20 g/L) were not significantly different. This result indicated that the 

maximum ABE and butanol could be achieved by varying only two variables, cassava 

starch and ammonium nitrate concentration and fixing yeast extract concentration at 

minimum level (5 g/L).  
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Figure 26. Response surface plots representing the interaction between cassava starch   

                 and ammonium nitrate concentrations on ABE production at a given yeast    

                 extract concentration: 5 g/L (A), 12.5 g/L (B) and 20 g/L (C). 
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Figure 27. Response surface plots representing the interaction between cassava starch  

and ammonium nitrate concentrations on butanol production at a given yeast   

extract concentration: 5 g/L (A), 12.5 g/L (B) and 20 g/L (C). 
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Figure 28. Response surface plots representing the interaction between cassava starch   

 and ammonium nitrate concentrations on amylase production at a given yeast   

extract concentration: 5 g/L (A), 12.5 g/L (B) and 20 g/L (C). 
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 To optimize both ABE and butanol production using RSM, 

superimposing performance in the optimal area for ABE and butanol production using 

the Lotus Freelance Graphics at 5 g/L yeast extract concentration was carried and the 

optimal points for both  ABE and butanol production were in the center of an 

overlapping area as shown in Figure 29. The superimposed graph revealed that the 

conditions for the optimum productions of ABE and butanol were over a large range. 

The central point of this area with 40 g/L cassava starch, 5 g/L yeast extract, and 8 g/L 

ammonium nitrate was therefore selected for maximizing both ABE and butanol 

production.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. A superimposed graph of the optimal areas for ABE and butanol production. 

ABE production (solid line), butanol production (dashed line). The center 

of the overlapping area is the optimum point for ABE and butanol 

productions (solid line). The central point A contains 40 g/L cassava 

starch, 5 g/L yeast extract, and 8 g/L ammonium nitrate. 
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 The predicted conditions were tested. The conditions and responses 

obtained from the predicted conditions are shown in the Table 7. The low value of CV 

indicated a close correlation between the experimental and predicted values. The 

optimum condition for ABE, butanol and amylase production by the mixed culture of C. 

butylicum TISTR 1032 and Bacillus subtilis WD 161 was cassava starch concentration 

(40 g/L), yeast extract concentration (5 g/L) and ammonium nitrate concentration (8.0 

g/L) at which 9.02, 5.60 g/L ABE and butanol, respectively and 56.70 U/mL amylase 

were obtained.  

Table 7. Predicted and observed values for the independent variables  

 

Note. The central point with 40 g/L cassava starch, 5 g/L yeast extract, and 8 g/L 
ammonium nitrate were replaced into the polynomial equations for  predicted values of 
ABE (Y1), butanol (Y2) and amylase (Y3). The observed values are the values obtained 
from results of experiment carried out in this condition. 
 
 
 Both the two optimum conditions contained the same amount of cassava 

starch (40 g/L). However, the optimum condition obtained from the result of 

conventional method was different from that of the RSM by having higher amount of 

yeast extract and smaller amount of ammonium nitrate. The ABE production from the 

culture employing maximum condition obtained by the conventional method was higher 

than that of the RSM, although amylase production from the RSM condition was higher. 

The higher amount of ABE production would be explained by the presence of high 

amount of yeast extract, and the higher amylase activity in the culture employing RSM 

optimum condition would be explained by higher amount of ammonium nitrate. Yeast 

extract can provide various amino acids, vitamins, minerals and growth factors that 

promote growth of microorganisms. While, ammonium nitrate has been previously 

Response Predicted value 

 

Observed values ± SD  

 

CV 

ABE (g/L)   9.43 9.02 ± 0.17  1.92 

Butanol (g/L)   5.80 5.60 ± 0.13 2.37 

Amylase (U/mL) 55.0 56.7 ± 6.70 13.4 
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found to support growth and amylase production by Bacillus under anaerobic condition 

(Coleman and Elliott, 1961; Nakano et al., 1997; Clements et al., 2002). 

 

Table 8.  Comparison in amylase, ABE and butanol production at optimum condition 

obtained by conventional method and RSM 

 

 

 The synergic interaction between cassava starch and ammonium nitrate 

found by the RSM method allowed the achievements of maximum production without 

requiring a high amount of yeast extract concentration. This is an economic benefit of 

using RSM method for optimization.  

 

5. Process optimization for ABE production by a mixed culture system of C. 

butylicum and B. subtilis using cassava starch and its pulp waste 

 

 pH plays an important role in the solventogensis process. 

Solventogenesis is said to be triggered when undissociated butyric acid reaches a critical 

concentration. High pH values favoured acid production and lower pH values could 

stimulate ABE production (Jone and Wood, 1986). In addition, amylase which was the 

key factor in ABE production from starch by Clostridium (Madihah et al., 2001), was 

reported to be considerably influenced by the pH of the culture. An increase of pH from 

4.4 to 5.2 led to a remarkably higher production of amylase (Soni et al., 1992) and an 

amylase was also found to exhibit maximal activity at pH 6.5 and 30oC without the 

presence of calcium (Shih and Labbe, 1995).  

 Carbon concentration plays an important role in ABE production. When 

the carbon concentration is high (glucose concentration is above 160 g/L) that could 

inhibit cell growth, amylase, acids, and ABE production, but when the carbon is limited 

Optimum medium component s (g/L) Product Method 

Cassava 

starch 

Ammonium 

nitrate 

Yeast extract ABE 

(g/L) 

Amylase (U/mL) 

RSM 40 8 5     9.02         56.7 

Conventional 40 2 32     9.71         49.3 
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(e.g. glucose is below 7 g/L), only acids are formed (Jone and Woods, 1986). It has 

been suggested that using a high substrate concentration would increase productivity, 

and shorten fermentation time. However, in the case of the substrate being starch, high 

starch concentration causes higher viscosity that hinders amylase excretion and ABE 

production (Madihah et al., 2001). To maintain an appropriate amount of substrate in 

the culture for cell growth, amylase and ABE production over the fermentation process, 

feeding substrate is required. 

 Product inhibition is among the major factors causing limitations for the 

butanol market. In the case of a pure culture of Clostridium, normally when butanol in 

the culture reaches 13 g/L or ABE concentration is more than 20 g/L, the conditions will 

be toxic to cells and the fermentation process will cease. Thus, removal of butanol from 

the culture will be advantageous. For the case of a mixed culture, there has not been any 

report on the critical amount of ABE that causes toxicity for the cells. Among the 

available techniques for solvent recovery, gas stripping seems to be more beneficial due 

to a number of advantages over the other techniques e.g. easy to handle, and more 

economically beneficial (Ezeji et al., 2004). Also nutrients and reaction intermediates 

are in this case not removed from the reaction mixture.  

 Though, cassava starch is readily available at low cost in Thailand in 

particular and in Asia in general, in the long term the use of a cassava crop for ABE 

production may not be practical, because this crop is also an important source of food, 

animal feed, and material for production of other products e.g. enzymes, antibiotic and 

ethanol. Using cassava waste from manufacturers that use cassava for other processes as 

substrates for ABE production is a promising alternative (Kosugi et al., 2008). In this 

context, cassava pulp waste has also been evaluated as feedstock for butanol production 

due to its high availability from the large number of cassava starch factories in Thailand 

and Asia (approximately one million ton generated from cassava starch factories per 

year). Cassava pulp waste was obtained from Srima Inter Product Co., Ltd, located in 

Cha-Choeng Sao province, Thailand. The waste normally contains about 60.6% cassava 

starch, and about 29% non-starch polysaccharides of which 20% is cellulose (Kosugi et 

al., 2008). Besides starch, cellulose in cassava pulp waste can also be a carbon source 

for butanol production if provided with appropriate enzymes. Therefore cassava pulp 

waste was employed in two ways that included direct use, and pulp waste pretreated 
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hydrothermally and enzymatically before use for ABE fermentation. In this study, an 

ABE production process from cassava starch by mixed culture of an oxygen tolerating 

Clostridium (C. butylicum TISTR 1032) and a amylase producing Bacillus (B. subtilis 

WD 161) was optimized by employing pH control, fed-batch, and product recovery by 

gas stripping. The optimum system was then applied for ABE production from cassava 

pulp waste. 

 

5. 1 A mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161 for 

ABE production 

 The mixed culture of B. subtilis WD 161 with C. butylicum TISTR 1032 

were established under conditions without anaerobic pretreatment compared to the pure 

cultures of C. butylicum TISTR 1032 using optimum conditions obtained from the RSM 

study. The fermentation was carried out in a 100 mL serum bottle with 90 mL working 

volume, at 37oC. Optimized medium components (40 g/L cassava starch, 5 g/L yeast 

extract, and 8 g/L ammonium nitrate, pH 6.5) obtained from the previous RSM study 

was employed. The medium was stirred at 120 rpm using a magnetic bar. The time 

course of OD660, amylase activity, reducing sugars, acids and ABE production are 

shown in Figure 30. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



90 
 

0

1

2

3

0 12 24 36 48 60 72

P
ro

d
u

ct
s 

(g
/L

) 

Time (h)

B

0

5

10

15

20

25

30

0

2

4

6

8

10

12

A
m

y
la

se a
ctiv

ity
 (U

/m
L

)

R
ed

u
cin

g
 su

g
a

r (g
/L

)  

O
D

6
6

0
 (
-)

, 
p

H
 (

-)
 

A
ci

d
s 

(g
/L

) 

A 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Growth and metabolic activity of pure culture of C. butylicum TISTR 1032 

A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) 

reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 

40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 (g/L) ammonium nitrate 

was used as carbon, organic nitrogen, and inorganic nitrogen source, 

respectively. 
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Figure 31. Growth and metabolic activity of co-culture of C. butylicum TISTR 1032 and 

B. subtilis WD 161. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) 

butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) 

acetone; (♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 

(g/L) ammonium nitrate was used as carbon, organic nitrogen, and inorganic 

nitrogen source, respectively. 
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 The mixed culture of Clostridium and Bacillus performed better growth 

and amylase production than the pure culture of Clostridium. The maximum amylase 

production was 50 U/mL or about 10 fold that of the pure culture (Figure 31). The 

substrate utilization in the mixed culture was found to be more complete than in the 

pure culture. The residual reducing sugars were 17.2 g/L and 2.77 g/L, respectively for 

the pure culture of Clostridium and mixed culture of Clostridium and Bacillus. This is 

probably due to the difference in amylase production. The low amylase production in 

the pure culture of Clostridium might not be sufficient to convert cassava starch into 

ready to use sugars. But, the high amylase activity in the mixed culture might rapidly 

convert starch to available sugar that soon stimulated the metabolism of Clostridium to 

grow and enhanced ABE production. Consequently, the mixed culture produced much 

higher amounts of ABE (9.02 g/L) or about 6.3 fold higher than that of the pure culture. 

The results showed that in the mixed culture without anaerobic pretreatment Bacillus 

plays an important role on the enhancement of Clostridium by providing high amylase 

production in the culture to create more available substrate for Clostridium. The butanol 

ratio of the mixed culture was 0.62 which is higher than the common ABE ratio from a 

pure culture of Clostridium reported in literature (2:3:1) (Parekh et al., 1999). Since 

butanol was the dominant product in the mixed culture, product recovery would be 

much easier to handle. This is also another advantage of the mixed culture. In the next 

study, the mixed culture was scaled up and optimized for enhancement in ABE 

production. 

 

5.2 ABE production by using mixed culture of C. butylicum TISTR 1032 and 

B. subtilis WD 161 in 1 L anaerobic bioreactor 

 In this study, mixed culture of C. butylicum TISTR 1032 and B. subtilis 

WD 161 was scaled up in a 1 L anaerobic bioreactor which was connected with a pH 

probe and temperature was controlled at 37oC. The optimum medium obtained from 

RSM study was employed (1 L medium contains: 40 g/L cassava starch; 5 g/L yeast 

extract; 8 g/L ammonium nitrate; 0.5 g KH2PO4; 0.3 g MgSO4⋅7H2O; 0.02 g 

MnSO4⋅7H2O; 0.02 g FeSO4⋅7H2O; 0.02 g NaCl); the medium was stirred at 120 rpm 

using a magnetic bar. The obtained results are shown in Figure 32. Compared to the 

small scale (100 mL serum bottle) of the mixed culture, OD, amylase, butanol and ABE 
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productions at this scale (6.7, 46 U/mL, 5.0 g/L and 7.9 g/L, respectively) were slightly 

smaller than those of the small scale (the amylase, butanol and ABE production at small 

scale was 7.5, 50.0 U/mL, 5.47 g/L and 8.85 g/L, respectively. The butanol ratio was 

not significantly different at 0.615 for the small scale and 0.62 for the large scale. 

Additionally, the fermentation time at the large scale was also approximately the same 

as with the small scale (72h). Notably, the amount of reducing sugars in the large scale 

(5.0 g/L) was remarkably higher than that at the small scale (2.8 g/L). The reduction of 

substrate utilization and products concentration when scaling up is probably due to less 

effective cells dispersion throughout the culture during the fermentation process and this 

may hinder metabolic activities of the cells (Ezeji et al., 2005 b;  Hipolito et al., 2007).  

 Generally, the performance of the mixed culture of C. butylicum TISTR 

1032 and B. subtilis WD 161 in the anaerobic bioreactor was consistent with that in the 

serum bottle. This indicates that the anaerobic bioreactor is usable for the larger scale 

study. However, either at the small or large scale, the accumulation of acids, especially 

butyric, in the culture was considerably high (4.2 and 4.7 g/L for small scale and large 

scale, respectively). This information indicated that the conversion of butyric into 

butanol was less effective and also most of the energy might be used for acids formation 

rather than butanol production. Producing a further conversion of these acids to ABE 

products was needed pH control, fed-batch, and product recovery were modified for 

enhancement of ABE production by the mixed culture. 
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Figure 32. Growth and metabolic activity of co-cultures of C. butylicum TISTR 1032    

and B. subtilis WD 161 in anaerobic bioreactor. A. (○) OD660; (◊) amylase 

activity; (□) acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) 

ABE; (▲) butanol; (■) acetone; (♦) ethanol. 40 (g/L) cassava starch, 5 

(g/L) yeast extract, and 8 (g/L) ammonium nitrate was used as carbon, 

organic nitrogen, and inorganic nitrogen source, respectively. 

 

5.3 Effect of pH on ABE production by co-culture of C. butylicum TISTR 1032 

and B. subtilis WD 161  

 In this study on the effect of pH on ABE production, the initial pH was 

first adjusted and controlled at 5.0, 5.5, 6.0 and 6.5 throughout the fermentation using 

2.5 M sodium hydroxide. Fermentation was carried out in the 1 L anaerobic bioreactor 

which was connected with a pH probe and temperature was controlled at 37oC. The 

medium was stirred at 120 rpm using a magnetic bar. The results are shown in Figure 
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31. The pH control at 6.5 was found to favor growth (at early time), amylase and acid 

production. At the end of the fermentation, there was about 7.5 g/L butyric accumulated 

in the culture at pH 6.5. At pH 6.5 butyric acid exists mostly in its disassociated form so 

the conversion of butyric acid into butanol is not favored. These results were consistent 

with the results of Monot et al. (1983). Thus, butyric acid accumulated in the culture 

and caused toxicity to the cells. Consequently, sugars utilization was less complete and 

the reducing sugars remained higher at pH 6.5 than that at pH 6.0. On the other hand, 

pH 6.0 favored ABE production (10.2 g/L). At pH 6.0, there was good growth that 

resulted in production of sufficient amounts of butyric and acetic acids. At this pH, the 

undissociated form of butyric and acetic acids could stimulate the conversion of them to 

the ABE products. Therefore, the final ABE product at pH 6.0 was much higher than for 

the other cultures (Figures 33-36). A lower final concentration of butyric acid at pH 6.0 

(2.5 g/L) compared to the culture without pH control (4.7 g/L) was also observed. 

However, there still remained a quite high amount of butyric in the culture (2.5 g/L). 

Substrate utilization was also more complete at pH 6.0, with the residual reducing 

sugars of this culture being about 2.0 g/L (Figures 33-36).  
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Figure 33. Effect of pH on growth and metabolic activity of a co-culture of C. butylicum 

TISTR 1032  and B. subtilis WD 161 in an anaerobic bioreactor at pH 5.0. 

A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) 

reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 

40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 (g/L) ammonium nitrate 

was used as carbon, organic nitrogen, and inorganic nitrogen source, 

respectively. 
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Figure 34.  Effect of pH on growth and metabolic activity of a co-culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 in an anaerobic bioreactor 

at pH 5.5. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric 

acid; (*) reducing sugar; (   ) pH. B. (●) ABE; (▲) butanol; (■) acetone; 

(♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 (g/L) 

ammonium nitrate was used as carbon, organic nitrogen, and inorganic 

nitrogen source, respectively. 
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Figure 35.  Effect of pH on growth and metabolic activity of a co-culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 in an anaerobic bioreactor 

at pH 6.0. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric 

acid; (*) reducing sugar; (   ) pH. B. (●) ABE; (▲) butanol; (■) acetone; 

(♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 (g/L) 

ammonium nitrate was used as carbon, organic nitrogen, and inorganic 

nitrogen source, respectively. 
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Figure 36.  Effect of pH on growth and metabolic activity of a co-culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 in an anaerobic bioreactor 

at pH 6.5. A. (○) OD660; (◊) amylase activity; (□) acetic acid; (∆) butyric 

acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; 

(♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 (g/L) 

ammonium nitrate was used as carbon, organic nitrogen, and inorganic 

nitrogen source, respectively. 
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 Remarkably, in the mixed culture of C. butylicum TISTR 1032 and B. 

subtilis WD 161 the pH control did not show significant effects on the B ratio (B ratio at 

pH 6.0 was 0.66). Among the three products including acetone, butanol, and ethanol; 

butanol was dominant regardless of whether the culture had the pH controlled or not. 

This is also one of the advantages, since controlling pH could increase the total ABE 

without changing the ratios of product and this would make the product recovery easier 

to handle. The productivity (g/L/h) and the yield of butanol/starch (g/g) of the mixed 

culture at pH 6.0 were about 0.14 and 0.25, respectively which are comparable with 

those of other researches 0.16 g/L/h and 0.2 g/g, respectively reported by Madihah et al. 

(2001) and  0.28 g/g reported by Ezeji et al. (2004). It is even higher than that reported 

in the research of Badr et al. (2001) (0.054 g/L/h and 0.104 g/g, respectively) and 

Hipolito et al. (2008) (0.09 g/L/h). All further experiments in the bioreactor were 

therefore carried out with pH control at 6.0. 

 

5.4 Fed-batch of mixed culture of C. butylicum TISTR 1032 and B. subtilis    

WD 161  

 5.4.1 Fed-batch without integrated with gas stripping 

 The previous study on controlling the pH found that when the pH of the 

mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161 was controlled at 

6.0, the residual reducing sugars was very small (2.0 g/L). This fact indicated that 

perhaps an addition of new substrate might be necessary for further ABE production. In 

this study, the mixed culture with an initial working volume of 700 mL was first 

operated in the batch mode for 24 h. Then, 100 mL of medium with 80 g/L of cassava 

starch (the maximum starch concentration which could be dissolved in water) with 

optimum C/N ratio was added at 24 and 36 h where reducing sugars concentration 

decreased or started to be decreased. The pH of culture was controlled at 6.0 throughout 

the fermentation process. The profiles of growth, amylase, reducing sugars, acids and 

ABE production are shown in Figure 37.  

 The OD value and amylase production in the mixed culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 employing the fed-batch mode were 

higher than those of the mixed culture in the batch fermentation. In the batch mode the 

reducing sugars rapidly reduced after the first 12 h, but in the fed-batch fermentation the 
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reducing sugars increased after the addition of new substrate then gradually reduced 

after 36 h. At the end of the fermentation process, the amount of residual reducing sugar 

in the fed-batch culture was 3.0 g/L that is slightly higher compared to the batch culture 

(2.0 g/L) (Figure 37). The addition of cassava starch provided a new carbon source and 

hence more energy for cell growth and maintenance as well as for conversion of acetic 

and butyric acids into ABE product. The ABE production in the fed-batch culture (13.4 

g/L) was higher than that of the batch culture (10.0 g/L) (Figures 35 and 37). The 

productivity (g/L/h) and the yield of butanol/starch (g/g) of the mixed culture at pH 6.0 

were about 0.14 and 0.25 and those of the fed batch culture without stripping were 0.19 

and 0.24, respectively. In the batch culture, ABE was rapidly produced until 48 h, but 

there was only a 0.4 g/L increase during 48- 72 h. This was probably due to the 

depletion of substrate. In the fed- batch culture ABE was produced faster and in greater 

amounts during 48-72 h (Figure 37) compared to that in batch mode. Accumulation of 

butyric acid in the fed-batch culture was less than that of the batch culture. This is 

probably explained by there being more available substrate in fed-batch culture for 

further conversion of acids into ABE. There was no difference in the butanol ratio in the 

fed-batch or batch culture, butanol was found to be dominant in both batch and fed-

batch cultures and higher compared to the typical product ratios in the literature. 

Remarkably, the fermentation times required to obtain the optimum ABE were the same 

in both cultures (72 h). Compared to other research work  where a single culture of 

Clostridium was used for ABE production from starch or other substrates, the 

fermentation time in this study was much shorter (Ezeji et al., 2005a; Qureshi et al., 

2007). This property is important for reduction of the cost of butanol. Since the 

fermentation time was short, it would require less energy to maintain fermentation 

process. The shorter fermentation time found in this research might be due to the fast 

starch hydrolysis resulting in higher available sugars for cell growth, acids and ABE 

production. In the research of Kosugi et al. (2009) the slow production of ethanol from 

cassava starch waste by Saccharomyces cerevisiae K7 was found to be due to the time 

required for saccharification of starch by the glucoamylase.  
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Figure 37. Growth and metabolic activity of a co-culture of C. butylicum TISTR 1032  

and B. subtilis WD 161 in an anaerobic bioreactor in fed-batch mode; pH 

controlled at 6.0. A. (○) OD 660; (◊) amylase activity; (□) acetic acid; (∆) 

butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) butanol; (■) 

acetone; (♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 

(g/L) ammonium nitrate was used as carbon, organic nitrogen, and inorganic 

nitrogen source, respectively. The arrows indicate the times when the 

substrate was fed. 
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 So far, there has been no report on ABE production from starch by mixed 

culture of Clostridium with a high amylase producing Bacillus, especially in fed-batch 

culture. In the research of Ezeji et al. (2004), corn and soluble starch were used to feed 

the culture of C. beijerinckii. It was found that the fed-batch culture process did improve 

ABE production.  

 The enhancement of ABE production and the reduced accumulation of 

acids using a fed-batch culture technique indicated that the addition of carbon source 

would facilitate the acid conversion process. This is different from the batch culture 

method when the presence of an initial high amount of starch in the culture time 

stimulated amylase excretion. Therefore, starch hydrolysis happened rapidly and 

resulted in a large amount of available sugars in the culture. Cells might use this large 

amount of sugars for growth and acid production and might not have sufficient energy 

for further conversion of acids into ABE. On the other hand, the accumulation of a large 

amount of acid in the culture would cause toxicity for the cells. In fed-batch culture, the 

extra addition of cassava starch provided more energy and this made further   

conversion of acids into ABE products possible. 

5.4.2 Fed-batch integrated with gas stripping for ABE recovery 

 Product inhibition is among the major factors causing limitations for the 

butanol market. With a pure culture of Clostridium, normally when butanol in the 

culture reaches 13 g/L or ABE concentration is more than 20 g/L, cells will die from the 

toxicity and the fermentation process will cease. Thus, removal of butanol from the 

culture will reduce this possibility. In the fed-batch mixed culture, acids still 

accumulated in the medium. It was possible that ABE yields could be increased by 

product recovery using gas stripping. Among the available techniques for solvent 

recovery, gas stripping seems to be of more benefit due to a number of advantages over 

the other techniques e.g. easy to handle, and more economically beneficial (Ezeji et al., 

2004). It is better because nutrients and reaction intermediates are not removed from the 

reaction mixture. Before applying a gas stripping method, a model solution containing 

acetone, butanol and ethanol was tested to check its ability. The result revealed that 

when the system was applied to the model solution contained 5, 10 and 2 g/L of 

acetone, butanol and ethanol, respectively; about 35% of butanol was recovered after 36 

h and about 20% acetone and ethanol thus should significantly reduce the ABE 
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concentrations in the fermentation medium. In order to examine the effect of gas-

stripping on ABE production with the fed-batch mixed culture, the mixed culture was 

operated in fed-batch mode for 36 h at which time butanol and ABE concentrations 

should be 5.0 and 9.1 g/L, respectively. At this stage, ABE recovery by gas-stripping 

was started by sparging oxygen free nitrogen into the culture and the fermentation was 

continued for another 36 h. Condensate was collected every 12 h for ABE and acids 

determinations (Ezeji et al., 2005a). The obtained results are shown in Figure 38.  

  Acetic, butyric, acetone and ethanol could not be detected in the 

condensate. However the result did indicate that gas stripping might be a useful tool to 

selectively recover butanol from the medium. The finding that no acetic and butyric 

acids could be detected in the condensate has been reported by several research workers 

(Ezeji et al., 2003; Ezeji et al., 2005a). It is not known why gas stripping did not strip 

out acetone and ethanol as it did in the case of using the model solution. However the 

concentrations of acetone and ethanol in the culture were very low less than 3 g/L. The 

presence of cells might also reduce the stripping ability for these compounds. 

 There was not much difference between growth and amylase production 

of the culture with and without gas stripping (Figures 37 and 38). However, there was 

an improvement in terms of substrate utilization after gas striping. The amount of 

residual reducing sugars (2.0 g/L) was also reduced compared to that of the culture 

without gas stripping (3.0 g/L) (Figure 32). It is probably due to the removal of butanol 

by gas stripping. The lower amount of butanol in the medium may allow the cells to 

consume more sugars and produce acids, consequently the conversion to ABE was 

higher.  
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Figure 38. Growth and metabolic activity of a co-culture of C. butylicum TISTR 1032  

and B. subtilis WD 161 in an anaerobic bioreactor in fed-batch integrated 

with gas stripping, pH controlled at 6.0. A. (○) OD 660; (◊) amylase 

activity; (□) acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) 

ABE; (♦) butanol; (■) acetone; (▲) ethanol. 40 (g/L) cassava starch, 5 

(g/L) yeast extract, and 8 (g/L) ammonium nitrate was used as carbon, 

organic nitrogen, and inorganic nitrogen source, respectively. The arrows 

indicate  the times when the substrate was fed. 

 

 

 



106 
 

 At the end of the fermentation process, the medium contained 6.8 g/L 

butanol, 1.4 g/L acetic and 1.5 g/L butyric acid. The condensate was recovered three 

times (every 12 h during the period of 36-72 h) with the volumes of 47 and 39 and 36 

mL per time and containing butanol of 27.6, 23.0 and 20.0 g/L, respectively. The total 

ABE in the culture is shown in Figure 38. The removal of butanol from culture by 

sparging N2 over the medium from 36 h produced a positive effect on the utilization of 

substrate and ABE production compared to the system without the gas stripping. The 

total ABE production in the culture with gas stripping (16.2 g/L) was considerably 

higher than that of the culture without gas stripping (13.4 g/L). 

 The positive effect of gas stripping on substrate utilization, acid assimilation 

and ABE production has been previously reported by several research workers (Ezeji et 

al., 2003; Ezeji et al., 2005a). Compared to the others the improvement in ABE 

production by gas stripping in our research was limited. The slight improvement in total 

ABE production in our research might be due to the amount of butanol concentration 

which was not yet critical for cell growth and ABE production. However, the positive 

effect of this system on butanol production and starch utilization revealed a potential 

positive use in cultures with a higher butanol concentration. 

 

5.5 Semi-continuous fermentation of mixed culture of C. butylicum TISTR  

1032 and B. subtilis WD 161  

5.5.1 Semi-continuous without integrated with gas stripping 

 The previous study (section 5.4, Figures 37 and 38) on fed batch studies 

found that the addition of fresh substrate at 24 and 36 h enhanced final ABE production 

with or without gas stripping. However, the reducing sugar prolife revealed that at 24 h, 

the amount of reducing sugars in the cultures was small (7.8 g/L) and this continued to 

fall until the end of the experiment after a small increase following the 36 h addition of 

substrate (Figures 37 and 38). This indicated that further additions of new substrate 

during the fermentation process might further improve substrate availability. In this 

study, the mixed culture with an initial working volume of 900 mL was first operated in 

the batch mode for 12 h. Then, 200 mL of medium containing 80 g/L cassava starch 

with the optimum C/N ratio was added every 12 h from the 12 h to 72 h. Each time, 

before adding the new medium, 200 mL of culture broth was removed, and the pH of 
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the culture was controlled at 6.0. The profiles of growth, amylase, reducing sugars, 

acids and ABE production are shown in Figures 39. Generally, there were only small 

differences in the maximum amylase activity of the semi-continuous substrate fed mode 

(49 U/mL) compared to that of the fed-batch mode (44. 4 U/mL). However, the amylase 

was more stable in the semi-continuous feed mode. Maximum amylase production 

occurred in the fed batch mode at the 24 h, but with the semi-continuous feed mode the 

maximum was at 36 h. A reduction in amylase production was observed in both modes 

of feeding, but that of the semi-continuous feed mode was slower (Figures 38 and 39). 

The higher amylase production and its slower rate of reduction might be caused by the 

presence of higher amounts of starch present during the fermentation process in the 

semi-continuous feed mode and this stimulated the production of amylase. Madihah et 

al. (2001) showed that, an increase in starch concentration led to an increase of amylase 

production. 

 The reducing sugars in the semi-continuous feed mode were also higher 

than those in the fed-batch mode; at the end of the fermentation process, the residual 

reducing sugars in the semi-continuous feed mode was 8.5 g/L whereas with the fed-

batch mode it was 4.5 g/L. Production of ABE and butyric acid in the semi-continuous 

feed mode was 15.8 and 3.7 g/L, respectively while in the fed-batch mode they were 2.5 

and 13.5 g/L, respectively. This result might be explained by the higher amount of sugar 

present in the semi-continuous feed mode and this could enhance growth and production 

of acids leading to an increase of ABE production. The maximum ABE production in 

the semi-continuous feed mode was obtained at 96 h compare to 84 h for the fed-batch 

mode. 
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Figure 39. Growth and metabolic activity of co-culture of C. butylicum TISTR 1032 and 

B. subtilis WD 161 in the anaerobic bioreactor using a semi-continuous 

mode with cassava starch, pH controlled at 6.0. A. (◊) amylase activity; (□) 

acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) 

butanol; (■) acetone; (♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast 

extract, and 8 (g/L) ammonium nitrate was used as carbon, organic nitrogen, 

and inorganic nitrogen source, respectively. The arrows indicate  the times 

when the substrate was fed. 
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5.5.2 Semi-continuous fermentation integrated with gas stripping 

 Previously it was found that gas stripping had very little effect on growth 

and amylase production with the fed-batch mode of fermentation (Figure 40). However, 

there was an improvement in terms of substrate utilization after gas striping. The 

amount of residual reducing sugars (7.0 g/L) was also reduced compared to that of the 

culture without gas stripping (8.5 g/L) (Figure 39). This is probably due to the removal 

of butanol by gas stripping. The lower amount of butanol in the medium may allow the 

cells to consume more sugars and produce more acids, and consequently their 

conversion to ABE was higher.  

 At the end of the fermentation process, the medium contained 7.4 g/L 

butanol, 1.33 g/L acetic and 3.39 g/L butyric acid. The condensate was recovered three 

times (at the 48, 72 and 84 h) with volumes of 50 and 85 and 37 mL and contained 

butanol of 30.0, 25.2 and 23.0 g/L, respectively. There was a trace of acetone and 

ethanol in the condensate; however the amounts in the broth culture were probably too 

small to allow for their recovery (Ezeji and Blaschek, 2004). The total ABE in the 

culture combined with the amounts in the condensates is shown in Figure 40. The 

removal of butanol from the culture by sparging N2 over the medium from 36 h 

produced a positive effect on the utilization of substrate and ABE production compared 

to the system without the gas stripping. The ABE concentration in the culture integrated 

with gas stripping was 17.75 g/L which was higher than that of the culture without gas 

stripping (15.2 g/L). Calculation of the amount of butanol that was present in each of 

the 200 mL samples removed at 12, 24, 36, 48 and 72 h and adding this to the butanol 

present in the culture broth plus that in the condensates showed that the total ABE 

production by the semi-continuous substrate feed culture with gas stripping (25.8 g/L) 

was higher than that of the culture without gas stripping (23.1 g/L) (Table 9). 
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Figure 40. Growth and metabolic activity of co-culture of C. butylicum TISTR 1032 and 

B. subtilis WD 161 in the anaerobic bioreactor using a semi-continuous 

mode with cassava starch, pH controlled at 6.0. A. (◊) amylase activity; (□) 

acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. B. (●) ABE; (▲) 

butanol; (■) acetone; (♦) ethanol. 40 (g/L) cassava starch, 5 (g/L) yeast 

extract, and 8 (g/L) ammonium nitrate was used as carbon, organic nitrogen, 

and inorganic nitrogen source, respectively. The arrows indicate the times 

when the substrate was fed. 
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 It is noted that after 72 h of culture, further production of ABE was 

limited in the cultures with or without gas stripping. It is possible that after 72 h the 

numbers of viable cells of Clostridium and Bacillus were significantly reduced. In order 

to check this, viable counts were determined during the fermentation (Figure 41). It is of 

interest that at the start both cultures were present at about the same level however the 

Bacillus increased by 2 logs and reached its maximum level over the first 12h then 

gradually decreased by about 1 log after 72 h. It is not known if the increase in the 

bacillus occurred very soon after inoculation when a low amount of oxygen might have 

been present. In contrast the Clostridium culture increased rapidly by 6 logs and reached 

its maximum level over the first 24 h. This was followed by a logarithmic rate of 

decrease until the end of the experiment by again 6 logs. The reasons for decreasing of 

viable cells were probably due to the accumulation of toxic compounds (Madihah et al., 

2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Growth (Log CFU/mL) of Clostridium and Bacillus in the co-culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 in the anaerobic bioreactor 

using a semi-continuous mode integrated with gas stripping, pH controlled 

at 6.0. 40 (g/L) cassava starch, 5 (g/L) yeast extract, and 8 (g/L) ammonium 

nitrate was used as carbon, organic nitrogen, and inorganic nitrogen source, 

respectively. 
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Table 9. Effect of fermentation mode on metabolic activity of co-culture of C. 

 butylicum TISTR 1032 and B. subtilis WD 161 

aThe maximum activity of amylase. 
 bData were obtained at 84 h. 
cThe total ABE including the amount removed from the fermentor. 
dData were obtained at 72 h. 
 Data in parenthesis obtained from cultures integrated with gas stripping. 

 

 The semi-continuous substrate feed mode provided a larger enhancement 

in ABE production either in the case with or without integration with gas stripping, and 

also provided the higher productivity and product yield over the batch and fed-batch 

cultures (Table 9). These could be explained by the higher availability of substrate in 

the semi-continuous cultures which made the acid production and further conversion of 

acids into ABE production more effective. 

 

5.6 ABE production from cassava starch pulp waste by mixed culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161  

5.6.1 ABE production from cassava starch pulp waste using fed-batch 

fermentation  

 Cassava pulp contains about 60.6% cassava starch, and about 29% of 

non-starch polysaccharide of which 20% is cellulose. Thus, besides starch, cellulose 

could also be a carbon source for butanol production. Therefore cassava pulp waste was 

employed in two ways including direct use, and after being hydrothermally and 

enzymatically pretreated before use in the ABE fermentation. A fed batch mode was 

also employed; new substrate being fed after 24 h and 36 h. Cell concentration could not 

Parameter Batch mode Fed-batch mode Semi-continuous 

Amylase activity  (U/mL)a 43.45 44.4 (45.0) 51.0 (53.0) 

ABE concentration (g/L)b 10.18 13.4 (16.2) 15.2 (17.5) 

Total ABE (g)c 10.18 13.4 (16.2) 23.1(25.8) 

Butanol ratio (-)b 0.644 0.61 (0.66) 0.63 (0.67) 

Residual sugar (g/L)b 2.05 5.06 (2.67) 8.50  (7.03) 

ABE productivity (g/L/h)d 0.141 0.186 (0.195) 0.219  (0.245) 

ABE yield (g/g)b 0.25 0.24 (0.28) 0.22 (0.24) 
    



113 
 

be measured by OD660 due to the opaque nature of these substrate solutions. The results 

on amylase, residual reducing sugar concentration, acids and ABE production are 

shown in Figures 42 and 43. Amylase production in the mixed culture using cassava 

starch waste pulp waste with pretreatment was similar to that found in the mixed culture 

using cassava starch pulp waste without pretreatment, but there was higher amount of 

residual reducing sugars (13.0 g/L) in the culture with pretreatment. This higher amount 

of reducing sugar probably arises from the hydrolysis of cellulose. ABE production in 

the culture with pretreatment (8.9 g/L) was higher than that of the culture without 

pretreatment (8.0 g/L). However, there was not much difference in the butanol ratio 

which was 0.64 and 0.66 for the culture with and without pretreatment, respectively. 

Cellulose hydrolysis would result in more available sugars for growth and ABE 

production in the culture with pretreatment. Compared to the fed-batch mixed culture 

using cassava starch, the amylase, and ABE productions in the culture using cassava 

starch pulp waste were smaller either with or without pretreatment. The maximum 

amylase and ABE productions in starch culture was 42 U/mL, and 14.5 g/L, 

respectively but those of the culture using cassava starch pulp waste were 36 U/mL and 

8.9 g/L, respectively. The utilization of reducing sugars was less complete in the culture 

using cassava pulp waste. The smaller amounts of the products in the culture using 

cassava starch pulp waste was probably due to the presence of impurities in the waste 

which might cause toxicity to the  cells, or hinder some metabolic processes (Kosugi et 

al., 2008). 
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Figure 42. Growth and metabolic activity of co-culture of C. butylicum TISTR 1032  

and B. subtilis WD 161 in the anaerobic bioreactor using a fed-batch mode 

with cassava starch pulp waste without pretreatment, pH controlled at 6.0. 

A. (◊) amylase activity; (□) acetic acid; (∆) butyric acid; (*) reducing sugar; 

(  ) pH. B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 40 (g/L) cassava 

starch, 5 (g/L) yeast extract, and 8 (g/L) ammonium nitrate was used as 

carbon, organic nitrogen, and inorganic nitrogen source, respectively. The 

arrows indicate the times when the substrate was fed. 
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Figure 43. Growth and metabolic activity of co-culture of C. butylicum TISTR 1032  

 and B. subtilis WD 161 in the anaerobic bioreactor using a fed-batch mode 

with cassava starch pulp waste with pretreatment, pH controlled at 6.0. A. (◊) 

amylase activity; (□) acetic acid; (∆) butyric acid; (*) reducing sugar; (  ) pH. 

B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 40 (g/L) cassava starch, 5 

(g/L) yeast extract, and 8 (g/L) ammonium nitrate was used as carbon, 

organic nitrogen, and inorganic nitrogen source, respectively. The arrow 

indicates the time when the substrate was fed. 
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5.6.2 ABE production from cassava pulp using semi-continuous 

fermentation 

 Now that we have established the best conditions for converting cassava 

starch into ABE including; substrate levels of 40 g/L cassava starch semi continuous 

substrate feed, continuous control of pH at 6, gas stripping after the culture had grown 

for 36 h. It was necessary to determine what could be achieved by replacing pure 

cassava starch, a versatile product used in many manufacturing processes, with 

untreated cassava pulp waste, a much cheaper product with few applications. 

Preliminary experiments using non treated or treated cassava pulp waste has already 

been described (Section 5.6.1). In this study, we have used untreated cassava pulp waste 

and the conditions as described in the previous section (5.6.1) except for the gas 

stripping as previous study found that the butanol produced from pulp was lower than 

critical concentration (Section 5.6.1). The profiles of growth, amylase, reducing sugars, 

acids and ABE production are shown in Figures 44. Amylase production in the semi-

continuous feed culture (37.0 U/mL) was slightly higher than that of the fed batch 

culture (34 U/mL), but the residual reducing sugar level in the semi-continuous feed 

mode (12.38 g/L) was considerably higher than that in the fed batch mode(8.2 g/L). The 

semi-continuous feed mode enhanced ABE production from 8.0 g/L fed-batch 

fermentation to 8.78 g/L. However, the final butyric acid concentration in the semi-

continuous feed mode (5.26 g/L) was also higher than that of the fed-batch mode (4.1 

g/L). These results could be explained by the presence of a larger amount of starch in 

the semi-continuous culture and this supported more growth and acid production, and 

consequently ABE production. However, the accumulation of higher amount of acids in 

the semi-continuous feed mode probably hindered increased reducing sugar 

consumption. As the result, the residual reducing sugars in this culture remained high. It 

might also include the possibility that the presence of impurities in wastes caused some 

negative effects on further substrate utilization (Kosugi et al., 2009).  
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Figure 44. Growth and metabolic activity of co-culture of C. butylicum TISTR 1032 and 

B. subtilis WD 161 in the anaerobic bioreactor using a semi-continuous mode 

with cassava starch pulp waste with pretreatment, pH controlled at 6.0. A. (◊) 

amylase activity; (□) acetic acid; (∆) butyric acid; (*) reducing sugar; (   ) pH. 

B. (●) ABE; (▲) butanol; (■) acetone; (♦) ethanol. 66 (g/L) cassava starch, 5 

(g/L) yeast extract, and 8 (g/L) ammonium nitrate was used as carbon, 

organic nitrogen, and inorganic nitrogen source, respectively. The arrows 

indicate the times when the substrate was fed. 
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Table 10. Effect of fermentation mode on ABE production from cassava starch pulp 

waste by mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 161 in 1 L 

anaerobic bioreactor  

aThe maximum activity of amylase 
 bData were obtained at 84 h 
cThe total ABE including the amount removed from the fermentor 
dData were obtained at 72 h 
  
 

 The semi-continuous substrate feed mode provided a larger amount of 

total ABE production (13.9 g) compared to the batch (8.0 g) and fed batch mode (8.9 g). 

In terms of productivity, the productivity of the semi-continuous feed mode (0.12 g/L/h) 

was almost the same as with the fed-batch mode (0.123 g/L/h) and slightly higher than 

that of the batch mode (0.11 g/L/h). However, the product yield of the batch mode (0.2 

g/g) was higher than that of the fed-batch and semi-continuous mode (0.16 and 0.138 

g/g) (Table 10). The lower product yield could be explained by the lower efficiency of 

substrate utilization in this culture due to the presence of toxic compounds at higher 

concentrations in the pulp waste (Kosugi et al., 2009). 

 So far, there has been no reported research using cassava starch pulp 

waste as the substrate for ABE production. Kosugi et al. (2008) employed 

hydrothermally and enzymatically pretreated cassava pulp waste for ethanol production 

by Saccharomycetes cerevisiae. The impurities in the waste and the by-products 

generated from the pretreatment processes were also found to cause a reduction in 

ethanol production (Kosugi et al., 2008). Notably, in terms of the fermentation time, 

which in our research (84 h) was much shorter compared to that of their research (7 

Parameter Batch mode Fed-batch mode Semi-continuous 

Amylase activity  (U/mL) a 34.0 35.7 37.0  

ABE concentration (g/L)b 8.00 8.90  8.70 

Total ABE production (g)c 8.00 8.90 13.9 

Butanol ratio (-)b 0.62 0.66 0.64  

Residual sugar (g/L)b 8.20 12.5 12.3 

ABE productivity (g/L/h)d 0.111 0.123 0.120   

ABE yield (g/g) 0.200 0.158 0.138  
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days). This again proved that the use of the mixed culture could also effectively reduce 

the fermentation time with different substrates (either starch or starch waste).  

 Studies on ABE production by pure cultures of Clostridium from other 

wastes rather than cassava starch waste were previously conducted by several research 

groups. It was reported that the direct use of wastes generally produced low amounts of 

ABE. Addition of the other compounds (e.g. glucose, vitamins) is required. Compared 

to other research work where wastes were directly used for ABE production (Table 11), 

the ABE production in our research is somewhat higher. However, when compared to 

the other research where wastes were supplemented with the other components e.g. corn 

steep water supplemented with glucose (Pareckh et al., 1998), sludge supplemented 

with sago starch (Hipolito et al., 2008), wheat straw hydrolysate supplemented with 

glucose (Qureshi et al., 2007), the ABE production in this research is less. 

 Accordance to Gapes (2000), substrate and production costs are the most 

important factors to make the ABE fermentation process economic. From this point of 

view, the direct use of cassava starch waste as the substrate without addition of other 

compounds for ABE production by the mixed culture in our research has a great 

potential for making ABE industrially viable.  
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Table 11. List of ABE production from natural wastes by pure cultures of Clostridium 

 

Wastes Bacterial species ABE 

(g/L) 

Reference 

Sludge hydrolysate C. saccharoperbutylacetonicum 6.4 Hipolito  

et al., 2008 

Excess sludge 

Excess sludge-glucose 

C. saccharoperbutylacetonicum 0 

9.3a 

Kobayashi et 

al., 2005 

Domestic organic waste C. acetobutylicum 

C. beijerinckii B-592 

Clostridium LMD 

1.5 

0.9 

1.9 

Claassen  

et al., 2000 

Palm oil mill effluent C. aurantibutyricum 7.2 Somrutai  

et al., 1996 

Cassava starch waste Clostridium and Bacillus 8.0b 

8.9c 

13.9d 

This study 

aonly butanol production was measured. 

btotal ABE in fed-batch culture without substrate pretreatment. 

ctotal ABE in fed-batch culture with substrate pretreatment. 

dtotal ABE production in semi-continuous without substrate pretreatment; the values of b, c , d 

were obtained at 84 h. 
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CHAPTER 5 

 

CONCLUSIONS 

 

 This study has shown that the use of high amylase producing B. subtilis 

WD 161 for co-culturing with C. butylicum TISTR 1032 could enhance ABE 

production from starch without anaerobic pretreatment. The mixed culture of C. 

butylicum TISTR 1032 and B. subtilis WD 161 increased amylase activity 10 fold and 

enhanced ABE production 4 and 6.5 fold from soluble starch and cassava starch, 

respectively, compared to those of the pure culture of Clostridium itself. The benefits of 

using this high amylase producing aerobic Bacillus in a co-culture with anaerobic 

Clostridium were not only increasing substrate utilization and ABE production but there 

was also no requirement to add any costly reducing agent to the medium or flushing 

with N2 to ensure anaerobic condition. This thus makes the anaerobic fermentation more 

economical and cost effective.  

 The medium optimization for ABE production by the mixed culture 

showed that the optimum cassava starch concentration was 40 g/L. A low C/N ratio of 4 

enhanced amylase activity and starch utilization and, consequently, the production of 

ABE. The use of higher amounts of yeast extract or ammonium nitrate alone had a 

negative effect on ABE production. The optimum ratio of yeast extract to ammonium 

nitrate was found to be 265/100 mM/mM. Response surface methodology (RSM) 

revealed, that among three investigated variables including cassava starch, yeast extract, 

and ammonium nitrate concentrations, only cassava starch concentration significantly 

influenced butanol production, total ABE and amylase production. In the case of 

amylase production, beside cassava starch concentration, ammonium nitrate also had a 

significant effect. A moderately positive interaction of the cassava starch and 

ammonium nitrate concentration on the productions of butanol, ABE, and especially 

amylase were also observed. The economically profitable optimum condition for ABE 

production was selected from response surface regression as follows: 40 g/L cassava 
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starch concentration; 5 g/L yeast extract and 8 g/L ammonium nitrate at which ABE 

production was 9.02 g/L. 

 ABE production by the mixed culture of C. butylicum TISTR 1032 and B. 

subtilis WD 161 was scaled up by using an anaerobic bioreactor. The studies on the 

effect of a controlled pH on growth, amylase and ABE production by the mixed culture 

of C. butylicum TISTR 1032 and B. subtilis WD 161 revealed that a pH control of 6.0 

favored ABE production, but a pH controlled at 6.5 was favored for acids production. 

An enhancement in ABE production was observed when the culture with pH 6.0 was 

operated in fed-batch and semi-continuous modes together with product recovery by gas 

stripping. 

 When the optimum process was applied for ABE production from 

cassava pulp waste by mixed culture of C. butylicum TISTR 1032 and B. subtilis WD 

161 using fed-batch fermentation, there were considerable amounts of ABE production 

in the cultures either with or without enzymatic pretreatment of cassava pulp waste (8.0 

and 8.9 g/L, respectively). Semi-continuous fermentation enhanced ABE production to 

13.9 g/L without substrate pretreatment. However, to increase the ABE production from 

cassava pulp waste more work is required to optimize the conditions. This study proved 

that the mixed culture of aerobic Bacillus and anaerobic Clostridium may contribute 

greatly to developing industrialized ABE production. 
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