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ABSTRACT

In this thesis we study the existence of a retraction of a closed

subset of a Banach space. Then we introduce and study a three-step iterative

process with viscosity to approximate common fixed points for asymptotically

quasi-nonexpansive nonself mappings in Banach spaces. Criteria for strong con-

vergence of such iteration is given. We also introduce and study a multi-step

iterative schemes with viscosity to approximate of common fixed points of finite

family for asymptotically quasi-nonexpansive nonself mappings in Banach spaces.

Finally, weak and strong convergence theorems for such iteration in uniformly

convex Banach spaces are established under some sufficient conditions.
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CHAPTER 1

Introduction

The concept of asymptotically nonexpansive self mappings which

is a generalization of the class of nonexpansive self mappings was first introduced

in 1972 by Goebel and Kirk [5]. They proved that if C is a nonempty closed

convex bounded subset of a uniformly convex Banach space and T is an asymp-

totically nonexpansive self mapping of C, then T has a fixed point. Since then,

the weak and strong convergence problem of iterative sequences (with errors) for

asymptotically nonexpansive self mappings have been studied by many authors. In

2003, Chidume et al [2] introduced the concept of asymptotically nonexpansive

nonself mappings, which is a generalization of asymptotically nonexpansive map-

pings. Similarly, the concept of asymptotically quasi-nonexpansive nonself map-

pings can also be defined as a generalization of asymptotically quasi-nonexpansive

mappings and asymptotically nonexpansive nonself mappings. These mappings

are defined as follows. Let X be a real Banach space and C be a nonempty subset

of X.

(i) A mapping P from X onto C is said to be a retraction, if P 2 = P ;

(ii) If there exists a continuous retraction P : X → C such that Px = x for all

x ∈ C, then the set C is said to be a retract of X.

(iii) In particular, if there exists a nonexpansive retraction P : X → C such that

1
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Px = x for all x ∈ C, then the set C is said to be a nonexpansive retract of

X.

Let T : C → X be a nonself mapping.

(i) T is said to be an asymptotically nonexpansive nonself mapping, if there

exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖ ,

for all x, y ∈ C and n ≥ 1.

(ii) T is said to be an asymptotically quasi-nonexpansive nonself mapping, if the

set of fixed points of mapping T is denoted by F (T ) which is nonempty and

there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

‖T (PT )n−1x− p‖ ≤ kn‖x− p‖

for all x ∈ C, p ∈ F (T ) and n ≥ 1.

Recall that a self mapping f : C → C is a contraction on C if there

exists a constant α ∈ (0, 1) such that ‖f(x)− f(y)‖ ≤ α‖x− y‖ for all x, y ∈ C.

In 2004, Xu [15] defined the following one viscosity iteration for

nonexpansive mappings in uniformly smooth Banach space. The Banach space X

is said to be uniformly smooth if

ρ
′

x(0) = lim
t→0

ρx(t)

t
= 0,
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where the function ρx : R+ → R+ defined by

ρx(t) = sup{‖x+ y‖+ ‖x− y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = t},

= sup{‖x+ ty‖+ ‖x− ty‖
2

− 1 : ‖x‖ = ‖y‖ = 1}, t ≥ 0.

Theorem 1.1. Let X be a uniformly smooth Banach space, C be a nonempty

closed convex subset of X,T : C → C a nonexpansive mapping with F (T ) 6= ∅,

and f ∈ ΠC denotes the set of all contractions on C. Then {xt} defined by the

following:

xt = tf(xt) + (1− t)Txt, xt ∈ C

converges strongly to a point in F (T ). If we define Q : ΠC → F (T ) by

Q(f) = lim
t→0

xt, f ∈ ΠC ,

then Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T ).

In 2005, Song and Chen [12] extended Theorem 1.1 to nonex-

pansive nonself mapping in a reflexive Banach space : for t ∈ (0, 1),

xt = P (tf(xt) + (1− t)Txt)

where P is nonexpansive retraction and proved that {xt} converges strongly to a

fixed point of T as t→ 0.

Recently in 2011, Ayaragarnchanakul [1] constructed an itera-

tive procedure to approximate common fixed points with viscosity of two asymp-
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totically nonexpansive nonself mappings:

yn = αnf(xn) + (1− αn)(βnxn + (1− βn)T2(PT2)
n−1xn)

xn+1 = γnf(yn) + (1− γn)(δnyn + (1− δn)T1(PT1)
n−1yn)

and proved some strong convergence theorems for such mappings in arbitrary

real Banach spaces and Tripak and Kongsiriwong [13] proved weak and strong

convergence theorems of a finite family of generalized asymptotically nonexpansive

nonself mappings in uniformly Banach space.

The purpose of this thesis is to extend and to improve some

results announced by Ayaragarnchanakul [1] , define a new iteration scheme for

approximating common fixed points of a finite family of asymptotically quasi-

nonexpansive nonself mapping in Banach space, and prove weak and strong con-

vergence of new iteration scheme in a uniformly convex Banach space.



CHAPTER 2

Preliminaries

The purpose of this chapter is to explain certain notations, termi-

nologies and elementary results used throughout the thesis. Although details are

included in some cases, many of the fundamental principles of real and functional

analysis are merely stated without proof.

We first collect some basic knowledge from mathematical analysis.

Definition 2.1 - Theorem 2.14 are from [9].

Definition 2.1. Let S be a nonempty subset of R.

(i) If a real number M satisfies s ≤M for all s ∈ S, then M is called an upper

bound of S and the set S is said to be bounded above.

(ii) If a real number m satisfies m ≤ s for all s ∈ S, then m is called a lower

bound of S and the set S is said to be bounded below.

(iii) The set S is said to be bounded if it is bounded above and bounded below.

Thus S is bounded if there exist real numbers m and M such that S ⊆

[m,M ].

Definition 2.2. (Supremum and infimum) Let S be a nonempty subset of R.

(i) If S is bounded above and S has the least upper bound, then we will call it

the supremum of S and denote it by sup S.

(ii) If S is bounded below and S has the greatest lower bound, then we will call

it the infimum of S and denote it by inf S.

Axiom 2.1. (Completeness Axiom) Every subset S of R that is bounded above

has the least upper bound. In other words, supS exists and is a real number.

5
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Definition 2.3. (Convergent sequence) A sequence {sn} of real numbers is

said to converge to the real number s provided that

for each ε > 0 there exists a number N such that

n > N implies |sn − s| < ε.

If {sn} converges to s, then we will write lim
n→∞

sn = s, lim sn = s, or sn → s.

The number s is called the limit of the sequence {sn}. A sequence that dose not

converge to some real number is said to be divergent.

Definition 2.4. (Bounded sequence) A sequence {sn} of real numbers is said

to be bounded if there exists a constant M such that |sn| ≤M for all n.

Theorem 2.2. Convergent sequences are bounded.

Definition 2.5. (Monotone sequence) A sequence {sn} of real numbers is

called a nondecreasing sequence if sn ≤ sn+1 for all n and {sn} is called a

nonincreasing sequence if sn ≥ sn+1 for all n. We note that if {sn} is nonde-

creasing then sn ≤ sm whenever n < m. A sequence that is nondecreasing or

nonincreasing will be called a monotone sequence or a monotonic sequence.

Theorem 2.3. (Monotone Convergence Theorem) All bounded monotone

sequences converge.

Theorem 2.4.

(i) If {sn} is an unbounded nondecreasing sequence, then lim sn = +∞.

(ii) If {sn} is an unbounded nonincreasing sequence, then lim sn = −∞.

Corollary 2.5. If {sn} is a monotone sequence, then the sequence either con-

verges, diverges to +∞, or diverges to −∞. Thus lim sn is always meaningful for

monotone sequences.

Definition 2.6. Let {sn} be a sequence in R. We define

lim sup
n→∞

sn = lim
N→∞

sup{sn : n > N}
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and

lim inf
n→∞

sn = lim
N→∞

inf{sn : n > N}.

Theorem 2.6. Let {sn} be a sequence in R.

(i) If lim
n→∞

sn is defined [as a real number,+∞ or −∞], then

lim inf
n→∞

sn = lim
n→∞

sn = lim sup
n→∞

sn.

(ii) If lim inf
n→∞

sn = lim sup
n→∞

sn, then lim
n→∞

sn is defined and

lim
n→∞

sn = lim inf
n→∞

sn = lim sup
n→∞

sn.

Definition 2.7. (Cauchy sequence) A sequence {sn} of real numbers is called

a Cauchy sequence if

for each ε > 0 there exists a number N such that

m, n > N implies |sn − sm| < ε.

Theorem 2.7. (Cauchy Completeness Theorem) A sequence in R is con-

vergent if and only if it is a Cauchy sequence.

Theorem 2.8. (Sandwich Theorem) Let {an}, {bn} and {cn} be sequences and

an ≤ bn ≤ cn for all n ∈ N. If lim
n→∞

an = L = lim
n→∞

cn, then lim
n→∞

bn = L.

Definition 2.8. (Subsequence) Suppose that {sn} is a sequence. A subsequence

of this sequence is a sequence of the form {tk} where for each k there is a positive

integer nk such that

n1 < n2 < · · · < nk < nk+1 < · · · (2.1)

and

tk = snk
. (2.2)

Thus {tk} is just a selection of some [possibly all] of the sn’s, taken in order.
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Theorem 2.9. If the sequence {sn} converges, then every subsequence converges

to the same limit.

Theorem 2.10. Every sequence has a monotonic subsequence.

Corollary 2.11. Let {sn} be any sequence. There exists a monotonic subsequence

whose limit is lim sup
n→∞

sn and there exists a monotonic subsequence whose limit is

lim inf
n→∞

sn.

Theorem 2.12. (Bolzano-Weierstrass Theorem) Every bounded sequence

has a convergent subsequence.

Definition 2.9. (The Cauchy Criterion for Series) We say that a series
∞∑
n=1

an

satisfies the Cauchy criterion if its sequence {sn} of the partial sum is a Cauchy

sequence :

for each ε > 0 there exists a number N such that

m,n > N implies |sn − sm| < ε. (2.3)

Nothing is lost in this definition if we impose the restriction n > m. Moreover,

it is only a natural matter to work with m − 1 where m ≤ n instead of m where

m < n. Therefore (2.3) is equivalent to

for each ε > 0 there exists a number N such that

n ≥ m > N implies |sn − sm−1| < ε. (2.4)

Since sn − sm−1 =
n∑

k=m

ak, condition (2.4) can be written

for each ε > 0 there exists a number N such that

n ≥ m > N implies

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε. (2.5)

Theorem 2.13. A series converges if and only if it satisfies the Cauchy criterion.

Theorem 2.14. Let {an} be a sequence such that
∞∑
n=0

an <∞. Then lim
n→∞

an = 0.
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Then we collect some basic knowledge from elementary functional

analysis. Definition 2.10 - Definition 2.20 are from [4].

The following are some basic knowledge about metric spaces and

normed spaces.

Definition 2.10. (Metric space, metric) Let X be a nonempty set. A function

d defined on X × X is called a metric on X (or distance function on X) if it

satisfies the following properties :

(M1) d is a real-valued, finite and nonnegative.

(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x). (Symmetry)

(M4) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality)

In this case, a pair (X, d) is called a metric space.

Definition 2.11. (Convergence of a sequence, limit) A sequence {xn} in a

metric space X = (X, d) is said to converge or to be convergent if there is an

x ∈ X such that

lim
n→∞

d(xn, x) = 0,

x is called the limit of {xn} and we write

lim
n→∞

xn = x

or, simply,

xn → x.

We say that {xn} converges to x or has the limit x. If {xn} is not convergent, it

is said to be divergent.

Definition 2.12. (Distance) The distance d(x,A) from a point x to a nonempty

subset A of a metric space (X, d) is defined to be

d(x,A) = inf
a∈A

d(x, a).

This infimum certainly exists in R and is nonnegative. If x is already in A, then,

of course, d(x,A) = 0.
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Definition 2.13. (Ball and Sphere) Given a point x0 ∈ X and real number

r > 0, we define three types of sets:

(i) B(x0; r) = {x ∈ X|d(x, x0) < r}. (Open ball)

(ii) B̃(x0; r) = {x ∈ X|d(x, x0) ≤ r}. (Close ball)

(iii) S(x0; r) = {x ∈ X|d(x, x0) = r}. (Sphere)

In all three cases, x0 is called the center and r is called the radius.

Definition 2.14. (Open set, Closed set) A subset M of a metric space X is

said to be open if it contains an open ball about each of its points. A subset K

of X is said to be closed if it complement(in X) is open, that is, Kc = X −K is

open.

Definition 2.15. (Cauchy sequence, Completeness) A sequence {xn} in a

metric space X = (X, d) is said to be Cauchy (or fundamental) if for every ε > 0

there is an N such that

d(xm, xn) < ε for every m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges (that

is, has a limit which is an element of X).

Theorem 2.15. Let M be a nonempty subset of a metric space X = (X, d). M

is closed if and only if the situation xn ∈M,xn → x implies that x ∈M.

Definition 2.16. (Normed space, Banach space) Let X be a vector space. A

norm ‖·‖ defined on X is called a norm on X if it satisfies the following properties:

(N1) ‖x‖ ≥ 0

(N2) ‖x‖ = 0⇔ x = 0

(N3) ‖αx‖ = |α|‖x‖ (Absolute homogeneity)

(N4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality);

here x and y are arbitrary vectors in X and α is any scalar. In this case, a pair

(X, ‖ · ‖) is called a normed space. Note that a complete normed space is called

a Banach space.



11

Theorem 2.16. A subspace Y of a Banach space X is complete if and only if the

set Y is closed in X.

Definition 2.17. (Linear operator) Let X and Y be two linear spaces over the

same field F and T : X → Y an operator with domain D(T ) and range R(T ).

Then T is said to be a linear operator if

(i) T is additive : T (x+ y) = Tx+ Ty for all x, y ∈ X;

(ii) T is homogeneous : T (αx) = αTx for all x ∈ X,α ∈ F.

Otherwise, the operator is called nonlinear. The linear operator is called a linear

functional if Y = R.

Definition 2.18. (Bounded linear operator) Let X and Y be normed space

and T : D(T )→ Y a linear operator, where D(T ) ⊆ X. The operator T is said to

be bounded if there is a real number c such that for all x ∈ D(T ),

‖Tx‖ ≤ c‖x‖.

Definition 2.19. (Convex set) A subset C of a vector space X is said to be

convex if x, y ∈ C implies M = {z ∈ X|z = αx+ (1− α)y, 0 ≤ α ≤ 1} ⊂ C.

M is called a closed segment with boundary points x and y; any

other z ∈M is called an interior point of M .

Definition 2.20. (Fixed point) A fixed point of a mapping T : C → X of a

set C into X is an x ∈ C which is mapped onto C, that is, Tx = x, the image Tx

coincides with x. The set of all fixed points of T is denoted by F (T ), that is,

F (T ) = {x ∈ C|x = Tx}.

Example 2.1. Let X = [1, 5] and C = [1, 2]. Define T : [1, 2] → [1, 5] by Tx =

x2 + x− 1. We show that T has a fixed point. By definition, x is a fixed point of

T if and only if Tx = x. Therefore T has only one fixed point and F (T ) = {1}.
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A fixed point theorem for asymptotically quasi-nonexpansive nonself

mapping

Here a classical theorem about fixed point of asymptotically non-

expansive nonself mapping are from [1]. We first give the definition of retraction

and then we give the definition of asymptotically nonexpansive nonself mapping.

Definition 2.21. (Retraction) Let X be a real Banach space and C be a

nonempty subset of X.

(i) A mapping P from X onto C is said to be a retraction, if P 2 = P ;

(ii) If there exists a continuous retraction P : X → C such that Px = x for all

x ∈ C, then the set C is said to be a retract of X.

(iii) In particular, if there exists a nonexpansive retraction P : X → C such that

Px = x for all x ∈ C, then the set C is said to be a nonexpansive retract of

X.

Definition 2.22. (Asymptotically Nonexpansive Nonself Mapping) Let C

be a nonempty subset of Banach space X. A mapping T : C → X is a said to be

an asymptotically nonexpansive nonself mapping , P is nonexpansive retraction,

if there exists a sequence kn ⊂ [0, 1) with kn → 0 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ (1 + kn)‖x− y‖,

for all x, y ∈ C and n ≥ 1.

Definition 2.23. (Asymptotically Quasi-Nonexpansive Nonself Mapping)

Let C be a nonempty subset of Banach space X. A mapping T : C → X is a

said to be asymptotically quasi-nonexpansive nonself mapping, P is nonexpansive

retraction, if F (T ) 6= ∅ and there exists a sequence kn ⊂ [0, 1) with kn → 0 as

n→∞ such that

‖T (PT )n−1x− p‖ ≤ (1 + kn)‖x− p‖

for all x ∈ C, p ∈ F (T ) and n ≥ 1. F (T ) is the set of fixed points of mapping T .
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Now, we give definitions and theorems about reflexivity, weak con-

vergence, weak compactness and lower semicontinuous. Definition 2.24 - Theorem

2.23 are from [7].

Reflexivity

Let X1, X2, · · · , Xn be n linear space over the same field F. Then a

functional f : X1×X2×· · ·×Xn → R is said to be an n−linear(multilinear)functional

on X = X1 × X2 × · · · × Xn if it is linear with respect to each of the variables

separately.

Definition 2.24. (Dual space) The space of all bounded linear functionals on

a normed space X is called the dual of X and is denoted by X∗.X∗ is a normed

space with norm denoted and defined by

‖f‖∗ = sup{|f(x)| : x ∈ SX},

where SX = {x ∈ X : ‖x‖ = 1}.

Definition 2.25. (Duality pairing) Given a normed space X and its dual X∗,

we define the duality pairing as the functional 〈·, ·〉 : X ×X∗ → F such that

〈x, j〉 = j(x) for all x ∈ X and j ∈ X∗.

Theorem 2.17. Let X∗ be the dual of normed space X. Then we have the fol-

lowing :

(i) The duality pairing is a bilinear functional on X ×X∗ :

(a) 〈ax+ by, j〉 = a〈x, j〉+ b〈y, j〉 for all x, y ∈ X; j ∈ X∗ and a, b ∈ F;

(b) 〈x, αj1 + βj2〉 = α〈x, j1〉 + β〈y, j2〉 for all x ∈ X; j1, j2 ∈ X∗ and

α, β ∈ F.

(ii) 〈x, j〉 = 0 for all x ∈ X implies j = 0.

(iii) 〈x, j〉 = 0 for all j ∈ X∗ implies x = 0.
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Definition 2.26. (Natural embedding mapping) Let (X, ‖ · ‖) be a normed

space. Then (X∗, ‖ · ‖∗) is a Banach space. Let j ∈ X∗. Hence for given x ∈ X,

the equation

fx(j) = 〈x, j〉

defines a functional fx on the dual space X∗.

Define a mapping ϕ : X → X∗∗ by ϕ(x) = fx, x ∈ X. Then ϕ

is called the natural embedding mapping from X into X∗∗. It has the following

properties :

(i) ϕ is linear : ϕ(αx+ βy) = αϕ(x) + βϕ(y) for all x, y ∈ X,α, β ∈ F ;

(ii) ϕ(x) is isometry : ‖ϕ(x)‖ = ‖x‖ for all x ∈ X.

In general, the natural embedding mapping ϕ from X into X∗∗ is not

onto. It means that there may be elements in X∗∗ that can not be represented by

elements in X.

In the case when ϕ is onto, we have an important class of normed

space.

Definition 2.27. A normed space X is said to be reflexive if the natural embed-

ding mapping ϕ : X → X∗∗ is onto.

Theorem 2.18. (Jame theorem) A Banach space X is reflexive if and only if

for each j ∈ SX∗, there exists x ∈ SX such that j(x) = 1.

Note that SX∗ = {j ∈ X∗ : ‖j‖∗ = 1} and SX = {x ∈ X : ‖x‖ = 1}.

Theorem 2.19. A normed space X is reflexive if and only if every bounded se-

quence has a weakly convergent subsequence.

Theorem 2.20. Let C be a nonempty closed convex subset of a reflexive strictly

convex Banach space X. Then for x ∈ X, there exists a unique point zx ∈ C such

that ‖x− zx‖ = d(x,C).
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Convergence of sequences of elements in a metric space that defined

in Definition 2.11 will be called strong convergence, to distinguish it from weak

convergence.

Definition 2.28. (Strong convergence) A sequence {xn} in a normed space

X is said to be strongly convergent (or convergent in the norm) if there is an

x ∈ X such that

lim
n→∞

‖xn − x‖ = 0.

That is written

lim
n→∞

xn = x

or simply

xn → x.

x is called the strong limit of {xn}, and we say that {xn} converges strongly to

x.

Weak Convergence and Weak compactness

We are now in a position to define weakly convergence and weakly

compact.

Definition 2.29. (Weak convergence) A sequence {xn} in a normed space X

is said to converge weakly to x ∈ X if f(xn)→ f(x) for all f ∈ X∗. In this case,

we write xn ⇀ x or weak- lim
n→∞

xn = x.

Theorem 2.21. Let {xn} be a sequence in a Banach space X. Then we have the

following :

(i) xn ⇀ x (in X) implies {xn} is bounded and ‖x‖ ≤ lim inf
n→∞

‖xn‖.

(ii) xn ⇀ x in X and fn → f in X∗ imply fn(xn)→ f(x) in R.
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Definition 2.30. (Weak topology) The weak topology on X is the topology

with the fewest open sets.

Definition 2.31. (Compact in the weak topology) A subset C of a normed

space X is said to be compact in the weak topology. For every sequence {xn},

there exists a subsequence {xnj
} converges weakly in C.

Definition 2.32. (Weak compactness) A subset C of a normed space X is said

to be weakly compact if C is compact in the weak topology.

Theorem 2.22. If X is a Banach space. Then X is reflexive if and only if every

closed convex bounded subset of X is weakly compact .

Definition 2.33. (Lower semicontinuous) Let X be a topological space and

f : X → (−∞,∞] a proper function. Then f is said to be lower semicontinuous

(l.s.c.) at x0 ∈ X if

f(x0) ≤ lim inf
x→x0

f(x) = sup
V ∈Ux0

inf
x∈V

f(x),

where Ux0 is a base of neighborhoods of the point x0 ∈ X. f is said to be lower

semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for

each x ∈ X

xn → x⇒ f(x) ≤ lim inf
n→∞

f(xn).

Note that f is said to be proper if there exists x ∈ X such that f(x) <∞.

Theorem 2.23. Let C be a weakly compact convex subset of Banach space and

f : C → (−∞,∞] a proper lower semicontinuous convex function. Then there

exists x0 in domain of f such that f(x0) = inf{f(x) : x ∈ C}.

Finally, we give other definitions, theorems and lemmas which are

used throughout the proof of this thesis (Definition 2.32 - Lemma 2.26).

Definition 2.34. [14](Completely continuous) Let X be Banach spaces and

C be a nonempty subset of X. A mapping T : C → X is said to be completely

continuous if, for any sequence {xn} in C such that xn ⇀ x , we have ‖Txn −

Tx‖ → 0.
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Definition 2.35. [14](Demiclose) Let X be a Banach space. A mappings T

with domain D and Range R in X is said be demiclosed at 0 if, for any sequence

{xn} in D such that {xn} converges weakly to x ∈ D and Txn converges strongly

to 0 imply Tx = 0.

Definition 2.36. [14](Demicompactness) Let X be Banach spaces and C be a

nonempty subset of X. A mapping T : C → X is said to be demicompact if, for

any sequence {xn} in C such that ‖xn − Txn‖ → 0, there exists a subsequence

{xnj
} of {xn} and x ∈ C such that ‖xnj

− x‖ → 0.

Definition 2.37. [14](Opail’s property) A Banach space X is said to satisfy

Opail’s property if for any distinct elements x and y in X and for each sequence

{xn} weakly convergent to x,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

Definition 2.38. [13] Let X be a Banach space and let C be a subset of X. For

i = 1, 2, 3, · · · , k, let {Ti} be a family of nonself mappings from C to X with a

nonempty set F of common fixed points. We say that {Ti} satisfies condition (A)

if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and

f(t) > 0 for all t ∈ (0,∞) such that

1

k

k∑
i=1

‖x− Tix‖ ≥ f(d(x, F )),

for all x ∈ C, where d(x, F ) = inf{‖x− p‖ : p ∈ F}.

Lemma 2.24. [1] Let {an}, {bn} and {δn} be sequences of nonnegative real num-

bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn for all n.

If
∞∑
n=1

δn <∞ and
∞∑
n=1

bn <∞, then

(i) lim
n→∞

an <∞ exists.
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(ii) If {an} has a subsequence converging to zero, then lim
n→∞

an = 0.

Lemma 2.25. [10] Let X be a Banach space and let C be a nonempty closed

convex subset of X which satisfies Opial’s condition and let {xn} be a sequence

in X. Let u, v ∈ X be such that lim
n→∞

‖xn − u‖ and lim
n→∞

‖xn − v‖ exist. If {xnj
}

and {xnk
} are subsequence of {xn} which converge weakly to u and v, respectively,

then u = v.

Lemma 2.26. If C is a nonempty closed subset of a real Banach space X, x ∈ X

and d(x,C) = 0, then x ∈ C.

Proof. Let C be a nonempty closed subset of a normed space X, x ∈ X and

d(x,C) = 0, that is, inf
y∈C

d(x, y) = 0. Using Theorem 2.15, we will show that

x ∈ C. That is we construct a sequence {yn} ∈ C such that yn → x as n → ∞.

For n ∈ N we get that

inf
y∈C

d(x, y) < inf
y∈C

d(x, y) +
1

n
.

Thus by definition of infimum, we obtain that for each n ∈ N, there exists yn ∈ C

such that

0 = inf
y∈C

d(x, y) < d(x, yn) < inf
y∈C

d(x, y) +
1

n
.

By the sandwich theorem we have

lim
n→∞

d(x, yn) = 0.

This means that yn → x. Since C is closed, yn ∈ C and yn → x, by Theorem 2.15

we have x ∈ C.

Lemma 2.27. Let C be a nonempty closed subset of a Banach space X and

T : C → X be an asymptotically quasi-nonexpansive nonself mapping with the

fixed point set F (T ) 6= ∅. Then F (T ) is a closed subset in C.

Proof. Assume that T : C → X is an asymptotically quasi-nonexpansive nonself

mapping with respect to {kn}. Let {pn} be a sequence in F (T ) such that pn → p
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as n → ∞. Since C is closed and {pn} is a sequence in C, we must have p ∈ C.

Since T : C → X is asymptotically quasi-nonexpansive, we obtain

‖Tp− pn‖ = ‖Tp− Tpn‖ ≤ (1 + k1)‖p− pn‖.

Taking limit as n→∞ and using the continuity of the norm, we obtain ‖Tp−p‖ ≤

0 , which implies that Tp = p. The proof is complete.

Lemma 2.28. Let C be a nonempty closed subset of a Banach space X

and T : C → X be an asymptotically quasi-nonexpansive nonself mapping with the

fixed point set F (T ) 6= ∅. If xn → x, then d(xn, F (T ))→ d(x, F (T )).

Proof. Let xn → x. We will prove that lim
n→∞

d(xn, C) = d(x,C). By the triangle

inequality, for each n ∈ N, we obtain

d(xn, C) ≤ d(x,C) + d(xn, x).

From this, for each n ∈ N, we get

d(xn, C)− d(x,C) ≤ d(xn, x). (2.6)

Similarly, for each n ∈ N, we can obtain that

d(x,C) ≤ d(xn, C) + d(xn, x),

so, for each n ∈ N, we get

−d(xn, x) ≤ d(xn, C)− d(x,C). (2.7)

From (2.6) and (2.7), we get

|d(xn, C)− d(x,C)| ≤ d(xn, x). (2.8)

Since xn → x, lim
n→∞

d(xn, x) = 0. From this, (2.8) and the sandwich theorem we

get

lim
n→∞

|d(xn, C)− d(x,C)| = 0.

Hence lim
n→∞

d(xn, C) = d(x,C), as desired.



CHAPTER 3

Banach Retraction

In this chapter, the existence of the Banach retraction of mapping

is studied. At first of this chapter, some preliminary definitions and theorems

which are used throughout the proof that when the mapping has a retraction are

presented. Then we prove the theorem that confirms the existence of a retraction

of a closed subset of a Banach space.

Uniform convexity

The strict convexity of a normed space X says that the midpoint
x+ y

2
of the segment joining two distinct points x, y ∈ SX with ‖x − y‖ ≥ ε > 0

does no lie on SX ,that is,

‖x+ y

2
‖ < 1.

In such spaces, we have no information about 1 − ‖x+ y

2
‖, the distance of mid-

points from the unit sphere SX . A stronger property than the strict convexity

that provides information about the distance 1− ‖x+ y

2
‖ is uniform convexity.

Definition 3.1. (Uniform convexity). A Banach space X is said to be uni-

formly convex if for any ε ∈ (0, 2], the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x−y‖ ≥ ε

imply there exists a δ = δ(ε) > 0 such that ‖x+ y

2
‖ ≤ 1− δ.

This says that if x and y are in the closed unit ball BX = {x ∈ X :

‖x‖ ≤ 1} with ‖x − y‖ ≥ ε > 0, the midpoint of x and y lies inside the unit ball

BX at a distance of at least δ from the unit sphere SX .

Example 3.1. Every Hilbert space H is uniformly convex space.

Proof. By the parallelogram law, we have

‖x+ y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2 for all x, y ∈ H

20
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Assume x, y ∈ BH with x 6= y, and ‖x− y‖ > ε for ε ∈ (0, 2], we get

‖x+ y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2

≤ 2(1 + 1)− ‖x− y‖2

≤ 4− ε2,

Thus ‖x+ y

2
‖2 ≤ 1− ε2

4
, so it follows that

‖x+ y

2
‖ ≤ 1− δ,

where δ = 1−
√

1− ε2

4
. Therefore, H is uniformly convex.

Example 3.2. The space l1 and l∞ are not uniformly convex.

Proof. Let x = (1, 0, 0, 0, ...), y = (0,−1, 0, 0, ...) ∈ l1 and ε = 1. Then

‖x‖1 = 1, ‖y‖1 = 1, ‖x− y‖1 = 2 > 1 = ε.

However, ‖x+ y

2
‖1 = 1 and there is no δ > 0 such that ‖x+ y

2
‖1 ≤ 1 − δ. Thus

l1 is not uniformly convex.

Similarly, if we let x = (1, 1, 1, 0, 0, ...), y = (1, 1,−1, 0, 0, ...) ∈ l∞

and ε = 1, then

‖x‖∞ = 1, ‖y‖∞ = 1, ‖x− y‖∞ = 2 > 1 = ε.

Because ‖x+ y

2
‖∞ = 1, l∞ is not uniformly convex.

From the definition of uniform convexity, we can derive some theo-

rems as follows :

Theorem 3.1. Every uniformly convex Banach space is strictly convex.

Proof. Let X be a uniformly convex Banach space with x 6= y and x, y ∈ Sx where

Sx is a unit sphere of Banach space. For ε ∈ (0, 2], it follows from Definition 3.1

that X is strictly convex. If ε > 2, it does not satisfy the condition of strictly

convex because 1 =
‖x‖+ ‖y‖

2
≥ ‖x+ y

2
‖. Therefore uniformly convex Banach

space is strictly convex.
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Theorem 3.2. Let X be a Banach space. Then the following are equivalent:

(i) X is uniformly convex;

(ii) For two sequences {xn} and {yn} in X, if ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 and lim
n→∞

‖xn+

yn‖ = 2, then lim
n→∞

‖xn − yn‖ = 0.

Proof. (i) ⇒ (ii). Suppose X is uniformly convex. Let {xn} and {yn} be two

sequences in X such that ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 for all n ∈ N and lim
n→∞

‖xn +yn‖ = 2.

Suppose to the contrary that lim
n→∞

‖xn − yn‖ 6= 0 that is there exists ε > 0 such

that for all N there exists nN > N such that

‖xnN
− ynN

‖ ≥ ε.

Since X is uniformly convex, there exists δ > 0 such that

‖xnN
+ ynN

‖ ≤ 2(1− δ). (3.1)

By assumption, we know that lim
n→∞

‖xn + yn‖ = 2, and from (3.1) we obtain

2 ≤ 2(1− δ),

which is a contradiction. Therefore lim
n→∞

‖xn − yn‖ = 0.

(ii) ⇒ (i). Suppose (ii) holds. If X is not uniformly convex that is there exists

ε ∈ (0, 2] such that for all δ > 0 such that

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε but ‖x+ y‖ > 2(1− δ),

and then we can find sequences {xn} and {yn} in X such that

(i) ‖xn‖ ≤ 1, ‖yn‖ ≤ 1;

(ii) ‖xn + yn‖ > 2(1− 1

n
);

(iii) ‖xn − yn‖ ≥ ε.

Clearly ‖xn−yn‖ ≥ ε, which contradicts to the hypothesis that lim
n→∞

‖xn+

yn‖ = 2. Thus, X must be uniformly convex.
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Next we show the important result for the class of uniformly convex

Banach spaces.

Theorem 3.3. Every uniformly convex Banach space is reflexive.

Proof. Let X be uniformly convex Banach space. Let SX∗ = {j ∈ X∗ : ‖j‖ = 1}

be a unit sphere in X∗ and f ∈ SX∗ . Assume that {xn} is a sequence in SX such

that lim
n→∞

f(xn) = 1. We claim that {xn} is a Cauchy sequence. Assume {xn} is

not a Cauchy sequence, that is, there exists ε > 0 such that for all N there exists

nj, nk > N such that ‖xnj
− xnk

‖ ≥ ε. Since X is a uniformly convex Banach

space, we have there exists δ > 0 such that ‖
xnj

+ xnk

2
‖ < 1− δ. We see that

|f(
xnj

+ xnk

2
)| ≤ ‖f‖∗‖

xnj
+ xnk

2
‖ < 1− δ,

since lim
n→∞

f(xn) = 1, which is a contradiction. Hence {xn} is Cauchy. Thus there

exists a point x in X such that lim
n→∞

xn = x because X is a Banach space. Now,

by continuity of ‖ · ‖, we see that

‖x‖ = ‖ lim
n→∞

xn‖ = lim
n→∞

‖xn‖ = 1.

So x ∈ Sx. By Theorem 2.18, we conclude that X is reflexive.

We now introduce a useful property.

Definition 3.2. (Kadec - Klee property). A Banach space X is said to have

the Kadec - Klee property for every sequence {xn} in X that converges weakly to

x where also ‖xn‖ → ‖x‖, then {xn} converges strongly to x.

The following result has a very useful property:

Theorem 3.4. Every uniformly convex Banach space has the Kadec - Klee prop-

erty.

Proof. Let X be a uniformly convex Banach space. Let {xn} be a sequence in X

such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖. We claim that xn → x. If x = 0 , then
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lim
n→∞

‖xn‖ = 0 , that is , for all ε > 0, there exists N such that n > N implies

|‖xn‖ − 0| < ε, that is ‖xn‖ < ε which yields that lim
n→∞

xn = 0.

Assume that x 6= 0. We are going to show that lim
n→∞

xn = x. We

prove this by contradiction, suppose that lim
n→∞

xn 6= x and ‖xn‖ 6= 0. We can show

that lim
n→∞

xn
‖xn‖

6= x

‖x‖
,where ‖xn‖ 6= 0 and ‖x‖ 6= 0. Then there exists ε > 0, for

all N such that there exists ni > N such that

‖ xni

‖xni
‖
− x

‖x‖
‖ ≥ ε.

Since X is uniformly convex, there exists δ > 0 such that

1

2
‖ xni

‖xni
‖

+
x

‖x‖
‖ ≤ 1− δ. (3.2)

Taking limit infimum as i→∞ both sides, we have

lim inf
i→∞

1

2
‖ xni

‖xni
‖

+
x

‖x‖
‖ ≤ 1− δ. (3.3)

Since xn ⇀ x and ‖xn‖ → ‖x‖, we claim that
xni

‖xni
‖
⇀

x

‖x‖
. Let f ∈ X∗ and

ε > 0, there exists N such that

|f(xn)− f(x)| < ε‖x‖
2

and

|‖xn‖ − ‖x‖| <
ε‖x‖
2‖f‖∗

,

for all n > N .
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Now we consider

|f(
xn
‖xn‖

)− f(
x

‖x‖
)| = | 1

‖xn‖
f(xn) +

1

‖x‖
f(x)|

=
|‖x‖f(xn)− ‖xn‖f(x)|

‖x‖‖xn‖

=
|‖x‖f(xn)− ‖xn‖f(xn) + ‖xn‖f(xn)− ‖xn‖f(x)|

‖x‖‖xn‖

=
|(‖x‖ − ‖xn‖)f(xn) + ‖xn‖(f(xn)− f(x))|

‖x‖‖xn‖

≤ |‖x‖ − ‖xn‖|‖f‖∗‖xn‖
‖x‖‖xn‖

+
‖xn‖|f(xn)− f(x)|

‖x‖‖xn‖

<
ε

2
+
ε

2
= ε, (3.4)

for all n > N . Thus we can conclude that f( xn

‖xn‖) → f( x
‖x‖). Since f ∈ X∗ was

arbitrary, we have
xni

‖xni
‖
⇀

x

‖x‖
. It follows that

1

2
(
xni

‖xni
‖

+
x

‖x‖
) ⇀

x

‖x‖
, By

Theorem 2.21, we have

‖ x

‖x‖
‖ ≤ lim inf

n→∞

1

2
‖ xni

‖xni
‖

+
x

‖x‖
‖ ≤ 1− δ,

which is a contradiction. Therefore {xn} converges strongly to x ∈ X.

Metric projection

Let X be a normed space and C be a nonempty subset of X. Let

x ∈ X and y0 ∈ C, we say that y0 is a best approximation to x if

‖x− y0‖ = d(x,C).

Let PC(x) = {y ∈ C : ‖x − y‖ = d(x,C)} denote the (possibly

empty) set of all best approximations from x to C which is called the metric pro-

jection onto C such that we define a mapping PC from X into the power set of

C. We can call metric projection mapping which are the nearest point projection

mapping, proximity mapping and best approximation operator.
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Lemma 3.5. The set of best approximation is convex if C is convex.

Proof. Let C be a convex set and PC(x) = {y ∈ C : ‖x−y‖ = d(x,C)} is the set of

all best approximation from X to C. Let a, b ∈ PC(x), we have a, b ∈ C, ‖x−a‖ =

d(x,C) and ‖x−b‖ = d(x,C). We claim that λa+(1−λ)b ∈ PC(x) for all λ ∈ [0, 1].

Since a, b ∈ C and C is convex,that is for λ ∈ [0, 1], we get λa + (1 − λ)b ∈ C .

To complete the proof, we show that ‖x − (λa + (1 − λ)b)‖ = d(x,C). Clearly,

‖x−(λa+(1−λ)b)‖ ≥ d(x,C). Then we claim that ‖x−(λa+(1−λ)b)‖ ≤ d(x,C).

‖x− (λa+ (1− λ)b)‖ = ‖λx+ (1− λ)x− (λa+ (1 + λ)b)‖

= ‖λ(x− a) + (1− λ)(x− b)‖

≤ λ‖x− a‖+ (1− λ)‖x− b‖

= λd(x,C) + (1− λ)d(x,C)

= d(x,C).

Thus λa+ (1− λ)b ∈ PC(x). That is the set of best approximation is convex.

We say C is the proximal set if each x ∈ X has at least one best

approximation in C.

Some results on proximal sets as follow :

Theorem 3.6 (The existence of best approximation). Let C be a nonempty

weakly compact convex subset of a Banach space X and x ∈ X. Then x has a best

approximation in C, that is, PC(x) 6= ∅.

Proof. We define the function f : C → R+ by

f(y) = ‖x− y‖, y ∈ C

Let {an} be a sequence in C such that an → a.

f(a) = ‖x− a‖ ≤ lim inf
n→∞

‖x− an‖ = lim inf
n→∞

f(an).

Thus f is lower semicontinuous. Since C is weakly compact, by Theorem 2.21,

there exists a0 ∈ C such that ‖x− a0‖ = inf
y∈C
‖x− y‖.
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Theorem 3.7 (The uniqueness of best approximation). Let C be a nonempty

convex subset of a strictly convex Banach space X. Then for each x ∈ X, C has

at most one best approximation.

Proof. We prove this by contradiction. Let y1, y2 be elements in C which are

best approximations to x in X. Since C is convex, by Lemma 3.5, set of best

approximations is convex. Therefore
y1 + y2

2
is also a best approximation to x.

Let r = d(x,C), then

r = ‖x− y1‖ = ‖x− y2‖ = ‖x− y1 + y2
2
‖.

Since

r = ‖x− y1 + y2
2
‖

= ‖(x
2
− y1

2
) + (

x

2
− y2

2
)‖,

2r = ‖(x− y1) + (x− y2)‖, (3.5)

and

‖x− y1‖+ ‖x− y2‖ = r + r = 2r. (3.6)

From (3.5) and (3.6), we get

‖x− y1‖+ ‖x− y2‖ = ‖(x− y1) + (x− y2)‖.

By the strict convexity of X, we obtain

(x− y2) = a(x− y1); a ≥ 0.

Taking the norm in both sides, we have

‖x− y2‖ = a‖x− y1‖

r = ar

Thus a = 1. From this, we can conclude that y1 = y2.
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Banach Ratraction.

Let C be a nonempty subset of a topological space X and D a

nonempty subset of C. Then a continuous mapping P : C → D is said to be a

retraction if Px = x for all x ∈ D, that is, P 2 = P . If there exists a continuous

retraction P : X → C such that Px = x for all x ∈ C, then the set C is said to

be a retract of X.

Theorem 3.8. Every nonempty closed convex bounded subset C of a uniformly

convex Banach space X is a retract of X.

Proof. Let X is a uniformly convex Banach space and x ∈ X. By Theorem

2.22, Theorem 3.3 and Theorem 3.5, x has a best approximation in C, that is,

PC(x) 6= ∅. From this, Theorem 2.20, Theorem 3.1 and Theorem 3.7, we get,

C has the unique best approximation. That is, PC(·) is a single-valued metric

projection mapping from X onto C. It remains to show that PC is continuous.

We prove this by contradiction. Let PC is not continuous. There exists sequence

{xn} in X with lim
n→∞

xn = x ∈ X such that lim
n→∞

PC(xn) 6= PC(x) that is there

exists ε > 0, for all N such that there exists n > N and

‖PC(xn)− PC(x)‖ ≥ ε.

Since

|d(xn, C)− d(x,C)| = | inf
y∈C
‖xn − y‖ − inf

y∈C
‖x− y‖| ≤ ‖xn − x‖,

we have, by Theorem 2.20,

|‖xn − PC(xn)‖ − ‖x− PC(x)‖| ≤ ‖xn − x‖.

This implies that

lim
n→∞

‖xn − PC(xn)‖ = ‖x− PC(x)‖. (3.7)

Since {PC(xn)} is bounded in C by (3.7), there exists a subsequence {PC(xni
)} of

{PC(xn)} such that weak− lim
i→∞

PC(xni
) = z ∈ C. Note

weak− lim
i→∞

(xni
− PC(xni

)) = x− z. (3.8)
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By Theorem 2.21, we have

‖x− z‖ ≤ lim inf
i→∞

‖xni
− PC(xni

)‖ = ‖x− PC(x)‖.

This implies z = PC(x) by definition of the function PC . From (3.7) and (3.8)

weak− lim
i→∞

(xni
−PC(xni

)) = x−PC(x) and lim
i→∞
‖xni
−PC(xni

)‖ = ‖x−PC(x)‖.

Since X is uniformly convex, X has the Kadec-Klee property. So

lim
i→∞

(xni
− PC(xni

)) = x− PC(x),

which implies that lim
i→∞

PC(xni
) = PC(x) which is a contradiction. Therefore PC

is continuous.



CHAPTER 4

Main Results

The propose of this chapter is to introduce and to study iterative

schemes for a viscosity approximation common fixed points for three-steps and

a finite family of asymptotically quasi-nonexpansive nonself mappings in Banach

spaces. The convergence theorems in Banach spaces are proved in Section 4.1

and weak and strong convergence theorems of the iterative schemes in a uniformly

convex Banach space are also proved in Section 4.2.

Let X be a real Banach space and let C be a nonempty closed

convex nonexpansive retract of X with P as a nonexpansive retraction. A mapping

f : C → C is called a contractive mapping if there exists a constant α ∈ [0, 1)

such that

‖f(x)− f(y)‖ ≤ α‖x− y‖,

for all x, y ∈ C. For i = 1, 2, 3, let Ti : C → X be an asymptotically quasi-

nonexpansive nonself mapping such that the fixed point set F (T1)∩F (T2)∩F (T3) 6=

∅. Let f : C → C be a contractive mapping. We are interested in sequences in

the following process. For x1 ∈ C and n ≥ 1, define the sequences {xn}, {yn} and

{zn} by

zn = P (anf(xn) + (1− an)(bnxn + (1− bn)T3(PT3)
n−1xn))

yn = P (cnf(zn) + (1− cn)(dnzn + (1− dn)T2(PT2)
n−1zn)) (4.1)

xn+1 = P (enf(yn) + (1− en)(gnyn + (1− gn)T1(PT1)
n−1yn))

where {an}, {bn}, {cn}, {dn}, {en} and {gn} are appropriate sequences in [0, 1].

30
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4.1 Convergence Theorems in Banach Spaces

In this section, we established strong convergence theorems in Banach

spaces of the iterative sequence {xn} defined in (4.1) converges to a common

fixed point of Ti(i = 1, 2, 3). At the end of this section, we proved some strong

convergence theorems of finite family of {Ti : C → X, i = 1, 2, 3, . . . , k} where

each Ti is an asymptotically quasi-nonexpansive nonself mapping.

Theorem 4.1. Let X be a real Banach space, and let C be a nonempty closed

convex nonexpansive retract of X with a nonexpansive retraction P . For i =

1, 2, 3, let Ti : C → X be an asymptotically quasi-nonexpansive nonself mapping

with respect to {h(n)i } such that F (T1) ∩ F (T2) ∩ F (T3) 6= ∅ and
∞∑
n=1

hn < ∞

where hn = max{h(n)1 , h
(n)
2 , h

(n)
3 }. Let f : C → C be a contractive mapping and

let {an}, {bn}, {cn}, {dn}, {en} and {gn} be sequences in [0, 1] such that
∞∑
n=1

an <

∞,
∞∑
n=1

cn < ∞ and
∞∑
n=1

en < ∞. Then, the iterative sequence {xn} defined in

(4.1) converges strongly to a common fixed point of T1, T2 and T3 if and only if

lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0.

Proof. We first prove the necessity. Assume that {xn} converges strongly to a

common fixed point of T1 , T2 and T3, that is, there exists x ∈ F (T1)∩F (T2)∩F (T3)

such that

lim
n→∞

‖xn − x‖ = 0.

From this, we have

lim inf
n→∞

‖xn − x‖ = 0.

We see that

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = inf
x∗∈F (T1)∩F (T2)∩F (T3)

d(xn, x
∗) ≤ ‖xn − x‖

for all n. Taking limit infimum as n → ∞ and using the sandwich theorem, we

obtain that

lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0,



32

as desired. Now we prove the sufficiency. Assume that Ti : C → X is an asymp-

totically quasi-nonexpansive nonself mapping with respect to {h(n)i } for i = 1, 2, 3.

Let p ∈ F (T1) ∩ F (T2) ∩ F (T3). Note that Ti(PTi)
n−1p = p. By assumption, we

have

‖zn − p‖ = ‖P (anf(xn) + (1− an)(bnxn + (1− bn)T3(PT3)
n−1xn))− Pp‖

≤ ‖anf(xn) + (1− an)(bnxn + (1− bn)T3(PT3)
n−1xn)− p‖

= ‖anf(xn)− anp+ (1− an)(bnxn + (1− bn)T3(PT3)
n−1xn − p)‖

= ‖an(f(xn)− p) + (1− an)(bn(xn − p)

+(1− bn)(T3(PT3)
n−1xn − p))‖

≤ an‖f(xn)− p‖+ (1− an)bn‖xn − p‖

+(1− an)(1− bn)‖T3(PT3)n−1xn − p‖

≤ an‖f(xn)− f(p)‖+ an‖f(p)− p‖

+(1− an)bn‖xn − p‖+ (1− an)(1− bn)(1 + h
(n)
3 )‖xn − p‖

≤ ana‖xn − p‖+ an‖f(p)− p‖+ (1− an)bn‖xn − p‖

+(1− an)(1− bn)‖xn − p‖+ (1− an)(1− bn)h
(n)
3 ‖xn − p‖

≤ (1− (1− a)an + h
(n)
3 )‖xn − p‖+ an‖f(p)− p‖

≤ (1 + hn)‖xn − p‖+ an‖f(p)− p‖ (4.2)

‖yn − p‖ = ‖P (cnf(zn) + (1− cn)(dnzn + (1− dn)T2(PT2)
n−1zn))− Pp‖

≤ ‖cnf(zn) + (1− cn)(dnzn + (1− dn)T2(PT2)
n−1zn)− p‖

= ‖cnf(zn)− cnp+ (1− cn)(dnzn + (1− dn)T2(PT2)
n−1zn − p)‖

= ‖cn(f(zn)− p) + (1− cn)(dn(zn − p)

+(1− dn)(T2(PT2)
n−1zn − p))‖

≤ cn‖f(zn)− p‖+ (1− cn)dn‖zn − p‖

+(1− cn)(1− dn)‖T2(PT2)n−1zn − p‖
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≤ cn‖f(zn)− f(p)‖+ cn‖f(p)− p‖+ (1− cn)dn‖zn − p‖

+(1− cn)(1− dn)(1 + h
(n)
2 )‖zn − p‖

≤ cna‖zn − p‖+ cn‖f(p)− p‖+ (1− cn)dn‖zn − p‖

+(1− cn)(1− dn)‖zn − p‖+ (1− cn)(1− dn)h
(n)
2 ‖zn − p‖

≤ (1− (1− a)cn + h
(n)
2 )‖zn − p‖+ cn‖f(p)− p‖

≤ (1 + hn)‖zn − p‖+ cn‖f(p)− p‖ (4.3)

‖xn+1 − p‖ = ‖P (enf(yn) + (1− en)(gnyn + (1− gn)T1(PT1)
n−1yn))− Pp‖

≤ ‖enf(yn) + (1− en)(gnyn + (1− gn)T1(PT1)
n−1yn)− p‖

= ‖enf(yn)− enp+ (1− en)(gnyn + (1− gn)T1(PT1)
n−1yn − p)‖

= ‖en(f(yn)− p) + (1− en)(gn(yn − p)

+(1− gn)(T1(PT1)
n−1yn − p))‖

≤ en‖f(yn)− p‖+ (1− en)gn‖yn − p‖

+(1− en)(1− gn)‖T1(PT1)n−1yn − p‖

≤ en‖f(yn)− f(p)‖+ en‖f(p)− p‖

+(1− en)gn‖yn − p‖+ (1− en)(1− gn)(1 + h
(n)
1 )‖yn − p‖

≤ ena‖yn − p‖+ en‖f(p)− p‖+ (1− en)gn‖yn − p‖

+(1− en)(1− gn)‖yn − p‖+ (1− en)(1− gn)h
(n)
1 ‖yn − p‖

≤ (1− (1− a)en + h
(n)
1 )‖yn − p‖+ en‖f(p)− p‖

≤ (1 + hn)‖yn − p‖+ en‖f(p)− p‖. (4.4)

Substituting (4.2) into (4.3), we obtain

‖yn − p‖ ≤ (1 + hn)((1 + hn)‖xn − p‖+ an‖f(p)− p‖) + cn‖f(p)− p‖

= (1 + hn)(1 + hn)‖xn − p‖+ (1 + hn)an‖f(p)− p‖+ cn‖f(p)− p‖

= (1 + hn)2‖xn − p‖+ (an + anhn + cn)‖f(p)− p‖

= (1 + hn(2 + hn))‖xn − p‖+ (an + anhn + cn)‖f(p)− p‖

= (1 +mn)‖xn − p‖+ sn (4.5)
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where mn = hn(2+hn) and sn = (an+anhn+cn)‖f(p)−p‖. Since
∞∑
n=1

hn <∞, we

have that {2 +hn} and {1 +hn} are bounded. Thus
∞∑
n=1

mn <∞ and
∞∑
n=1

sn <∞

because
∞∑
n=1

an <∞ and
∞∑
n=1

cn <∞. Substituting (4.5) into (4.4), we have

‖xn+1 − p‖ ≤ (1 + hn)((1 + hn)2‖xn − p‖+ sn) + en‖f(p)− p‖

= (1 + hn)3‖xn − p‖+ (1 + hn)sn + en‖f(p)− p‖

= (1 + tn)‖xn − p‖+ un (4.6)

where tn = (1 + hn)3 − 1 and un = (1 + hn)sn + en‖f(p) − p‖. Since
∞∑
n=1

hn <

∞,
∞∑
n=1

en < ∞ and
∞∑
n=1

sn < ∞, then
∞∑
n=1

tn < ∞ and
∞∑
n=1

un < ∞. Hence

Lemma 2.24 implies that lim
n→∞

‖xn − p‖ exists. Thus ‖xn − p‖ is bounded. Let

L = sup
n
‖xn − p‖. We can rewrite (4.6) as

‖xn+1 − p‖ ≤ ‖xn − p‖+ Ltn + un for n ≥ 1 (4.7)

Now, for any positive integers m, n ≥ 1, p ∈ F (T1)∩F (T2)∩F (T3) and induction,

we have

‖xn+m − p‖ ≤ ‖xn − p‖+ L
n+m−1∑
i=n0

ti +
n+m−1∑
i=n0

ui. (4.8)

By (4.7) and taking infimum over p ∈ F (T1) ∩ F (T2) ∩ F (T3), we obtain

d(xn+1, F (T1) ∩ F (T2) ∩ F (T3)) ≤ d(xn, F (T1) ∩ F (T2) ∩ F (T3)) + Ltn + un.

The assumption lim inf
n→∞

d(xn, F (T1)∩F (T2)∩F (T3)) = 0 implies that there exists

a subsequence of {d(xn, F (T1) ∩ F (T2) ∩ F (T3))} converging to zero. This result

together with the fact
∞∑
n=1

(Ltn + un) <∞ and Lemma 2.24,we have

lim
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0. (4.9)
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We now show that {xn} is a Cauchy sequence in X. Let ε > 0. By (4.9) and two

facts that
∞∑
n=1

tn < ∞ and
∞∑
n=1

un < ∞, there exists n0 such that, for n ≥ n0, we

have

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) <
ε

6
,
∞∑

i=n0

ti <
ε

3(L+ 1)
,
∞∑

i=n0

ui <
ε

3
. (4.10)

By the first inequality of (4.10) and the definition of infimum, there exists

p0 ∈ F (T1) ∩ F (T2) ∩ F (T3) such that

‖xn0 − p0‖ <
ε

6
. (4.11)

By combining (4.7), (4.10) and (4.11), we have

‖xn0+m − xn0‖ ≤ ‖xn0+m − p0‖+ ‖xn0 − p0‖

≤ 2‖xn0 − p0‖+ L

n0+m−1∑
i=n0

ti +

n0+m−1∑
i=n0

ui

<
ε

3
+
ε

3
+
ε

3
= ε,

which implies that {xn} is a Cauchy sequence in X. But X is a Banach space,

so there must be some q ∈ X such that xn → q. Since C is closed and {xn} is a

sequence in C, we have that q ∈ C. Since ∅ 6= F (T1) ∩ F (T2) ∩ F (T3) ⊆ C and

xn → q by Lemma 2.28, we have

0 = lim
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = d(q, F (T1) ∩ F (T2) ∩ F (T3)).

Form this and since F (T1)∩F (T2)∩F (T3) is closed, so q ∈ F (T1)∩F (T2)∩F (T3)

by Lemma 2.26. Therefore {xn} converges strongly to a common fixed point of T1

, T2 and T3 as desired.

If T1 = T2 = T3 = T, then the iterative sequences in (4.1) become

zn = P (anf(xn) + (1− an)(bnxn + (1− bn)T (PT )n−1xn))

yn = P (cnf(zn) + (1− cn)(dnzn + (1− dn)T (PT )n−1zn)) (4.12)

xn+1 = P (enf(yn) + (1− en)(gnyn + (1− gn)T (PT )n−1yn)), n ≥ 1.

We then have the following result for fixed point of a single asymp-

totically qausi-nonexpansive nonself mapping.
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Corollary 4.2. Let X be a real Banach space and let C be a nonempty closed

convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :

C → X be an asymptotically quasi-nonexpansive nonself mapping with respect to

{hn} such that F (T ) 6= ∅ and
∞∑
n=1

hn < ∞. Let f : C → C be a contractive

mapping and let {an}, {bn}, {cn}, {dn}, {en} and {gn} be sequences in [0, 1] such

that
∞∑
n=1

an < ∞,
∞∑
n=1

cn < ∞ and
∞∑
n=1

en < ∞. Then the iterative sequence {xn}

defined in (4.12) converges strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0.

Corollary 4.3. Let X,C, Ti(i = 1, 2, 3) and the iterative sequence {xn} be as in

Theorem 4.1. Suppose that conditions in Theorem 4.1 hold and

(i) the mapping Ti(i = 1, 2, 3) is asymptotically regular in xn, that is,

lim inf
n→∞

‖xn − Tixn‖ = 0, i = 1, 2, 3;

(ii) lim inf
n→∞

‖xn−Tixn‖ = 0 implies that lim inf
n→∞

d(xn, F (T1)∩F (T2)∩F (T3)) = 0.

Then the sequence {xn} converges strongly to a common fixed point of T1, T2 and

T3.

Proof. Since T is asymptotically regular in xn

lim inf
n→∞

‖xn − Tixn‖ = 0; i = 1, 2, 3.

From (ii), lim inf
n→∞

‖xn−Tixn‖ = 0. By Theorem 4.1, we see that the sequence {xn}

converges to a common fixed point p of T1, T2 and T3.
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Theorem 4.4. Let X, C, Ti(i = 1, 2, 3) and the iterative sequence {xn} be as in

Theorem 4.1. Suppose that conditions in Theorem 4.1 hold. Assume further that

the mapping Ti(i = 1, 2, 3) is asymptotically regular in xn and satisfies condition

(A). Then the sequence {xn} converges strongly to a common fixed point of T1, T2

and T3.

Proof. To apply Theorem 4.1, we prove that lim inf
n→∞

d(xn, F (T1)∩F (T2)∩F (T3)) =

0. Since {Ti, i = 1, 2, 3} satisfies condition (A), there exists a nondecreasing

function f : [0,∞)→ [0,∞) with f(0) = 0 and f(t) > 0 for all t > 0 such that

1

3

3∑
i=1

‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))),

for all n ≥ 1. Since each Ti is asymptotically regular in xn for i = 1, 2, 3,

lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))) ≤ 0.

Since f : [0,∞)→ [0,∞), we have that

lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))) = 0 (4.13)

We claim that lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0. Suppose not, that is

lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) 6= 0.

From this and f : [0,∞)→ [0,∞), we get

lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = L > 0.

Since lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = L > 0, thus for all ε = L > 0, there

exists N1 ∈ N such that N > N1 implies

| inf
n≥N

d(xn, F (T1) ∩ F (T2) ∩ F (T3))− L| <
L

3

From this we get

2L

3
< inf

n≥N
d(xn, F (T1) ∩ F (T2) ∩ F (T3)) <

4L

3
, for all N > N1,
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That is

2L

3
< d(xn, F (T1) ∩ F (T2) ∩ F (T3)), for all n ≥ N > N1.

Since f is nondecreasing,

f(
2L

3
) ≤ f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))), for all n ≥ N > N1.

We get

f(
2L

3
) ≤ inf

n≥N
f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))), for all N > N1

≤ lim
N→∞

inf{f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))) ;n ≥ N}

= lim inf
n→∞

{f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))).

Since f(t) > 0 if t > 0, we have

0 < f(
2L

3
) ≤ lim inf

n→∞
f(d(xn, F (T1) ∩ F (T2) ∩ F (T3))),

which contradicts (4.13). Hence lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0. We

see that {xn} converges strongly to a common fixed point p of T1, T2 and T3, by

Theorem 4.1, as desired.

If for i = 1, 2, 3, Ti is a self mapping, then the iterative sequences

(4.1) become

zn = anf(xn) + (1− an)(bnxn + (1− bn)T3xn)

yn = cnf(zn) + (1− cn)(dnzn + (1− dn)T2zn) (4.14)

xn+1 = enf(yn) + (1− en)(gnyn + (1− gn)T1yn), n ≥ 1.

We have the following theorem for common fixed points of three

asymptotically quasi-nonexpansive self mappings.
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Corollary 4.5. Let X be a real Banach space and let C be a nonempty closed

convex subset of X. For i = 1, 2, 3, let Ti : C → C be an asymptotically quasi-

nonexpansive self mapping with respect to {h(n)i } such that F (T1)∩F (T2)∩F (T3) 6=

∅ and
∞∑
n=1

hn <∞ where hn = max{h(n)1 , h
(n)
2 , h

(n)
3 }. Let f : C → C be a contrac-

tive mapping and let {an}, {bn}, {cn}, {dn}, {en} and {gn} be real sequences in [0, 1]

such that
∞∑
n=1

an < ∞,
∞∑
n=1

cn < ∞ and
∞∑
n=1

en < ∞. Then the iterative sequence

{xn} defined in (4.14) converges strongly to a common fixed point of T1, T2 and T3

if and only if lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0.

Now, we introduce a new iteration process for a finite family {Ti :

C → X, i = 1, 2, 3, ..., k} of asymptotically quasi - nonexpansive nonself mapping

as follows :

Let X be a real arbitrary Banach space and let C be a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction. For

i = 1, 2, 3, ..., k, let Ti : C → X be an asymptotically quasi-nonexpansive nonself

mapping such that F = ∩ki=1F (Ti) 6= ∅. We are interested in sequences in the

following process. For x1 ∈ C, fixed k ∈ N and n ≥ 1, The iteration scheme is

defined as follows :

xn+1 = P [α
(n)
k f(y(k−1)n) + (1− α(n)

k )(β
(n)
k y

(n)
(k−1) + (1− β(n)

k )Tk(PTk)n−1y
(n)
(k−1))]

y
(n)
(k−1) = P [α

(n)
(k−1)f(y

(n)
(k−2)) + (1− α(n)

(k−2))(β
(n)
(k−1)y

(n)
(k−2) +

(1− β(n)
(k−1))T(k−1)(PT(k−1))

n−1y
(n)
(k−2))]

y
(n)
(k−2) = P [α

(n)
(k−2)f(y

(n)
(k−3)) + (1− α(n)

(k−3))(β
(n)
(k−2)y

(n)
(k−3) + (4.15)

(1− β(n)
(k−2))T(k−2)(PT(k−2))

n−1y
(n)
(k−3))]

...

y
(n)
2 = P [α

(n)
2 f(y

(n)
1 ) + (1− α(n)

2 )(β
(n)
2 y

(n)
1 + (1− β(n)

2 )T2(PT2)
n−1y

(n)
1 )]

y
(n)
1 = P [α

(n)
1 f(y

(n)
0 ) + (1− α(n)

1 )(β
(n)
1 y

(n)
0 + (1− β(n)

1 )T1(PT1)
n−1y

(n)
0 )]

where y
(n)
0 = xn, for all n, {α(n)

i } and {βn
i }, n = 1, 2, 3, ... and i = 1, 2, 3, ..., k are

appropriate sequences in [0, 1].
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Theorem 4.6. Let X be a real arbitrary Banach space and let C be a nonempty

closed convex nonexpansive retract of X with a nonexpansive retraction P . For

i = 1, 2, 3, ..., k, let Ti : C → X be an asymptotically quasi nonexpansive nonself

mapping with respect to {h(n)i } such that F = ∩k
i=1F (Ti) 6= ∅ and

∞∑
n=1

hn <∞ where

hn = max
1≤i≤k

{h(n)i }. Let f : C → C be a contractive mapping and let {α(n)
i } and

{β(n)
i } be sequences in [0, 1] such that

∞∑
n=1

α
(n)
i <∞ for all n = 1, 2, 3, . . . and i =

1, 2, 3, ..., k. Then the iterative sequence {xn} defined in (4.15) converges strongly

to a common fixed point of {Ti, i = 1, 2, 3, ..., k} if and only if lim inf
n→∞

d(xn, F ) = 0.

Proof. For the necessity, we assume that {xn} converges to a common fixed point

of {Ti, i = 1, 2, 3, ..., k} , that is, there exists p ∈ F such that lim
n→∞

‖xn − p‖ = 0,

so lim inf
n→∞

‖xn − p‖ = 0. We have, by definition of distance function,

d(xn, F ) = inf
p∗∈F
‖xn − p∗‖ ≤ ‖xn − p‖.

By taking limit infimum as n → ∞ and using the sandwich theorem , we have

lim inf
n→∞

d(xn, F ) = 0, as desired. Now, we prove the sufficiency. Assume that

Ti : C → X is an asymptotically quasi-nonexpansive nonself mapping with respect

to {h(n)i } for i = 1, 2, 3, ..., k. Let p ∈ F and αn = max
1≤i≤k

{α(n)
i }. Note that

Ti(PTi)
n−1p = p. By assumption, we have

‖y(n)1 − p‖ = ‖P [α
(n)
1 f(xn) + (1− α(n)

1 )(β
(n)
1 xn + (1− β(n)

1 )T1(PT1)
n−1xn)]− Pp‖

≤ ‖α(n)
1 f(xn) + (1− α(n)

1 )(β
(n)
1 xn + (1− β(n)

1 )T1(PT1)
n−1xn)− p‖

≤ α
(n)
1 ‖f(xn)− p‖+ (1− α(n)

1 )β
(n)
1 ‖xn − p‖+ (1− α(n)

1 )(1− β(n)
1 )

‖T1(PT1)n−1xn − p‖

≤ α
(n)
1 α‖xn − p‖+ (1− α(n)

1 )β
(n)
1 ‖xn − p‖+ (1− α(n)

1 )(1− β(n)
1 )‖xn − p‖

+(1− α(n)
1 )(1− β(n)

1 )h
(n)
1 ‖xn − p‖+ α

(n)
1 ‖f(p)− p‖

≤ (1− (1− α)α
(n)
1 + hn)‖xn − p‖+ αn‖f(p)− p‖

≤ (1 + hn)‖xn − p‖+ αn‖f(p)− p‖
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Assume that ‖y(n)l − p‖ ≤ (1 + hn)l‖xn − p‖+
l−1∑
i=0

(1 + hn)iαn‖f(p)− p‖ holds for

some 1 ≤ l ≤ k − 2. Then

‖y(n)(l+1) − p‖ = ‖P [α
(n)
(l+1)f(y

(n)
l ) + (1− α(n)

(l+1))(β
(n)
(l+1)y

(n)
l

+(1− β(n)
(l+1))Tl+1(PTl+1)

n−1y
(n)
l )]− Pp‖

≤ ‖α(n)
(l+1)f(y

(n)
l ) + (1− α(n)

(l+1))(β
(n)
(l+1)y

(n)
l

+(1− β(n)
(l+1))T(l+1)(PT(l+1))

n−1y
(n)
l )− p‖

≤ α
(n)
(l+1)‖f(y

(n)
l )− p‖+ (1− α(n)

(l+1))β
(n)
(l+1)‖y

(n)
l − p‖

+(1− α(n)
(l+1))(1− β

(n)
(l+1))‖T(l+1)(PT(l+1))

n−1y
(n)
l − p‖

≤ α
(n)
(l+1)α‖y

(n)
l − p‖+ (1− α(n)

(l+1))β
(n)
(l+1)‖y

(n)
l − p‖

+(1− α(n)
(l+1))(1− β

(n)
(l+1))‖y

(n)
l − p‖+ (1− α(n)

(l+1))(1− β
(n)
(l+1))h

(n)
(l+1)

‖y(n)l − p‖+ α
(n)
(l+1)‖f(p)− p‖

≤ (1− (1− α)α
(n)
(l+1) + hn)‖y(n)l − p‖+ αn‖f(p)− p‖

≤ (1 + hn)(1 + hn)l‖xn − p‖+ (1 + hn)
l−1∑
i=0

(1 + hn)iαn‖f(p)− p‖

+αn‖f(p)− p‖

= (1 + hn)l+1‖xn − p‖+
l∑

i=0

(1 + hn)iαn‖f(p)− p‖

Thus, by induction, we have

‖y(n)i − p‖ ≤ (1 + hn)i‖xn − p‖+
i−1∑
j=0

(1 + hn)jαn‖f(p)− p‖, (4.16)

for all i = 1, 2, 3, ..., k − 1. Now, by (4.16), we obtain

‖xn+1 − p‖ ≤ ‖P [α
(n)
k f(y

(n)
(k−1)) + (1− α(n)

k )(β
(n)
k y

(n)
(k−1)

+(1− β(n)
k )Tk(PTk)n−1y

(n)
(k−1))]− Pp‖

≤ ‖α(n)
k f(y

(n)
(k−1)) + (1− α(n)

k )(β
(n)
k y

(n)
(k−1)

+(1− β(n)
k )Tk(PTk)n−1y

(n)
(k−1))− p‖

≤ α
(n)
k ‖f(y

(n)
(k−1))− p‖+ (1− α(n)

k )(β
(n)
k ‖y

(n)
(k−1) − p‖
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+(1− α(n)
k )(1− β(n)

k )‖Tk(PTk)n−1y
(n)
(k−1))− p‖

≤ α
(n)
k α‖f(y

(n)
(k−1))− p‖+ (1− α(n)

k )(β
(n)
k ‖y

(n)
(k−1) − p‖

+(1− α(n)
k )(1− β(n)

k ‖y
(n)
(k−1) − p‖+ (1− α(n)

k )(1− β(n)
k h

(n)
k ‖y

(n)
(k−1) − p‖

+α
(n)
k ‖f(p)− p‖

≤ (1− (1− α)α
(n)
k + hn)‖y(k−1)(n) − p‖+ αn‖f(p)− p‖

≤ (1 + hn)(1 + hn)k−1‖xn − p‖+ (1 + hn)
k−2∑
i=0

(1 + hn)iαn‖f(p)− p‖

+αn‖f(p)− p‖

= (1 + hn)k‖xn − p‖+
k−1∑
i=0

(1 + hn)iαn‖f(p)− p‖. (4.17)

Let sn = (1 + hn)k−1 + (1 + hn)k−2 + . . . + (1 + hn) + 1. Since
∞∑
n=1

hn < ∞, the

sequence {hn} converges to 0 and hence there exists a constant n0 > 0 such that

0 ≤ hn < 1 for all n ≥ n0. Then for any n ≥ n0,

sn = (1 + hn)k−1 + (1 + hn)k−2 + · · ·+ (1 + hn) + 1

=
(1 + hn)k − 1

hn

=
1 +

(
k
1

)
hn +

(
k
2

)
h2n + · · ·+

(
k
k

)
hk − 1

hn

=

(
k

1

)
+

(
k

2

)
hn +

(
k

3

)
h2n + · · ·+

(
k

k

)
hk−1n

≤
(
k

1

)
+

(
k

2

)
+

(
k

3

)
+ · · ·+

(
k

k

)
; since 0 ≤ hn < 1

= 2k − 1.

Then there exists a positive constant C such that sn ≤ C for all n ≥ 1. Now, we

can rewrite (4.17) as

‖xn+1 − p‖ ≤ (1 + tn)‖xn − p‖+Mαn (4.18)

where tn = (1+hn)k−1 andM = C‖f(p)−p‖. Since
∞∑
n=1

hn <∞, then
∞∑
n=1

tn <∞.

Lemma 2.24 implies that lim
n→∞

‖xn − p‖ exists. Thus ‖xn − p‖ is bounded. Let

L = sup
n≥1
‖xn − p‖. We can rewrite (4.18) as

‖xn+1 − p‖ ≤ ‖xn − p‖+ Ltn +Mαn for n ≥ 1. (4.19)
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Now, for any positive integers m,n ≥ 1 , p ∈ F and induction, we have

‖xn+m − p‖ ≤ ‖xn − p‖+ L

n+m−1∑
i=n

ti +M

n+m−1∑
i=n

αi. (4.20)

By (4.19) and taking infimum over p ∈ F , we obtain

d(xn+1, F ) ≤ d(xn, F ) + Ltn +Mαn.

The assumption lim inf
n→∞

d(xn, F ) = 0 implies that there exists a subsequence of

{d(xn, F )} converging to zero. This result together with the fact
∞∑
n=1

(Ltn + un) <

∞, and Lemma 2.24, we have

lim
n→∞

d(xn, F ) = 0. (4.21)

We claim that {xn} is Cauchy in X. Let ε > 0 be given. From (4.21),
∞∑
n=1

tn <∞

and
∞∑
n=1

αn <∞, there exists n0 such that for n ≥ n0, we get

d(xn, F ) <
ε

6
,

∞∑
i=n0

ti <
ε

3(L+ 1)
and

∞∑
i=n

αi <
ε

3
. (4.22)

The first inequality of (4.22) and the definition of infimum, there exists z1 ∈ F

such that

‖xn0 − z1‖ <
ε

6
. (4.23)

Combining (4.20), (4.22) and (4.23), we have

‖xn0+m − xn0‖ ≤ ‖xn0+m − z1‖+ ‖xn0 − z1‖

≤ 2‖xn0 − z1‖+ L

n0+m−1∑
i=n

ti +M

n0+m−1∑
i=n

αi

≤ 2‖xn0 − z1‖+ L
∞∑

i=n0

ti +M
∞∑

i=n0

αi

<
ε

3
+
ε

3
+
ε

3
= ε,

which implies that {xn} is a Cauchy sequence in X. But X is a Banach space,

so there must be some q ∈ X such that xn → q. Since C is closed and {xn} is
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a sequence in C, we have that q ∈ C. Since ∅ 6= F ⊆ C and xn → q by Lemma

2.28, we have

0 = lim
n→∞

d(xn, F ) = d(q, F ).

From this and since F is closed, so q ∈ F by Lemma 2.26. Therefore {xn}

converges to a common fixed point of {Ti, i = 1, 2, 3, . . . , k}, as desired.

Corollary 4.7. Let X,C, Ti(i = 1, 2, 3, . . . , k) and the iterative sequence {xn} be

as in Theorem 4.6. Suppose that conditions in Theorem 4.6 hold and

(i) the mapping Ti(i = 1, 2, 3, . . . , k) is asymptotically regular in xn, that is

lim inf
n→∞

‖xn − Tixn‖ = 0, i = 1, 2, 3, . . . , k;

(ii) lim inf
n→∞

‖xn − Tixn‖ = 0 implies that lim inf
n→∞

d(xn, F ) = 0.

Then the sequence {xn} converges strongly to a common fixed point of {Ti, i =

1, 2, 3, ..., k}.

Theorem 4.8. Let X,C, {Ti, i = 1, 2, 3, . . . , k} and the iterative sequence {xn} be

as in Theorem 4.6. Suppose that conditions in Theorem 4.6 hold. Assume further

that the mapping {Ti, i = 1, 2, 3, . . . , k} is an asymptotically regular and satisfies

condition (A), then {xn} converges strongly to common fixed point of the family

of mappings.

Proof. Since {Ti, i = 1, 2, 3, ..., k} satisfies condition (A), there exists a nonde-

creasing function f : [0,∞)→ [0,∞) with f(0) = 0 and f(t) > 0 for all t ∈ (0,∞)

such that
1

k

k∑
i=1

‖xn − Tixn‖ ≥ f(d(xn, F )),

for all n ≥ 1. Since each Ti is asymptotically regular in xn for i = 1, 2, 3, . . . , k,

lim inf
n→∞

f(d(xn, F )) ≤ 0.

Since f : [0,∞)→ [0,∞), we have that

lim inf
n→∞

f(d(xn, F )) = 0 (4.24)
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We claim that lim inf
n→∞

d(xn, F ) = 0. We prove this by contradiction, assume that

lim inf
n→∞

d(xn, F ) 6= 0.

From this and f : [0,∞)→ [0,∞), we have

lim inf
n→∞

d(xn, F ) = L > 0.

Since lim inf
n→∞

d(xn, F ) = L > 0, for all ε = L > 0, there exists N1 ∈ N such that

N > N1 implies

| inf
n≥N

d(xn, F )− L| < L

k

From this we get

(k − 1)L

k
< inf

n≥N
d(xn, F ) <

(k + 1)L

k
, for all N > N1,

That is
(k − 1)L

k
< d(xn, F ), for all n ≥ N > N1.

Since f is nondecreasing,

f(
(k − 1)L

k
) ≤ f(d(xn, F )), for all n ≥ N > N1.

We get

f(
(k − 1)L

k
) ≤ inf f(d(xn, F )), for all N > N1

≤ lim
N→∞

inf{f(d(xn, F )) ;n ≥ N}

= lim inf
n→∞

f(d(xn, F )).

Since f(t) > 0 if t > 0, we have

0 < f(
(k − 1)L

k
) ≤ lim inf

n→∞
{f(d(xn, F )),

which contradicts (4.24). Hence lim inf
n→∞

d(xn, F ) = 0. We see that {xn} converges

strongly to a common fixed point of {Ti, i = 1, 2, 3, . . . , k}, by Theorem 4.6, as

desired.
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4.2 Convergence Theorems in Uniformly Convex Banach

Spaces

At the beginning of the section, we restate some results in section 4.1

by using Theorem 3.8 in Chapter 3 and then establish some weak and strong con-

vergence theorems for the iterative scheme (4.15) for a finite family of asymptoti-

cally quasi-nonexpasive nonself mapping from C to X by removing the condition

lim inf
n→∞

d(xn, F ) = 0 from theorems obtained in section 4.1.

Now we restate some results in section 4.1 by using Theorem 3.8 in

Chapter 3 in the uniformly convex Banach space.

Corollary 4.9. Let X be a uniformly convex real Banach space, and let C be a

nonempty closed convex bounded subset of X and suppose that a retraction map P :

X → C is nonexpansive. For i = 1, 2, 3, let Ti : C → X be an asymptotically quasi-

nonexpansive nonself-mapping with respect to {h(n)i } such that F (T1) ∩ F (T2) ∩

F (T3) 6= ∅ and
∞∑
n=1

hn < ∞ where hn = max{h(n)1 , h
(n)
2 , h

(n)
3 }. Let f : C → C be

a contractive mapping and let {an}, {bn}, {cn}, {dn}, {en} and {gn} be sequences

in [0, 1] such that
∞∑
n=1

an < ∞,
∞∑
n=1

cn < ∞ and
∞∑
n=1

en < ∞. Then, the iterative

sequence {xn} defined in (4.1) converges strongly to a common fixed point of T1, T2

and T3 if and only if

lim inf
n→∞

d(xn, F (T1) ∩ F (T2) ∩ F (T3)) = 0.

Corollary 4.10. Let X,C, Ti(i = 1, 2, 3) and the iterative sequence {xn} be as in

Theorem 4.9. Suppose that conditions in Theorem 4.9 hold and

(i) the mapping Ti(i = 1, 2, 3) is asymptotically regular in xn, i.e.,

lim inf
n→∞

‖xn − Tixn‖ = 0, i = 1, 2, 3;

(ii) lim inf
n→∞

‖xn−Tixn‖ = 0 implies that lim inf
n→∞

d(xn, F (T1)∩F (T2)∩F (T3)) = 0.

Then the sequence {xn} converges strongly to a common fixed point of T1, T2 and

T3.
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Corollary 4.11. Let X, C, Ti(i = 1, 2, 3) and the iterative sequence {xn} be as

in Theorem 4.9. Suppose that conditions in Theorem 4.9 hold. Assume further that

the mapping Ti(i = 1, 2, 3) is asymptotically regular in xn and satisfies condition

(A) Then the sequence {xn} converges strongly to a common fixed point of T1, T2

and T3.

Corollary 4.12. Let X be a uniformly convex real Banach space, and let C

be a nonempty closed convex bounded subset of X and suppose that a retrac-

tion map P : X → C is nonexpansive. For i = 1, 2, 3, ..., k, let Ti : C → X

be an asymptotically quasi-nonexpansive nonself mapping with respect to {h(n)i }

such that F = ∩ki=1F (Ti) 6= ∅ and
∞∑
n=1

hn < ∞ where hn = max
1≤i≤k

{h(n)i }. Let

f : C → C be a contractive mapping and let {α(n)
i } and {βn

i } be sequences in [0, 1]

such that
∞∑
n=1

α
(n)
i < ∞ for all n = 1, 2, 3, . . . and i = 1, 2, 3, ..., k Then the itera-

tive sequence {xn} defined in (4.15) converges strongly to a common fixed point of

{Ti : i = 1, 2, 3, ..., k} if and only if lim inf
n→∞

d(xn, F ) = 0.

Corollary 4.13. Let X be a uniformly convex real Banach space, and let C be

a nonempty closed convex bounded subset of X and suppose that a retraction

map P : X → C is nonexpansive. For i = 1, 2, 3, ..., k, let Ti : C → X be

an asymptotically quasi-nonexpansive nonself mapping with respect to {h(n)i } such

that F = ∩ki=1F (Ti) 6= ∅ and
∞∑
n=1

hn <∞ where hn = max
1≤i≤k

{h(n)i }. Let f : C → C

be a contractive mapping and let {α(n)
i } and {β(n)

i } be sequences in [0, 1] such that
∞∑
n=1

α
(n)
i < ∞ for all n = 1, 2, 3, ... and i = 1, 2, 3, ..., k and the iterative sequence

{xn} defined in (4.15). If {Ti : i = 1, 2, 3, ..., k} is asymptotically regular and

satisfies condition (A), then {xn} converges strongly to common fixed point of the

family of mappings.

Now, we let X be a real Banach space, and C be a nonempty

closed convex bounded subset of X. For each i = 1, 2, 3, ..., k, we let Ti be an

asymptotically quasi-nonexpasive nonself mapping from C to X with respect to
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{h(n)i } such that
∞∑
n=1

h
(n)
i < ∞. Let F denotes the set of common fixed points of

{Ti : i = 1, 2, 3, ..., k} and assumes that F 6= ∅. Let {α(n)
i } and {β(n)

i } be sequences

in [0, 1] and
∞∑
n=1

α
(n)
i < ∞ and let x1 be arbitrary element in C and {xn} be the

sequence defined in (4.15) . In order to prove our theorems, we need the following

lemma:

Lemma 4.14. Let C be a nonempty closed and convex subset of uniformly con-

vex Banach space X and {Ti, i = 1, 2, 3, ..., k} a finite family of asymptotically

quasi-nonexpansive nonself mapping from C to X with respect to {h(n)i } such that
∞∑
n=1

h
(n)
i <∞ for all i = 1, 2, 3, ..., k. Let {αn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1) and

assumes that F 6= ∅ and let x1 be arbitrary element in C and {xn} be the sequence

defined in (4.15), then lim
n→∞

‖xn − p‖ exists for all p ∈ F .

Proof. Let p ∈ F, hn = max
1≤i≤k

{h(n)i } and αn = max
1≤i≤k

{α(n)
i } for all n. By proof of

Theorem 4.6 and Lemma 2.24, it follows that lim
n→∞

‖xn − p‖ exists for all p ∈ F .

Theorem 4.15. Let C be a nonempty closed and convex subset of uniformly con-

vex Banach space X and {Ti, i = 1, 2, 3, ..., k} a finite family of asymptotically

quasi-nonexpansive nonself mapping from C to X with respect to {h(n)i } such that
∞∑
n=1

h
(n)
i < ∞ for all i = 1, 2, 3, ..., k. Assumes that F 6= ∅ and let x1 be arbitrary

element in C and {xn} be the sequence defined in (4.15),and {αn} ⊂ [δ, 1 − δ]

for some δ ∈ (0, 1). If Tj is completely continuous for some j = 1, 2, 3, . . . , k,

lim
n→∞

‖xn − Tixn‖ = 0 for all i = 1, 2, 3, ..., k and I − Ti is demiclosed at zero

for all i = 1, 2, 3, . . . , k, then {xn} converges strongly to a common point of

{Ti; i = 1, 2, 3, ..., k}.

Proof. Let p ∈ F , then lim
n→∞

‖xn − p‖ exists as proved in Lemma 4.14 and hence

{xn} is bounded. By assumption, lim
n→∞

‖xn − Tixn‖ = 0 for each i = 1, 2, 3, . . . , k,

we have that {Tixn} is bounded for each i = 1, 2, 3, . . . , k. Assume without loss of

generality that T1 is completely continuous. Then there exists an element q ∈ C
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and a subsequence {T1xnj
} such that ‖T1xnj

− q‖ → 0 as j →∞. Since

‖xnj
− q‖ ≤ ‖xnj

− T1xnj
‖+ ‖T1xnj

− q‖,

we have lim
j→∞
‖xnj

− q‖ = 0. Since each I − Ti is demiclosed at zero for each

i = 1, 2, 3, . . . , k, so we have that (I−Ti)q = 0, that is Tiq = q. Thus q ∈ F . Since

lim
n→∞

‖xn − q‖ exists and hence equal to zero. Then {xn} converges strongly to a

common fixed point of {Ti; i = 1, 2, 3, ..., k}.

Theorem 4.16. Let C be a nonempty closed and convex subset of uniformly con-

vex Banach space X and {Ti, i = 1, 2, 3, ..., k} a finite family of asymptotically

quasi-nonexpansive nonself mapping from C to X with respect to {h(n)i } such that
∞∑
n=1

h
(n)
i < ∞ for all i = 1, 2, 3, ..., k. Assumes that F 6= ∅ and let x1 be ar-

bitrary element in C and {xn} be the sequence defined in (4.15) and {αn} ⊂

[δ, 1 − δ] for some δ ∈ (0, 1). If Tj is demicompact for some j = 1, 2, 3, . . . , k,

lim
n→∞

‖xn − Tixn‖ = 0 for all i = 1, 2, 3, ..., k and I − Ti is demiclosed at zero

for all i = 1, 2, 3, . . . , k, then {xn} converges strongly to a common fixed point of

{Ti; i = 1, 2, 3, ..., k}.

Proof. Let p ∈ F . Then lim
n→∞

‖xn − p‖ exists as proved in Lemma 4.14 and hence

{xn} is bounded. Assume without loss of generality that T1 is demicompact.

Then there exists an element q ∈ C and a subsequence {xnj
} of {xn} such that

xnj
→ q. By assumption, lim

n→∞
‖xn − Tixn‖ = 0, and I − Ti is demiclosed at

zero for all i = 1, 2, 3, . . . , k, we have (I − Ti)q = 0, that is, Tiq = q. Thus

q ∈ F. By Lemma 4.14, {xn} converges strongly to q, a common fixed point of

{Ti; i = 1, 2, 3, ..., k}.

Theorem 4.17. Let C be a nonempty closed and convex subset of uniformly con-

vex Banach space X and {Ti, i = 1, 2, 3, ..., k} a finite family of asymptotically

quasi-nonexpansive nonself mapping from C to X with respect to {h(n)i } such that
∞∑
n=1

h
(n)
i < ∞ for all i = 1, 2, 3, ..., k. Assumes that F 6= ∅ and let x1 be arbitrary

element in C and {xn} be the sequence defined in (4.15) and {αn} ⊂ [δ, 1 − δ]
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for some δ ∈ (0, 1). If X satisfies Opial’s property, lim
n→∞

‖xn − Tixn‖ = 0 for all

i = 1, 2, 3, ..., k and I −Ti is demiclosed at zero for all i = 1, 2, 3, . . . , k, then {xn}

converges weakly to a common fixed point of {Ti; i = 1, 2, 3, ..., k}.

Proof. Let p ∈ F . Then lim
n→∞

‖xn − p‖ exists as proved in Lemma 4.14 and hence

{xn} is bounded. By Theorem 3.3 and Theorem 2.19, there exists a subsequence

{xnj
} of {xn} converging weakly to some q ∈ C. Since lim

n→∞
‖xn − Tixn‖ = 0 and

I−Ti is demiclosed at zero for all i = 1, 2, ..., k, so we have Tiq = q. Thus q ∈ F .To

complete the proof, let {xnk
} be another sequence of {xn} that converges to weakly

to some r ∈ C. Similarly proof as above, we can prove that r ∈ F . By Lemma

2.25, q = r. Therefore {xn} converges weakly to a common fixed point in F .
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